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Abstract

AN EXACT ANALYSIS FOR FOUR-ORDER ACOUSTO-OPTIC BRAGG 
DIFFRACTION WHICH INCORPORATES BOTH INCIDENT LIGHT ANGLE 

AND SOUND FREQUENCY DEPENDENCIES

Ademola Adeyinka Sunday

Thesis Chair: Ron Pieper, Ph.D.

The University of Texas at Tyler
March 2017

 This thesis extends the prior work which produced an exact solution to the 

four-order acousto-optic (AO) Bragg cell with assumed fixed center frequency and 

with exact Bragg angle incident light. The extension predicts the model that 

incorporates the dependencies of both the input angle of light and the sound 

frequency. Specifically, a generalized 4th order linear differential equation (DE), is 

developed from a simultaneous analysis of  four coupled AO system of DEs. Through 

standard methods, the characteristic roots, which requires solving a quartic equation, 

is produced. Subsequently, a derived system of homogeneous solutions, which 

absorbs the roots obtained using Ferrari's approach, is formalized into a transition 

matrix operator which predicts the diffracted light orders at the exit of the AO cell in 

terms of the same diffracted light orders at the entrance. Numerical tests are used to 

test the hypothesis that the state of transition matrix is unitary. It is shown that this 

unitary matrix condition is sufficient to guarantee energy conservation. Three 

different types of  tests: normalized space variation, normalized angle variation, and 

normalized frequency variation, have been used to demonstrate the agreement 

between analytical solutions and numerical predictions, which validate the formalism. 

Lastly, all four generated eigenvalues from the four-order acousto-optic differential 

matrix operator can be expressed simply in terms of Euclid's Divine Proportion.
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Chapter One

Introduction

In what is now referred to as the topic of  surface acoustic waves, Lord 

Raleigh, in 1885, attempted to analyze the effect of an earthquake by setting in motion 

the field of acoustics. About thirty seven years later, one facet of Raleigh's earlier 

concept was transformed into what is now termed Acousto-Optics [1]. Acousto-

Optics (AO), first predicted by Léon Brillouin in 1922, is a branch of physics that 

deals with the interaction (either weak or strong) between sound and light [2, 3]. 

Similarly, by assuming both light and sound particles are well-defined in terms of 

energy ( and ) and momenta (  and ) respectively, and in the absence of  k


  K




heat lost, AO will be explained in quantum mechanics as the elastic collision between 

the photons and phonons [4]. This interaction can result in light beam deflection, 

amplitude modulation, phase modulation, and frequency shifting [5]. 

Originally, AO was proposed  to determine  if the spectrum of thermal sound 

fluctuations in matter (solid, liquid or gas) could be measured by analyzing the 

amount of light they scattered [2, 6].  To achieve this, a Bragg cell (sound cell) has 

been introduced.  It works  simply by applying  an electric field to a piezoelectric 

transducer such that  a periodic sound wave is generated in the medium (such as 

glass) [7] as shown in Fig. 1. Consequently, this has the effect of deforming the 

material, causing an internal strain which results in a change in the refractive index. 

Thereafter, the strain is transmitted to the acousto-optic medium which is 

mechanically coupled to the transducer. An incident light on the acousto-optic 

medium will scatter off (diffract) the variation of the refractive index - compression 

and rarefaction [8]. Meanwhile, the analysis given by Brillouin to explain the heuristic 

theory was closely related to X-ray diffraction in crystals [9]. There have been two 

independent experimental verifications carried out by both the American and French 

scientists - Debye and Sears, and R. Lucas and P. Biquard in 1932 [10,11],  Brillouin's 

predictions earlier analyzed using retarded potential Green's function method in the 

first Born approximation [12] were separately verified.  Their analysis predicted that 
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Figure 1. A typical Acousto-Optic device

the sound atomic planes cause multiple reflections (also called diffraction or 

scattering) of an incident electromagnetic plane wave. These reflections interfere 

constructively for certain critical angles of incidence, to cause enhanced overall 

reflection [13]. Shapewise, atomic planes are sharply defined in location and regular 

in structure, whereas, sound waves on the other hand are essentially sinusoidal and, 

when limited in the transverse direction, spread as they propagate. This  results in 

very complex density distributions and wavefronts [9]. Besides, the movement of 

sound wavefronts makes the diffracted light either Doppler downshifted or upshifted 

(i.e., negative frequency shift  or positive frequency shift ) [5]. Doppler shifts in the 

sound  has  been predicted by Brillouin.  To a first approximation  the analogy is very 

useful [9]. However, in acoustic diffraction, the counterpart of the atomic planes  in 

X-ray  diffraction are planes of compression and rarefaction, induced by ultrasonic 

waves with frequency between 1 MHz and 2 GHz. Therefore, AO diffraction effects 

are similar to X-ray diffraction effects which occur as in crystals [9].

1.1 Review of Prior Work

Because it has been observed that light can be scattered into several orders 

when interacting with sound [11], there has been a keen interest in developing an 

efficient means for determining the conditions in which only one order of light is 

significantly diffracted. Although the application  of numerical methods is essential to 

generating physical solutions for mathematically intractable problems for a wide 

range of AO designs [14, 15], an analytic solution, if possible, is usually preferred.  

Advantages of practical interest typically  include computation speed  required to  
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generate a solution, which is usually higher for analytic solutions. Also, analytic  

solutions provide more physical insight into the parameter functional dependencies.  

Lastly, direct methods for  sensitivity analysis  are well  established for  analytic  

solutions. 

Based on the Feynman diagram techniques [16], Poon and Korpel in the 

1980s, worked out an approximate analytic solution involving four diffracted orders. 

Their solution took the form of an infinite series in powers of , where is the 1/ Q Q

Klein-Cook parameter and that the practical computation requires that the series has 

being truncated. Afterwards, an exact solution involving four diffracted orders was 

worked out by Poon, which assumes 100% of the energy is present in the 0th order 

and incident at the exact Bragg angle [17].  With boundary conditions specified 

relative to both initial 0 and -1-order field values, as well as their corresponding space 

derivatives, a four-order solution was derived from simultaneous analysis of two 2nd-

order differential equations. The validity of the solution was checked by confirming 

that it met the energy conservation rule. 

In the mid-80's, Blomme and Leroy [18] worked out an exact four-order 

solution that was applicable to arbitrary angles of incidence, but again was derived 

only with boundary conditions in which 100% of the optical power was initialized in 

the 0-order. The development of a four-order solution for arbitrary boundary 

conditions would be necessary to establish the equivalent of a four-order matrix 

formalism comparable to the two-order matrix formalism [19]. 

Subsequently, Pieper, Koslover and Poon, in 2008, developed an exact 

solution to the four-order AO Bragg diffraction problem  with arbitrary initial optical 

power distribution but  restrictive conditions  such as exact Bragg angle incident light 

for 0-order and working at the AO cell  center frequency [20]. The solution was 

formalized into a transition matrix operator predicting diffracted light orders at the 

exit of AO cell for  arbitrary  selection  of  the distribution of optical power for four 

orders  incident on the AO cell. It was proven that the transition matrix is unitary 

which was sufficient to guarantee energy conservation. Moreover, the approach taken 

to find the four-order solution has led to the unveiling of the Golden Ratio, also 

known as the Divine Proportion [20]. 

In 2009, Ndwata and Pieper, introduced a  design  technique to increase  the 

acousto-optic diffraction bandwidth for diffraction from 0-order into the first order. 
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For a high percentage of  AO applications a broader bandwidth for first order 

diffraction  improves the performance [21]. They combined both phased array and 

Hamming sound field apodization methods. Following this experiment, comparison of 

the combination of Hamming sound apodization and a three-cell phased array relative 

to either Hamming sound field apodization or a phased array shows that there was 

about 15% improvement over the phased array method alone [15] and 37% 

improvement over Hamming sound field apodization alone[14]. 

The  range of AO effect applications is  extensive. In one of the first system 

applications, as described by Korpel et al, AO deflector was the horizontal deflection 

in a laser TV display. While water was used as the interaction medium, a 3-dB 

resolution of about 200 resolvable TV elements were achieved using beam steering 

[22]. Subsequently, improvement in the resolution was attainable via cascade of two 

deflectors [23]. AO modulators, however, has gained ground over the years due to its 

numerous advantages, such as a low drive power, high extinction ratio, insensitivity to 

temperature changes, and simplicity in design and construction. AO effect has made 

versatile contributions in signal processing. This includes pulse compression [24, 25], 

optical correlation [26] and spectrum analysis of RF signals [26]. A thorough review 

of acousto-optical signal processors was given by Damon et al. [27]. In addition, the 

Acousto-optic effect has found numerous applications in practical devices such as 

optical modulators [28], deflectors [29], spectrometer [30], switches [21], filters, 

isolators, frequency shifters, and spectrum analyzers [7]. Similarly, encryption and 

decryption of signal processing has been conceived in AO, such that a message signal 

is added to a dc value, which is centered on the pass band and fed as an input bias of a 

Bragg cell.   The heterodyne receiver is then designed for the decryption of the 

modulated message signal, which could be matched to transmitter key, thus 

generating an unmodulated chaos [31, 32].

1.2 Objectives and Framework

While the prior work was limited to space variations with the transducer’s 

operation at center frequency and exact Bragg angle simultaneously [20], this research 

has been extended to incorporate input angle of light and acoustic frequency variation. 

With the derivation of a more generalized 4th -order DE, prior conditions were 

imposed as a check on the previous work (space variation).  Thereafter, the boundary 
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conditions were relaxed by varying from unity, either normalized incident angle of 

optical, or normalized acoustic frequency.

The physical, practical and mathematical model employed in this research was 

closely related to that of  Pieper's, Koslover's and Poon's work, [8], that is based on 

Korpel's 1979 paper [14] on two dimensional strong solutions, which can be 

conveniently programmed for a variety of boundary conditions, and it compares 

favorably with a normalized numerical analysis solution using Euler's method.  To 

validate the formalism, a comparison between the analytical solutions and numerical 

predictions for the normalized space, angle and frequency will be presented. Although 

not directly tied into the mathematics of the approach taken to find the more 

generalized four-order solution, this result also reaffirmed  the Golden Ratio, also 

known as the Divine Proportion [34], found in specimens and examples from arts, 

biology, architecture, and mathematics, which appears in the mathematics of four-

order considered here. To avoid ambiguous notation, the convention follows that 

vectors are typeset in boldface; scalars and matrices are both in lightface but can be 

readily distinguished by context.

1.3 Organization of the Research

This thesis is divided into six chapters. Following the introduction in Chapter 

One, Chapter Two provides, among other things, a physical background and analysis 

of prior work. Chapter Three presents the comprehensive development of the 4th order 

generalized exact model, and its solution. The solution formalism into transition 

matrix is also presented. Chapter Four discusses the results using numerous test cases. 

Chapter Five presents additional topics such as the divine proportion and energy 

conservation analysis. Chapter Six contains conclusion and future work.
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Chapter Two

Background

2.1 Basic Principles of Acousto-Optics

By generally predicting AO as a light-sound interaction, a Bragg cell (sound cell) 

is designed simply by applying  an electric field to a piezo-electric transducer such that  a 

periodic sound wave is generated in the medium (such as glass) [3,4], as earlier shown in 

Fig. 1. Consequently, this has the effect of deforming the material, causing an internal 

strain which results in a change in the refractive index. Thereafter, the strain is 

transmitted to the acousto-optic medium which is mechanically coupled to the transducer. 

An incident light on the acousto-optic medium will scatter off (diffract) the variation of 

the refractive index - compression and rarefaction [5]. According to Nath and Raman [9], 

among other things, the width of piezo-electric transducer width plays a vital role in the 

amount of light diffraction orders and the operation regime. Similarly, a parameter , Q

also referred to as quality factor, determines the interaction regime, with Raman-Nath 

regime (i.e., ) and Bragg regime (i.e., ) [6] specified. As observed in Fig. 3 for 1Q  1Q 

a relatively low acoustic frequency-Nath-Raman regime[21], the main  lobe gets wider as 

the transducer length L decreases and gets narrower (more directional/focused) as the 

transducer length increases.

Interestingly, the simple description above has metamorphosized into a purely 

mathematical one over the years. In order to establish the various notations used in this 

research work, the principles of acousto-optics [2, 9] shall be reviewed briefly. Table 1 

lists and defines various fundamental parameters and standard assumptions as evaluated

Table 1. Fundamental Parameters (After Pieper et al. [14, 21])
Name of parameters Acoustic Relation Optical

Wavelength   

Wave speed sV  c

Radian frequency   

Wave number K  k
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within the acoustic medium in this analysis. The uppercase and lowercase parameters 

have been reserved for acoustic and optical parameters respectively.

From the knowledge of elementary optical physics [12], the radian frequency and 

hertz frequency are connected as:f

2 .f  (2.1)
whereas, light speed and wavelength  are related by:c 

.c f  (2.2)
Besides, the following sound and optical wave relationships respectively exist 

between wave numbers ; wavelengths ; and radian frequencies :,K k ,  , 

2

s

K
V

 
 

 (2.3)

              2 .k
c

 


  (2.4)

Here, it is reaffirmed that the standard assumption employed is in the regime where

.K k (2.5)
The magnitude of the diffraction angle, otherwise known as the Bragg angle ( ), can B

be predicted based on a conservation of momentum diagram which, as seen in Fig. 1, 

is exactly one half of the angle between the adjacent diffracted orders as given by

1sin .
2B
K
k

     
 

(2.6)

With the consistency in (2.5), and as predicted from Fig. 2, it follows that

.
2 2 2B

s

K
k kV

 
  

 (2.7)

The diffraction angles for various diffracted orders can be expressed in terms of an

0-order. Angle defined between a horizontal reference (z-axis) and the 0-order light 0

ray trajectory, which satisfies the physical requirement of momentum and energy 

conservation between photons and phonons, as seen in Fig. 1, and is given by

0 2 ,n Bn    (2.8)
where, for the problem involving four diffracted orders,

2 1.n    (2.9)
Although Debye and Sears worked out criteria for operation in the Bragg regime, 

Klein and Cook, in 1967 [12], discovered a better quantitative criterion which is 

defined by a quality factor  after some numerical computer simulations were Q
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Figure 2. Conservation of momentum triangle for downshift

performed. It was confirmed that for operation in the Bragg regime [21], over 90% of 

the 0-order incident power, where is diverted into the first diffracted order of 0 ,inc 

the spectrum orders, i.e. for . This requires that two Bragg regime conditions 1n  

were met:

0 0B      (2.10)
and

22 2 ,Q L   


(2.11)

where

Debye-Sears ratio = 2 1,L 


 (2.12)

and is the Klein-Cook parameter [12, 14]. It is worth mentioning that spurious Q

Figure 3. Sound angular spectrum profile
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orders, other than 0 and -1, are generated from the acoustic sidelobes [14] if the sound 

field amplitude is too high.

2.2 AO Analysis based on Korpel Plane Wave Formalism

Generally, in order to proceed with the numerical analysis, a formalism for strong AO 

interaction, proposed in 1979 by Korpel, is introduced [8]. The following differential 

equation formalism couples electric field phasors between adjacent diffracted orders 

 and ,n 1,n  1 :n 

          1 1 1 1 ,n n n n nz ja S z z S z z z   
        (2.13)

where

  
.

4
kCa  (2.14)

Here is a constant that measures the strain-optic sensitivity [2]. A time-dependent C

acoustic field introduces compression and rarefaction on index of refraction  ( , )S t ,n

which changes according to

   , , .n t CS t   (2.15)
Note that identifies the coordinates for a point in the sound field i.e. position  ,x z 

vector, as shown in Fig. 4. The sound field is assumed to be time harmonic at the 

sound frequency , and accordingly the sound phasor, can be defined     ,S S x z  

through the engineering convention as

    , Re .j tS t S e    (2.16)

Similarly, the electric field phasors, i.e., are defined according to an    , ,x z   

engineering convention as

    , Re , ,j tt t e      (2.17)
with Doppler shifted harmonics,

,n n    (2.18)
and the phase referenced back to the origin at the cell entrance . The sound 0z 

coefficients  and in (2.13) are then obtained after defining the   1nS z
  1nS z

 x

component of the bisectors (dashed lines) for the diffracted orders:

   tan .n n B n Bx z z        (2.19)
Considering Fig. 4, these bisectors (dashed lines) are known as Bragg lines [14] while 

the solid lines represents the trajectories for the diffracted orders. Approximation of

(2.19) is valid, assuming small angles for all diffracted orders, which gives
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      1 1 1, , ,n n n BS z S z x S z z   
      (2.20a)

          * *
1 1 1, , ,n n n BS z S z x S z z   

      (2.20b)
where the superscript * indicates the complex conjugate.

For the bounded sound column plane- wave model, the dependence of the sound 

phasor on the variation is taken to be separable according to( , )x z

     

,
0

jKx j zS z e
S z x

  



  0,z L

otherwise
(2.21)

where   in an ad hoc manner, accounts for any special related z-dependent phase   ,z

shift along the transducer. This would, for example, be non-zero in the case that the 

design of the transducer employs phased-array techniques [15]. The combination of 

(2.8), (2.20) and (2.21) yields

         0 2 1
1 ,BjKz n j z

nS z S z e      
   (2.22a)

           * *
1 1 1, , .n n n BS z S z x S z z   

      (2.22b)
The AO transducer manufacturer will typically provide specifications on the operating 

power limits and a center frequency of operation, The existence of a center .c

frequency permits a normalization in many of the predominant AO parameters, 

including frequency, Bragg angle, and incident angle, as outlined in Table 2.

In addition, as described in Table 2, the space coordinate  can be included in the z

normalization scheme. Subscript "c" indicates being evaluated at center frequency.

Figure 4. General AO interaction diagram showing (dashed) Bragg lines (after Pieper et al. [14,21])
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Table 2. Normalized Parametersa (Pieper et al. [20])
Normalized Variable Defining Relation

z coordinate z Lx º

Acoustic frequency
cW º W W

Incident angle of light 0 o Bcf f fº

Klein-Cook Parameter 2
c cQ LK kº

[a] Subscript ‘c’ indicates evaluated at center frequency

In the context of normalization described, the sound coefficients in (2.22) can be 

recast in the following forms:

   
   2 01 2 1

2
1 ,

cj Q n j

nS S e


  

 
  

           
   (2.23a)

     
   2 01 2 1

2*
1 ,

cj Q n j

nS S e


  

 
  

           
   (2.23b)

and the original coupled equation (2.13) is given in a normalized form by

          1 1 1 1 .n n n n njaL S S         
        (2.24)

2.3 An Exact Four-Order Analysis with Restriction

From the prior work [20], special cases considered are identified according to the 

following conditions:

   (No design phase shift),  0   (2.25a)

  
(Uniform sound field), S S   (2.25b)

                   (Operating at the center frequency),1  (2.25c)

                (Exact Bragg condition0 1  0).  (2.25d)

The uniform sound field assumption is commonly used due to consistency with 

typical Bragg cell conditions.  However, advantages of going with anon-uniform 

sound field have been studied [15].  In situations in which   phased arrays (which 

require concatenated Bragg cells) the assumption of zero design phase shift cannot be 

used. [14].Back substitution of (2.25) will lead to a special case for (2.23) as follows:
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 1 ,cjnQnS
e

S


  (2.26a)

     

  ( 1)1 .cj n QnS
e

S


   (2.26b)

And the following subsequent simplification of (2.24) using (2.26) leads to

 ( 1)
1 1( ) ( ) ( )c cjnQ j n Q

n n nj e e         
      (2.27)

where the sound factor,

,a S L   (2.28)
is typically selected to be 𝜋/2 in order to achieve a maximum in the efficiency of 

diffraction from the 0-order into the -1-order [3]. For the four orders:

1 0 1 2( ) ( ( ), ( ), ( ), ( )).T             (2.29)
The coupled differential equation (2.27) can be placed into matrix form:

( ) ( ) ( ),d j A
d

   



   (2.30)

where

0 0 0
0 1 0

.
0 1 0
0 0 0

c

c

c

c

jQ

jQ

jQ

jQ

e
e

A
e

e

















 
 
   
  
 

(2.31)

The special case here leads to a Hermitian operator matrix (2.31), and therefore it has 

four real eigenvalues [5]. It was observed that the eigenvalues are either equal in 

magnitude to the Divine Proportion [7] or equal in magnitude to the reciprocal of this 

constant.

2.4 Solutions for the Four-Order Problem

Starting from (2.30), it can be shown, see appendix A, that the solution for the

 -2 diffracted order satisfies a 4th-order linear homogeneous constant coefficient 

differential equation as follows:

         
4 3 2

2 2 2 22 2 2 4
24 3 22 (3 ) 2 0.c c c

d d d d
jQ Q jQ

d d d d
       

    
   
   

      (2.32)

The form for (2.32) suggests four independent solutions of the form

 2 .jre    (2.33)
Backsubstitution into (2.33) leads to a quartic polynomial in root :r
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 4 3 2 2 2 2 42 3 2 0,c c cr Q r Q r Q r        (2.34)
and the roots obtained are

  1/22 2
1

1 2 5 ,
2 c c cr Q Q Q        (2.35a)

  1/22 2
2

1 2 5 ,
2 c c cr Q Q Q        (2.35b)

  1/22 2
3

1 2 5 ,
2 c c cr Q Q Q        (2.35c)

  1/22 2
4

1 2 5 ,
2 c c cr Q Q Q        (2.35d)

which are consistent with the results previously found [7]. It can be confirmed that all 

the roots are real as seen from

 22 2 22 5 4 .c c cQ Q Q        (2.36)
From a substitution of (2.36) into (2.35) two roots (r2 and r4) are identified to be 

positive and the other two roots (r1 and r3) are negative. The general solution to (2.32) 

is a superposition of four homogeneous solutions,

  31 2 4
2 ,jrjr jr jrAe Be Ce De        (2.37a)

and the coupling back to the other orders can be shown to lead to a consistent solution 

form for all orders given as follows:

  31 2 4
1 ,jrjr jr jrAe Be Ce De        (2.37b)

.           1 2 3 4
0 1 2 3 4

1 ,c c c cj r Q j r Q j r Q j r Qr Ae r Be r Ce r De    


        (2.37c)

          1 2 3 4
1 1 2 3 4

1 .c c c cj r Q j r Q j r Q j r Qr Ae r Be r Ce r De    


   
      (2.37d)

In a special case, an evaluation of (2.37) at 𝜉 = 0 links initial conditions from the left-

hand side of (2.37) to unknown coefficients appearing on the right-hand  , , ,A B C D

side of (2.37). Solving  at 𝜉 = 0 results in a set of prediction rules for the  , , ,A B C D

unknown coefficients which are:

          2 1 0 1 2 2
2 1

1 0 0 0 0 ,
2

A r r
r r

        
 (2.38a)



14

          1 1 0 1 1 2
2 1

1 0 0 0 0 ,
2

B r r
r r

         
 (2.38b)

          4 1 0 1 4 2
3 4

1 0 0 0 0 ,
2

C r r
r r

        
 (2.38c)

                3 1 0 1 3 2
3 4

1 0 0 0 0 .
2

D r r
r r

         
 (2.38d)

Substituting (2.38) into (2.37) leads to

                 1 1 0 1 2
1 0 0 0 0 ,
2

                            (2.39a)

                 0 1 0 1 2
1 0 0 0 0 ,
2

cjQe                            (2.39b)

                 1 1 0 1 2
1 0 0 0 0 ,
2

cjQe                             (2.39c)

                 2 1 0 1 2
1 0 0 0 0 .
2

                            (2.39d)

where 
1 2

2 1

,
jr jre e
r r

 

 



(2.40a)

3 4

3 4

,
jr jre e
r r

 

 



(2.40b)

1 2
2 1

2 1

,
jr jrr e re
r r

 

 



(2.40c)

3 4
4 3

3 4

,
jr jrr e r e
r r

 

  



(2.40d)

1 2
1 2

2 1

,
jr jrre r e
r r

 

  



(2.40e)

3 4
3 4

3 4

.
jr jrr e r e
r r

 

 



(2.40f)
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Equations (2.39) can be written more compactly in matrix form as

     0G    (2.41)
where

 

 
 
 
 

1

0

1

2

,

 

 


 

 







 
 
 

   
 
 
 

(2.42a)

                                                

   

(2.42b) 

   
       
       

 

1 ,
2

( )

c c c c

c c c c

jQ jQ jQ jQ

jQ jQ jQ jQ

e e e e
G

e e e e

   

   

         
         


         

         

    
     
    
 

     

 

 
 
 
 

1

0

1

2

0

0
0 .

0

0















 
 
 

   
 
 
 

(2.42c)

It is important to note that has the following property: G 

  † †TG G GG G G I  


(2.43)
where  is the identity matrix. The adjoint operator, also known as the Hermitian I

conjugate, of a tensor quantity  is designated and is defined [5] by two specific M †M

order-independent successive operations, i.e., complex conjugation- and transpose.

As seen from (2.43), the adjoint of the transition matrix is the matrix inverse or G

more succinctly  is the unitary [9].  The unitary property, applicable to the AO G

transition matrix, for any number of orders considered, is sufficient to guarantee the 

physical property of energy conservation. To illustrate the implementation of (2.42b), 

the following cases, with identified initial condition, have been considered.

            10 0,1,0,0 ( ) , , , ,
2

c cjQ jQT T e e                    (2.44a)

              10 0,0,1,0 , , , ,
2

c cjQ jQT T e e                    (2.44b)

          10 1,0,0,0 , , , ,
2

c cjQ jQT T e e                    (2.44c)

          10 0,0,0,1 , , , .
2

c cjQ jQT T e e                    (2.44d)
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Each of the four conditions represents 100% of the energy in one of the four rays 

incident on the sound cell from the left as shown in Fig. 1.

The space variation simulation figures from the prior work [20] have been 

added such that the solid lines, obtained from the numerical predictions, (2.26 ) and 

(2.27), and the data plots,  generated from analytical solutions, (2.41) and ( 2.42b), are 

both represented. As a check for both the numerical and the analytical solutions, the 

total intensity, ,TI

2
2

1 0 1 2
1

( ) ,T i
i

I I I I I  


  


      (2.45)

is also computed. In a clearer context, Fig. 5 shows the numerical and analytical  -

dependent predicted results when 100% of the incident light is in the 0th order [see 

(2.44b)]. As seen at the right-hand side of the plot, approximately 90% of the power is 

transferred to the -1-order via phonon emission and related photon frequency down 

conversion [14]. Relatively low percentages remain in the other orders. Agreement 

between numerical and analytical solutions is excellent with a confirming check 

shown for the total intensities according to (2.45). 

Figure 5. Comparison for four-order numerical and analytical solutions; all power is initially in the 0-

order [20]

Fig. 6 shows numerical and analytical predicted results when 100% of the incident 

light is in the -1 order [see (2.44c)]. It can be observed that the curves both 
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numerically and analytically appear shapewise identical to those observed in Fig. 5, 

however, the orders have been swapped. Specifically, for relatively alike figs., the 

swap follows the path:

0 1,I I (2.46a)

1 2.I I  (2.46b)
From a physical viewpoint this provides a validation of the accuracy of the 

solution. It is known that the Bragg conservation of momentum triangle engenders a 

fundamental symmetry in the phonon-assisted transfer of energy between orders [14]. 

Fig. 6 is then explained in terms of a sound phonon absorbed with a corresponding 

photon frequency upshift.  Again, the level of agreement between numerical and 

analytical solutions is complete.

Figure 6. Comparison for four-order numerical and analytical solutions; all power is initially in the -1-

order [20]

Fig. 7 shows the numerical and analytical predicted results when 100% of the incident 

light is in the +1 order [see (2.44a)]. Both numerical and analytical results as before 

are in complete agreement.
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Figure 7. Comparison for four-order numerical and analytical solutions; all power is initially in the +1-

order [20]

The case of 100% of the light in the -2-order [see (3.49d)], was also tested and 

compared. Curves were again shapewise identical to those in Fig. 7 with a repeated 

pattern [refer to (2.46)].There is a complete agreement between numerical and 

analytical predictions.

Figure 8. Comparison for four-order numerical and analytical solutions; all power is initially in the -2-

order [20]
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The plots show that not much power at the end of the cell is coupled out of the  1 

order. A qualitative observation is that the angular spectrum of the sound field is not 

broad enough in width to generate higher levels of energy transfer for this order. The 

power coupled into the cell in the +1 order, , is physically coupled to the higher1 

, but this order is not being included in the formalism.2 

2.5 Ferrari Approach in Determining the Quartic Roots (2.35)

The quartic solutions obtained in (2.35) can be generated using the Ferrari method. 

The steps used to predict the quartic roots in (2.35) shall be presented sequentially. 

Starting from the characteristic quartic equation in (2.34):

 4 3 2 2 2 2 42 3 2 0c c cr Q r Q r Q r        (2.47)
by using in (2.47),

2 ,
4

cQr y  (2.48)

results in

4 2 2 2 2 2 2 2 4 41 1 13 0.
2 4 16c c c cy Q y y Q y Q Q          (2.49)

Re-grouping of (2.49) is a standard depressed quartic form which is expressed as
4 2 0,y py qy dr    (2.50)

where

2 21 3 ,
2 cp Q    (2.51a)

2 ,cq Q (2.51b)

2 2 4 41 1 ,
4 16c cdr Q Q    (2.51c)

(2.50) is made a perfect square after adding  to both sides, thus,
2

2

4
zy z 

   
2 2

22 2 ,
2 4
z zy z p y qy dr my k

           
   

(2.52)

where  and  are to be determined. As observed, (2.52) is quadratic in such thatm k y

 2 .
2
zy my k     

 
(2.53)

Now, considering a quadratic equation,
2 0,ax bx c   (2.54)
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then (2.54) is a perfect square when it discriminant is zero, thus,
2 4 0,b ac  (2.55)

and when the constant coefficients of (2.54) is compared with that of the middle 

expression in (2.52), and thereafter, paralleled in (2.55) gives

 
2

2 4 0.
4
zq z p dr

 
    

 
(2.56)

Simplification of (2.56) results in resolvent cubic:

 3 2 24 4 0.z pz drz pdr q     (2.57)
Back substitution of (2.51) in (2.57) leads to

3 2 2 2 2 2 4 4 6 4 2 2 4 61 1 1 53 4 6 12 0.
2 4 8 4c c c c c cz Q z Q Q z Q Q Q                    

   
(2.58)

he resolvent cubic roots after solving for in (2.58) arez

2 2
1

1 2 ,
2 cz Q    (2.59a)

2 4 2 2 4
2

1 1 6 25 ,
2 2 c cz Q Q       (2.59b)

2 4 2 2 4
3

1 1 6 25 .
2 2 c cz Q Q       (2.59c)

It then follows that, and in (2.52) can be determined after equating the expanded m k

RHS with the middle expression as

 
2

2 2 2 22 ,
4
zm y mky k z p y qy dr

 
       

 
(2.60)

such that, the conclusion drawn, following the comparison of the LHS and RHS 

(2.60) are

 m z p   (2.61a)
and

.
2
qk
m

  (2.61b)

More explicitly, backsubstitution of (2.51a) and (2.59a) after choosing in (2.61a) asm

 1 .m z p      (2.62a)
Invariably, using (2.51) and (2.62a) in (2.61b) yields

1

1 .
22 c

qk Q
z p

 
 (2.62b)
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Also, (2.53) implies that

2 0
2
zy my k     

 
(2.63a)

and

2 0.
2
zy my k     

 
(2.63b)

Using the quadratic formula, (2.63) has the solutions:

2
1,3

1 4
2 2 2
m zy m k     

 
(2.64a)

and

2
2,4

1 4 .
2 2 2
m zy m k      

 
(2.64b)

Combining (2.62) and (2.54a) in (2.64) and thereafter, substituted back in (2.48) gives 

the characteristic quartic roots in (2.35) as:

2 2
1

1 1 1 2 5 ,
2 2 2c c cr Q Q Q        (2.65a)

2 2
2

1 1 1 2 5 ,
2 2 2c c cr Q Q Q        (2.65b)

2 2
3

1 1 1 2 5 ,
2 2 2c c cr Q Q Q        (2.65c)

2 2
4

1 1 1 2 5 .
2 2 2c c cr Q Q Q        (2.65d)

2.6 Overview of Chapter Two

In this chapter, prior work has been explored. The fundamental principles of 

AO have been discussed. Following this, the AO analysis based on Korpel plane wave 

formalism was presented. Thereafter, an exact four order analysis with restriction was 

addressed. A system of differential equations was resolved into a 4th order DE. The 

solution of a four order problem led to a state of transition matrix, having the unitary 

property. Lastly, the matlab space variation simulations, for both analytical and 

numerical results was discussed.
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Chapter Three

A Comprehensive Four-Order Exact Solution Analysis of Acousto-Optic

This chapter begins with the derivation of the mathematical system of 1st order 

coupled DE which consequently led to a generalized 4th order linear DE. Afterwards, 

the solution of characteristic quartic equations will be presented. The homogeneous 

solution of all coupling orders which diffused to the development of transition matrix 

will also be discussed.

3.1 Translating the Physical Four-Order AO Problem to Mathematical System of   

First Order Linear Homogenous Coupled Differential Equations in Field Terms  

 1 0 1 2, , ,    

Since this research is based on non-phased-array techniques and uniform sound field,  

imposing the condition in (2.25) to (2.23)  results in

 
 2 01 2 1

2
1 0 , , ,

cj Q n

nS S e




 
 

       
    (3.1a)

 
 2 01 2 1

2
1 0 , , .

cj Q n

nS S e




 
 

       
    (3.1b)

Manipulation of (3.1) using the knowledge of elementary algebra leads to

 
2 01 2

2
1 0 , , ,

cj Q n

nS S e




 
 

      
    (3.2a)

 
 2 01 2 1

2
1 0 , , .

cj Q n

nS S e




 
 

       
    (3.2b)

Furthermore, (3.2) can be written again in terms of  as

 
2

2
1 , ,

cjQ n

nS S e
 

 
 

      
   (3.3a)

 
 2 1

2
1 , ,

cjQ n

nS S e
 

 
 

       
   (3.3b)
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where

0 .
  

   
(3.4)

In notation wise, (3.3) can also be re-written  in terms of  and  asx b

   
1 , , ,j x bn

nS x b S e   
   (3.5a)

    1
1 . , ,j x b n

nS x b S e    
   (3.5b)

where
2
,cb Q  (3.6a)

.
2

x b 
 (3.6b)

Generally, with (3.4), both normalized angle ( ) and normalized frequency ( ) 0 

enveloped in the term [see (3.6b)], (3.5) forms the  landmark of possible variations x

in terms of normalized space, angle and frequency after considering that for any 

order, the sound coefficient is susceptible to a change  by either varying at least one of 

the three parameters - normalized space ( ), normalized angle ( ) and normalized  0

frequency ( ), rather than having the transducer operate at the center frequency (i.e.

) and light always entering at the Bragg angle(i.e., ) as demonstrated in the 1  0 1 

examples considered in previous work [20]. 

Basically, in order to proceed with the derivation of a generalized system of 

differential equations, the sound coefficients of all four orders is first obtained by 

using (2.9) in (3.5) as follows:

                                  1,n  

                                                                                         
(3.7a)     

0 , , ,j x bS x b S e     

                                 not used (  order excluded in analysis).          (3.7b) 2 , ,S x b 
 2

                                  0,n 

                                                                                                 
(3.8a) 1 , ,jxS x S e  

  

                                 
                                                        (3.8b)   

1 , , .j x bS x b S e   
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                                  1,n  

                                                                                         
(3.9a)   

2 , , ,j x bS x b S e   
  

                      
                                                               

(3.9b) 0 , .jxS x S e   

                                   2,n  

                                   not used (  order excluded in analysis),      (3.10a) 3 , ,S x b 
 2

           
                                                    

(3.10b)   
1 , , .j x bS x b S e   

  

Since orders of   and are outside the limit after considering (2.9), this gives 3 2

justification for why both (3.7b) and (3.10a) were excluded. Following substitution of 

(3.5) on (2.24), the coupled equation is

           1
1 1 ,j x b nj x bn

n n nj e e           
      (3.11)

where is the sound factor. For the four orders:a S L  

          1 0 1 2, , , .T             (3.12)
The coupled differential equation in (3.11)   can be re-written as

     d
j A

d


  


 
Y

Y (3.13)

where

    ,nd
d

  
 





Y

(3.14)

            1
1 1 .j x b nj x bn

n nA e e         
    (3.15)

By placing the coupled sound coefficients in (3.7) - (3.10) in matrix location to 

pattern with (3.15) leads to

   

 
 
 
 

10

01 1

10 2

21

0 0 0
0 0

,
0 0
0 0 0

s
s s

A
s s

s

 
 

 
 
 




 
 

 





  
  
     
      

Y (3.16)
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or equivalently, 

   

 

 

 

 

 
 
 
 

1

0

1

2

0 0 0

0 0
.

0 0

0 0 0

j x b

j x b jx

j x bjx

j x b

e

e e
A j

e e

e



 





 
 

  
 
 

 


  

 


  

                

Y (3.17)

As a check for correctness of this current research, using (2.55c) and (2.55d) in (3.4), 

and back substitution to in (3.17) reduces to (2.31). Besides, the generalized case  A 

here shows that  could lead to a Hermitian operator matrix, and therefore it has  A 

four real eigenvalues [28]. Similarly,  the eigenvalues are observed to be either equal 

in magnitude to the Divine Proportion [29] or equal in magnitude to the reciprocal of 

this constant; Appendix B shows the details. Using (3.12) and (3.17) to construct 

(3.13) generates

 
 
 
 

 

 

 

 

 
 
 
 

1 1

0 0

1 1

2 2

0 0 0

0 0
.

0 0

0 0 0

j x b

j x b jx

j x bjx

j x b

e

e ed j
d e e

e



 





   
   


   
   

 

 
  

 
 

  

                              

(3.19)

Finally, simplification of (3.19) gives a system of linear differential equations as

                            

     1
0 ,j x bd

j e
d

 
  


    (3.20a)

              

        0
1 1 ,j x b jxd

j e e
d

  
    


  

    (3.20c)

              

        1
0 2 ,j x bjxd

j e e
d

 
    


  

   (3.20c)

     2
1 .j x bd

j e
d

 
  


 

  (3.20d)

3.2 Steps taken to remove Coupling and generate the  4th Order Homogenous 

Linear Differential Equation for   2 

Starting from (3.20) it can be shown, through a lengthy substitution process, that the 

solution for the -2 diffracted order satisfies a more generalized 4th-order linear 

homogeneous constant-coefficient differential equation as follows:
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4 3 2
2 2 22 2 2

4 3 2

23 2 2 2 2 2 2 2 4
2

2 6 3 11 9

6 9 3 9 2 3 6 0.

d d d
j b x x bx b

d d d
d

j x bx b x b bx x
d

     


  
 

      


  




     

        
(3.21)

The salient features of this derivation are retained in Appendix C. To support the 

validity of (3.21), the underlying assumptions, i.e., (2.25c) and (2.25d), if imposed on 

(3.21), after substitution in (3.4) reduces to (2.32).

3.3 Generating the Characteristic Equation (Quartic) for the Fourth Order   

Differential Equation of  2 

The form for (3.1) suggests four independent solutions of the form

 2 .jre    (3.22)
By taking the 1st - 4th derivative of (3.22) as:

 2 ,jrd
jre

d
 


  (3.23a)

 2
2 2

2 ,jrd
r e

d
 


   (3.23b)

 3
2 3

3 ,jrd
jr e

d
 


   (3.23c)

 4
2 4

4 ,jrd
r e

d
 


  (3.23d)

and backsubstitution of (3.22) and (3.23) into (3.21) leads to a characteristic quartic 

equation in as:r

      
 

4 3 2 2 2 2 3 2 2 2 2

2 2 2 4

2 6 3 11 9 6 9 3 9 2

3 6 0.

r b x r x bx b r x bx b x b r

bx x

  

  

            

   
(3.24)

3.4 Predicting the Four Roots for the Quartic Characteristic Equation

The is then solved for in (3.24) by using the Ferrari method.  Ferrari's approach, " "r

with details in appendix C, firstly reduces the quartic polynomial to what is termed 

depressed quartic, and thereafter, resolvent cubic polynomial respectively before the 

roots are generated [35-38] as
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1
1 1 1 ,
2 2 2

r P Q R    (3.25a)

2
1 1 1 ,
2 2 2

r P Q S    (3.25b)

3
1 1 1 ,
2 2 2

r P Q R    (3.25c)

4
1 1 1 ,
2 2 2

r P Q S    (3.25d)

where

 3 ,P b x  (3.26a)

1
2

1 3 2 2 21 1 52 2 ,
6 3 3

Q w H b x       
 

(3.26b)

 
1

2
1 3 2 2 2 2 2 11 2 102 4 2 4 ,

6 3 3
R w H b x b bx Q               

(3.26c)

 
1

2
1 3 2 2 2 2 2 11 2 102 4 2 4 ,

6 3 3
S w H b x b bx Q               

(3.26d)

2 2 2 2 2 2 4 4 4 1 35 1 138 2 7 ,
3 3 3

H x b x b b x w          
 

(3.26e)

 
1

2
1 2 3 4 5 6 712 .w w w w w w w w       (3.26f)

All the " " elements in (3.26f) are placed in two categories: the "non-square root" w

components ( and ), and the "bracketed square root" components ( , , ,1w 2w 3w 4w 5w 6w

and ). Noticeably, for all the parameters ( , and ) used to describe the system, 7w  b x

 is common in , whereas,  has no  term. Thus,2x 1w 2w x

   1
2 2 2 2 2 2 2 2 4 2864 36 16 23 12 5 280 ,w b x x b b x x          

 
(3.26g)

   2
2 2 2 2 6 672 5 8 81 ,w b b b      (3.26h)
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 2 2 4 2 2 2 4 2
3 3162 9420 4110 ,w x b x b       (3.26i)

 4 2 2 2 2 4 2 2 4
4 4848 936 684 648 ,w b x b x x b       (3.26j)

  2 6 2 6 8 2 6 4 4 2 6 8 2 2
5 108 648 8760 27 10 33 40 ,w b x x b x b b x x x b          (3.26k)

  4 4 2 6 6 2 8 8 2 10 2
6 3 4824 3064 4609 1056 2220 432 ,w x x x x x x           (3.26l)

   

 6 2 8 2 2 12
7 48 6 1200 .w b b       (3.26m)

Although,  and  are all common to both and , however, and , have 2 2x 2b 3w 4w 3w 4w

 and  as a highest common factor respectively. The common terms in  are 4x 4b 5w 2x

and  , whereas in  there is only . In no term is found.2b 6w 2x 7 ,w x

3.5 A General Form of Solution for  in Terms of           1 0 1 2, , ,        

Four Undetermined Coefficients , , ,A B C D

A proposed general solution to (3.21) is taken as a superposition of the four 

homogenous solutions,

  31 2 4
2 .jrjr jr jrAe Be Ce De        (3.27a)

The coupling back to the other orders can be shown, in appendix F, to lead to a 

consistent solution form for all orders given as follows:

     31 2 4
1 1 2 3 4

1 ,j x b jrjr jr jre r Ae r Be r Ce r De    


 
      (3.27b)

           
        

1 2

3 4

2 2 2 2 2
0 1 1 2 22

2 2 2 2
3 3 4 4

1

,

j x b jr jr

jr jr

e r x b r Ae r x b r Be

r x b r Ce r x b r De

  

 

   


 

        

       
(3.27c)
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1

2

3

4

3 3 2 2 2 2 2
1 1 1 13

3 2 2 2 2 2
2 2 2

3 2 2 2 2 2
3 3 3

3 2 2 2 2 2
4 4 4

1 3 2 2 3 2 2

3 2 2 3 2 2

3 2 2 3 2 2

3 2 2 3 2 2 .

jrj x

jr

jr

jr

e r x b r x bx b r x b Ae

r x b r x bx b r x b Be

r x b r x bx b r x b Ce

r x b r x bx b r x b De









   


 

 

 


          

        

        

        

(3.27d)

Equivalently, (3.27) can be more compactly written by placing in matrix form

 
 
 
 

       

       

33 3 3
3 31 1 2 2 4 4

3 3 3 3

1 22 2 2
3 31 1 2 2 4 4

0 2 2 2 2

1
3 31 1 2 2 4 4

2

1 2 3 4

j xj x j x j x

j x bj x b j x b j x b

j x bj x b j x b j x b

t et e t e t e

t et e t e t e

r t er t e r t e r t e

t t t t

  

  

  

  
    

   
    

 
   

  

       

       




   

 
 
   
       



,

A
B
C
D


 
  
  
  
  
  
  
 
 



(3.28)

where,
 
for the notation implies1,4,i 

 ,ijr
it e xº (3.29a)

 2 2 ,i i ir x b r     (3.29b)

     3 2 2 2 2 23 2 2 3 2 2 .i i i ir x b r x bx b r x b           (3.29c)
In a special case, however, an evaluation of (3.27) at 𝜉 = 0 links initial conditions 

from the left-hand side of (3.27) to unknown coefficients appearing on  , , ,A B C D

the right-hand side of (3.27) as:

 2 0 ,A B C D      (3.30a)

   1 1 2 3 4
10 ,r A r B r C r D
      (3.30b)

         
        

2 2 2 2
0 1 1 2 22

2 2 2 2
3 3 4 4

10

,

r x b r A r x b r B

r x b r C r x b r D

  


 

       

       
(3.30c)
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3 2 2 2 2 2
1 1 1 13

3 2 2 2 2 2
2 2 2

3 2 2 2 2 2
3 3 3

3 2 2 2 2 2
4 4 4

10 3 2 2 3 2 2

3 2 2 3 2 2

3 2 2 3 2 2

3 2 2 3 2 2 .

r x b r x bx b r x b A

r x b r x bx b r x b B

r x b r x bx b r x b C

r x b r x bx b r x b D

  


 

 

 

          

        

        

        

(3.30d)

Solving for  in either (3.30) at 𝜉 = 0, or by the matrix inversion of the  , , ,A B C D

 version of (3.28), results in a set of prediction rules for the unknown 0 

coefficients,

 
 
 
 

2 23

2 23
1

0
2 23

1

2
2 23

0
0

,
0
0

S U N
a a a a

A S U N
B b b b b
C S U N
D c c c c

S U N
d d d d

  

  

  

  

  

  

  


  







 
 
 

   
    
         
         

 
 
 

(3.30d)

where, 

   1 2 1 3 1 4a r r r r r r     (3.32a1)

   1 2 2 3 2 4b r r r r r r    (3.32b2)

   1 3 2 3 3 4c r r r r r r     (3.32c3)

   1 4 2 4 3 4d r r r r r r    (3.32d4)

2 3 4r r r    (3.33a1)

1 3 4r r r    (3.33b2)

1 2 4r r r    (3.33c3)

1 2 3r r r    (3.33d4)

    2
2 3 2 4 3 42 2U x x b b b r r r r r r            (3.34a1)
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    2
1 3 1 4 3 42 2U x x b b b r r r r r r            (3.34b2)

    2
1 2 1 4 2 42 2U x x b b b r r r r r r            (3.34c3)

    2
1 2 1 3 2 32 2U x x b b b r r r r r r            (3.34d4)

  2 3 4
2

r r r
N b x 


    (3.35a1)

  1 3 4
2

r r r
N b x 


    (3.35b2)

  1 2 4
2

r r rN b x 


    (3.35c3)

  1 2 3
2

r r r
N b x 


    (3.35d4)

2 3S b x    (3.36a1)

2 3S b x    (3.36b2)

2 3S b x    (3.36c3)

2 3 .S b x    (3.36d4)
In clearer terms, (3.31) can be re-written after backsubstitution of (3.32) - (3.36), as

    

         
   

3 2 2
1 0 1 2 3 4 2

1 2 1 3 1 4

0 0 0 0
,

S U T r r r
A

r r r r r r
              

 
  

(3.37a)

 

         
   

3 2 2
1 0 1 1 3 4 2

1 2 2 3 2 4

0 0 0 0
,

S U Y r r r
B

r r r r r r
              


  

(3.37b)

      

         
   

3 2 2
1 0 1 1 2 4 2

1 3 2 3 3 4

0 0 0 0
,

S U L r r r
C

r r r r r r
              

 
  

(3.37c)
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3 2 2
1 0 1 1 2 3 2

1 4 2 4 3 4

0 0 0 0
,

S U R r r r
D

r r r r r r
              


  

(3.37d)

such that

T b x    (3.38a)

Y b x    (3.38b)

L b x    (3.38c)

.R b x    (3.38d)

3.6 The Development of a Transition Matrix Solution

The progress on finding a transition matrix for the problem is facilitated by switching 

to a matrix symbolic formalism,

( )

( )
( )
( )
( )

1

0

1

2

   = ,

A
B
C
D

V

y x
y x

x
y x
y x

+

-

-

æ ö æ ö÷ç ÷ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷º ç ÷ ç ÷ç ÷ ç ÷÷ç ÷ç÷ç ÷ç÷ ÷ç ç÷ ÷ç÷ç è øè ø

Y (3.39)

in which case (3.28) defines a matrix  ( )H x

( ) ( )H Vx xº ×Y (3.40)
while (3.31) defines the matrix ( )1 0H-

( ) ( )1= 0 0 .V - ×H Y (3.41)
Combination of (3.41) and (3.40) implies

( ) ( ) ( ) ( ) ( ) ( )1 0 0 0 .x x x-º × × º ×Y H H Y G Y (3.42)
This provides a matrix recipe for the transition matrix for the AO problem, namely

( ) ( ) ( )1 0 .x x -= ×G H H (3.43)
To compactly represent the transition matrix  solution define row vectors for  ( )xG

  shown in (3.28),( )xH

   

33 3 3
3 31 1 2 2 4 4

1 3 3 3 3,   ,   ,   ,
j xj x j x j x

r
t et e t e t exx x xkk k k

a a a a

-- - -æ ö÷ç ÷= - - - -ç ÷ç ÷çè ø
a (3.44a)
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( ) ( ) ( ) ( )22 2 2
3 31 1 2 2 4 4

2 2 2 2 2,   ,  ,   ,
j x bj x b j x b j x b

r
t et e t e t exx x xhh h h

a a a a

- -- - - - - -æ ö÷ç ÷ç= ÷ç ÷÷çè ø
b (3.44b)

    

( ) ( ) ( ) ( )
3 31 1 2 2 4 4

3  ,   ,  ,   ,
j x bj x b j x b j x b

r
r t er t e r t e r t exx x x

a a a a

- -- - - - - -æ ö÷ç ÷ç= - - - - ÷ç ÷÷çè ø
c (3.44c)

    ( )4 1 2 3 4,   ,   ,   .r t t t t=d (3.44d)
Now, as seen in (3.31), the column vectors for  are( )1 0-H

                            

3 3 3 3

1  , , , ,
T

c a b c d
a a a aæ ö÷ç ÷= ç ÷ç ÷çè ø

e (3.45a)

 

22 22

2   , , ,  ,
T

c

SS SS
a b c d

rg ld
aa aaæ ö÷ç ÷ç= ÷ç ÷÷çè ø

f (3.45b)

 
3  , ,  , ,

T

c

UU UU
a b c d

rg ld
aa aaæ ö÷ç ÷= ç ÷ç ÷çè ø

g (3.45c)

        

22 22

4  , , ,  .
T

NN NN
a b c d

rg ld
aa aaæ ö÷ç ÷ç= ÷ç ÷÷çè ø

ch (3.45d)

It follows from (3.43) that in terms of vector sets (3.44) and (3.45), the transition 

matrix can be placed into the following form.

( )x

æ ö æ × × × ×÷ç ç÷ç ç÷ç ç÷ × × × ×ç ç÷ç ç÷º =ç ç÷ç ç÷ × × × ×÷ç ÷ç ÷ç ÷ç × × × ×è ø è

G

11 12 13 14 r1 c1 r1 c2 r1 c3 r1 c4

21 22 23 24 r2 c1 r2 c2 r2 c3 r2 c4

31 32 33 34 r3 c1 r3 c2 r3 c3 r3 c4

41 42 43 44 r4 c1 r4 c2 r4 c3 r4 c4

a a a a a e a f a g a h
a a a a b e b f b g b h
a a a a c e c f c g c h
a a a a d e d f d g d h

ö÷÷÷÷÷÷÷÷÷ç ÷ç ÷ç ÷ç ø

(3.46)

All the elements in (3.46) can be illustrated after the implementation of the method

for translating dot product rules on (3.44) and (3.45) as follows:

             
3 3 31 1 2 2 4 4

11 1 1
j x

r c
tt t te

a b c d
           

 
a a e = (3.47a1)

             

3
2 2 4 41 1 3 3

12 1 2

j x

r c

t S t St S t Se
a b c d


    



  
      

 
a a f = (3.47a2)
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3
2 2 4 41 1 3 3

13 1 3 2

j x

r c

t U t Ut U t Ue
a b c d


    



  
      

 
a a g = (3.47a3)

            

3
2 2 4 41 1 3 3

14 1 4

j x

r

t N t Nt N t Ne
a b c d


    



  
      

 
ca a h = (3.47a4)

            

 2 3 31 1 2 2 4 4
21 2 1

j x b
r c

tt t te
a b c d

            
 

a b e = (3.47b1)

              

 2 2 2 4 41 1 3 3
22 2 2

j x b
r c

t S t St S t Se
a b c d

        
     

 
a b f = (3.47b2)

         

 2
2 2 4 41 1 3 3

23 2 3

j x b

r c

t U t Ut U t Ue
a b c d


    



   
     

 
a b g = (3.47b3)

          

 2 2 2 4 41 1 3 3
24 2 4

j x b
r c

t N t Nt N t Ne
a b c d

        
     

 
a b h = (3.47b4)

             

 2 3 31 1 2 2 4 4
31 3 1

j x b
r c

r tr t r t r te
a b c d

          
 

a c e = (3.47c1)

      

  2 2 4 41 1 3 3
32 3 2

j x b
r c

r t S r t Sr t S r t Se
a b c d

       
      

 
a c f = (3.47c2)

             

  2 2 2 41 1 3 3
33 3 3

j x b
r c

r t U r t Urt U r t Ue
a b c d

      
      

 
a c g = (3.47c3)

         

  2 2 4 41 1 3 3
34 3 4

j x b
r

r t N r t Nrt N r t Ne
a b c d

       
      

 
ca c h = (3.47c4)

             
3 31 2 4

41 4 1r c
tt t t

a b c d
       

 
a d e = (3.47d1)

             

2 42 1 3
42 4 2r c

t S t St S t S
a b c d

  
 

     
 

a d f = (3.47d2)
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2 41 3
43 4 3r c

t U t Ut U t U
a b c d

  
 

     
 

a d g = (3.47d3)

              

2 42 1 3
44 4 2 .r c

t N t Nt N t N
a b c d

  
 

     
 

a d h = (3.47d4)

It is important to note that (3.46) has the following property:

  † †T 
  G G GG G G I (3.48)

where  is the identity matrix. The adjoint operator, also known as the Hermitian I

conjugate, of a tensor quantity  is designated and is defined [33] by two M †M

specific order-independent successive operations, i.e., complex conjugation- and 

transpose. As seen from (3.48), the adjoint of the transition matrix is the matrix G

inverse or more succinctly  is the unitary [39]. It shall be demonstrated in Chapter 5 G

that the unitary property being satisfied, and applicable to the AO transition matrix, 

for any number of orders considered, is sufficient to guarantee the physical property 

of energy conservation.

3.7 The General Solution and Selected Sample Cases

The general solution follows after the backsubstitution of (3.46) into (3.42) which 

consistently leads to

         1 11 1 12 0 13 1 14 20 0 0 0           a a a a (3.49a)

         0 21 1 22 0 23 1 24 20 0 0 0          a a a a (3.49b)

         1 31 1 32 0 33 1 34 20 0 0 0           a a a a (3.49c)

         2 41 1 42 0 43 1 44 20 0 0 0 .           a a a a (3.49d)
Besides, the following selected sample cases with identified initial condition shall be 

considered from (3.49). It is reiterated that while the incoming light is patterned 

according to , the diffraction order, in all cases         1 0 1 20 ,  0 ,  0 ,  0     

considered here, is consistent with . So when the         1 0 1 2,  ,  ,           

light comes in 100% in -order. i.e., , then it  follows from 1    0 1, 0,  0,  0T Y

(3.49) that the optical is diffracted according to 

     11 21 31 41 1 1 2 1 3 1 4 1, ,  ,  ,   ,    ,    .T
r c r c r c r c      Y a a a a a e b e c e d e (3.50a)
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The expressions for plotting all the four diffracted light in (3.50a) are (3.47a1), 

(3.47b1), (3.47c1)and (3.47d1).  

Likewise, for light entering in 100% in the 0-order, i.e., , the    0 0, 1,  0,  0T Y

diffractions results in

     12 22 32 42 1 2 2 2 3 2 4 2, ,  ,  = ,   ,    ,    .T
r c r c r c r c     Y a a a a a f b f c f d f (3.50b)

More explicitly, plots for all the split light orders in (3.50b) were derived from 

(3.47a2), (3.47b2), (3.47c2) and (3.47d2), similarly, for 100% light incidence on -1-

order, i.e., ,the scattering into four orders yields:   0 0, 0,  1,  0T Y

     13 23 33 43 1 3 2 3 3 3 4 3, ,  ,  ,   ,    ,    ,T
r c r c r c r c      Y a a a a a g b g c g d g (3.50c)

where, for (3.50c), the diffracted orders were plots generated from  (3.47a3), 

(3.47b3), (3.47c3)and (3.47d3).  Also considered is the entering of light in the -2-

order, i.e., .The scattered light into four order implies that    0 0, 0,  0,  1T Y

     14 24 34 44 1 4 2 4 3 4 4 4, ,  ,  = ,   ,    ,    .T
r c r c r c r c     Y a a a a a h b h c h d h (3.50d)

Precisely, the light diffraction plots in (3.50d) were obtained from (3.47a4), (3.47b4), 

(3.47c4) and (3.47d4). In clear context, each of the four above conditions represent 

100% of the energy in one of the 4 rays incident on the sound cell from the left as 

shown in Fig. 1.

3.8 Overview of Chapter Three

In this chapter, a derived 4th order generalized homogenous linear DE from a 

mathematical system of first order linear coupled DE was accomplished. Thereafter, 

the roots of the quartic characteristic equation obtained from the fourth order linear 

DE was predicted using the Ferrari's method. Also presented is the homogeneous 

solution of all orders. Lastly, the development of the transition matrix solution and 

selected sample cases was considered.
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Chapter   Four

Matlab Simulations and Discussion of Results

4.1 Numerical and Analytical Simulation via Matlab yielding Confirmation of 

Four-Order AO Analytic Model

In this chapter, it will be shown how three methods- space variation, 

frequency variation, and angle variation are being used to confirm the level of 

agreement between numerical formalism and analytic predictions through matlab 

simulation. Basically, the numerical predictions were generated directly from (3.5) 

and (3.11), whereas, the corresponding four order analytical predictions are derived 

from (3.42) and (3.46). In Figs. 15 - 32, the solid line data identifies the numerical 

predictions from (3.5) and (3.11); the data using the analytical solution, (3.42) and 

(3.46), produced the diffraction order specific symbols.  In all the examples 

considered, the combination of sound strength factor ( ) and normalized Klein-
2
 

Cook parameter ( ) are constant. In all cases, normalized to unity, the 2cQ 

intensity, , the total intensity, ,  for the various test cases   2
n nI k  

2 2

1
T n

n
I k





 

are also checked.

4.2 Flowchart Description for Implementation of Numerical and Analytical 

Methods

Starting from (3.5), each of the three methods used to present the numerical 

formalism implements at least one of the assumptions in (2.25c) or (2.25d). Typically, 

(3.5) forms the basis of all possible variations in terms of normalized space, 

normalized  angle, and normalized frequency.  The analysis is then discussed in 

subsection.

4.2.1 Numerical and Analytical Analysis of Space Variation 
The numerical space variation formalism implements both conditions 

specified in (2.25c) and (2.25d). In essence, subsequent backsubstitution of  (2.25c)
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and (2.25d) in (3.4), and later in (3.6b) makes the  term in (3.5) vanish, thus, (3.5) x

reduces to (2.26). This again assertain the level of agreement between the current and 

previous work [20]. In clear context, Fig. 9 represents the flowchart of space variation 

numerical analysis. Typical values for the two parameters: sound strength factor ' ' 

Figure 9. Flowchart of space variation numerical analysis

and Klein-Cook parameter ' ' have been specified. In all cases, the transducer cQ

operates at the center frequency, i.e.  ,and the light is incidence at the exact 1 

Bragg angle, . Obviously, both  and  terms vanish, while following 0 1   x ,cb Q

the above conditions. The normalized distance is varied between 0 and 1 for a total 

number of points, i.e., . At each point ( ), with both acoustic ( ) and electric 20N  k iS

field ( ) initialized , the sound coefficients, (  and ), coupling formalism, (i 1nS 
 1nS 



), the intensity of diffracted light,  , and the total intensity, , for all the 4 n nI TI

orders ( ) are then computed.n
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 The flowchart of space variation analytical model is represented in Fig. 10. 

All the input parameters are consistent with the numerical model. However, the 

homogeneous solutions for all orders ( ) are computed at every point ( ) for a n k

number of points ( ). The diffracted light order, , and total intensity,  , are N nI TI

estimated.

Figure 10. Flowchart of space variation analytical analysis

4.2.2 Numerical and Analytical Analysis of Frequency  Variation 

The normalized frequency variation is conceived with the field referenced 

back at the cell exit, . In the numerical formalism, frequency variation is z L

achieved by varying both normalized frequency and normalized distance while 
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normalized angle is fixed, i.e., (2.25d). In other words, the sound coefficients in (3.5) 

are recast from  (2.25d),  (3.4) and (3.6) as

   
2

1 2 1
2

1 , ,
cQj n

nS S e



       

   (4.1a)

   
2

1 2 1
2

1 , .
cQj n

nS S e



       

   (4.1b)

The flowchart in Fig. 11 presents the normalized frequency variation in the 

numerical model. With sound strength factor ' ' and Klein-Cook parameter ' '  also  cQ

Figure 11. Flowchart of frequency variation numerical model
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specified. The light is always incidence at the exact Bragg angle, . Obviously, 0 1 

for a number of points (i.e., ), the acoustic frequency changes between 0.5 - 1.5, 20N 

and the normalized distance varied between 0 and 1. As the acoustic frequency varies, 

,  and  terms vary simultaneously. At each points ( ), with both acoustic ( ) b  x k iS

and electric field ( ) initialized , the sound coefficients, (  and ), coupling i 1nS 
 1nS 



formalism, ( ), the intensity of diffracted light,  , and the total intensity, , for n nI TI

all the 4 orders ( ) are then computed at those points.n

Fig. 12 shows the algorithm employed by normalized frequency variation 

analytical model. The analytical formalism input is consistent with the numerical 

Figure 12. Flowchart of frequency variation analytical model
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except for normalized distance which is fixed, i.e. . This explains that the 1 

measure of diffracted optical is taken with reference to the exit of the cell, for 

instance, . For any degree of light incidence in any order, i.e., , the z L  0n

homogeneous solution, , at each point is calculated. Following this, the amount  n k

of diffracted light, and its overall estimate is computed. Practical applications of 

normalized frequency variation is found in acousto-optic deflectors. 

4.2.3 Numerical and Analytical Analysis of Angle Variation 0

In the normalized angle variation, the field predicted is referenced back at the 

cell exit. Here, for every normalized angle of incident light, the transducer is made to 

operates at the center frequency. In clear terms, normalized frequency is fixed after 

implementing (2.25c), whereas, both the normalized angle and the normalized 

distance are varied. As observed from (3.5), the sound coefficients are recast from 

(3.5)  after  combining  (2.25c), (3.4) and (3.6) as

    0 2 1
2

1 0 ,
cQj n

nS S e
 

 
  

  (4.2a)

    0 2 1
2

1 0 , .
cQj n

nS S e
 

 
  

  (4.2b)

Fig. 13 shows the flowchart numerical angle variation. With sound strength factor ' ' 

and Klein-Cook parameter ' '  specified, here, the transducer operates at the center cQ

frequency ( ) as the light travels through the transducer's length, for instance, 1 

normalized distance varied between 0 and 1. Similarly, at a number of points ( 20N 

), with incidence light angle referenced to a normal, the light is incidence at a range of 

0.5 - 1.5. Variation in the incidence light angle would cause changes in  ,  and  b  x

terms simulteanously. At each point ( ), with both acoustic ( ) and electric field (k iS

) initialized , the sound coefficients, (  and ), coupling formalism, ( ), i 1nS 
 1nS 

 n

the intensity of diffracted light,  , and the total intensity, , for all the 4 orders ( ) nI TI n

are then computed at those points.
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Figure 13. Flowchart of angle variation numerical model

Fig. 14 presents the methodology employed by a normalized angle variation 

analytical model. Again, there is consistency in the input parameters between the 

numerical and analytical except for normalized distance which is fixed, i.e., , in 1 

the analytical. This demonstrates that the measurement of diffractions is taken with 

reference to the exit of the cell, for instance, . For any amount of light incidence z L

in any order, i.e., , the homogeneous solution, , at each point is  0n  n k

calculated. Consequently, the amount of diffracted light, and its overall estimate is 
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computed.  Practical applications of normalized angle variation is found in acousto-

optic modulator.

Figure 14. Flowchart of angle variation analytical model

4.3 Test Cases Demonstrating Variation in Normalized Space, Normalized 

Frequency, and Normalized Angle.

4.3.1 Test case(s) for normalized space variation
Now, Figs. 15-18 is the reproduction of figs. 5-8 in chapter 2, from both 

developed generalized analytical predictions, [see (3.42) and (3.46)], and the 

numerical model, [see (3.5) and (3.11)], in Chapter 3. Theoretical explanations of 

Figs. 15-18 can be found in chapter 2. Fig. 15 shows the numerical and analytical  -

dependent predicted results when 100% of the incident light is in the 0th order [see 

(3.49b)].
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Figure 15. Comparison for four-order numerical and analytical solutions; all power is initially in the 0-

order

Fig. 16 shows numerical and analytical predicted results when 100% of the incident 

light is in the -1 order [see (3.49c)]. As expected, with orders swapped [see (2.46)],

Figure 16. Comparison for four-order numerical and analytical solutions; all power is initially in the -1-

order
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Fig. 16, is identically shapewise as Fig. 15. Fig. 17 shows the numerical and 

analytical predicted results when 100% of the incident light is in the +1 order [see 

(3.49a)].

Figure 17. Comparison for four-order numerical and analytical solutions; all power is initially in the 

+1-order

The case of 100% of the light in the -2 order [see (3.49d)], was also tested and 

Figure 18. Comparison for four-order numerical and analytical solutions; all power is initially in the -2-

order
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compared as shown in Fig. 18. Curves were again shapewise identical to those in Fig. 

17 with a repeated pattern [refer to (2.46)]. In addition, a demonstration of the 

robustness of the solution and its ability to accommodate a general combination of 

initial conditions was also performed. Specific initial conditions for this test case put 

equal amount of power in the 0th and -1 order. As can be seen in Fig. 19., the four-

order analytical (symbols) and the four-order numerical (solid line) predictions are in 

perfect agreement. 

Figure 19. Comparison for four-order numerical and analytical solutions; power is initially 50% in both 

the 0th order and -1 order

Due to the physical symmetry for this test case created by the symmetry in the initial 

conditions it is expected that both the 0th order and the -1 order will overlay, and this 

can be confirmed from Fig. 19. This is also true, from the same symmetry argument, 

for the +1 order and -2 order. Note that, consistent with physical considerations, the 

exchange of energy is symmetric and less than 10% of the total energy is transferred 

from the Bragg regime combination of the +1 order and -2 order. The assumption 

made in Fig. 19 is that the two incident beams, 0th order and -1 order, are coherently 

related to the zero phase offset. If the two incident beams are phase incoherent then 

the appropriate method of solving would be to apply either analytical or numerical 

formalism for each incident light beam separately to predict the corresponding 

intensities at the output. Specifically, the intensities shown in Fig. 15 and 16 would 
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have to be scaled accordingly, and based on the principle of superposition of 

intensities for incoherent light, the results are added. 

4.3.2 Test case(s) for normalized frequency variation
Fig. 20 shows the numerical and analytical -dependent predicted results 

when 100% of the incident light is in the 0th order [see (3.49b)]. 

Figure 20. Comparison for four-order numerical and analytical solutions in terms of acoustic 

frequency, all power is initially in the 0-order

Agreement between numerical and analytical solutions is excellent with a confirming 

check shown for the total intensities according to (2.45). When all power is incidence 

in the 0 order, from the left toward the unity of the graph reveals a steady power rise 

in the  -1 order, with its maximum at a shifted normalized frequency from unity, ( i.e.,

). This explains that there are  two competing  effects  impacting the 1.05 

normalized frequency  response  curve  in the neighborhood of a normalized 

frequency of unity.  Diffraction  efficiency for the first order diffraction, i.e., , 1n  

will decrease as the frequency increases from unity. This increase is creating a higher 

“Bragg angle” and therefore  creates a  mismatch between the incident light angle 

which fixed at unity (i.e., ), and the increased frequency value (i.e., ).0 1  1 

However, it is known  that   deeper conditions are driven into the “Bragg  

regime”  when  connected  to higher   values  [see (2.11)],  thus, the  higher  the  cQ
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diffraction  efficiency  due to the angular  spectrum being narrowed. This  is   

consistent with   less  light  spilling  over into  other orders due to the spread in 

angular spectrum of sound, thus, justifying why powers are negligible  in the -2 and 

+1-order, as seen in Fig 20.  The angular width of the main lobe in the angular 

spectrum of sound goes proportional to [see Fig. 3]. When  frequency of sound  / L

increases,  its  wavelength decreases  so the  shift  to a higher frequency  narrowed  

the  spectrum of sound and  therefore moved  conditions  deeper  into  or  towards the 

“Bragg regime” of operation, hence  increasing diffraction  efficiency.

Figure 21. A two-order numerical solutions and a four-order analytical solution in terms of acoustic 

frequency, with all power is initially in the 0-order

Hence, the response curve continued to rise past the unity value until the first 

effect mentioned above takes over. It can be predicted as seen in Fig. 21, (i.e., 

comprising data plots of  a  4-order analytical model and the solid line plots of a 2-

order numerical formalism ), that the frequency dependent  curve anomaly  should   

disappear  if only using  a two order numerical  analysis  model  because this  

anomaly depends on  reduction  in diffraction efficiency due to the presence of  

orders  other than  the  typical Bragg  regime  zero order and  minus one order. 

Similarly, Fig. 22 shows numerical and analytical predicted results when 100% of the 

incident light is in the -1 order [see Eq. (3.49c)]. Although it can be observed that the 

curves, both numerically and analytically, relatively appear shapewise identical to 

those observed in Fig. 20, the orders have once again been swapped. Significantly, 
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steady transfer of power from -1 to 0-order is conspicuous towards the unity, with the 

maximum slightly shifted from the normalized frequency of unity, i.e., .1.05 

Figure 22. Comparison for four-order numerical and analytical solutions in terms of acoustic 

frequency, all power is initially in the -1-order

The same theory used to explain the shifted peak in Fig. 20, using Fig. 21, applies 

here. Meanwhile, little power is spilled over in the remaining order. Fig. 23 shows the 

numerical and analytical predicted results when 100% of the incident light is in +1-

Figure 23. Comparison for four-order numerical and analytical solutions in terms of acoustic 

frequency, all power is initially in the +1-order
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order [see (3.49a)]. Both numerical and analytical results, as before, are in complete 

agreement. Obviously, the plot shows that not much power at the end of the cell is 

coupled out of the order. Thus, dominant power is retained by +1-order. This 1 

justifies why power is minimal in the remaining orders.  The idea is that the angular 

spectrum of the sound field is not broad enough in width to generate higher levels of 

energy transfer for this order. Meanwhile, a slight dip (also known as degeneracy) 

was suspected toward the right side of the plot.

The case of 100% of the light in the -2-order [see (3.49d)], was also tested and 

compared as shown in Fig. 24. Both numerical and analytical results as before are in 

complete agreement. Interestingly, the curve is completely different from Fig. 23. As 

easily seen, power rises steadily in the -2-order throughout, with a corresponding 

negligible energy in the remaining order. 

Figure 24. Comparison for four-order numerical and analytical solutions in terms of acoustic 

frequency, with all power is initially in the -1-order

Hence, not much power at the end of the cell is coupled out of the  order. The 2 

logical reasoning is that the angular spectrum of the sound field is not wide enough to 

generate higher levels of energy transfer for this order. Similarly, beyond the 

normalized frequency of unity, a reoccurring dip (referred to as degeneracy) with an 

improvement toward the right side of the curve has been observed. Moreover, for the 

normalized frequency variation,  the simplicity of the solution and its ability to 
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accommodate a general combination of initial conditions using a matlab simulation 

was also illustrated.

Figure 25. Comparison for four-order numerical and analytical solutions for normalized frequency 

variation; power is initially 50% in both the 0-order and -1-order

Both Figs. 25 and 26 successively put 50% of the power in the 0 and

 -1 order [see Fig. 25], and +1 order and -2 order [see Fig. 26] respectively. 

Figure 26. Comparison for four-order numerical and analytical solutions for normalized frequency 

variation; power is initially 50% in both the +1-order and -2-order

Notice that the four-order analytical (symbols) and the four-order numerical (solid 



53

line) predictions are in perfect agreement.

4.3.3 Test cases for normalized angle variation
Fig. 27 shows the numerical and analytical  - dependent predicted results 0

when 100% of the incident light is in the 0th order [see (3.49b)].  From the plot (left 

side to the normalized angle of unity), as expected, the incident light is mostly 

diffracted  at the expense of other orders  to  -1 order, with its peak (about 90%) at 

unity (i.e., ). Thus, confirming the Braggs condition. Theoretical explanation 0 1 

reveals that a higher percentage of the power is transferred to the -1 order via phonon 

emission and related photon frequency down conversion [14].  However, the power 

decreases steadily with a corresponding gradual power rise in the remaining orders 

when the normalized angle of unity is exceeded.  As expected, agreement between 

numerical and analytical solutions is excellent, with a confirming check shown for the 

total intensities according to (2.45).

Figure 27. Comparison for four-order numerical and analytical solutions in terms of optical angle with 

all power is initially in the 0-order

Fig. 28 shows numerical and analytical predicted results when 100% of the incident 

light is in the -1-order [see (3.49c)]. It can be observed that the curves both 

numerically and analytically appear as a mirror image of those in Fig. 27, with the 

order swapped as (2.46). Likewise, both numerical and analytical results, as before,   
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Figure 28. Comparison for four-order numerical and analytical solutions in terms of optical angle with 

all power is initially in the -1-order

are in complete agreement. From the plot (left side towards normalized angle of 

unity), comparison of all orders shows that entering light is greatly diverted (via 

phonon emission and related photon frequency down conversion [14]) to the 0-order 

with the maximum (about 90%) at normalized angle of unity, (i.e. ), which 0 1 

satisfy the Bragg condition. From a physical viewpoint this provides a validation of 

the accuracy of the solution. It is known that the Bragg conservation of momentum 

triangle engenders a fundamental symmetry in the phonon-assisted transfer of energy 

between orders [14]. This is then explained in terms of a sound phonon absorbed with 

a corresponding photon frequency upshift. However, when the normalized angle of 

unity is exceeded, the transferred power in the 0-order reduces gradually. This give 

rise to more energy in the remaining order. Fig. 29 shows the numerical and 

analytical predicted results when 100% of the incident light is in the +1-order [see 

(3.49a)]. Both numerical and analytical results are in complete agreement. In Fig. 30, 

the case of 100% of the light in the -2 order [see Eq. (3.49d)], was also tested and 

compared with a perfect agreement between the analytical and numerical predictions.
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Figure 29. Comparison for four-order numerical and analytical solutions in terms of optical angle with 

all power is initially in the +1-order

Lastly, for the normalized angle variation,  the flexibility of the solution and 

its ability to accommodate a general combination of initial conditions was also 

presented. As it is easily seen in both Figs. 31 and 32, specific initial conditions for

Figure 30. Comparison for four-order numerical and analytical solutions in terms of optical angle with 

all power is initially in the -1-order

this test case put 50% amount of power in both the 0th and -1 order, and similarly in 
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both the +1 and -2-order respectively.

Figure 31. Comparison for four-order numerical and analytical solutions for normalized angle 

variation; power is initially 50% in both the 0-order and -1-order

The four-order analytical (symbols) and the four-order numerical (solid line) 

predictions are in perfect agreement.

Figure 32. Comparison for four-order numerical and analytical solutions for normalized angle 

variation; power is initially 50% in both the +1-order and -2-order
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4.4 Concluding Remarks for Chapter Four

In this chapter, the critical conditions employed by both numerical solutions 

and analytical predictions for variations in normalized space, normalized frequency, 

and normalized angle have been canvassed. Also presented are the outputs of their 

respective matlab simulations. The numerical model demonstrates validity of the 

four-order analytic model based on the level agreement between numerical formalism 

and analytical predictions for all space, frequency and angle variation.
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Chapter Five

Additional Topics

As introductory remarks  in this chapter,  explanation on qualitative and listed 

topics including: divine proportion, energy conservation based on a unitary  transition 

matrix,  numerical evaluation for  the  roots to general 4th order characteristic equation 

being real, and  numerical support for  transition matrix being  unitary shall be 

covered.

5.1 Divine Proportion Analysis

It can be recognized that (3.21) is a linear homogeneous first-order system of 

differential equations. If this system of differential equations also has constant 

coefficients, i.e.,  is a constant matrix, it would be possible to predict the state ,A

transition matrix from [39]
0( )

0( , ) ,Ae    G (5.1)
where

     0 0, ,    Y G Y (5.2)
and is the known initial condition at some specified location . Expanding the  0Y 0

exponential of matrix (A1) into four additive matrix terms using the eigenvalues of A

is then possible using Sylvester's theorem [39]. However, because is not a constant A

matrix, the (5.1) approach is not applicable. Nonetheless, it was discovered that the 

matrix operator for A, taken from (3.13), did have four distinct eigenvalues, all of 

which are related to Euclid's Divine Proportion, also known as the Golden Ratio. 

Here, the appearance of the Divine Proportion constant,  in the AO problem F,

considered is demonstrated. Euclid's Divine Proportion is associated with the 

numerical constant [34],

1 5 1.6180.
2


 F (5.3)
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Considering the differential equation
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The eigenvalues are generated by

 

 

 

 

 

0 0

0
,

0

0 0

j x b

j x b jx

j x bjx

j x b

e

e e
A

e e

e



 








 





 

  

 

 




 





I (5.6)

where  is an identity matrix. One method is to evaluate the determinant which leadsI

 to a quartic polynomial equation in :
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4 23 1.    (5.7)
It is observed that (5.7) is biquadratic in . The is solved for by using the quadratic 2 2

formula after equating (5.7) to zero. This results in

2 3 9 4 3 5 .
2 2

   
  (5.8)

Taking the square root of both sides of (5.8) gives

3 5 .
2

 
  (5.9)

Finally, the four roots of the biquadratic equation (5.7) are

 2

1,2

1 53 5 1 2 5 5 1 5
2 4 4 2


   

        F (5.10a)

and

 2

3,4

1 53 5 1 2 5 5 1 5 2 1 .
2 4 4 2 1 5


   

         



F

(5.10b)

5.2 Energy Conservation for Unitary Transition Matrices

Starting from a row vector representation for the solution,

          1 0 1 2, , , ,T           Y (5.11)
the energy field is the sum of the magnitude squared of the incoherently [3] related 

orders:

     
2 2†

1
.n

n
   





  Y Y (5.12)

The first term on the left-hand side of (5.12) can be represented in terms of the adjoint 

operator of the transition matrix  . After rearrangement of terms with reference  G

to (3.42) produces

          † † †0 0 .T      Y G Y Y G (5.13)
From the matrix property involving the identity matrix  and arbitrary vector I n,

† †   n I n n n, (5.14)
combined with (3.48) and (5.13) and the left-hand side of (5.12) results in

               † † † †0 0 0 0 .         Y Y Y G G Y Y Y (5.15)
Or equivalent from (5.12) returns

   
2 22 2

1 1
0 ,n n

n n
  

 

 

  (5.16)
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which completes the assertion that the solution is consistent with energy conservation.  

As a disclaimer, the specific limits on the number of orders could be generalized, and 

therefore, it can be concluded that the property that a transition matrix being unitary 

will guarantee AO energy conversion, which can be extended to any number of 

orders. Because of the simplicity of the conservation rule in (5.16), it is convenient to 

check on the accuracy of AO numerical tests.

5.3 Numerical Demonstration that Roots are Real

In this section, presentation of the claim that although roots were not 

symbolically proven to be real due to complexity of the quartic roots, numerical test 

taken, however, support the fact that they are. As a disclaimer, the limitations in 

Maple [40] in simplifying complicated expressions are probable . Certainly, all the 

quartic solutions in (3.25) are dependent on the parameters, , , and . 0  cQ 

Invariably, each of the quartic roots, for instance, these , , and , is susceptible 1r 2r 3r 4r

to a change whenever any of the four parameters changes. Here, four different test 

cases shall be used to establish the claim that roots are real simply by varying one 

parameter at a time while others are held constant. Both Figs. 33 and 34, typically 

combine two constant parameters:  sound factor, , and Klein-Cook normalized 
2
 

Figure 33. Test of roots with normalized angle variation

parameter, , as the inputs in order to test in computations if  the imaginary 2cQ 

parts of the quartic roots is making any significant contribution or not. After setting 
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the , the sensitivity of the roots (i.e., real and imaginary parts) as normalized 1 

angle changes has been observed from Fig. 33. Without mincing words, it is 

conspicuous that for all real plots, the graph is positive as lines slide upward from left 

to right. As expected, all the imaginary parts collapse at the zero margin throughout 

the normalized angle variation, thus confirming, that the imaginary part is negligible. 

On the other hand, Fig. 34 depicts that the graph is negative due to a downward slide 

in the curves from left to right for the real plots.

Figure 34. Test of roots with normalized frequency variation

           
Similarly, all the imaginary plots collide at the zero margin throughout the 

normalized frequency change after the normalized angle has been fixed, i.e., . 0 1 

This again assures that the imaginary parts makes no contribution in the computation. 

A variation in the sound factor, , was also tested, as seen in Fig. 35.

Figure 35. Test of roots with sound factor variation
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While ,  and  are fixed, the sound factor ( ) variation has been selected 0  cQ 

between 
 
and . It was evident that as the real part varies, their respective 

4
 3

4


imaginary counterparts, once again have been studied to align at zero, thus confirming 

all roots are real. Lastly, with ,  and  all kept constant, variation of the quality 0  

factor, , chosen between  and , was also considered, see Fig. 36.cQ  4

Figure 36. Test of roots with quality factor ( ) variationcQ

As expected, all the imaginary parts overlap at the zero margin as the real parts vary. 

With these four test cases of numerical demonstrations, the conclusion can be drawn 

that the quartic roots are real.

5.4 Analysis and Demonstration for Consistency of Roots satisfying Vieta’s 

Formulas [38]

This section recalls Vieta's rule as a measure to ascertain the level of accuracy for the 

quartic characteristic roots generated in (3.25). Vieta's theorem presents a correlation 

between the constant coefficient of a quartic polynomial and its generated roots. Thus, 

given a general quartic polynomial equation as,
4 3 2

1 2 3 4 0.r a r a r a r a     (5.17)
It then implies that the relationship between all four roots,  , and  their 1 2 3 4, , ,r r r r

constant coefficients in (5.17) are as follows: 

1 2 3 4 1,r r r r a     (5.18a)
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1 2 3 4 2 3 1 4 1 3 2 4 2 ,r r r r r r r r r r r r a      (5.18b)

1 2 3 1 2 4 1 3 4 2 3 4 3 ,r r r r r r r r r r r r a     (5.18c)

1 2 3 4 4.r r r r a (5.18d)
Certainly, the analytic arguments support the first three rules. However, the fourth 

rule is only supported with numerical demonstration. See Appendix F for details.

5.5 Demonstration that Transition Matrix " " is Unitary( )xG

The coefficients for the adjoint (complex conjugate transpose) of the transition matrix  

 in (3.46) are( )xG

( )† x

æ ö × × × ×÷ç ÷ç ÷ç ÷ × × × ×ç ÷ç ÷º =ç ÷ç ÷ × × × ×÷ç ÷ç ÷ç ÷ç × × ×è ø

* * * *
11 12 13 14 r1 c1 r2 c1 r3 c1 r4 c1

* * * *
21 22 23 24 r1 c2 r2 c2 r3 c2 r4 c2

* * * *
31 32 33 34 r1 c3 r2 c3 r3 c3 r4 c3

* * *
41 42 43 44 r1 c4 r2 c4 r3 c4

b b b b a e b e c e d e
b b b b a f b f c f d f
b b b b a g b g c g d g
b b b b a h b h c h

G ,

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷÷ç ×è ø*
r4 c4d h

(5.19)

where the complex conjugate transposes element notations in (5.19) represents

     

33 3 3
31 2 4

3 3 3 3
1 2 3 4

  ,   ,   ,   ,
j xj x j x j xee e e

t t t t

xx x xkk k k
a a a a

++ + +æ ö÷ç ÷º - - - -ç ÷ç ÷çè ø
*
r1a (5.20a)

         

( ) ( ) ( ) ( )22 2 2
31 2 4

2 2 2 2
1 2 3 4

  ,   ,  ,   ,
j x bj x b j x b j x bee e e

t t t t

xx x xhh h h
a a a a

+ -+ - + - + -æ ö÷ç ÷çº ÷ç ÷÷çè ø

*

r2b (5.20b)

            

( ) ( ) ( ) ( )
31 2 4

1 2 3 4

 ,   , ,  ,
j x bj x b j x b j x br ere r e r e

t t t t

xx x x

a a a a

+ -+ - + - + -æ ö÷ç ÷çº - - - - ÷ç ÷÷çè ø

*

r3c (5.20c)

                
4

1 2 3 4

1 1 1 1 ,   ,   ,   .r t t t t

æ ö÷ç ÷º ç ÷ç ÷çè ø

*

d (5.20d)

Each of the elements in (5.19) can be analyzed following the combination of (5.20) 

and (3.45) as:

                    

3 31 2 4

1 2 3 4

,j xe
t a t b t c t d

     
       

 
*

11 r1 c1b a e (5.21a1)

   

 2 31 2 4

1 2 3 4

,j x be
t a t b t c t d

       
      

 
*

12 r2 c1b b e (5.21a2)
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 2 31 2 4

1 2 3 4

,j x b rr r re
t a t b t c t d

    
       

 
*

13 r3 c1b c e (5.21a3)

                      

3

1 2 3 4

1 1 1 1 ,
t a t b t c t d


 

      
 

*
14 r4 c1b d e (5.21a4)

               

3
2 41 3

1 2 3 4

,
j x S SS Se

t a t b t c t d


    



  
       

 
*

21 r1 c2b a f (5.21b1)

                      

 2 2 41 3

1 2 3 4

,j x b S SS Se
t a t b t c t d

        
      

 
*

22 r2 c2b b f (5.21b2)

               

  2 41 3

1 2 3 4

,j x b r S r Sr S r Se
t a t b t c t d

       
       

 
*

23 r3 c2b c f (5.21b3)

                       

2

1 2 3 4

,
S SS S

t a t b t c t d
  

 
      

 
*

24 r4 c2b d f (5.21b4)

                       

3
2 41 3

2
1 2 3 4

,
j x U UU Ue

t a t b t c t d


    



  
       

 
*

31 r1 c3b a g (5.21c1)

                  

 2
2 41 3

1 2 3 4

,
j x b U UU Ue

t a t b t c t d


    



   
      

 
*

32 r2 c3b b g (5.21c2)

                 

  2 41 3

1 2 3 4

,j x b r U r UrU rUe
t a t b t c t d

      
       

 
*

33 r3 c3b c g (5.21c3)

                       1 2 3 4

,
U UU U

t a t b t c t d
  

 
      

 
*

34 r4 c3b d g (5.21c4)

                    

3
2 41 3

1 2 3 4

,
j x N NN Ne

t a t b t c t d


    



  
       

 
*

41 r1 c4b a h (5.21d1)

                      

 2 2 41 3

1 2 3 3

,j x b N NN Ne
t a t b t c t d

        
      

 
*

42 r2 c4b b h (5.21d2)
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  2 41 3

1 2 3 4

,j x b r N r Nr N r Ne
t a t b t c t d

       
       

 
*

43 r3 c4b c h (5.21d3)

  

2

1 2 3 4

.
N NN N

t a t b t c t d
  

 
      

 
*

44 r4 c4b d h (5.21d4)

With symbolic processing capability, it is possible to demonstrate, with reference to 

(3.46) and (5.19), that:

( )
14

23 24† †

32 34

42 43

yy
 

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷º = Û =ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

G G I G G d

11 12 13

21 22

31 33

41 44

c c c c
c c c c
c c c c
c c c c

(5.22)

where    is the identity matrix, since all the non-leading diagonal elements (i.e., both I

real and imaginary parts) are approximately zero, and that is the Kronecker-Delta yd

tensor. Therefore the adjoint of the transition matrix is the matrix inverse or more G

succinctly is unitary [39].  Expanded here are the diagonal elements in (5.22):G

,= × + × + × + ×11 11 11 12 21 13 31 14 41c a b a b a b a b (5.23a)

,= × + × + × + ×22 21 12 22 22 23 32 24 42c a b a b a b a b (5.23b)

,= × + × + × + ×33 31 13 32 23 33 33 34 43c a b a b a b a b (5.23c)

.= × + × + × + ×44 41 14 42 24 43 34 44 44c a b a b a b a b (5.23d)
To support the matrix unitary condition argument, only the demonstrations of a 

limited set of numerical tests performed on the diagonal elements (i.e., real and 

imaginary parts) have been plotted. Apparently, the sensitivity of the leading diagonal 

elements of the unitary matrix with the normalized angle variation [see Fig. 37],
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Figure 37. Demonstration of matrix unitary condition with normalized angle variation

and normalized frequency variation [see Fig. 38] respectively, is clarified after 

Figure 38. Demonstration of matrix unitary condition with normalized frequency variation

observing that all the real parts represented by the data plots coincide at one while the 

imaginary counterparts denoted by solid lines do overlap at zero. This again confirms 

that the imaginary parts are negligible.
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Figure 39. Demonstration of matrix unitary condition with sound factor variation

The variation of sound factor, , was tested for unitary illustration.  As seen 

graphically from Fig. 39, all the real roots (data plots), and their imaginary 

Figure 40. Demonstration of matrix unitary condition with quality factor variation

counterparts (solid lines), symmetrically overlapped on 1 and 0 respectively. Lastly, 

the variation of quality factor, , was also considered. The output, as seen from Fig. cQ
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40, was in complete agreement with the others. This contains the unitary condition of 

the transition matrix.

5.6 Concluding Remarks for Chapter Five

In this chapter, analysis of the divine proportion has been presented.  Energy 

conservation analysis, based on a unitary transition matrix condition, was also 

discussed.  The roots to general 4th order characteristic equation was numerically 

illustrated to be real, and that for every set of numerical conditions taken so far, the 

transition matrix, to within machine error, appears to be unitary.
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Chapter Six

Conclusion and Future Work

The work presented in this thesis extends the prior exact analytic analysis for   

acousto-optic diffraction involving four orders of light which did not allow variation 

in normalized frequency and incident angle. With the uniform sound field and zero 

phase shifts design assumptions maintained throughout, an exact four-order analytic 

solution of a generalized 4th order DE which incorporates dependence on both input 

angle of light and sound frequency in an acousto-optic Bragg cell has been presented. 

The four-order DE analysis resulted in a quartic equation, and its characteristic roots, 

which were used in constructing the solution, have been obtained via the Ferrari 

approach. As demonstrated, the solution can be cast into the form of a transition 

matrix operator. Energy conservation for the four-order analytical solution was 

proven, assuming  that the transition matrix is unitary. This assumption is consistent 

with numerical tests performed. Secondly, it was formally shown that the unitary 

matrix condition is a sufficient condition for the energy conservation rule applicable 

for all orders considered. Multiple comparisons of the analytical solution and 

numerically generated solutions which were made using three different parameter 

variations, for instance, normalized space variation, normalized frequency variation, 

and normalized angle variation served to validate the analytical solution. Finally, it 

was confirmed , as was established for the limited prior analysis, that within context 

for the more general analysis presented  herein, acousto-optics can be included in the 

long list of physical, mathematical, and structural examples for which the ubiquitous 

Euclid's Divine Proportion appears.

It is suggested that further efforts with parameterization and possibly 

application of a second symbolic processing program may allow going beyond 

demonstration tests but lead to proofs that roots are real and that the transition matrix 

is unitary. The more general matrix formalism for four orders, allowing for variation 

in incident angles and frequency, should be potentially valuable for generating more 

accurate predictions for applications mentioned such as multi cell phased arrays and   
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recent interest in information transmission using chaotic systems which incorporate 

AO cells.
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Appendix A: Obtaining the Fourth-Order Differential Equation [20]

From (2.27), a system of differential equations is written  as follows:

   1
0 ,cjQd

j e
d

 
  


  (A1)

     0
1 1 ,cjQd

j e j
d

 
    

     (A2)

     1
2 0 ,cjQd

j e j
d

 
    




   (A3)

   2
1 .cjQd

j e
d

 
  




  (A4)

Using (A1) and (A4),  and  are solved for as  0   1 

   1
0 ,

jQc dje
d

  
 

 
 (A5)

   2
1 .

cjQ dje
d

  
 

 


  (A6)

Backsubstitution of (A5) and (A6) into (A2) leads to the 2nd-order differential 

equation given by

       2
1 1 22

12 .c

d d d
jQ j

d d d
     

   
  
  

    (A7)

Similarly, backsubstitution of (A5) and (A6) into (A3) leads to

       2
2 2 12

22 .c

d d d
jQ j

d d d
     

   
  
  

    (A8)

Differentiating (A7) once result in

       3 2 2
1 1 1 22

3 2 2 .c

d d d d
jQ j

d d d d
       

 
   
       (A9)

Then substitution of the right-hand side of (A8) into (A9) leads to the 4th-order 

ordinary differential equation; (2.32) in the main text.
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Appendix B:  Derivation of Fourth-Order Differential Equation

Starting from (3.11), the differential equation as a system of differential equations is 

presented as follows:

     1
0 ,j x bd

j e
d

 
  


    (B1)

        0
1 1 ,j x b jxd

j e e
d

  
    


  

    (B2)

        1
0 2 ,j x bjxd

j e e
d

 
    


  

   (B3)

     2
1 .j x bd

j e
d

 
  


 

  (B4)

From (B1) and (B4),  and  is solved for respectively as:0 ( )  1( ) 

 
   1

0

j x b dje
d

  
 

 

 
 (B5)

and

 
   2

1 .
j x b dje

d

  
 

 

 


  (B6)

The derivative of both sides of (B5) and (B6) is obtained as:

           2
0 1 1

2
j x b j x bd d dj e j x b e

d d d
      

   
     

   
 

(B7)

and

           2
1 2 2

2 .j x b j x bd d dj e j x b e
d d d

      
   

      
   

 
(B8)

Back substitution of (B6) and (B7) into (B2)   leads to the 2nd-order differential 

equation

         2
1 1 22 3

12 .j xd d d
j x b j e

d d d
     

   
  
  

     (B9)

Similarly back substitution of (B5) and (B8) into (B3) leads to: 

         2
2 2 12 3

22 .j xd d d
j x b j e

d d d
     

   
  
  

     (B10)

From (B10),  is solved for as 1d
d
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Appendix B (Continued)

         
2

1 2 23 2
22 .j xd d dj e j x b

d d d
     

  
   

  


 
    

 
(B11)

The 1st and 2nd derivative of (B11) is taken as:

         

       

2 3 2
1 2 2 23 2

2 3 2

2
2 2 2

22

1

3 ,

j xd d d d
e j j x b

d d d d

d d
x j x b

d d

       


    

   
  

 

   

 


  
       

 
      

(B12)

         

       

       

3 4 3 2
1 2 2 23 2

3 4 3 2

3 2
2 2 22

3 2

2
2 22 2

22

1

6

9 .

j xd d d d
e j j x b

d d d d

d d d
x j x b

d d d

d d
j x j x b

d d

       


    

     


  

   
  

 

   

  

 


  
       

 
    

 
 

      

(B13)

By obtaining the differentiation of (B9) as

           3 2 2
1 1 1 2 22 3

3 2 2 3j xd d d d d
j x b e j x

d d d d d
         

 
    
      

      
 

(B14)

and substitution (B11), (B12) and (B13) to the LHS of (B14) leads to the 4th-order DE

         

        

4 3 2
2 2 22 2 2

4 3 2

23 2 2 2 2 2 2 2 4
2

2 6 3 11 9

6 9 3 9 2 3 6 0.

d d d
j b x x bx b

d d d
d

j x bx b x b bx x
d

     


  
 

      


  




     

        
(B15)

Note that (B15) is a linear homogeneous constant coefficient differential equation 

suggests that the existence of 4 independent solutions all of the form

 2 .jre    (B16a)
The 1st - 4th derivative of (B16a) are

 2 ,jrd
jre

d
 


  (B16b)

 2
2 2

2 ,jrd
r e

d
 


  (B16c)

 3
2 3

3 ,jrd
jr e

d
 


  (B16d)
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Appendix B (Continued)

 4
2 4

4 .jrd
r e

d
 


  (B16e)

Backsubstitution of (B16a) - (B16e) into (B15) and canceling  on both sides of the jre 

equation produces the 4th degree polynomial  in coefficient ' ' as seen in the main r
text (3.24)
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Appendix C: Obtaining the Quartic Roots using the Ferrari Approach

Starting from the characteristic quartic equation in (3.24), 

   
    

4 3 2 2 2 2

3 2 2 2 2 2 2 2 4

2 6 3 11 9

6 9 3 9 2 3 6 0.

r b x r x bx b r

x bx b x b r bx x



    

      

         
(C1)

Using in (C1),

2 6 .
4

b xr y 
  (C2)

After simplification and re-grouping of like terms, results in

 4 2 2 2 2 2 2

2 2 2 2 4 4 2 2 4

1 5 3 2
2 2

3 1 1 9 5 0.
4 4 16 16 8

y b x y b bx y

x b b x b x

 

  

       
 

        
 

(C3)

 (C3)  is a depressed quartic and expressed as
4 2 0y py qy dr    (C4)

where

2 2 21 5 3 ,
2 2

p b x      
 

(C5a)

2 22 ,q b bx  (C5b)

2 2 2 2 4 4 2 2 43 1 1 9 5 .
4 4 16 16 8

dr x b b x b x        (C5c)

 (C4) is made a perfect square after adding  to both sides, thus,
2

2

4
zy z 

   
2 2

22 2 ,
2 4
z zy z p y qy dr my k

           
   

(C6)

where  and  are to be determined later on. As observed, (C6) is quadratic in m k y

such that

 2 .
2
zy my k     

 
(C7)

Now, consider having an equation which is quadratic in ,x

2 0.ax bx c   (C8)
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Appendix C (Continued)

(C8) has the solutions

 
1

2 2
1,2

1 4
2 2
bx b ac
a a

    (C9)

and that (C8) is a perfect square when it discriminant is zero, thus

2 4 0.b ac  (C10)

By comparing the constant coefficients of (C8) with that of the middle expression in 

(C6), and thereafter, paralleled in (C10) thus returns

 
2

2 4 0.
4
zq z p dr

 
    

 
(C11)

Simplification of (C11) leads to the resolvent cubic in asz

 3 2 24 4 0.z pz drz pdr q     (C12)

Back substitution of (C5) in (C12) and simplification yields

3 2 2 2 2 2 2 2 2 4 4 2 2 4 2 2 2

2 4 6 2 4 4 2 4 2 4 2 6 4 2 6

1 5 1 9 5 153 3 4
2 2 4 4 2 2

5 1 9 5 57 456 19 12 0.
4 8 8 8 4 8

z b x z x b b x b x z b x

b b b x b x b x x x

    

    

               
   

         
(C1)

The resolvent cubic roots after solving for in (C13) arez

1 3 2 2 2
1

1 1 52 ,
6 6 6

z w H b x      (C14a)

1 3 2 2 2 1 3
2

1 1 5 3 1 2 ,
12 6 6 2 6

z w H b x I w H          
 

(C14b)

1 3 2 2 2 1 3
3

1 1 5 3 1 2 ,
12 6 6 2 6

z w H b x I w H          
  (C14c)

where

2 2 2 2 2 2 4 4 4 1 35 1 138 2 7
3 3 3

H x b x b b x w          
 

(C15a)

 
1

2
1 2 3 4 5 6 712w w w w w w w w       (C15b)
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Appendix C (Continued)

and the components of  are as follows:
   

w

   1
2 2 2 2 2 2 2 2 4 2864 36 16 23 12 5 280 ,w b x x b b x x          

 
(C16a)

            

   2
2 2 2 2 6 672 5 8 81 ,w b b b      (C16b)

 2 2 4 2 2 2 4 2
3 3162 9420 4110 ,w x b x b       (C16c)

 4 2 2 2 2 4 2 2 4
4 4848 936 684 648 ,w b x b x x b       (C16d)

  2 6 2 6 8 2 6 4 4 2 6 8 2 2
5 108 648 8760 27 10 33 40 ,w b x x b x b b x x x b          (C16e)

  4 4 2 6 6 2 8 8 2 10 2
6 3 4824 3064 4609 1056 2220 432 ,w x x x x x x           (C16f)

   
 6 2 8 2 2 12

7 48 6 1200 .w b b       (C16g)

It then follows that and in (C6) can be determined after equating the expanded       m k

RHS with the middle expression as

 
2

2 2 2 22
4
zm y mky k z p y qy dr

 
       

 
(C17)

such that by comparing the LHS and RHS (C17) reveals that

 
1

2m z p   (C18a)

and

.
2
qk
m

  (C18b)

More explicitly, after choosing in (C18a) asm

 
1

2m z p   (C19a)

invariably makes

 
1

2 .
2
qk z p   (C19b)
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Also, equating LHS and RHS of (C7) implies

2 1 0
2

y my z k     
 

(C20a)

and

2 1 0.
2

y my z k     
 

(C20b)

Using quadratic formula, (C20) has the solution as
1

2
2

1,3
1 1 14
2 2 2

y m m z k         
(C21a)

and
1

2
2

2,4
1 1 14 .
2 2 2

y m m z k          
(C21b)

Using (C19) in (C21) implies that

     
1

1 1 2
2 2

1,3
1 2
2

y z p z p q z p               
 (C22a)

and

     
1

1 1 2
2 2

2,4
1 2 .
2

y z p z p q z p               
(C22b)

Substitute (C5a), (C5c) and (C14a) in the terms in (C22) as:

 
1

21 1 3 2 2 22 1 1 52 2 ,
6 3 3

z p w H b x        
 

(C23a)

  1 3 2 2 21 2 102 4 ,
6 3 3

z p w H b x         (C23b)

   
1

21 2 2 1 3 2 2 22 1 1 52 2 4 2 2 ,
6 3 3

q z p b bx w H b x 


         
 

(C23c)

where

2 2 2 2 2 2 4 4 4 1 35 1 138 2 7
3 3 3

H x b x b b x w          
 

(C24)
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Put (C23) in (C22)

 

1
2

1 3 2 2 2 1 3 2 2 2
1,3

1
1 2

2
2 2 1 3 2 2 2

1 1 1 5 1 2 102 2 2 4
2 6 3 3 6 3 3

1 1 5  2 4 2 2
6 3 3

y w H b x w H b x

b bx w H b x

 

 


                
          

    



(C25a)

and

 

1
2

1 3 2 2 2 1 3 2 2 2
2,4

1
1 2

2
2 2 1 3 2 2 2

1 1 1 5 1 2 102 2 2 4
2 6 3 3 6 3 3

1 1 5                                       2 4 2 2 .
6 3 3

y w H b x w H b x

b bx w H b x

 

 


                
          

    

(C25b)

Finally, substitution of (C25) in (C2) gives the roots in the main text

 

 

1
2

1 3 2 2 2 1 3 2
1

1
1 2

2
2 2 2 2 1 3 2 2 2

1 1 1 1 5 1 1 23 2 2 2
2 2 6 3 3 2 6 3

10 1 1 5              4 2 4 2 2 ,
3 6 3 3

r b x w H b x w H b

x b bx w H b x



  


                 

          
  

(C26a)

 

 

1
2

1 3 2 2 2 1 3 2
2

1
1 2

2
2 2 2 2 1 3 2 2 2

1 1 1 1 5 1 1 23 2 2 2
2 2 6 3 3 2 6 3

10 1 1 5             4 2 4 2 2 ,
3 6 3 3

r b x w H b x w H b

x b bx w H b x



  


                 

          
  

(C26b)

 

 

1
2

1 3 2 2 2 1 3 2
3

1
1 2

2
2 2 2 2 1 3 2 2 2

1 1 1 1 5 1 1 23 2 2 2
2 2 6 3 3 2 6 3

10 1 1 5               4 2 4 2 2 ,
3 6 3 3

r b x w H b x w H b

x b bx w H b x



  


                 

          
  

(C26c)

 

 

1
2

1 3 2 2 2 1 3 2
4

1
1 2

2
2 2 2 2 1 3 2 2 2

1 1 1 1 5 1 1 23 2 2 2
2 2 6 3 3 2 6 3

10 1 1 5                  4 2 4 2 2 .
3 6 3 3

r b x w H b x w H b

x b bx w H b x



  


                 

          
  

(C26d)
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Or equivalently, (C26) is compactly written as

1
1 1 1 ,
2 2 2

r P Q R    (C27a)

2
1 1 1 ,
2 2 2

r P Q S    (C27b)

3
1 1 1 ,
2 2 2

r P Q R    (C27c)

4
1 1 1 ,
2 2 2

r P Q S    (C27d)

where

 3 ,P b x  (C28a)

1
2

1 3 2 2 21 1 52 2 ,
6 3 3

Q w H b x       
 

(C28b)

 
1

2
1 3 2 2 2 2 2 11 2 102 4 2 4 ,

6 3 3
R w H b x b bx Q               

(C28c)

 
1

2
1 3 2 2 2 2 2 11 2 102 4 2 4 ,

6 3 3
S w H b x b bx Q               

(C28d)
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     Starting from the quartic polynomial

   
    

4 3 2 2 2 2

3 2 2 2 2 2 2 2 4

2 6 3 11 9

6 9 3 9 2 3 6 0.

r b x r x bx b r

x bx b x b r bx x



    

      

         
(D1)

(D1) has the following roots

1
1 1 1 ,
2 2 2

r P Q R    (D2a)

2
1 1 1 ,
2 2 2

r P Q S    (D2b)

3
1 1 1 ,
2 2 2

r P Q R    (D2c)

4
1 1 1 ,
2 2 2

r P Q S    (D2d)

where

 3 ,P b x  (D3a)

1
2

1 3 2 2 21 1 52 2 ,
6 3 3

Q w H b x       
 

(D3b)

 
1

2
1 3 2 2 2 2 2 11 2 102 4 2 4 ,

6 3 3
R w H b x b bx Q               

(D3c)

 
1

2
1 3 2 2 2 2 2 11 2 102 4 2 4 .

6 3 3
S w H b x b bx Q               

(D3d)

Now, given a general quartic polynomial as

4 3 2
1 2 3 4 0.r a r a r a r a     (D4)

Conclusion drawn after comparison of (D1) with (D4) is that

1 2 6 ,a b x  (D5a)

2 2 2
2 3 9 11 ,a b bx x    (D5b)
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2 3 2 2 2
3 9 6 9 3 2 ,a bx x x b x b      (D5c)

2 2 2 4
4 3 6 .a bx x     (D5d)

Using Vieta's formula, the roots ( ), as related to the coefficients of the 1 2 3 4, , ,r r r r

characteristic quartic equation [see (D1)] is verified as follows:

1 2 3 4 1,r r r r a     (D6a)

1 2 3 4 2 3 1 4 1 3 2 4 2 ,r r r r r r r r r r r r a      (D6b)

1 2 3 1 2 4 1 3 4 2 3 4 3 ,r r r r r r r r r r r r a     (D6c)

1 2 3 4 4.r r r r a (D6d)

Test 1. 1 2 3 4 1.r r r r a    

The sum of all the roots from (D2) yields

1 2 3 4 2r r r r P     (D7)

and backsubstitution of (D3a) in (D7) leads to the confirmation of (D6a)

   1 2 3 4 12 3 2 6 .r r r r b x b x a           (D8)

Test 2. 1 2 3 4 2 3 1 4 1 3 2 4 2.r r r r r r r r r r r r a     

Also, taking the product of two roots from (D2) at a time is analyzed as follows:

 2 2
1 2

1 ,
4

r r P PS Q QS RP RQ RS       (D9a)

 2 2
2 3

1 ,
4

r r P RP Q RQ PS QS RS       (D9b)

 2 2
3 4

1 ,
4

r r P PS Q QS RP RQ RS       (D9c)

 2 2
1 4

1 ,
4

r r P PS Q QS RP RQ RS       (D9d)
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 2 2 2
1 3

1 2 ,
4

r r P PQ Q R    (D9e)

 2 2 2
2 4

1 2 .
4

r r P PQ Q S    (D9f)

 Thus, (D9a) + (D9c) = (D10a), (D9b) + (D9d) = (D10b), and (D9e) + (D9f) = (D10c)

 2 2
1 2 3 4

1 ,
2

r r r r P Q RS    (D10a)

 2 2
2 3 1 4

1 ,
2

r r r r P Q RS    (D10b)

 2 2 2 2
1 3 2 4

1 2 2 .
4

r r r r P Q R S     (D10c)

Now, (D10a) + (D10b) = (D11)

2 2
1 2 3 4 2 3 1 4 .r r r r r r r r P Q     (D11)

Finally, (D10c) + (D11) = (D12)

   2 2 2 2
1 2 3 4 2 3 1 4 1 3 2 4

1 13 .
2 4

r r r r r r r r r r r r P Q R S         (D12)

Breaking (D12) into term wise and applying (D3) such that

2 2 23 3 279 ,
2 2 2

P b bx x   (D13a)

2 1 3 2 2 21 1 1 5 ,
2 12 6 6

Q w H b x        (D13b)

 2 2 1 3 2 2 21 1 1 5 2 .
4 12 3 3

R S w H b x        (D13c)

Lastly, backsubstitution of (D13) in (D12) confirms (D6b) as

2 2 2
1 2 3 4 2 3 1 4 1 3 2 4 29 11 3 .r r r r r r r r r r r r b bx x a          (D14)

Test 3. 1 2 3 1 2 4 1 3 4 2 3 4 3.r r r r r r r r r r r r a    

It is known from (D2) that

 3 2 2 2 3 2 2 2 2
1 2 3

1 2 ,
8

r r r P P Q P S PQ Q Q S PR QR R S PQS           (D15a)

 3 2 2 2 3 2 2 2 2
1 2 4

1 2 ,
8

r r r P P Q PS PQ Q QS P R Q R RS PQR           (D15b)
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 3 2 2 2 3 2 2 2 2
1 3 4

1 2 ,
8

r r r P P Q P S PQ Q Q S PR QR R S PQS           (D15c)

 3 2 2 2 3 2 2 2 2
2 3 4

1 2 .
8

r r r P P Q P R PQ Q Q R PS QS RS PQR           (D15d)

Adding up (D15) gives

 2 2 2 2 2 3
1 2 3 1 2 4 1 3 4 2 3 4

1 2 2 .
4

r r r r r r r r r r r r PS QS PR QR PQ P         (D16)

Finally, the substitution of (D3) in (D16) confirms (D6c) as

 2 3 2 2 2
1 2 3 1 2 4 1 3 4 2 3 4 39 6 9 3 2 .r r r r r r r r r r r r bx x x b x b a            (D17)

Test 4. 1 2 3 4 4.r r r r a

Again, it is known from (D2) that

       2 2 2 2 2 2 2 2 2 2 2 4
1 2 3 4

1 2 2 .
16

r r r r PQ R S P Q R S R S P Q Q P         (D18)

Due to symbolic complexity which is beyond maple capabilities, a numerical program 

i.e., space simulation, has been run to confirm the validity of (D6d).
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By recalling (3.20) as

     1
0 ,j x bd

j e
d

 
  


    (E1a)

        0
1 1 ,j x b jxd

j e e
d

  
    


  

    (E1b)

        1
0 2 ,j x bjxd

j e e
d

 
    


  

   (E1c)

     2
1 .j x bd

j e
d

 
  


 

  (E1d)

It is observed  after a series of steps (see Appendix B) that (E1) led to

         

        

4 3 2
2 2 22 2 2

4 3 2

23 2 2 2 2 2 2 2 4
2

2 6 3 11 9

6 9 3 9 2 3 6 0.

d d d
j b x x bx b

d d d
d

j x bx b x b bx x
d

     


  
 

      


  




     

        
(E2)

Now, the general solution to (E2) is a superposition of four homogeneous solutions,

  31 2 4
2 .jrjr jr jrAe Be Ce De        (E3)

The 1st derivative of (E3) is obtained as

   31 2 42
1 2 3 4 .jrjr jr jrd

j r Ae r Be r Ce r De
d

   


     (E4)

Then solving for  in (E1d) yields 1 

 
   2

1 .
j x b dje

d

  
 

 

 


  (E5)

Substitution of (E4) in (E5) leads to -1-order homogeneous solution as

     31 2 4
1 1 2 3 4

1 .j x b jrjr jr jre r Ae r Be r Ce r De    


 
      (E6)

Similarly,  solving for  in (E1c) gives 0 

       21
0 2 .

jx
j x bdje e

d


 

   
 


 

  (E7)
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The 1st derivative of (E6) returns

     
  

31 2 4

31 2 4

1 2 2 2 2
1 2 3 4

1 2 3 4 .

j x b jrjr jr jr

jrjr jr jr

d j e r Ae r Be r Ce r De
d

x b r Ae r Be r Ce r De

   

  

 
 

      

    
(E8)

Through substitution of (E3) and (E8) in (E7) gives 0-order homogeneous solution

           
        

1 2

3 4

2 2 2 2 2
0 1 1 2 22

2 2 2 2
3 3 4 4

1

.

j x b jr jr

jr jr

e r x b r Ae r x b r Be

r x b r Ce r x b r De

  

 

   


 

        

       
(E9)

Also,  can be solved for in (E1b) as 1 

         20
1 1 .j x b j x bdj e e

d
  

   
 

   
   (E10)

The 1st derivatives of (E9) leads to

          
      
      
       

1

2

3

4

20 3 2 2 2 2 2
1 1 12

3 2 2 2 2 2
2 2 2

3 2 2 2 2 2
3 3 3

3 2 2 2 2 2
4 4 4

3 2 2 3 2

3 2 2 3 2

3 2 2 3 2

3 2 2 3 2 .

j x b jr

jr

jr

jr

d j e r x b r x bx b r x b Ae
d

r x b r x bx b r x b Be

r x b r x bx b r x b Ce

r x b r x bx b r x b De

 







 
 

 

 

 

 

         

        

        

        

(E11)

Substitution of (E6) and (E11) in (E10) concludes the +1-order homogeneous solution as

        
      
      
       

1

2

3

4

3 3 2 2 2 2 2
1 1 1 13

3 2 2 2 2 2
2 2 2

3 2 2 2 2 2
3 3 3

3 2 2 2 2 2
4 4 4

1 3 2 2 3 2 2

3 2 2 3 2 2

3 2 2 3 2 2

3 2 2 3 2 2 .

jrj x

jr

jr

jr

e r x b r x bx b r x b Ae

r x b r x bx b r x b Be

r x b r x bx b r x b Ce

r x b r x bx b r x b De









   


 

 

 


          

        

        

        

(E12)
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