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Abstract 

 

DIFFERENTIATING THE NECHES RIVER ROSE MALLOW (HIBISCUS DASYCALYX) 

FROM ITS CONGENERS BY MEANS OF PHYLOGENETICS AND POPULATION 

GENETICS 

 

 

JULIA ANN NORRELL 

Thesis Chair: Joshua A. Banta, Ph.D. 

The University of Texas at Tyler 

May 2017 

 

 This study used molecular phylogenetic methods to attempt to resolve the taxonomic 

status of the federally threatened East Texas-endemic wildflower, the Neches River Rose 

Mallow (Hibiscus dasycalyx). Hibiscus dasycalyx co-occurs with two other closely related 

congeners that are currently not of conservation concern: the halberdleaf rose mallow (H. laevis); 

and the crimson-eyed rose mallow (H. moscheutos). This study assessed the phylogeny of these 

three Hibiscus species, and attempted to determine if there is possible hybridization occurring 

between them. To this end, Restriction Site Associated DNA Sequencing (RAD-Seq), a Next 

Generation Sequencing method, was used to generate genome-wide polymorphic genetic data.  

 Two phylogenies were constructed utilizing Maximum Likelihood and Bayesian 

coalescence approaches. The Maximum likelihood phylogeny identified H. dasyclayx, H. laevis, 

and H. moscheutos as distinct monophyletic taxa. The Bayesian coalescence approach suggested 

H. moscheutos is a monophyletic sister clade to Hibiscus laevis, but suggested that H. dasycalyx 

and H. laevis are one monophyletic group and that H. dasycalyx is paraphyletic. AMOVAs did 

not show significant levels of admixture occurring between H. laevis, H. moscheutos, and H. 
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dasycalyx. Bayesian clustering implemented in STRUCTURE was used determine the species 

relationships and gene flow between species, and revealed that H. dasycalyx clusters separately 

from H. laevis, and that the two species were differentiated from each other in this analysis with 

no evidence of admixture.  

 The results overall do not have enough support to suggest the need, nor at the same time 

discredit a reclassification of H. dasycalyx. Further analysis of H. dasycalyx and H. laevis are 

needed to help better understand the taxonomic relationship between them.
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Introduction and Background Information 

Introduction 

As of 2016, the United States Endangered Species Act listed 944 threatened or 

endangered species of plants (USFWS, 2017).  This is a substantial number of species, 

and given the limited amount of conservation funding available, it is imperative that 

resources to protect these species are allocated appropriately. Additional research on 

taxonomic and population level relationships is therefore necessary to ensure that the 

target species are properly identified and classified (Schemske et al., 1994). Species 

targeted for conservation should be able to satisfy all of the standard criteria for 

categorization as distinct species, or else their taxonomic statuses should be reconsidered 

(Mace et al., 2008).  

Modern genomic methods can help with determining whether these taxonomic 

classifications are accurate, or if modifications need to be made to include the appropriate 

groups for priority protection. Taking a genome-wide molecular genetic approach to 

develop a more accurate taxonomy of the federally threatened wildflower, Hibiscus 

dasycalyx, and its congeners H moscheutos and H.  laevis, will hopefully yield such a 

clarification.  

Malvaceae 

The genus Hibiscus belongs to the family Malvaceae, commonly referred to as the 

mallow family, the members of which are found in tropical, sub-tropical and temperate 

regions. Members of this family also include okra, cotton, and cacao (Ploetz, 2007). 

Malvaceae contains over 4,000 species with Hibiscus being the largest genus with over 



2 
 

300 species (Akpan, 2007). The genus contains annuals, herbaceous perennials, shrubs 

and small trees; and some Hibiscus species are known to be valuable as sources of food 

and medicine (Wilson and Menzel, 1964). 

 

Section Muenchhusia 

 

 A section is a taxonomic rank listed below the genus, but above the species level. 

Hibiscus section Muenchhusia was separated from the large Hibiscus section Trionum by 

Blanchard (Fryxell, 1988). Section Muenchhusia is comprised of a group of five closely 

related and recently evolved Hibiscus species (H. moscheutos. H. laevis, H. grandiflonts. 

H. coccineus and H. dasycalyx) uniquely designated "rose mallows," whose range is 

confined mainly to marshy habitats in the eastern half of the United States (Blanchard, 

1976; Small, 2004). The plants in this section exhibit a shared ecological wetland niche, 

similar morphological characteristics, a shared growth habit, and common geographic 

distribution throughout eastern and central North America (Blanchard, 1976). Hibiscus 

dasycalyx co-occurs with two other closely related congeners, the halberd leaf rose 

mallow, H. laevis, and the crimson-eyed rose mallow, H. moscheutos, that have similar 

ecological ranges but that are not considered imperiled (Blanchard, 1976; Sain, 2015).  

Hibiscus dasycalyx 

Hibiscus dasycalyx is a perennial that can only be found in the wetlands of East 

Texas, including Cherokee, Houston, and Trinity counties (TPWD, 2011). Hibiscus 

dasycalyx is distinguished from its congeners by a combination of long, thin leaves that 

are lobed at the end as well as hairy calyces (Figure 1). Hibiscus dasycalyx possesses 

vegetative parts that are glabrous (hairless), and leaves that are deeply and narrowly 
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three-lobed. The petals moderately spread beyond the calyx tube, and are of white color 

with a red base. Hibiscus dasycalyx is very similar to H.  laevis, except for its highly 

pubescent (covered with erect hairs) calyx and fruit and extremely narrowly and deeply 

lobed leaves. Hibiscus dasycalyx is threatened by interspecific hybridization with H. 

laevis and H. moscheutos, as well as loss of preferred wetland habitat along the Neches 

River and its tributaries (Klips, 1995).  

Hibiscus laevis 

Hibiscus laevis has glabrous vegetative parts, including the calyx and capsule. 

The leaves are triangularly three-lobed in general outline (Klips, 1995). The middle leaf 

lobe is two to six times as long as the width of the body of the leaf. The petals are pink or 

white with a red base, moderately spreading beyond the calyx tube (a common trait in the 

Hibiscus genus), and is bee-pollinated (Klips, 1995). The entirely glabrous parts and 

reddish- pubescent seeds help to distinguish H. laevis from the similar H. moscheutos 

(Blanchard, 1976).  

Hibiscus moscheutos 

Hibiscus moscheutos is characterized by vegetative structures that are pubescent 

to a certain degree (Klips, 1995). The leaf is unlobed to broadly triangular-ovate. The 

calyx has star shaped hairs and is densely pubescent with matted, soft white woolly hairs. 

The capsule is variously pubescent, with hair ranging from simple, or stellate, to 

glandular. The petals are usually white or pink, with a red base in the center, near the 

calyx, and like the previous Hibiscus species they are also bee-pollinated (Klips, 1995).  

Taxonomic statuses 
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Since these species are very similar in terms of habitat use and morphology, the 

concern has been raised whether H. dasycalyx is a distinct species or a misidentified 

subgroup of H. laevis or H. moscheutos. This possibility is presented in recent work by 

Sain (2015), indicating that H. dasycalyx is genetically similar to H. laevis at the 

GRANULE-BOUND STARCH SYNTHASE I (GBSSI) gene. Klips (1995) also raised the 

question whether H. dasycalyx was a distinct species and conducted laboratory breeding 

experiments to test for possible hybridization between H. laevis and H. moscheutos. He 

found cross pollination was able to occur in the lab, and hybrid offspring are robust and 

fertile between H. dayscalyx-H. laevis and H. dasycalyx-H. moscheutos (Klips, 1995).  

Klips found H. dasycalyx and H. laevis both had electrophoretically detectable enzyme 

alleles that distinguish them both from H. moscheutos. This research suggested the 

possibility that H. laevis is so genetically similar to H. dasycalyx that it might better be 

regarded as an ecotype or variety of H. laevis rather than a separate species. On the other 

hand, this it is possible that H. dasycalyx repeatedly back-crossed with H. laevis 

following one or more hybridization events between the two wide-ranging species. His 

research was not able to tell apart these scenarios using the available data.  

On the other hand, some of the research into these species suggests they are all 

genetically distinct from one another. Small (2004) created a phylogeny of the 

Muenchhusia section and his results showed H. dasycalyx, H. laevis, and H. moscheutos 

grouping as separate monophyletic taxa.  

Furthermore a Bayesian clustering analysis implemented using the program 

STRUCTURE (Pritchard et al., 2000) with GBSSI data suggested that H. dasycalyx 
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individuals have a genetic affinity for one another that distinguishes them from H. laevis 

and H. moscheutos (Banta, unpublished data).  

Given the conflicting evidence available to date, the taxonomic status of H. 

daycalyx requires further attention. This study utilized Restriction Site Associated DNA 

Markers (RAD-Seq) to yield genome-wide polymorphic genetic data, as opposed to data 

from just one or a few genes. This is important because gene phylogenies can be 

misleading regarding evolutionary relationships (Spinks et al., 2013). The objectives 

were to address the following: (1) Is H. dasycalyx a distinct taxon from H. laevis and H. 

moscheutos? (2) If so, to what degree is hybridization (or advanced-generation 

hybridization, also known as introgression and admixture) between H. laevis, H. 

dasycalyx, and H. moscheutos occurring? 

Phylogenetics  

Phylogenetics is the study the evolutionary relationships of organisms (Hedges, 

2002). With this type of research the understanding of how individuals or species should 

be grouped to reflect their relatedness. In previous research, phylogenetic analysis of the 

gene GBSSI was used to find differentiation between H. laevis, H. moscheutos, and H. 

dasycalyx (Sain, 2015). The results showed that that while H. dasycalyx was not 

distinguishable from H. laevis phylogenetically, both species were distinguishable from 

H. moscheutos. The phylogenetic tree did not resolve H. dasycalyx to be distinct from H. 

laevis, but the results were left ambiguous because of low support values for the nodes 

(Sain, 2015).  

Phylogenetic relationships among recently diverged species are often difficult to 

resolve due to insufficient markers and confliction among gene trees (Eaton and Ree, 
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2013; O’Meara, 2010). Additional genome-wide data is needed to fully understand the 

relatedness between H. laevis and H. dasycalyx, as single-gene analyses often lack 

resolution to confidently infer phylogenetic relationships among species. (Gontcharov, 

2004; Cariou, 2013; Maddison and Knowles, 2006). Applying similar methods to RAD-

Seq will provide more robust context on the evolutionary history of these species, and 

hence their proper taxonomic groupings.  

RAD-Seq 

RAD-Seq is a fractional genome sequencing strategy designed to interrogate the 

selected genome (Baird et al., 2008; Floragenex, 2015). Genomic DNA from the study 

specimens is digested with a restriction nuclease, then a series of adapters are attached to 

the resulting DNA fragments, allowing for amplification and tagging for Illumina 

sequencing. Following high-throughput sequencing, thousands of genetic variations such 

as SNPs (single nucleotide polymorphisms) are obtained, permitting robust phylogenetic 

analysis across the study specimens. RAD-Seq-derived SNPs can also be used for 

assessing population structure, linkage, and quantitative trait locus mapping (Narum et 

al., 2013). Phylogenetic methods such as RAxML (Stamatakis, 2014) or BEAST2 

(Drummond and Rambaut, 2007) have been popular to determine evolutionary 

relationships among individuals (Ogilvie et al., 2016).   

 

Population Genetics  

Many evolutionary processes, such as natural selection, local adaptation, and 

genetic drift strongly depend on a species’ past and present population structure 

(Meirmans, 2012). Assessment of population structure also has practical importance in 
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conservation biology and the study of invasive species (Meirmans, 2012), because 

species of conservation and invasive concern often have closely related congeners with 

whom they co-occur in the wild and with whom they can exchange alleles. Hybridization 

is one of the chief threats to conservation species (Rhymer and Simberloff, 1996).  

Phylogenetics is not designed to study population structure, so additional analyses 

are required to infer history of hybridization and advance-generation backcrossing (also 

known as introgression/admixture). Population genetic analyses like Bayesian clustering 

with STRUCTURE (Prichard et al., 2000) as well as Analysis of Molecular Variance 

(AMOVAs) (Excoffier et al., 1992) provide the information necessary to understand the 

patterns of allele sharing that are occurring between H. dasycalyx and the congeners that 

are co-occurring in the same habitat range. The amount of inbreeding and outbreeding 

occurring within and among these populations will help illustrate whether gene flow is 

occurring among species, suggesting certain patterns of hybridization, introgression, and 

gene flow.  

Gene flow with H. laevis or H. moscheutos is a possible threat to future 

persistence of H. dasycalyx populations. As seen in Klips (1995), hybridization was 

possible when in a lab breeding setting between H. dasycalyx, H. laevis, and H. 

moscheutos. Evidence has also been suggested by Bayesian clustering analysis of the 

gene GBSSI that admixture is possibly occurring between these species (M. Sain 

unpublished data). The five species of the Muenchhusia section have been recorded to 

have a chromosome number of n = 19, and they are known to form hybrids relatively 

easy (Winters, 1970; Small, 2004). 
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To assess how diversity is partitioned across the different groups, Analysis of 

Molecular Variance (AMOVA) (Excoffier et al., 1992) was performed to assess the 

relative divergence of the three species from one another as compared to the divergences 

within each of the species. From the AMOVA, Fst was calculated, measuring the degree 

of inbreeding of each species relative to a single panmictic (random mating) population. 

Furthermore, Bayesian clustering analysis was performed to graphically assess the degree 

of allele sharing and haplotypic differentiation within and among the three species. The 

same RAD-Seq derived data was used here as described above.  
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Figure 1: From left to right: Hibiscus dasycalyx with narrow leaves and hairy calyx; 

Hibiscus laevis with wider leaves and no hairs on the calyx; Hibiscus mosechuetos 

(photos by J Norrell and JK Marlov). 
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Figure 2: Map showing the populations of Hibiscus specimens sampled in Texas and 

Tennessee with surrounding states outlined. Species represented by the following colored 

dots: Hibiscus dasycalyx (blue), Hibiscus laevis (green), and Hibiscus moscheutos 

(purple). Map inset shows counties where Hibiscus species were collected in Texas.  
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Methods 

Phylogenetic Methods 

Plant Collection 

The H. dasycalyx, H. laevis, and H. moscheutos sampled for this study came from 

wild-collected populations, and H. trionum was initially obtained from a commercial 

source and provided by Dr. Edwige Moyroud at the University of Cambridge. Locations 

of plant sampling are recorded in Table 1 and exemplar herbarium specimens will be 

submitted to the Botanical Research Institute of Texas (BRIT).  The plant samples used 

were collected from the field from June-October 2014, and in April 2016. The 

distribution of the populations and the areas where the specimens were collected in both 

Texas and Tennessee were recorded (Figure 2). As shown, all samples for H. dasycalyx 

came from the Hibiscus preserve for the H .dasycalyx species in Lovelady, TX 

(http://www.texaslandconservancy.org/lands/properties-list/east-texas/97-hibiscus-

preserve-houston-county).  

DNA Extraction and RAD-Seq 

Tissue samples were stored at -80 Celsius following collection. The leaves of 

each plant collected were used for DNA extractions performed with the Qiagen DNeasy 

Plant Mini Kit. DNA extraction samples of each species H. dasycalyx (6 samples), H. 

laevis (4 samples), and H. moscheutos (5 samples), and 1 outgroup species Hibiscus 

trionum were sent to the Floragenex lab for RAD-Seq analysis.  

 Once the extracted DNA quality was confirmed via gel electrophoresis and 

Nanodrop as per the standards set by Floragenex (see Appendix), samples were sent off 

to the Floragenex lab for RAD- sequencing and SNP identification. The Florgenex 
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protocols were as follows. The genome was first digested with a restriction endonuclease 

PstI, and then a series of sequencing adapters were ligated to the resulting DNA 

fragments. The DNA fragments were subjected to 1x100bp Seq on Illumina Hi Seq 2000 

15-30x (Bentley et al., 2008).  

 Following Floragenex’s standard bioinformatics pipeline, sample M7 was 

assembled de novo and used as the pseudoreference to call SNPs for the rest of the 

samples. Filters were applied at three levels of stringency: relaxed, standard, and 

stringent. Subsequent analyses used the SNPs called by the standard criteria, specifically 

a cluster depth of 10 –  1000 and 2 – 4 variants per cluster. The resulting genome-wide 

SNP data were used to: (a) determine the heterozygosity at specific loci, (b) quantify the 

gene flow among the three species, and (c) construct a single phylogeny based on all of 

the samples and the SNPs within all of the genetic fragments. This helped create a picture 

of the evolutionary and genetic relationships among these species, which takes into 

account multiple genomic fragments and multiple individuals (Davey et al., 2011; Heled 

and Drummond, 2010). Sequence data has been archived under NCBI BioProject 

PRJNA382435. 

Maximum Likelihood Phylogeny  

Randomized Axelerated Maximum Likelihood (RAxML) is a program for 

phylogenetic analysis of large datasets, which implements a tree search algorithm that 

returns trees with reliable likelihood scores (Stamatakis, 2014). JModeltest 2.16 

v20140903 identified a General Time Reversible (GTR) model as the best model of 

sequence evolution for the concatenated SNP alignment under the Akaike information 

criterion (AIC). A phylogeny was constructed in RAxML 3.1 using the rapid 
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bootstrapping with subsequent ML search option under a GTR model of evolution with 

an ascertainment bias correction (ASC), given that only variant SNP sites were included 

in the alignment (as discussed in the RAxML manual). RAxML assessed support for the 

phylogeny using non-parametric bootstrap resampling of 100 replicates (Felsenstein, 

1981). The output was then visualized in a phylogenetic tree using used FigTree v1.4.3. 

Hibiscus trionum was selected as the outgroup because the section in which it is placed 

(Trionum) is closely related to section Muenchhusia, and this outgroup has been used in 

previous studies with H. dasycalyx (Small, 2004).  

 

Bayesian Coalescence Phylogeny  

 An additional phylogeny was constructed using the program Bayesian 

Evolutionary Analysis by Sampling Trees (BEAST) (Bryant et al., 2012), with the add-on 

package SNP and AFLP Package for Phylogenetic analysis (SNAPP) (Bryant et al., 

2012). This package is designed for inferring species trees and species demographics 

from independent (unlinked) biallelic markers such as well spaced SNPs (Bryant et al., 

2012). This program implements a full coalescent model, but uses a novel algorithm to 

integrate over all possible gene trees, rather than sampling them explicitly. Following 

Yoder et al. (2013), we analyzed our SNP data using a multispecies coalescent approach 

in SNAPP version 1.3.0 within BEAST2 v2.3.2. The analysis utilized the same GTR 

model of evolution and proceeded for 10,000,000 generations with 1,000,000 (10%) 

discarded as burnin. The full SNP data were converted to a 0, 1, 2 format for analysis, 

with 1 representing a heterozygous genotype. Once the program completed, the results 

were analyzed in Tracer (Drummond and Rambaut et al., 2007) for performance and 

accuracy. As a primary analysis, we used all individuals of our focal in-group species and 
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a single individual of H. trionum as an outgroup to facilitate rooting as with the 

maximum likelihood phylogeny. The output was then visualized in a phylogenetic tree 

using used FigTree v1.4.3. 

 

 

 

 

Bayesian clustering analysis  

 

The potential number of genetic clusters and the membership of each individual 

were estimated using STRUCTURE Ver. 2.3.4 (Pritchard et al., 2000). The software uses 

Markov chain Monte Carlo (MCMC) simulations to estimate those parameters, with the 

number of clusters to be tested (K) specified by the user (Blanco-Bercial and Bucklin, 

2016). The MCMC simulation was run for 300,000 iterations, after a burn-in period of 

100,000 iterations. The traces were examined graphically to confirm chain convergence. 

The most likely K present in the data was inferred following Evanno et al. (2005). For 

each value of K (number of potential ancestral populations, which ranged from 1 to the 

number of presumed populations + 1), the genetic ancestry of each individual was 

estimated based on the admixture model without any prior population assignment. For the 

entire population set, K ranged from 1 to 10. The optimal K between the species in the 10 

subsets was visualized and then chosen using the lowest log-likelihood (Rohlf and Sokal, 

1995). 

 

AMOVA  

 

Analysis of Molecular Variance (AMOVA) was used to quantify differentiation 

among species (Excoffier et al., 1992). It was conducted in Arlequin 3.5 to examine the 
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variation within and among groups of genetically similar species.  AMOVA uses the 

amount of variance explained among groups via F-statistics (see below) to assess whether 

there is well-defined population structure. AMOVA also assigns populations into a priori 

groups. AMOVA was conducted with 1,000 simulated annealing permutations. Separate 

AMOVAS were conducted for (i) the entire data set and (ii) H. dasycalyx and H laevis 

samples only. 

 

F-statistics (Wright, 1951) are used to quantify genetic differentiation between 

different groups. In this study the F-statistic was used to measure differentiation among 

the species rather than among subpopulations. The fixation index we call Fst measures 

genetic differentiation of species relative to the total genetic diversity of all samples. This 

statistic calculates how genetically similar two species are to one another; for the 

AMOVA with all three species, the Fst reported is the average Fst of all pairwise 

comparisons. The values range from 0 to 1. Zero indicates the species have open gene 

flow among them, and therefore have higher amounts of genetic diversity shared among 

them. A higher Fst indicates there is possible inbreeding occurring within the species and 

low amounts of gene flow are happening among the species, which results in lower 

amounts of genetic diversity between the populations. These data are used to help 

understand the degree of gene flow among species. Fst was calculated by Arlequin as part 

of the AMOVA described above. 
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Results  

RAD-Seq Results 

 The RAD-Seq analysis yielded large amounts of genome-wide data for the three 

Hibiscus species. The number of quality filtered RAD tags via the standard output of 

reads passing FASTQ quality filters were 14,354,883, and the number of failing reads 

was 480,151. The total number of contigs extracted from the provisional clusters were 

44,054, and the total number of contigs in the final assembly were 71,194 with an 

average base pair length of 92. The total cluster length was 6,549,848 bp.  

 Out of the 16 samples screened, the total number of candidate variants detected 

was 117,026, and the number of candidate variants filtered (due to missing or low quality 

data) was 102,622. The number of candidate variants passing all filters was 14,062. The 

average number of polymorphisms within 200 bp of each variant was 3.1. The number of 

homozygous genotypes found was 197,488, and the number of heterozygous genotypes 

found was 16,379.   

 

Maximum likelihood phylogeny  

The rooted maximum likelihood tree shows H. dasycalyx and H. laevis to be more 

closely related to each other than either are to H. moscheutos. Furthermore, it shows H. 

laevis and H. dasycalyx to each be a separate monophyletic group, albeit closely related. 

The analysis separated the three species into two major clades (Figure 3): one clade 

contained only H. moscheutos, and the other clade contained both H. dasycalyx and H. 

laevis. Within the H. dasycalyx-H.laevis clade, the two species were monophyletic sister 

taxa. Bootstrap support for all nodes was high, except for some internal nodes within the 

H. dasycalyx clade. 
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Bayesian Coalescence Phylogeny  

 The rooted Bayesian coalescent tree also showed two major clades (Figure 4): one 

containing only H. moscheutos and one containing both H. dasycalyx and H. laevis. The 

difference in this analysis was that H. dasycalyx was a paraphyletic taxon within H. 

laevis. The major clades described here, as well as the paraphyly of H. dasycalyx, had 

high posterior support.   

 

Bayesian clustering analysis 

 For the Bayesian cluster analysis of all three species, the most parsimonious 

number of inferred ancestral groups was two. It shows that H. moscheutos clusters 

separately from H. dasycalyx and H. laevis, but that H. laevis and H. dasycalyx do not 

cluster separately from one another. It also shows no evidence of admixture among H. 

moscheutos and the H. dasycalyx/H. laevis group (Figure 5). For the Bayesian cluster 

analysis of just H. dasycalyx and H. laevis the most parsimonious number of inferred 

ancestral groups was six. In this case, the analysis was able to detect more fine-scale 

differentiation between the two species, revealing that H. dasycalyx clusters separately 

from H. laevis (Figure 6). While H. laevis shows evidence of genetic diversity in the form 

of multiple inferred ancestral contributions to its genome, these inferred ancestral 

contributions are not shared by H. dasycalyx. Furthermore, the two inferred ancestral 

groups comprising H. dasycalyx were not shared by H. laevis. Thus, the two species were 

reciprocally differentiated from each other in this analysis with no evidence of admixture.  

 

AMOVAs 
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 The AMOVA provided the percentage of molecular variation that is explained by 

variation 1) among species, 2) among individuals within species, and 3) within species. 

Fst in this case represents the proportion of molecular variation explained by variation 

among species and ranges from zero to one.  For the AMOVA examining all three 

Hibiscus species (Table 1), Fst is 0.58 and the P-value is < 0.01, rejecting the null 

hypothesis of no genetic differentiation among the three species. For the AMOVA 

examining only H. dasycalyx and H. laevis (Table 3), the percentage of molecular 

variation explained by variation within species is much larger than the percentage of 

variation explained by variation among species. However, the Fst value is still 

significantly different from zero (Fst = 0.2249; P < 0.01), rejecting the null hypothesis 

that there is no genetic differentiation between H. dasycalyx and H. laevis. 
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Appendix A 

 

Figure 3 Rooted maximum likelihood tree showing phylogenetic relationships of H. 

dasycalyx, H. laevis, and H. moscheutos inferred from RAD-seq. Bootstrap values greater 

than 60% are shown on each branch. Each accession is labeled by species D represent H. 

dasycalyx, L represents H. laevis, M represents H. moscheutos, and T1 represents the 

outgroup H. trionum. 
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Figure 4 Rooted SNAPP tree showing phylogenetic relationships of H. dasycalyx, H. 

laevis, and H. moscheutos inferred from RAD-seq. Posterior support values greater than 

0.7 are shown above each branch. Each accession is labeled by species D represent H. 

dasycalyx, L represents H. laevis, M represents H. moscheutos, and T1 represents the 

outgroup H. trionum. 
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Figure 5. STRUCTURE analysis of all three Hibiscus species Hibiscus dasycalyx 

labeled as d, Hibiscus laevis labeld as l, and Hibiscus moscheutos labeled as m. 

This analysis shows moscheutos clusters separately from H. dasycalyx and H. 

laevis, but that H. laevis and H. dasycalyx do not cluster separately from one 

another. 
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Figure 6. STRUCTURE analysis of Hibiscus dasycalyx labeled as d, and Hibiscus laevis 

labeled as l. This analysis shows H. dasycalyx and H. laevis clustering differently from 

one another, and this suggests there is differentiation between H. dasycalyx and H. laevis. 
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Table 1. AMOVA design and results (average over 9602 loci): H. dasycalyx, H. laevis, and H. moscheutos 

 

Source of 

variation 

Sum of 

squares 

Variance 

components 

Percentage 

variation Fst P- value 

Among species              21074.915                1026.48345                 57.86718              0.57867              0.00  

Among individual 

within species               10684.625                 195.30710                          11.01028 

Within species              7940.500                   552.07070                          31.12254 

Total     39700.040                 1773.86125                         100 
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Table 2. AMOVA design and results (average over 3962 loci): H. dasycalyx, H. laevis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Sum of 

squares 

Variance 

components 

Percentage 

variation Fst P-value 

Among species             2239.715                    173.32480                 22.48949                 0.22489             0.00 

Among individual 

within species             5185.367                         88.59673                      11.49573 

Within species            4883.000                         508.77083                    66.01478 

Total  12308.082                      770.69236                      100 
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Discussion 

Phylogenetics  

 Next generation sequencing (NGS) represents an opportunity to better clarify the 

taxonomic status of rare species and thereby make more rational conservation decisions 

(Andrews et al., 2016). To ascertain the certainty that resources and funding are being 

appropriated to the correct individuals, these advanced NGS techniques can be used to 

determine whether a taxon is evolutionarily and phylogenetically distinct from another, 

and therefore whether the current taxonomy is justified. In this study, we used 

phylogenetic methods on genome-wide data to ascertain whether H. dasycalyx is 

rightfully considered to be a separate taxon from H. laevis and H. moscheutos. Previous 

work by Small (2004) suggested that H. dasycalyx was monophyletic and excluded H. 

laevis and H. moscheutos, but subsequent work by Sain (2015) using more samples 

suggested that H. laevis and H. dasycalyx are not easily distinguishable using a single-

gene phylogeny. The previous studies (Small, 2004; Sain, 2015), however, used only one 

phylogenetically informative gene to draw this conclusion (GBSSI), and both called for 

more research using additional loci to accurately resolve the phylogeny of this group. 

Such a study is provided here.   

Our maximum likelihood phylogeny suggests that H. dasycalyx and H. laevis are, 

in fact, monophyletic sister taxa, while H. moscheutos is more distantly related, with high 

bootstrap support (100%). In the Bayesian coalescent phylogeny, however, H. dasycalyx 

and H. laevis were not resolved as sister monophyletic taxa. Instead this analysis suggests 

that H. dasycalyx + H. laevis are monophyletic, but that H. dasycalyx is paraphyletic.   
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 The findings by both phylogenetic tree construction methods support previous 

research suggesting that H. moscheutos is more distantly related to the clade containing 

H. dasycalyx and H. laevis (Small, 2004; Sain, 2015, Klips, 1995).  Furthermore, while 

the two methods differ as to whether H. dasycalyx and H. laevis are reciprocally 

monophyletic, they both suggest that these two species are very closely related. One 

possible explanation as to why the two methods differ regarding reciprocal monophyly 

between H. dasycalyx and H. laevis is that the Bayesian coalescent approach 

implemented here performs better as the number of taxa increases (Leache et al., 2014); it 

could be that we did not have enough individuals represented to obtain an accurate 

picture of the relationships. The maximum likelihood method, however, could have had 

biases regarding which taxa are heterozygous at each location, which is why this tree 

postulates different taxonomic relationships than the Bayesian coalescent tree, which 

applies a completely different model of evolution (Brumfield et al. 2003). Whatever the 

reason, this illustrates the sensitivity of the results to different software packages that 

implement phylogenetic methods in different ways, even when the methods themselves 

are supposed to be similar. 

Samples of H. laevis and H. moscheutos that were used in this study were mostly 

collected from Texas populations, and fewer samples of each species were used in this 

study than in Sain (2015). The advantage of this study over previous research on this 

group is the inclusion of genome-wide data comprising thousands of loci, as opposed to 

single or multiple gene data. While RAD-Seq provides a vast increase in the amount of 

data that can be readily generated over what has been possible with previous-generation 

genotyping methods (Hipp et al., 2014), this does not compensate for having as 
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geographically broad a representation of samples as possible. In the future, more samples 

of all three species should be studied to achieve broader representation of the genotypes 

of all three species. This may be more enlightening about patterns of phylogenetic 

differentiation within and among the three species. A caution in interpreting these 

findings is that this study only included H. dayscalyx specimens from a single population, 

while the H. laevis and H. moscheutos samples came from multiple counties across East 

Texas and Tennessee. This could influence the fact that H. dasycalyx appeared to be less 

genetically diverse than H. laevis, but it should not influence the conclusion that there is a 

core group of H. dasycalyx specimens that are differentiated from H. laevis. This would 

appear to add more weight to the conclusion that H. dasycalyx is a separate taxon from H. 

laevis, as the current taxonomy implies. Taken together with the ambiguous phylogenetic 

results (one analysis showing reciprocal monophyly between H. laevis and H. dasycalyx, 

the other one not), there is no clear signal emerging from our data that would recommend 

either affirming the current taxonomic rank of H. dasycalyx as a species or reclassifying 

it as a variety of H. laevis. Therefore, the most prudent approach at this point is to 

continue treating H. dasycalyx as a distinct taxon until the weight of evidence tips the 

scales to some other conclusion. 

This study used clearly morphologically delineated specimens, which could have 

had an impact on the results. All H. dasycalyx samples came from a single population 

where the plants are clearly identified as H. dasycalyx morphologically (J. Norrell, 

personal observation and photo documentation; USFWS 2016), and the samples of H. 

laevis and H. moscheutos were likewise morphologically unambiguous representatives of 

their respective taxa (J. Banta, personal communication). Samples of H. dasycalyx from 
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other populations were not considered for this study, even though individuals in some of 

the other documented populations of this species are more intermediate and ambiguous in 

their phenotypes, and co-occur with H. laevis and H. moscheutos at those sites (TPWD, 

2011). Including these other sites may make the phylogenetic results more nuanced and 

complex. Even in this simplified study, using only a single isolated population of 

morphologically unambiguous H. dasycalyx, the Bayesian coalescence approach could 

not recover H. dasycalyx as a monophyletic group (although the maximum likelihood 

approach did); and uncertainty regarding the taxonomic status of H. dasycalyx still 

remains.  

 The AMOVA and the Bayesian clustering analysis (STRUCTURE) both support 

the conclusions derived from our maximum likelihood tree in that H. moscheutos is a 

sister taxon to H. dasycalyx and H. laevis. The AMOVA and the Bayesian clustering 

analysis both showed that most of the genetic variation among species in this group is 

due to variation among H. moscheutos and the H. laevis + H. dasycalyx clade; an 

AMOVA including only H. laevis and H. dasycalyx dropped the value of Fst by more 

than half, as compared to the one including all three species; and in a Bayesian clustering 

analysis containing all three species, the genetic differentiation of H. moscheutos so 

eclipsed the genetic differences between H. laevis and H. dasycalyx that they could not be 

detected. Interestingly, a Bayesian clustering analysis of only H. laevis and H. dasycalyx 

did reveal genetic diversity in the inferred ancestral contributions to the individuals, with 

most of this diversity within H. laevis. Furthermore, H. laevis and H. dasycalyx did not 

share overlapping inferred ancestral contributions, suggesting they are genetically distinct 
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from one another (Giolo et al., 2012). Thus the Bayesian clustering analysis finds all 

three species to be genetically distinct from one another, with no evidence of admixture. 

  Interestingly, the population genetic analyses did not find any clear evidence of 

gene flow among these three species. This would have manifested itself in the Bayesian 

cluster analysis results, where the same inferred ancestral groups would be evident in 

multiple different species, but this was not the case. This could be in part an artifact of 

the paucity of sampling for H. dasycalyx, discussed above, so this negative result is 

perhaps not surprising. Furthermore, morphologically pure representatives of each of 

three species were used, which would further bias the results against detecting admixture 

that may be occurring in nature. More sampling of all three species from a larger number 

of populations, including morphologically ambiguous specimens, is warranted to 

strenuously test for hybridization/introgression in this group. 

 

 

 



30 
 

Conclusion 

 

 Even using advanced NGS RAD-Seq methods, the phylogenetic genetic results 

presented here failed to recover H. dasycalyx as a separate taxon from H. laevis when a 

Bayesian coalesce phylogenetic approach was used. The maximum likelihood phylogeny 

did show H. dasycalyx as a separate taxon from H. laevis, so it is possible that H. 

dasycalyx and H. laevis are reciprocally monophyletic. Both phylogenies indicate that H. 

laevis and H. dasycalyx are very closely related to each other; H. moscheutos however, 

was clearly shown in both phylogenies to be a distinct taxa from H. laevis and H. 

dasycalyx.  

 AMOVA and Bayesian clustering methods did not show a significant level of 

admixture occurring between H. laevis, H. moscheutos, and H. dasycalyx. This is 

possibly due to the sampling of the populations: each specimen was chosen based on 

distinct morphology and collected from areas where the species did not overlap. It is 

possible that samples taken from sites where all three species occur could show signs of 

hybridization.  

Ultimately, the results were inconclusive and did not produce a strong argument 

for amending the current taxonomic status of H. dasycalyx. The current conservation 

status of H. dasycalyx is therefore warranted. It is important to note that, while these 

results do not call for a change in the current taxonomic status of the H. dasycalyx, there 

is also not enough evidence in these findings to firmly state H. dasycalyx and H. laevis 

should not be reclassified into one taxa. Further analysis of H. dasycalyx and H. laevis are 

needed to help better understand the taxonomic relationship between them. 
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Appendix B 

Table 3: Showing all the specimens there sample name, GPS coordinates from the 

collection site, and the county and state they were collected from. 

 

 

 

Species Sample 

Name 

GPS Coordinates (latitude, 

longitude) 

Location 

Hibiscus trionum  T1 N/A Donated by Dr. Edwige 

Moyroud at the University of 

Cambridge; previously 

obtained from a commercial 

source 

Hibiscus moscheutos M7 -95.458304, 32.58368287 Smith County, TX 

Hibiscus moscheutos M10 -94.51598, 32.62743 Harrrison County, TX 

Hibiscus moscheutos M11 -94.51598, 32.62743  Harrrison County, TX 

Hibiscus moscheutos M37 -94.580391, 32.615227 Harrrison County, TX 

Hibiscus moscheutos M38 -89.42619323, 35.58216476  Haywood County, TN 

Hibiscus laevis  L11 -9580344937, 33.32034211 Delta County, TX 

Hibiscus laevis L15 -94.67286, 32.63586 Harrrison County, TX 

Hibiscus laevis L31 -94.42331, 32.67161   Harrrison County, TX 

Hibiscus laevis L41 -94.8912, 31.286128  Trinity County, TX 

Hibiscus dasycalyx D1c -95.476861, 31.101333 Houston County, TX 

Hibiscus dasycalyx D5a -95.476861, 31.101333 Houston County, TX 

Hibiscus dasycalyx D6b -95.476861, 31.101333 Houston County, TX 

Hibiscus dasycalyx D8 -95.476861, 31.101333 Houston County, TX 

Hibiscus dasycalyx D9b -95.476861, 31.101333 Houston County, TX 

Hibiscus dasycalyx D11 -95.476861, 31.101333 Houston County, TX 
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Supplemental Links 

 

Supplemental data and file report from Floragenex is available on:  

https://www.dropbox.com/s/5eqp8zq3bwb6bv0/JNorrell_UTexasTyler_Hibiscus_201604

13-01409_Project_Report%20%281%29.pdf?dl=0 

 

 

Standards for DNA to be processed by RAD-Seq is available on:  

https://www.dropbox.com/s/3ly897ta85um8dh/Microsoft%20Word%20-

%20STARTING%20YOUR%20FLORAGENEX%20PROJECT%20PREMIUM_130D.p

df?dl=0 
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