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Abstract 

 

Four-Coil Wireless Power Transfer using Resonant Inductive Coupling 

Sravan Goud Annam 

Thesis Chair: David M. Beams, Ph. D, PE. 

 

The University of Texas at Tyler 

May 2012 

 

With the developments of mobile and implantable devices, wireless power 

transfer (WPT) has become increasingly attractive to free a variety of electronic systems 

from power cords and batteries. Resonant inductive coupling is the leading technology of 

WPT, offering high efficiencies (>75%) with power levels from microwatts to hundreds 

of watts.  

 This thesis focuses on a resonant four-coil inductive WPT technology. It develops 

numerical models of the four-coil WPT system (incorporated into a Matlab simulator) 

and validates them by experiment.  It then develops numerical tools using Matlab for 

computing self- and mutual inductances for inductors of arbitrary shape and orientations 

using the method of magnetic vector potential and validates these tools by experiment. 

Inductance-calculation tools are designed to be user-friendly and are intended to be 

employed as a substitute for FEA (Finite Element Analysis).  

 Effects of high magnetic permeability materials like ferrite sheets on the self- and 

mutual inductance of coils are studied, and Matlab-based numerical tools are developed 

to analyze such effects.  These tools were validated by experimental work.    

 A proposed design methodology employing the method of reflected impedances 

in loosely-coupled inductors is applied to the design of a four-coil WPT presented in this 
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thesis. This method reflects impedances sequentially through the inductors from the 

system load to the driving source and is incorporated in a spreadsheet calculator.  A 

design derived from this method is subjected to experimental validation and efficiencies 

exceeding 76% are noted with various spacings between the transmitting and receiving 

coil pairs.  The method is shown to be useful for “first-pass” design, but significant 

effects are noted due to mutual inductances neglected in the design procedure. The full 

model is necessary for accurate simulation results. Conclusions and suggestions for future 

work are presented. 
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Chapter One 

Introduction 

 

Recent developments have shown a revival of interest in the possibility of 

transferring significant amounts of electric power over short distances (up to tens of 

centimeters) through wireless power transfer (WPT). The idea of WPT has taken various 

forms since its inception in the late 19
th

century.  WPT is being considered for 

replacement of wires and batteries in various applications; for example, WPT can be used 

to recharge laptop computers by means of wireless power hotspots built into desks and 

tables. Such wireless power hotspots may even eliminate the use of external battery 

chargers. WPT is moving from a research and development stage into a demonstration 

stage and slowly into application.  

Current methods of WPT can be grouped into near and far-field applications. Far-

field applications consist of beams of electromagnetic radiation of various frequencies 

which include radio, microwave, and laser devices. 

Near-field applications are currently implemented by inductive and resonant 

inductive transfer, which use the non -radiative portion of the electromagnetic field.  A 

near-field WPT system resembles an air-core transformer with the primary winding 

separated from the secondary by an air gap. The power transfer capability and efficiency 

of inductive coupling decrease with distance between the windings. With the effect of 

resonant inductive coupling, the loss of efficiency can be overcome to some extent. But 

efficient resonant induction is highly dependent on coil quality factor Q which increases 

for frequencies below the coil self-resonance. Hence, resonant inductive coupling 

systems usually operate in the frequency range of 10 kHz to 10 MHz. 

Resonant inductive coupling has been applied to contactless battery charging 

systems in consumer electronics [1], powering desktop peripherals [2], charging of 

electric-vehicle batteries [3], and powering of endoscopic robots [4].   

The goal of this thesis is in the analysis and design of WPT systems using 

resonant inductive coupling.  Multiple MATLAB ®based tools and analysis methods will 

be developed.  
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In practice the application of such system involves coils of various geometries and 

variable orientations.  Such variable geometries are often investigated through finite-

element analysis (FEA), e.g., [5].  However, a simple tool for computing mutual 

inductances between such coils that did not require expertise in FEA or access to FEA 

software could have significant benefit to the designer of WPT systems. 

The four-coil wireless-power transfer (WPT) system has been shown to transfer 

electric power over short distances with high efficiency by means of loosely-coupled 

inductors and resonating capacitors.  However, there are many degrees of freedom and 

many variables to manipulate, and the complexity of the design space makes a            

prior design difficult.  This thesis work attempts to reduce that complexity by identifying 

the most-important parameters and to provide a theoretical basis for experimental 

observations. 

 

1.1 Organization of thesis 

This thesis is divided into six chapters. Chapter Two discusses the early 

developments, applications and prior research on WPT. Chapter Three describes the 

analytical expressions and numerical models of a four-coil WPT system.  Chapter Four 

describes analytical expressions and computational methods used to determine mutual 

inductance between coils of arbitrary size and physical orientation.  Chapter Five 

develops a method based upon reflected impedances of design of a four-coil WPT 

system. Chapters Three to Five include experimental validation of the numerical models. 

Chapter Six discusses conclusions and directions for future work. 

 

 

 

 

 

.
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Chapter Two 

Background 

2.1 Early developments in wireless power transfer 

The concept of wireless power transfer (WPT) began with the experiments of 

Nikola Tesla at the end of the 19
th

 and beginning of the 20
th

 centuries. Tesla proposed a 

concept of electrodynamic induction using a Tesla coil-like device to create an alternating 

electric field with extremely high strength that could provide energy to a receiver. Tesla 

thought this energy distribution method would be used in interior applications, e.g., 

allowing lighting fixtures to be moved anywhere within a room without need for wires. 

Figure 2.1 is an illustration of the WPT system proposed by Tesla.  

 

Figure 2.1: Tesla’s wireless energy apparatus as depicted in US patent 645,576 [6] 
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Figure 2.1 consists of transmitting and receiving apparatus.  The transmitting 

apparatus includes coils A and C (wound as large-diameter spiral coils), terminal 

electrode D, and generator G. Coil A is the primary side of a transformer whose 

secondary winding is coil C. One terminal of coil A is connected to terminal D by 

conductor B, while the other end is connected to earth ground.  At the receiving side a 

transformer of similar construction is employed with coil A’ as the primary and C’ as the 

secondary. The elevated terminal D’ is connected to the center of  coil A’ via conductor 

B’; the other terminal of coil A’ is connected to ground. The terminals of C’ are 

connected to lamps L and motors M.  

Tesla’s findings led him to design the Wardenclyffe plant [7] as a wireless power 

transmitter where the Wardenclyffe tower was used to serve as a wireless power 

transmission facility. At Wardenclyffe, he operated across a range of frequencies from    

1 kHz to 100 kHz at powers up to 1.5 MW. Tesla thought excitation at these frequencies 

would yield the most economical method of power transmission, and his apparatus 

indicated an efficient range between 30 – 35 kHz.  

Despite the novelty of Tesla’s demonstration and his personal efforts to 

commercialize wireless power transmission, he had to put a halt to his experiments due to 

lack of funds. 

 

Figure 2.2: Tesla’s Wardenclyffe Tower 
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Since Tesla’s work, researchers have sought more efficient methods for WPT.A 

complete mathematical understanding of the coupled circuits used to build the transmitter 

and the receiver was first published by Frederick Terman in 1935 [8]. The idea of using 

microwave power transmission was proposed by William C. Brown in 1961 [9]. 

In 2007, a group of researchers at the Massachusetts Institute of Technology 

(MIT) revisited Nikola Tesla’s original idea of transporting energy over a distance 

without a carrier medium using electromagnetism. A demonstrator system was 

constructed using self-resonant coils, and achieved a transfer power of 60 W with 40% 

efficiency over distances in excess of 2 m. 

2.2 Methods for wireless power transfer 

Methods for conducting wireless power transfer are classified as follows 

Radio Waves: Power transmission by radio waves dates back to the early work of 

Heinrich Hertz. The advantage of using radio waves for wireless power transfer is that 

high-power radio technology is fairly mature. 

Inductive: Inductive power transfer systems are defined as systems where energy 

is transferred from a primary winding to a secondary winding using an alternating 

magnetic field. The advantage of inductive WPT is that it is a low-cost and highly-

efficient method of transferring power. The design of an induction link is fairly       

straightforward and surprisingly efficient at short distances. The main drawback of using 

this method is the limitations in coil geometries and distance. 

Lasers: The main problems with laser power transfer are the low efficiencies and 

safety concerns. Lasers operating at 1.4μm have shown efficiencies up to 30% when 

converted into electrical energy through photonic detectors.  

Ultrasound: In addition to laser wireless power transfer, a new concept for 

wireless power transmission that employs ultrasonic air transducers has been developed. 

In ultrasonic wireless power transmission, a transmitter composed of a pulse generator, 

an amplifier, and a horn radiator, transfers power through the air. A receiver composed of 

a receiving transducer, a rectifier, and a capacitor, receives the power and applies it to a 

load. These systems have promise, but have not been demonstrated over large distances. 
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With time, ultrasonic wireless power transfer may become more promising in low-power 

applications. 

2.3 Developments in wireless power transfer (WPT): 

WPT technology can be applied in different fields and environments. The ability 

to transfer power safely, efficiently, and over a distance can improve products by making 

them more convenient and reliable.  

Products employing WPT are classified based on their usage method as either 

direct or automatic supply. Direct use means supplying power directly from the source to 

the load, while  automatic supply means  recharging batteries of battery operated devices 

whether they are in use or not. There are several applications [10] for wireless transfer of 

power in which the following main areas can be mentioned. 

Systems for wireless charging of batteries in mobile electronics (e.g., cellular 

telephones, laptop computers, game controllers) have been designed. In such devices 

wireless charging can be done even when the devices are in use. For example, iPort (San 

Clemente CA) has launched an inductive charger for the iPad2 called “Launch Port” [11] 

shown in Figure 2.3. The wireless charging system of this product starts charging an iPad 

wirelessly as soon as the Power Shuttle is docked onto the wall station or base station. 

The power Shuttle (receiving part) is the hard case, the base station is a tabletop-mounted 

charging location, and the wall station is a wall-mounted charging location for the Power 

Shuttle. 

 

Figure 2.3: Launch port (inductive charger  for iPad2) 

http://www.wirelesspowerplanet.com/news/iport-launchport-inductive-charger-wall-mount-for-ipad-2/
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Biomedical devices such as pacemakers and electric nerve stimulator devices 

have used inductive charging for many years. Since the devices are located inside the 

body, it is very attractive to charge their batteries wirelessly.  A physical contact that 

penetrates the skin would be uncomfortable and could lead to infections. The gap 

between transmitter and receiver in this kind of application is normally 1–2 cm. Heat 

generations inside the body must be limited, and the implanted devices must remain at 

approximately body temperature during charging. Therefore, power transfer is normally 

under 50 W. 

High reliability and low maintenance costs are important in aerospace, military, 

and industrial applications.  Such applications frequently use contactless power transfer 

through rotary transformers.  For example, rotating radar heads avoid the use of slip rings 

by means of contactless power transfer.   Contactless power transfer using rotary 

transformers permits free-moving capability in systems such as robot arms.  

Corporations such as Panasonic, Philips and Texas Instruments are using 

contactless power transfer for recharging batteries of small electric appliances (e.g., 

electric toothbrushes, wireless computer mice, and remote controls). 

Samsung’s “Wireless Charging Hub” [12] eliminates the need of wires for 

charging electronic 3D glasses. Up to four pairs of 3D Glasses can be charged by placing 

them around the rim.  Figure 2.4 shows a pair of 3D glasses being recharged by a 

wireless charging hub. 

 

Figure 2.4: Samsung wireless charging hub for 3D glasses 
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2.4 Review of prior research in WPT: 

A brief literature survey reveals various techniques and different applications of 

WPT, a number of previous published papers on conducting WPT ([13]-[25]) uses either 

the method of inductive coupling or resonant inductive coupling. 

Cannon [13] describes a WPT system using resonant inductive coupling at 8.3 

MHz, with the output power being delivered to multiple small loads (LEDs) with an 

output power of 28.2 mW at an efficiency of 40%-50% of input power.  

Shen et al [14] have described circuit analysis of WPT by coupled magnetic 

resonance. The resonating frequency of coils was 9.4 MHz and maximal efficiency was 

obtained by placing the two coaxially-aligned coils 3cm apart. 

Low [15] describes the design and test of a loosely-coupled planar WPT System 

that uses a class E transmitter operating at a frequency of 134 kHz, delivering an output 

power of 295W at 75.7% efficiency. 

Choi and Seo [16] describe a magnetic resonance-based WPT system which uses 

a meta-material which has a relative permeability of –1.  They report an efficiency of 

energy transfer efficiency of about 80% over a distance of 1.5m at a frequency of 23.2 

MHz using the meta-materials. Without the negative-permeability material, the reported 

efficiency dropped to 60%.  Meta-materials are artificial composites in which the 

electromagnetic properties can be engineered to achieve properties (e.g., negative 

permeability) not observed in pure materials. 

Karalis [17] describes an efficient wireless non-radiating mid-range energy 

transfer method and discusses macroscopic applications such as the delivery of   power to 

robots and/or computers in a factory room. In the microscopic world, where much 

smaller wavelengths would be used and smaller powers are needed, one could use it to 

implement optical interconnects for CMOS electronics, or to transfer energy to 

autonomous nano-objects (e.g. MEMS or nano-robots). 

Si [18] describes a new method called ZVS (Zero voltage Switching) used for 

stabilizing the operating frequency of a resonant converter for wireless power transfer to 

implantable biomedical sensors.   

 Beh, Imura, Kato and Hori [19] have demonstrated a method for improving the 

efficiency of resonant magnetic coupling using an impedance-matching technique. An 
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application was developed for charging electric vehicle (EV) batteries.  The operating 

frequency of the source is 13.56MHz and the reported efficiency is approximately 90% at 

1m distance with 60W output power. 

Chen [20] explored a conceptual WPT system that introduces a tuning method to 

transfer a predetermined amount of power using loosely-coupled coils at an efficiency of 

73% while delivering an output power of 150W with an operating frequency of 10MHz. 

A team of researchers from Massachusetts Institute of Technology led by Kurs [21], 

presented a quantitative model describing the power transfer over a distance somewhat 

greater than 2m at an efficiency up to 40% while delivering 60W.  This system used 

spiral-wound coils and had an operating frequency of 5.9 MHz. 

Su and Liu [22], introduced a new method based on a formula used for calculating 

mutual inductance of movable planar coils on parallel surfaces. Using this formula, a new 

and useful tool for calculating mutual inductance between a movable planar coil and a 

fixed surface was made available. They proposed that this technique could be used in a 

wireless battery charging platform.  

Low, Casanova and Lin [23], have demonstrated a design method using series- 

and parallel-impedance transformation in a system of loosely-coupled planar coils 

capable of supporting multiple receivers. This paper states that an increase in power can 

be achieved by increasing the supply voltage and by increasing the coupling between the 

coils. Efficiency greater than 55% was reported at an operating frequency of 240 kHz. 

Xin , Yan, and Wang  [24] introduced an application of WPT operating at 400kHz 

to power an active capsule endoscope .Their system included a class D or E inverter, an 

external transmitting coil, and multiple secondary (receiving) coils placed within the 

body.  This paper emphasizes the importance of winding coils with Litz wire to reduce 

losses due to skin effect and proximity effect. 

Imura [25] described the charging of an electric car using resonant magnetic 

coupling. The system can provide a convenient charging system which can recharge EVs 

wirelessly and automatically when they are parked. In this paper, a contactless power 

transfer (CPT) system employing electromagnetic resonant coupling was described and 

its feasibility was studied, emphasizing antenna characteristics. Resonant magnetic 

coupling can transmit power wirelessly even if there is only a low degree of magnetic 
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coupling. High efficiency may be achieved even with significant air gaps. Efficiencies 

greater than 90% were reported for spacings less than 200mm between the transmitting 

and receiving antennas operating at their resonant frequencies. Since minimum ground 

clearance of passenger vehicles ranges typically from 90 mm to 200 mm, this system is 

particularly suitable for EV charging applications. 
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Chapter Three 

Development and experimental validation of a coupled-resonant model 

for wireless power transfer 

3.1 Model development 

 Resonant inductively-coupled WPT systems may employ two- or four-coil 

methods. The four-coil method is the focus of this thesis. A proposed model of a four-coil 

WPT system is shown in Figure 3.1. The WPT system consists of four coils- input coil 

L1, transmitting coil L2, receiving coil L3, and load coil L4. Three capacitors C1 –C3 and a 

load resistance RL complete the system. The system is energized by an AC voltage source 

vs which has an output resistance of Rs.  Losses in each of the four loops are modeled by 

including equivalent series resistance (ESR) elements R1–R4.  It is assumed that all four 

inductors are coupled through mutual inductances M12, M13, M14, M23, M24, and M34.  
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+
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RS R4
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Figure 3.1: Overall schematic of the four-coil wireless power transfer (WPT)     

system.  Components of the system are described below 

 

The detailed nomenclature of Figure 3.1 is as follows: 

vs:   Open-circuit voltage of an AC voltage source driving the WPT system. 

RS:  Source resistance (Thévenin-equivalent resistance) of the ac voltage source. 

L1:  Input-loop inductor. 

C1:  Input-loop series capacitor. 
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R1:  Total equivalent series resistance (ESR) in the input loop consisting of the 

sum of the ESRs of L1 and C1. 

L2:  Inductor of first (input-side) resonant LCR circuit. 

C2:  Resonating capacitor of input-side resonant LCR circuit. 

R2:  Total ESR in the input-side resonant LCR circuit, consisting of the sum of the 

individual ESRs of L2 and C2. 

L3:  Inductor of second (output-side) resonant LCR circuit. 

C3:  Resonating capacitor of output-side resonant LCR circuit. 

R3:  Total ESR in the output-side resonant LCR circuit, consisting of the sum of 

the individual ESRs of L3 and C3. 

L4:  Inductor of output loop. 

R4:  ESR of L4. 

RL:  Load resistance. 

M12:  Mutual inductance of L1 and L2. 

M13:  Mutual inductance of L1 and L3. 

M14:  Mutual inductance of L1 and L4. 

M23:  Mutual inductance of L2 and L3. 

M34:  Mutual inductance of L3 and L4. 

 

Equations (3.1)–(3.8) describe the system of Fig. 1 under steady-state excitation 

by a sinusoidal voltage at angular frequency : 

414313212111 iMjiMjiMjiLjv                                                     (3.1) 

424323221122 iMjiMjiLjiMjv                                                   (3.2) 

           434332231133 iMjiLjiMjiMjv                                                   (3.3) 

443342241144 iLjiMjiMjiMjv                                                   (3.4) 

11
1

S1s

1
vi

Cj
RRv 











                                                                                 (3.5) 

2
2

22
1

i
Cj

Rv 










                                                                                         (3.6) 
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

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



                                                                                      

   (3.7) 

  4L44 iRRv                                                                                                  (3.8) 

Eqs. (3.1)–(3.8) may be expressed compactly in matrix form as given in Eq. (3.9): 
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(3.9) 

Solving Eq. (3.9) is relatively straightforward using Matlab ®.  Solution with other tools 

(e.g., Excel) is also possible, although tools that do not support complex numbers will 

require independent solution of real and imaginary components of Eq. (3.9).    

3.2 Matlab ® simulation program for analysis of four-coil WPT nnetworks 

A Matlab-based simulator (wireless_power_transfer5) was designed for a four-

coil WPT system utilizing matrix equation Eq. (3.9). Figure 3.2 below shows the 

graphical user interface (GUI) of this program.    
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Figure 3.2: Graphical user interface for WPT model 

  The GUI of wireless_power_transfer5 allows users to enter the following network 

parameters: 

 coil inductances L1–L4 (specified in mH, H, or nH); 

  mutual inductances M12–M34 (specified in mH, H, or nH, or as flux-coupling 

coefficients); 

 capacitances C1–C3 (specified in F, nF, or pF);  

 ESRs of  inductors and capacitors (Ω);  

 load resistance RL (Ω);  

 Open-circuit generator voltage vs; 

 Output resistance of the generator RS (Ω); 

 Frequency sweep parameters (range, points, linear/logarithmic). 

The user may select the type of input voltage value vS (as a sine wave in peak, 

peak-to-peak, or rms, or as a square wave with the rms value of the fundamental 

component used for analysis).   

Physically impossible values of mutual inductance or flux-coupling coefficients 

are flagged, and the computations are disabled in these circumstances.   The following 

output variables may be observed. 
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 Loop currents I1- I4 magnitude (Arms) and phase (degrees); 

 Inductor voltages V1-V4,  magnitude(Vrms) and phase (degrees); 

 Total power (Pin) delivered by source vs, W; 

 Output power (Pout) delivered to load resistor RL, W; 

 Power loss (Plosss) in source resistance Rs, W; 

 Power loss (Ploss1) in the total ESR of the input (L1- C1) loop, W; 

 Power loss (Ploss2) in the total ESR of the first resonant (L2- C2) loop, W; 

 Power loss (Ploss3) in the total ESR of the second resonant (L3- C3) loop, W; 

 Power loss (Ploss4) in the ESR of L4, W; 

 Efficiency (Pout/Pin). 

 

Voltages and currents vs. frequency are plotted with separate y-axes for 

magnitude and phase.  Two independent variables may be simultaneously displayed, one 

in each of the two plot windows. The phase of the voltage source is taken as the reference 

(0°). The choice of the voltage source allows the user to specify voltages as sinusoidal 

(zero-to-peak, peak-to-peak, or rms) or square wave, in which only the fundamental 

component is presumed to play a part.  (The excitation voltage is assumed to be the rms 

value of the fundamental component of the square wave). 

3.3 Experimental validation of the four-coil WPT Matlab model 

Experiments were performed to validate the four-coil WPT Matlab model and the 

simulation program wireless_power_transfer5 by arranging four parallel, coaxial spiral 

coils. Coil self- and mutual inductances were measured and compared to the calculated 

values obtained from Matlab simulators that use the method of magnetic vector potential 

which is described in detail in Chapter Four. 

Self-inductance of the coils were calculated using a Matlab simulator (named 

spiral_creator6.m) and measured at 100 kHz using the “Ls” measurement mode (resolving 

the inductor into a series connection of an inductance and a resistance) of an Agilent 

4362 LCR Bridge.  (This Matlab coil simulator is part of a series of simulators for 

creating models of spiral, solenoid, and rectangular coils).   Table 3.1 gives the 

parameters of these coils.  
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Table 3.1: Parameters of coils used in WPT model validation 

Coil L1 L2 L3 L4 

Turns 
16 12 16 13 

Horizontal pitch, 

mm 1.52 1.52 1.52 1.52 

Initial inner 

radius, mm 33.52 43.18 34.55 35.56 

Measured 

inductance, μH 33.3 19.4 32.2 22.4 

Calculated 

inductance, μH 33.7 20.7 34.6 24.1 

Coil file name 
13sept16TAspiral 13sept12Tspiral 13sept16TBspiral 13sept13Tspiral 

 

 

Figure 3.3 shows the geometry of a spiral coil initial radius and horizontal pitches 

are illustrated. 
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Figure 3.3: Definition of initial radius and horizontal pitch of a single-layer spiral coil 
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The geometry of the four inductors is illustrated in Figure 3.4.  Three sets of 

experiments were performed, each with different spacing values of D23 (the spacing 

between L2 and L3). The distances between L1–L2 and L3–L4 were unchanged in all 

experiments. 

L1 L2 L3 L4

5.33

mm

D23

mm

5.33

mm

 

Figure 3.4: Coil geometry of model-validation experiments 

 

Mutual inductance of the spiral coils were calculated using a Matlab simulator 

(mutual_inductance_calculator5.m) which computes the mutual inductance by means of 

the magnetic vector potential (described in Chapter Four).   The mutual inductance of 

each pair of coils was measured by measuring their inductances in both series-aiding and 

series-opposing connection.  The mutual inductance M was computed as 0.25×(LS+–LS–), 

where LS+ is the inductance of the coil pair in series-aiding connection, and LS- is the 

inductance in series-opposing connection.  All inductance measurements were performed 

at 100 kHz using the “Ls” measurement mode of an Agilent 4362 LCR Bridge. 

3.3.1 Experimental setup 

Tests began on 1 November 2011 to determine whether the model underlying the 

Matlab simulation of the WPT system (wireless_power_transfer5.m) is valid.  The circuit 

in Figure 3.5 is the experimental setup. An HP33120 Arbitrary Waveform Generator is 

used as a signal source to drive a circuit consisting of an LT1220 operational amplifier 

and LT1010 buffer with an additional output resistance of 50Ω.     

The voltage at the oscilloscope attachment point is assumed to be the open-circuit 

voltage of the voltage source driving the WPT system.  This voltage was verified and 

regulated manually as necessary to maintain a fixed value of open-circuit source voltage 

for all experiments.   This voltage also provided the phase reference for all other phase 



18 

 

measurements.  The 50 resistance of the buffer circuit is taken as the output resistance 

RS of the voltage source driving the WPT system.   

Parasitic resistances R1, R2, R3, and R4 are the parasitic series resistances (ESRs) 

of L1, L2, L3, and L4, respectively; measurements of capacitors with the 4362 LCR Bridge 

showed their ESRs to be negligible compared to those of the coils. The capacitors’ ESRs 

were thus assumed to be zero.  The measured values of R2−R4 were entered into the 

Matlab simulation as the ESRs of their associated inductors. A 1Ωcurrent-sense resistor 

was installed in series with the L1-C1 input network.   The value for the ESR of L1 entered 

into the Matlab simulation was the sum of ESR R1 and the current-sense resistor. 
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 Figure 3.5: Experimental apparatus for tests to validate Matlab 

WPT simulation program 

3.3.2 Validation with D23 = 25.4mm  

  Validation began by arranging all the four spiral coils as shown in the Figure 3.4 

with coil center-to-center spacing between coils L2- L3 (D23) equal to 25.4 mm. 

Data were taken at frequencies from 75 kHz to 125 kHz in increments of 2 kHz.  

Parameters measured were input current I1 (determined from the measured voltage across 
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the current-sense resistor), voltage VL2 across the terminals of coil L2 , voltage VL3 across 

the terminals of L3, and voltage VRL across the load resistor RL.  The simulator program 

does not directly compute voltages across the inductor terminals; it computes the only the 

inductive components.   Simulated values of VLx, the voltage at the terminals of inductor 

Lx, were calculated from simulated values of Vx, (the voltage due to inductive effects), Rx 

(ESR of inductor Lx), and Ix (current in inductor Lx) from the following relationships: 

         2x

2

xL sinsincoscos xxxxxxxxx RIVRIVV             (3.10) 

   

   














 

xxxx

xxxx

x
RIV

RIV
V





coscos

sinsin
tan

x

x1

L

                                             

(3.11) 

 

The parameters of Eqs. (3.10) and (3.11) are as follows:  

|VLx| is the magnitude of the voltage across the terminals of physical inductor Lx; 

xVL is the phase angle of the voltage across physical inductor Lx; 

|Vx| is the magnitude of the voltage across the inductive component of inductor Lx; 

|Ix| is the magnitude of the current flowing in inductor Lx; 

Rx is the ESR of inductor Lx; 

x is the phase angle of Vx; 

x is the phase angle if Ix. 

Figure 3.6 compares simulated and measured input I1 and phase of the current I1 

as a function of frequency for the test conditions in Figure 3.4. 
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Figure 3.6: Simulated and measured input current I1 vs. frequency.  Variables labeled 

“exp” are measured values 

 

Figure 3.7 compares both simulated and experimental voltage and phase of VL2, as 

a function of frequency for the test conditions in Figure 3.4. 
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Figure 3.7: Simulated and measured voltage across L2 vs. frequency 
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Figure 3.8 compares both simulated and experimental voltage and phase of VL3, as 

a function of frequency. 
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Figure 3.8: Voltage across L3 vs. frequency 

 

Figure 3.9 compares both simulated and experimental voltage and phase of load 

coil VRL, as a function of frequency 
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Figure 3.9: Voltage across RL vs. frequency 

 

It is observed from Figures 3.6–3.9, the agreement between the measured and 

simulated results agree quite well. 
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Similar experiments are conducted by changing the distance between coils L2 and 

L3   in Figure 3.4 which is D23   to 38.1mm and 50.8mm.  

3.3.3 Experimental results with D23 =38.1mm: 

Similar methodology discussed in section 3.3.1 has been followed to validate the 

four-coil model with D23 = 38.1mm in Figure 3.4 is performed and the following results 

were obtained. 

Figure 3.10 compares simulated and measured input I1 and phase of the current I1 

as a function of frequency. 
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Figure 3.10: Simulated and measured input current I1 vs. frequency.  Variables labeled 

“exp” are measured values 

 

Figure 3.11 compares both simulated and experimental voltage and phase of VL2, 

as a function of frequency.  
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Voltage across L2 vs frequency
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Figure 3.11: Voltage across L2 vs. frequency 

 

Figure 3.12 compares both simulated and experimental voltage and phase of VL3, 

as a function of frequency. 
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Figure 3.12: Voltage across L3 vs. frequency 
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Figure 3.13 compares both simulated and experimental voltage and phase of load 

coil VRL, as a function of frequency. 
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Figure 3.13: Voltage across RL vs. frequency 

3.3.4 Experimental results with D23 = 50.8mm 

Similar methodology discussed in section 3.3.1 has been followed to validate the 

four-coil model shown in figure 3.4 with D23 = 50.8mm is performed and the following 

results were obtained. 

Figure 3.14 compares simulated and measured input I1 and phase of the current I1 

as a function of frequency. 
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Figure 3.14: Simulated and measured input current I1 vs. frequency.  Variables labeled 

“exp” are measured values 
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 Figure 3.15 compares both simulated and experimental voltage and phase of VL2, 

as a function of frequency for the test conditions in Figure 3.4. 
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Figure 3.15: Voltage across L2 vs. frequency 

 

Figure 3.16 compares both simulated and experimental voltage and phase of VL3, 

as a function of frequency. 
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Figure 3.16: Voltage across L3 vs. frequency 
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Figure 3.17 compares both simulated and experimental voltage and phase of load 

coil VRL, as a function of frequency. 
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Figure 3.17: Voltage across RL vs. frequency 

3.4 Summary 

It is observed from the validation experiments described in section 3.3 the 

simulated and measured values agree confirming the validity of the coupled resonant 

model of the WPT network. 
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Chapter Four 

Calculation of mutual inductance from magnetic vector potential 

for WPT applications 

 

Applications of various WPT systems involve coils of various geometries and 

variable orientations.  Such variable geometries are often investigated through finite-

element analysis (FEA). However, the method of magnetic vector potential may be 

employed in calculation of mutual inductance of such geometries as a substitute for FEA. 

The basic structure of a four-coil WPT system is shown in Figure 4.1.  Both the 

source and load sides of the system as drawn consist of a pair of coplanar, coaxial coils, 

and these coil pairs (L1–L2 and L3–L4) are shown as parallel and coaxial.  This geometry 

is meant for illustration purposes only; in principle, arbitrary orientation of each of the 

four coils is possible, and geometries other than circular are also possible. 

 Power transmission in Figure 4.1 is principally effected by mutual inductances 

M12, M23, and M34.  However, the “secondary” mutual inductances M13, M14, and M24 play 

significant roles in the performance of the WPT system, and their presence may not be 

ignored.  

Design of WPT systems would benefit from a tool that permits accurate 

computation of the mutual inductances that arise from placing coils of various forms in 

arbitrary positions and orientations with respect to each other.   
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Figure 4.1: Basic four-coil WPT system. 

Solid arrows in the Figure 4.1 designate principal mutual inductances for power 

transmission; “secondary” mutual inductances are indicated with dotted arrows.  
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4.1 Calculation of mutual inductance from the magnetic vector potential 

Figure 4.2 below shows a current I passing through a closed path L1, creating a 

magnetic flux whose density at any point is represented by B


.  Let nd


 be a vector normal 

to the surface enclosed by path L2 and having a length equal to the incremental area dn as 

depicted in Figure 4.2.   

L1

L2

I

B


nd


 

Figure 4.2: Geometry for computation of flux linkages and mutual inductance between 

closed paths L1 and L2 

 

Some of the flux created by current I in path L1cuts through closed path L2 and is 

said to be linked to L2.  The flux linkages  may be computed as the surface integral 

of ndB


 :  

 

 

 

2L

ndB


                                                                          (4.1) 

The total flux linkages to L2 divided by current I is the mutual inductance of paths 

L1 and L2. 

 

2L

ndB


I
M

1
12                                                                     (4.2) 

In principle, it is possible to compute the magnetic flux density B


 at points 

interior to the path L2 due to the current in L1 by the Biot-Savart Law.  However, Stokes’ 

Theorem of vector calculus allows the surface integral of ndB


  in Eq. (4.2) to be found 

by computing the contour integral of the curl of B


 ( B


 ) around the path L2, as 

expressed in Eq. (4.3) below: 
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 

2L

sdBndB

2L


                                                                (4.3) 

where sd


 is a vector tangent to path L2 having a length equal to incremental length ds 

along path L2.This is illustrated in Figure 4.3.Thus M12, the mutual inductance of paths L1 

and L2, may be found as: 

 

2

11
12

L
II

M sdBndB

2L


                                                (4.4) 

Define the vector quantity A


(called the magnetic vector potential) as the curl 

of B


.Then the mutual inductance may be computed by Eq. (4.5): 

 

 

22

11
12

LL
II

M sdAsdB


                                                    (4.5) 

The geometry for computing A


 is depicted in Figure 4.3.   

L1

L2

l


Id

s


dR

1

2

B


nd


 

Figure 4.3: Geometry for computation of magnetic vector potential and mutual 

inductance 

The definition BA


  is assumed in the following derivation.  The increment 

of magnetic vector potential A


d  at point 2 on path L2 due to the current element l


Id  at 

point 1 on path L1 is defined as: 

lA


Id
R

d




4

o                                                                        (4.6) 

where µo is the magnetic permeability of free space (4×10
7

H/m) and R is the distance 

between points 1 and 2.  The incremental flux linkages around L2 (represented as d) due 

to current element l


Id are computed by integrating A


d · s


d  around the closed path L2: 
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




2

4

o

L

dId
d

R

sl





                                                      (4.7) 

Integrating d due to current elements l


Id around the path L1 allows the 

computation of the mutual inductance.  Thus computing the mutual inductance of paths 

L1 and L2 requires computing a double integral: 

 



















1 21

4

1 o
12

L LL

Id

I
d

I
M

R

sdl





                                          (4.8) 

4.2. Numerical methods for calculation of mutual inductance from the magnetic 

vector potential 

The following is a description of the methodology of computation of mutual 

inductance between two coils of arbitrary geometry and orientation using the principle of 

the magnetic vector potential outlined in Section 4.1. Numerical integration of Eq. (4.8) 

is the accomplished by the following process. The locus of points comprising coil L1 is 

represented as an n1x 3 matrix of points in Cartesian coordinates with each row being the 

(x,y,z) coordinates of one point on L1.    

The locus of points on coil L2 is represented as an n2 x 3 matrix of points in 

Cartesian coordinates with each row being the (x,y,z) coordinates of one point on L2.   

In the geometry shown in the Figure 4.4, ( 1x , 1y , 1z ) are the coordinates of the 

midpoint of l


d and ( 2x , 2y , 2z ) are the coordinates of the midpoint of s


d .  

Point m+1

[xm+1, ym+1, zm+1]
Point m

[xm, ym, zm]

l


d
L1

Point n+1

[xn+1, yn+1, zn+1]

Point n

[xn, yn, zn]

L2

s


d

R

 

Figure 4.4: Geometry for numerical estimation of magnetic vector potential and mutual 

inductance 
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Tangent vectors dl and ds from figure 4.4 are represented by the following 

equations 

222

1
1

1
1

1
1

mmmmmm zzyyxx 






  zyx

                            
 (4.9) 

222

1
2

1
2

1
2

nnnnnn zzyyxx 






  zyx                              (4.10) 

     221

2

21

2

21 zzyyxx R                                                (4.11) 

 

The process of numerical integration involves the following steps: 

1. Initialize the total flux linkages  to zero; 

2. Compute the vector  between the second and first points of the path L1, and 

determine the coordinates of the midpoint of dl ; 

3. Compute an array of vectors  ds successive pairs of points along path L2,and 

determine the coordinates of their midpoints;   

4. Compute an array of dot products dl·ds for each element ds;  

5. Compute an array of distances R between dl and each element ds; 

6. Divide, element-by-element, the array of dot products from (4) by the distances R 

from (5); 

7. Add each element of the array formed in (6) to the total of flux linkages (); 

8. Increment the indices of the start and end points of dl and repeat steps (2)-(7). 

9. Repeat the process until the entire locus of L1 has been traversed. 

10.  Multiply  by o / 4. 

4.3. Computation of self-inductance with the method of magnetic vector potential: 

The self-inductance of an inductor could in principle be found by computing the 

flux linkages from the inductor to itself.  However, the method described above will 

encounter a divide-by-zero error if the two coils coincide at one or more points.  Hence 

one cannot simply use the same locus points for both L1 and L2 in the method above 

(section 4.2). However, the method above may be applied if a second inductor L1 with 

dimensions almost identical to the first inductor L1 is defined and placed in tight 
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juxtaposition to L1 but without touching it.  Figure 4.5 shows an example of two 

interleaved spirals.   

 

Figure 4.5:  Example of interleaved inductors for applying the magnetic-vector potential 

method to calculation of self-inductance of a spiral coil 

 

Close proximity of the two coils would cause virtually all flux linked from L1 to 

itself to also be linked to L1, and the self-inductance of L1 may then be computed as the 

mutual inductance of L1 and L1. 

4.4. Empirical tests of numerical computation of self and mutual inductances 

Tests have been performed to validate the computational methodology outlined in 

the sections 4.2 and 4.3.  Two -layer solenoid coils were wound for use in the 

experiments described below. 

The self-inductance of the solenoid coils were measured at 100 kHz using the “Ls” 

measurement mode of the 4362 LCR Bridge (a physical inductor is resolved into a series 

combination of an inductance and a resistance).   

Matlab based simulators for  spiral, solenoid, and rectangular coils were 

developed to calculate the self-inductance of respective coils using the method described 

in section 4.3 in which the self-inductance is calculated as the mutual inductance of the 

original coil with a “shadow” which is slightly rotated by 1° below the original coil. 
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In this case the solenoid coils are considered and their self-inductance is 

calculated by the Matlab simulator solenoid_creator4c. Figure 4.6 is an image of the 

graphical user interface (GUI) of solenoid_creator4c. 
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       Figure 4.6: GUI of the solenoid creator 

4.4.1 Experimental coil descriptions and comparison of measured and calculated 

self-inductances 

Table 4.1 below gives a description of the two-layer solenoid coils and compares 

the measured and calculated self-inductance. The self-inductance was calculated by 

computing the mutual inductance between the coil and a “shadow” coil interleaved with 

the original coil. 

 

 

 

 

 



34 

 

Table 4.1: Physical description of solenoid coils used in mutual-inductance 

experiments 

Coil L1 L2 

Turns 
12 14 

Horizontal pitch, 

mm 1 1 

Vertical 

pitch, mm 
1 1 

Radius of inner 

layer, mm 41.3 41.3 

Measured 

inductance, μH 80.3 101.2 

Calculated 

inductance, μH 83.3 107.7 

Coil file name 
solenoid1_413 solenoid2_413 

 

 Hence the method for calculating self-inductance of two-layer solenoid coils is 

validated as the measured values are in good agreement with calculated values. 

4.4.2: Measured and calculated mutual inductances between a pair of coils 

 Tests were conducted to validate the method of calculation of mutual inductance 

from magnetic vector potential method described in section 4.2. Matlab-based simulator 

mutual_inductance_calculator5 was developed to calculate the mutual inductance 

between a pair of coils. The center of each coil is assumed to be at the origin (0,0,0) of a 

system of Cartesian coordinates and the central axis of the coil is assumed to be the z-

axis. However, the simulator allows each coil to be rotated around any axis, and the 

center of the coil may be displaced with user-supplies displacements in x-ory- or z- 

directions. Roll denotes rotation about the x-axis, pitch about the y-axis and yaw about 
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the z-axis. Each rotation angle is defined according to the right-hand rule (with the thumb 

extended in the positive axis direction, the curl of the fingers positive rotation).  

Coils were arranged coaxially with coil planes parallel to each other as shown in 

Figure 4.7 and the mutual inductance between them was measured at 100 kHz using the 

“Ls” measurement mode of the HP 4362 LCR Bridge. Mutual inductances were 

determined by measuring the total inductance of the coils connected in series-aiding and 

in series-opposing connection. Denoting total inductance in series-aiding connection by 

LS+ and total inductance in series-opposing connection at LS–, the mutual inductance M is 

given by: 

4

ss  
LL

M                                                   (4.12) 

Computed mutual inductances were calculated with Matlab program 

mutual_inductance5.m.  The coils as described in their files included short lead 

connections; the coil entered as coil 2 in the simulator was rotated 180º in the roll axis so 

that its leads pointed upward, away from coil 1.  Coil center-to-center spacing was 

entered as z-axis displacement of coil 2.     No x- or y-axis displacements or pitch and 

yaw displacements were entered for coil 2.Figure 4.7 below is an image of the graphical 

user interface (GUI) of the mutual inductance calculator with a center-to-center vertical 

spacing of 7.7cm between the coils. 
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Figure 4.7:GUI of Matlab mutual inductance calculator 

 

The measured and computed inductances with respective center-to-center spacing 

for experiments of 13 April 2011 are tabulated below. 

Table 4.2: Measured vs. computed mutual inductance 

Center-to-center 

spacing, cm 

Measured mutual 

inductance, μH 

Computed mutual 

inductance, μH 

7.7 4.82 4.98 

8.7 3.72 3.84 

9.7 2.92 3.00 

10.7 2.32 2.39 

12.7 1.60 1.57 

 

Measured mutual inductance values which are approximately closer to those of 

calculated values with respective coil-coil spacing (shown in Table 4.2) validates the 

method of computing mutual inductance using magnetic vector potential method. 

4.5 Application to inductors backed by ferrite 

One possible configuration of WPT systems uses high-permeability ferrite 

material as a backing for each pair of inductors.  The principal benefit is to confine fluxes 

to the region between the inductors and reduce unintentional coupling of magnetic flux to 

nearby objects.   

It was conjectured that the computation of mutual inductances with magnetic 

vector potential might still be feasible for inductors “sandwiched” between ferrite sheets 

if flux linkages due to image currents in the ferrite sheets are included.  Figure 4.8 shows 

how this might be applied to finding the mutual inductance between inductors LA and LB 

which are positioned above a ferrite sheet.  Inductor LA is assumed to be carrying a 

current I. Inductor LA creates a reflection (or image) in the ferrite sheet; this image coil in 

turn produces flux linkages to LB.  The flux created by the reflection is that produced by a 
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current of I×(r – 1)/(r + 1) where r is the relative magnetic permeability of the ferrite 

material. The flux linked from inductor LA to inductor LB in proximity to the ferrite sheet 

is the sum of the linkages from LA to LB and the linkages from the image of LA to LB. 

 

LB

LA

Ferrite 

sheet

Image of LA 

in sheet 

I

 

Figure 4.8: Inductors LA and LB positioned above a sheet of high-

permeability ferrite material 

 

An experiment was conducted to test the validity of this image method for 

computing mutual inductances in the presence of a ferrite sheet.  Two solenoid inductors 

were mounted coaxially with their bottom edges aligned as shown in the Figure 4.9.  The 

inductors were positioned at various heights above a sheet of ferrite material by means of 

plastic spacers.  

 

 

 

Figure 4.9: Solenoid coils mounted coaxially 
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The mutual inductance was measured as a function of spacing between the bottom 

edges and the ferrite sheet below the inductors at 100 kHz with a Hewlett-Packard 4263B 

LCR meter and the mutual inductance was computed by the image method for various 

spacing. 

Measured and simulated mutual inductance of magnetically-coupled coils vs distance above ferrite sheet
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Figure 4.10: Simulated and measured results for mutual inductance between two 

   solenoid coils vs. height over a ferrite sheet (Two separate sequences of 

measurements were made on two successive days). 

The values and the shape of the curves in Figure 4.10 appear to confirm the 

validity of the image method in determination of mutual inductance of two coils in the 

presence of a coplanar ferrite sheet. 

4.5.1 Experiment in simulating inductance of a coil in proximity to two ferrite sheets 

Another set of experiments was performed to determine how the inductance of a 

single coil would change in the presence of two parallel ferrite sheets.  A spiral-wound 

coil was created with the following parameters (Table 4.3) for these tests. Inductance of 

the spiral coil are measured using the Matlab simulator Mutual_inductance_calculator5 

and are measured at 100 kHz with a Hewlett-Packard 4263B LCR meter. 
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Table 4.3: Spiral coil description used in presence of two ferrite sheets 

 

Coil L1 

Type 
Spiral 

Turns 
10 

Horizontal pitch, mm 
1.44 

Initial radius, mm 
18.25 

Radius type 
Inner 

Measured inductance, μH 
6.47 

Calculated inductance, μH 
7.28 

Coil file name 
Ndack_Thierry_16JUN 

 

 

 

The coil was positioned above a ferrite sheet with a 4.5mm foam-core spacer.  

Given the wire diameter (1.4mm), the spacing of the wire center to the ferrite sheet was 

thus 5.2mm.  One or more foam-core spacers were placed atop the coil, and the second 

ferrite sheet was placed atop these spacers.  The inductance of the coil was measured for 

each thickness of these spacers atop the coil.  The sheet-to-sheet spacing is 4.5mm × 

(n+1)+ 1.4mm, where n is the number of spacers atop the coil and 1.4mm is the diameter 

of the wire.  The geometry is shown in Figure 4.11 below. 
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Figure 4.11:  Geometry for experiments for determining the inductance of a spiral-

wound coil between ferrite sheets 

 

Inductance was computed using the image method as follows: 

 

image21c,image12c,image2c,image1c,selftotal MMMMLL                (4.13) 

 

where: 

Ltotal is the inductance of the coil between ferrite sheets; 

Lself is the self-inductance of the coil in free space; 

Mc,image1 is the mutual inductance between the coil and its image in sheet 1 (lower 

ferrite sheet); 

Mc,image2 is the mutual inductance between the coil and its image in sheet 2 (upper 

ferrite sheet); 

Mc,image12 is the mutual inductance between the coil and the image in sheet 1 

reflected into sheet 2; 

Mc,image21 is the mutual inductance between the coil and the image in sheet 2 

reflected into sheet 1. 

 

The terms Mc,image12 and Mc,image21 thus arise from multiple reflections (as in the 

same way that a light source between two mirrors gives rise to multiple reflections).  
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Figure 4.12 compares simulated inductance to measured inductance; it also shows the 

simulated inductance if the multiple reflections were not included.  Data for this 

experiment were recorded in an Excel spreadsheet and displayed in graphical form.. 

 

Figure 4.12: Measured and simulated inductance of a spiral-wound coil between 

ferrite sheets 

 

The form of the simulated curve follows the measured curve when the 

multiple reflections are included; including only the first-order reflections (direct 

images of the coil in sheets 1 and 2) causes underestimation of simulated 

inductance at smaller sheet-to-sheet spacings.  The error between the total 

simulated and measured inductances was almost constant at approximately 2H; 

approximately 40% of the error may be attributed to a disparity between the 

simulated self-inductance (7.285H) and the measured self-inductance (6.47H).    

4.6 Summary 

Numerical computation of self- and mutual inductances by magnetic vector 

potential methods is validated using the developed Matlab coil-design tools for 

various geometries (spiral, solenoid, rectangular) and demonstrated the capability 

to numerically compute mutual inductance between coils of arbitrary geometries in 

free space.  
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Chapter Five 

Design of WPT systems by reflected impedances in loosely-coupled 

inductors 

 

The four-coil WPT system has been shown to transfer electric power over short 

distances with high efficiency by means of loosely-coupled inductors and resonating 

capacitors.  However, there are many degrees of freedom and many variables to 

manipulate, and the complexity of the design space makes a priori design difficult.  The 

design method outlined in this chapter is intended to reduce that complexity by 

identifying the most-important design parameters and to provide a theoretical basis for 

experimental observations. 

5.1 WPT system model: 

The network shown in Figure 5.1 represents a typical four-coil WPT system.  The 

nomenclature of the system follows Figure 5.1.    
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Figure 5.1:  Coupled-inductor model for resonant wireless power-transfer system 

 

vs is a sinusoidal source voltage, V; 

RS is the output resistance of the sinusoidal source, Ω; 

L1 is the non-resonant (driven) primary winding, H; 

v1 is the voltage across L1, V; 

i1 is the current in L1, A; 
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C1 is the coupling (dc block) capacitor between L1 and vs; 

R1 is the sum of the equivalent-series resistances (ESRs) of L1 and C1, ; 

L2 is the resonant primary winding, H; 

v2 is the voltage across L2, V; 

i2 is the current in L2, A; 

C2 is the resonating capacitor for L2, F; 

R2 is the sum of the ESRs of L2 and C2, ; 

L3 is the resonant secondary winding, H; 

v3 is the voltage across L3, V; 

i3 is the current in L3, A; 

C3 is the resonating capacitor for L3, F; 

R3 is the sum of the ESRs of L3 and C3, ; 

L4 is the non-resonant (pickup) secondary winding, H; 

v4 is the voltage across L4, V; 

i4 is the current in L4, A; 

R4 is the ESR of L4, ; 

RLis the resistive load, ; 

M12 is the mutual inductance between L1 and L2; 

M13 is the mutual inductance between L1 and L3; 

M14 is the mutual inductance between L1 and L4; 

M22 is the mutual inductance between L2 and L3; 

M24 is the mutual inductance between L2 and L4; 

M34 is the mutual inductance between L3 and L4. 

 

Equations (5.1)–(5.8) describe the system of Figure 5.1 under steady-state 

excitation by a sinusoidal voltage at angular frequency: 

414313212111 iMjiMjiMjiLjv                                                           (5.1) 

424323221122 iMjiMjiLjiMjv                                                         (5.2) 

434332231133 iMjiLjiMjiMjv                                                          (5.3) 

443342241144 iLjiMjiMjiMjv                                                         (5.4) 
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  4L44 iRRv                                                                                             (5.8) 

 

Eqs. (5.1)− (5.8) may be expressed in matrix form as: 
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(5.9) 

 

Analysis of the system in Eq. (5.9) with tools such as Matlab or Excel is 

straightforward if the circuit parameters are provided.  However, the application of this 

system to the problem of design is considerably less clear.  Simplification of the design 

space, however, is possible if certain essential parameters are identified and if the 

principle of reflected impedances in mutually-coupled inductors is applied.   

5.2 Reflected impedance in mutually-coupled inductors with RC termination 

In the circuit (Figure 5.2), a voltage source va is connected to the terminals of an 

inductor La which coupled magnetically (with mutual inductance Mab) to a second 

inductor Lb whose terminals are connected to a series network consisting of a capacitor 

Cb and a resistor Rb.   
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Figure 5.2:  Coupled inductors with RC secondary termination and voltage source 

primary excitation 

 

The equations relating inductor terminal voltages va and vb to inductor currents ia 

and ib are: 
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From these equations, the relationship of ib to ia and the impedance za presented to 

voltage source va may be derived: 
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The impedance of La can be separated into a real component Rref and an imaginary 

component X: 
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The real component of the impedance of La is a reflected resistance; in the 

absence of mutual inductance, there is no reflected resistance and inductor La manifests 

only reactance.  The reactance X, however, consists of the reactance of La and a reflected 

reactance Xref.  This is shown in Figure 5.3 below. 
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Figure 5.3: Equivalence of mutually-coupled inductors with RC termination and 

a single coil with reflected resistance Rref and reactance Xref 

 

Computation with Eq. (5.13b) shows that the reflected resistance Rref reaches a 

maximal value equal to 
2
Mab

2
 / Rb at resonance of Lb and Cb, i.e., at  = (LbCb)

–(1/2)
.   

 

The total reactance X of impedance za may be expressed as:  

refa XLX                                                                         (5.14a) 

where: 
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Equation (5.14b) indicates that Xref will be positive (i.e., inductive) for 

 < (LbCb)
–(1/2)

and negative (i.e., capacitive) for > (LbCb)
–(1/2)

.  If the mutual inductance 

Mab is sufficiently large, it is possible that the total reactance X might disappear at some 

frequency or even become capacitive over a range of frequencies. 
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Figures 5.4, 5.5, and 5.6 show the resistive and reactive components of za for 

La = 25µH, Lb = 40µH, Cb = 63.32nF, and Rb = 3.5, and the cases of kab = 0.2, 0.4, and 

0.6.  Also shown in these figures for comparison is the reactance of inductor La in 

isolation (kab = 0). Regardless of the value of flux-coupling coefficient kab, the resistive 

component of the input impedance za reaches a maximal value at a frequency 

corresponding to the resonance of Lb and Cb as indicated by Eq. (5.13b).  However, as 

also demonstrated by Eq. (5.13b), the maximal resistance is affected strongly by the 

mutual inductance, which is proportional to the value of the flux-coupling coefficient.  

For frequencies close to but less than the resonance of Lb and Cb, the reactance of za is an 

inductive reactance exceeding that of La alone; however, for frequencies above resonance 

of Lb and Cb, the reactance falls below that of La, and it is possible with sufficient flux 

coupling for the reactance of za to become capacitive, as observed in Figure 5.6.  This 

behavior is in accordance with Eq. (5.14b).  

 

Figure 5.4:  Resistive and reactive components of the input impedance at the terminals of 

La for values specified and for kab = 0.2. 
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Figure 5.5:  Resistive and reactive components of the input impedance at the terminals of 

La for values specified and for kab = 0.4 

 

Figure 5.6:  Resistive and reactive components of the input impedance at the terminals of 

La for values specified and for kab = 0.6.  It is noted that the reactive component of the 

input impedance is capacitive for frequencies just above the resonance peak. 

The radian resonant frequency of  Lb and Cb  can be defined as o   
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Substitution for o for  in Eq. (5.11) gives the relationship of current ib to ia at 

the resonant frequency of Lb and Cb: 
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Thus ib is seen to be in phase quadrature with ia, having a phase of –90° with 

respect to ia.  Substitution of o for  in Eq. (5.12) gives an expression for the input 

impedance of Laat the resonant frequency of Lb and Cb: 
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The reactance of La at o is the same as it would have been considering only the 

self-inductance of La; however, a resistive component is reflected into La from Lb 

proportional to the square of the mutual inductance Mab and inversely proportional to Rb.  

 

5.3 Reflected impedance in mutually-coupled inductors with resistive termination: 

An example of coupled inductors with resistive termination is shown in Figure 5.7 

as in the case of coupled inductors with RC termination, the impedance manifested at the 

terminals of Lawill contain a reflected resistance Rref and a reflected reactance Xref.      
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Figure 5.7:  Mutually-coupled inductors with resistive termination 
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The values of reflected resistance and reflected reactance can be derived from 

Eqs. (5.13b) and (5.14b) respectively, by allowing the capacitance of Cb to approach an 

infinite value (thus producing a reactance that approaches zero).  So doing yields 

expressions for reflected resistance and reactance for coupled inductors with resistive 

termination: 
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Comparison of Eq. (5.18a) for Rref with Eq. (5.13b), the equivalent expression for 

the case of RC termination, shows that for resistive termination Rref approaches a limit of 

Rb Mab
2
 / Lb if Lb>>Rb.  Equation (5.18b) shows that the coupled reactance is always 

negative (i.e., capacitive) for the case of resistive termination but that the limiting value 

of the coupled reactance is –La, a value that is approached only when Lb>>Rb (the 

termination of Lb approaches a short-circuit) and Mab
2
 = LaLb (i.e., for perfect flux 

coupling between La and Lb).  This latter condition is not typical of WPT systems; hence 

the input impedance of La in a WPT system will always contain inductive reactance. 

The relationship of current ib to current ia is: 
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Equation (5.19) gives the relation between the currents bi and ai showing the input 

impedance of La   in a WPT system will have negative reactance in which the current ib 

will lag ia by some angle between –90° (limiting case when Rb>>Lb) to –180° (when 

Lb>>Rb). 
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5.4 Application of reflected impedances to the analysis of a four-coil WPT system: 

Inductor L1 and series capacitor C1 form the input network for the WPT system.  

When all mutual couplings are taken into account, the WPT system may be collapsed to 

an equivalent network as shown in Figure 5.8.   

The analysis which follows has as its aim to develop an expression that allows 

calculation of reflected resistances and reactances into L1.  The reflected resistance that 

arises from load resistor RL is the resistance to which useful power is delivered by the 

sinusoidal voltage source; reflected resistance in L1 arising from resistive loss elements in 

the WPT system will reduce the efficiency of power transfer from the source to the load. 

For purposes of this analysis, it will be assumed that the important mutual inductances 

are M12, M23, and M34.  This simplifies the model to make it tractable for hand analysis; 

the validity of this assumption may be tested later by simulation.   
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Figure 5.8:  Proposed equivalent circuit reducing a four-coil WPT system to a single-

loop circuit including reflected resistances and reactances. 

Parasitic resistance R4 and load resistance RL form the composite load for L4 

which is coupled to L3.  At angular operating frequency o, a resistance Rref34 and a 

reactance Xref34 are reflected into L3 as given in Eqs. (5.20a) and (5.20b): 
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It is assumed that capacitance C3 is chosen so that the reflected reactance Xref34 

and inductance L3 resonate with C3 at angular frequency o.  In this circumstance, the 

reflected reactance from L3 to L2 is zero, as indicated by Eq. (5.14b) above, and the 

resistance Rref23 reflected into L2 from L3 is: 
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No reactance is coupled from L2 into L1 if C2 and L2 are also resonant at o; thus 

the reflected reactance Xref of Fig. 5.8 will be zero. The resistance coupled into L1 from L2 

is: 
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Assuming vs is an rms quantity, the rms magnitude of the current i1 is: 
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Total power delivered by the sinusoidal voltage source Ptotal is: 
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The efficiency  is: 
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The reactance Xref reflected into L1 in Figure 5.8 will be zero if L2 and C2 are 

resonant at o and if the value of C3 has been chosen so that L3, reflected reactance Xref34, 

and C3 are also resonant at o.  

The currents i2 and i3 may be calculated by appropriate substitution into 

Eq. (5.16): 
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Current i4 may be computed by substitution into Eq. (5.19): 
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The question may be posed about the effects of the mutual couplings M13, M14, 

M24 that have been ignored in the derivation above.  The effect on the effective 
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inductance of L1 is of particular interest.  If self-inductance L1 and mutual inductance M13 

are considered, the voltage v1 is given by: 
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in which i3 has been expressed in terms of i1 by means of Eq. (5.26b), transforming  

inductance L1 into an effective inductance L1'.  

 

The effect of M13 is to reflect a capacitance Cref13 into L1: 
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Figure 5.9:  Reflection of a capacitive reactance into L1 due to mutual inductance M13 

and inductor current i3 

 

The reflected capacitance may be computed as: 
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Equations (5.28) and (5.29) raise the possibility that under certain conditions the 

inductance of L1 could disappear or become negative (which would mean that the 

impedance of L1 at o would become capacitive).  Mutual inductances M14 and M24 will 

reflect both resistive and reactive components from L4 into L1 and L2, respectively.   

5.5 Application of reflected impedances to the design of a four-coil WPT system: 

In a four-coil WPT system with a given  load resistance RL and a load power PL, 

the load may be transformed into a resistance reflected into L1 to which power may be 

delivered appropriate to the rms value of the sinusoidal voltage source driving the WPT 
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system.  The reflected resistance must be such that the rms sinusoidal voltage source can 

deliver the expected power. 

From Eq. (5.25), it is seen that high efficiency requires that reflected resistances 

Rref34, Rref23, and Rref12 be much greater than the ESRs of the circuits into which they are 

reflected.  The maximal power delivery to the system is limited by the rms voltage of the 

driving source and by resistance reflected into L1; the reflected resistance Rref12 must be 

commensurate with the expected power transfer and the rms voltage of the driving 

source.   

Other considerations relate to the mutual inductance M13.  When the WPT system 

is operating at resonance, the mutual inductance M13 is responsible for reflecting 

capacitive reactance into L1.  The reflected capacitance, given by Eq. (5.29), is seen to be 

inversely proportional to M13; the reactance of this reflected capacitance is thus 

proportional to M13.  Reduction of M13 while maintaining M12 should be a major 

consideration in the physical placement of the inductors.  

An additional consideration is raised in the sizing of L1 when square-wave 

excitation is used instead of sinusoidal excitation.  With sinusoidal excitation, the value 

of L1 is in principle immaterial as long as it is sufficient to produce a large-enough value 

of M12.  However, the use of square-wave excitation places an additional constraint on L1.  

Currents at harmonic frequencies produce losses in R1, the ESR of the L1-C1 circuit, and 

in RS, the output resistance of the driving voltage source.  These currents are limited 

principally by the reactance of L1; larger values of L1 reduce these harmonic currents’ 

amplitudes. It is thus preferable to make L1 large and to achieve the design value of M12 

by loose coupling of L1 to L2.  Capacitor C1 is chosen such that its reactance largely 

(although not completely) cancels the reactance of L1at the fundamental frequency of the 

square wave.   

A spreadsheet calculator for design of WPT networks is shown in Figure 5.10.  

The calculator employs the method of reflected impedances described previously.  The 

spreadsheet calculates resistance Rref34and reactance Xref34reflected into L3 from L4.  It 

then calculates the resistance Rref23 reflected from L3 into L2.Assuming that capacitor C3 

resonates with L3 at the operating frequency, the reactance reflected from L3 into L2 is 

zero.  The resistance reflected from L2 into L1 is computed; if C2 resonates with L2, at the 
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operating frequency, the reactance reflected from L2 into L1 is zero.  A capacitive 

reactance reflected from L3 into L1 is included.  The input current is computed from the 

rms value of the voltage source Vs and the input impedance of the WPT network.  Input 

power and output power are then computed, as well as efficiency.  

 

 

Figure 5.10:WPT design worksheet based on reflected impedances 

 

The proposed design methodology using impedance transformation for WPT 

systems is as follows: 

1. Compute the resistance Rref12 to be reflected into L1 from L2 given the operating 

frequency, the rms value of the excitation voltage, and the power to be delivered 

to the load.  (For square-wave excitation, this would be the rms value of the 

fundamental component of the square wave, which is 0.4502×Vpp, where Vpp is 

the peak-to-peak voltage of the square wave).  The entire rms voltage will not be 

developed across this reflected resistance since it is desirable to have the WPT 
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network present a load having inductive reactance as well as resistance to the 

driving-point source.   

2. Determine values of inductors L1–L4 and flux-coupling coefficients k12, k23, and 

k34 to produce the transformation from load resistance RL into Rref12.  The 

spreadsheet shown in Fig. 9 may be used for this purpose.  Estimation of ESRs is 

required for an estimate of efficiency. 

3. Determine a value of capacitor C1 that makes the input impedance of the WPT 

network somewhat inductive at the operating frequency.  (It is suggested that the 

phase of current I1 lag the excitation voltage by 30–50° at the excitation 

frequency). 

4. The inductors may be designed for the specified self-inductances using the Matlab 

coil-creation software that has been developed by the University of Texas at Tyler 

for this project.   

5. Locations of the coils with respect to each other to produce the design flux-

coupling coefficients may be investigated with the mutual-inductance calculation 

software developed by the University of Texas at Tyler.  This software may also 

be used to calculate the incidental coupling coefficients k13, k14, and k24.   

6. The Matlab WPT simulation may be used to predict system performance once 

values of inductances, flux-coupling coefficients, resistor values, and capacitor 

values have been entered. 

7. For square-wave drive, the network should be simulated at odd harmonics of the 

excitation frequency with appropriate rms values to determine the losses due to 

harmonic currents.  If these losses are excessive, L1 may be increased and k12 

reduced (to maintain the design value of M12); the value of C1 will have to be 

reduced to increase its reactance to maintain the target phase angle of I1. 
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5.6 Validation of the design methodology using impedance transformation 

Four spiral-wound coils were arranged in parallel and co-axial manner as shown 

in Figure 5.11, and their respective self-inductances were calculated by the methods 

described in Chapter Four and compared to measured values determined at 100 kHz 

using the “Ls” measurement mode of the 4362 LCR Bridge.  

Figure 5.11 shows the arrangements of coils used in validation process of the 

design method of four-coil WPT in which the distances between coils L1- L2 and L3–L4 

are constant (48.3mm and 15.2mm),while the distance between  L2 and L3  (designated as 

D23) can be varied.  

 

L1 L2 L3 L4

48.3

mm D23

15.2

mm

 

Figure 5.11: Physical arrangement of single-layer spiral coils used in validation 

experiments 

 

Three different sets of experiments were conducted by varying the distance D23 

between the coils L2–L3 in the Figure 5.11.  General experimental validations is described 

in detail in the following section (5.6.1); Section 5.6.2 compares results from both 

calculated and measured values for all three experiments with varying values of D23. 

The physical arrangement of the coils used in validation of WPT system design is 

shown in Figure 5.12.  Coils L1-L3 are attached to their respective capacitors C1-C3 and 

coil L4 terminated with load RL.  The load resistance was composed of a number of 50Ω 

non-inductive thick-film resistors.   
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Figure 5.12 Experimental apparatus, showing physical arrangement of coils, 

resonating capacitors, and load resistance 

5.6.1 Experimental method of design validation 

After entering all the input parameters into the design spreadsheet (Figure 5.10), it 

calculates all the above mentioned parameters involved in the system and designed work 

sheet is verified by experiments by building the practical model of the four-coil WPT 

system.  

Validation began by calculating the reflected impedance looking into L3 with coil 

L4   terminated with a non-inductive load resistance RL.   This is represented by the 

network shown in Figure 5.13 with this connection; measured resistance Reff3 and 

effective inductance Leff3 were measured at 100 kHz using the “Ls” measurement mode of 

the 4362 LCR Bridge. 

 M34

RLL4 
  L3  

ESR R4ESR R3
 Reff3 

Leff3 

 

Figure 5.13: Measured resistance and effective inductance of L3 (including 

resistance and reactance reflected into L3 from L4) 
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In the second step, coil L3 was paralleled with capacitor C3 whose value was 

calculated to resonate with Leff3 at 100 kHz. . Coil L4 is terminated with load RL as before.  

This network is shown in Figure 5.14.The impedance looking into L2 was measured as a 

series connection of an inductance Leff2 and a resistance Reff2. 

  

  

RL  

 

M23

  

 

M34

Leff2

Reff2  

L2 C3

SE R
R3

SE R
R4

L4L3

SE R
R2

 

Figure 5.14: Measured resistance and inductance looking into L2 

 

With this termination, Reff2 andLeff2 were measured at 100 kHz using the “Ls” 

measurement mode of the Agilent 4362 LCR Bridge. 

A similar process is carried out by connecting L2 with the capacitor C2 whose 

value was calculated to resonate with Leff2 at 100 kHz.  Coils L3 and L4   were terminated 

as before.  The network now appears as in Figure 5.15. The effective inductance Leff1 and 

Rref1 at the terminals of L1 were measured. 

  

  

RL  

 
M23

  

 

M34

Leff1

Reff1  

L1 C3

SE R
R3

SE R
R4

L4L3

SE R
R1

  

  
 

C2

SE R
R2

L2

M12

 

Figure 5.15: Measured resistance and inductance looking into L1 

 

The circuit of Figure 5.15 was modified by connecting C1 to one of the terminals 

of coil L1. A small series resistance Rs (to serve as a current-sense resistor) was connected 

to the other terminal. An HP 33120A waveform generator set to produce a 100 kHz 

sinusoid was connected to the input terminals of the WPT network, as shown in Figure 

5.16.  Input voltage vin was measured, and input current (magnitude and phase) was 

determined from the voltage across the 0.49Ω current-sense resistor. The magnitude and 

phase of output voltage across the load RL were also measured. 
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RL  

 

M23

 

 

M34

L1 C3

SE R
R3

SE R
R4

L4L3

SE R
R1

  

  
 

C2

SE R
R2

L2

M12
C1  

vin

+

-

vs

RS  
 

Figure 5.16: Connection of the WPT network to a sinusoidal signal source 

5.6.2 Summary of experimental results 

The following section summarizes results of the experimental procedure in 

Section 5.6.1 for three different values of D23 (63.6mm, 78mm, and 102mm).  

Experimental results obtained from all the three tests are compared with calculated values 

and are tabulated (Tables 5.3-5.7) below for ease of comparison between each individual 

experiment. 

Self-inductances used in all three experiments are fixed; similarly, the mutual 

inductances between the coils   L1 andL2 (M12) and L3and L4 (M34) are fixed.  The 

measured values of these fixed inductances are tabulated in Table 5.1.  Included also are 

the measured ESRs of the coils. 

Table 5.1: Fixed self- and mutual inductances in design-validation experiments 

L1, H 33.77 ESR, Ω 0.080 

L2, H  ESR, Ω 0.086 

L3, H  ESR, Ω 0.080 

L4, H  ESR, Ω 0.042 

 

 

 

 Mutual inductances between the coils L1– L3 (M13), L1 – L4 (M14), L2–L3 (M23) and  

L2–L4 (M24) are tabulated below (Table 5.2) as a function of coil separation D23. 
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Table 5.2:  Variable mutual inductances vs. source-to-load spacing D23 

 D23 =  63.5 mm D23 = 78.0 mm D23 = 102 mm 

 2.07 1.40 0.92 

 0.76 0.53 0.42 

 5.46 3.62 2.20 

 2.01 1.36 0.85 

 

Resistor RL (measured value 5.55Ω) was added to the terminals of L4 to produce 

the network of Figure 5.13.   Table 5.3 below gives results for the measured inductance 

and reactance at the terminals of L3 and compares them with expectations from the design 

spreadsheet. The value of reflected resistance Rref34 cannot be measured directly; the 

calculated total resistance at the terminals of L3 is the sum of the calculated reflected 

resistance Rref34 and the measured ESR of L3.  Similarly reflected reactance Xref34 cannot 

be measured; the expected inductance Leff3 was computed from the expected reflected 

reactance Xref34 and the measured self-inductance of L3. 

 

Table 5.3:   Reflected resistance and reactance from coil 4 into coil 3, and inductance and 

resistance measured at the terminals of L3 for the network of Figure 5.13.  Reff3, the 

calculated total resistance at the terminals of L3, is the sum of the calculated reflected 

resistance Rref34 and the measured ESR of L3. 

 Calculated Measured 

Xref34, Ω -3.58 – 

Leff3, µH 26.67 26.16 

Rref34, Ω 2.82 – 

Reff3, Ω 2.90 2.95 

 

Capacitor C3 (measured value 97.40nF) was added to the terminals of L3 to 

produce the network of Figure 5.13.   Table 5.4 below gives results for the measured 

inductance and reactance at the terminals of L2 for this network and compares them with 

expectations from the design spreadsheet.  The value of reflected resistance Rref23 cannot 

be measured directly; the calculated total resistance at the terminals of L2 is the sum of 

the calculated reflected resistance Rref23 and the measured ESR of L2.  Inductance Leff2 was 
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measured at the terminals of L2; no calculation of expected effective value of L2 was 

made, however, since no reactance is reflected into L2  if L3/C3 are resonant at the 

operating frequency.   

 

Table 5.4:  Reflected resistance from coil 3 into coil 2, total resistance at the terminals of 

L2 (Reff2), and measured inductance of L2 (Leff2) vs source-to-load spacing D23 for a 

network similar to that of Figure 5.14.  Reff2 is the sum of the calculated reflected 

resistance Rref23 and the measured ESR of L2. 

 D23 = 63.5 mm D23 =  78.0 mm D23 = 102  mm 

 Calculated Measured Calculated Measured Calculated Measured 

Rref23, Ω 4.06 – 1.79 – 0.64 – 

Reff2, Ω 4.15 2.40 1.88 1.08 0.73 0.46 

Leff2, µH – 32.96 – 34.38 – 34.92 

 

Capacitor C2 (measured value 71.75nF) was added to the terminals of L2 to 

produce the network of Figure 5.14.   Table 5.5 below gives results for the measured 

inductance and reactance at the terminals of L1 and compares them with expectations 

from the design spreadsheet.  The value of reflected resistance Rref12 cannot be measured 

directly; the calculated total resistance at the terminals of L1is the sum of the calculated 

reflected resistance Rref12and the measured ESR of L1.  Inductance Leff1 was measured, but 

no calculation of expected value of L1 was made since no reactance is reflected into L1 if 

L2/C2 are resonant at the operating frequency.  

 

Table 5.5: Reflected resistance from coil 2 into coil 1, total resistance at the 

terminals of L1 (Reff1), and measured inductance of L1 (Leff1) vs. source-to-load spacing 

D23 for a network similar to that of Figure 5.15. Reff1 is the sum of the calculated reflected 

resistance Rref12 and the measured ESR of L1. 

 D23 =  63.5 mm D23 = 78.0 mm D23 = 102 mm 

 Calculated Measured Calculated Measured Calculated Measured 

Rref12, Ω 6.52 – 14.4 – 36.2 – 

Reff1, Ω 6.60 8.26 14.5 19.1 36.3 45.4 

Leff1, µH – 35.87 – 44.73 – 61.19 
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Table 5.6 below summarizes the measured input voltages VS and calculated and 

measured input currents I1for the WPT network driven by a 100.00 kHz sinusoidal 

voltage.  

Table 5.6: Input voltage VS and magnitude and phase of input current I1 vs. 

source-to-load spacing D23. 

 D23 =  63.5 mm D23 = 78.0 mm D23 = 102 mm 

 Calculated Measured Calculated Measured Calculated Measured 

VS, V rms 1.78 2.50 3.88 

|I1|, A rms 0.139 0.125 0.136 0.116 0.101 0.074 

phase, deg –56.3 –53.0 –35.5 –52.0 –16.2 –38.0 

VRL, V rms - 0.75 - 0.927 - 0.96 

  

The efficiency was calculated as the ratio of output power to input power. Calculated and 

measured values are summarized in Table 5.7 below. 

 

Table 5.7:  Efficiency of power transfer of the WPT network 

 D23 =  63.5 mm D23 = 78.0 mm D23 = 102 mm 

 Calculated Measured Calculated Measured Calculated Measured 

, % 86.8 77.2 88.5 87.0 84.1 76.0 

  

5.6.3 Discussion 

Measured reflected resistance into L2 is considerably smaller when compared to 

calculated value; this is shown in the values of Reff2 in Table 5.4. This occurs because the 

proposed design model ignores the effect of M24. Figure 5.17 shows a portion of the WPT 

network consisting of L2, L3, and L4 (and their associated ESRs); load resistor RL; and 

capacitor C3.  Figure 5.17 includes mutual inductanceM24, which was omitted from the 

design worksheet. 
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Figure 5.17: Network including M24 

 

Following are equations that describe above network shown in Figure 5.17: 
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Eqs. (5.30a–f) may be expressed in matrix form as: 
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(5.31) 

 

The impedance looking into coil L2 is vin/i2.A solution to Eq. (5.31) was computed 

with parametric values from the case of D23 = 78mm, and the input impedance was 

computed as 0.9665 + j 21.6 Ω.  The resistive component of this value includes both the 

reflected resistance and the ESR of L2; it is thus the expected value of the resistive 

component at the terminals of L2.  The corresponding measured value from Table 5.4 is 

1.08Ω, which is considerably closer to 0.9665Ω than the expected value (1.88Ω).  The 
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discrepancies between calculated and measured values of resistance at the terminals of L2 

in Table 5.4 appear to be due to the effects of M24, which were ignored in the design 

worksheet. 

The measured inductances of L1 reported in Table 5.5 are greater than the actual 

measured self-inductance of L1.  This observation may be explained if the resonant 

frequency of L2/C2 were slightly higher than the operating frequency; it is noted in 

Figure 5.6 that the apparent inductance of the primary winding of a transformer with a 

resonant secondary exceeds the primary self-inductance at frequencies just below 

resonance of the secondary.  This effect cannot be attributed to mutual inductance M13 

because as shown in Eq. (5.29), the reactance reflected into L1 from L3 will be capacitive.  

(The design spreadsheet allows the designer to include a value for flux-coupling 

coefficient k13. A value greater than zero causes the value of L1 to be corrected by the 

calculated reflected capacitance.  However, flux-coupling coefficient k13 was set to zero 

for the work presented above).   

5.7 Summary 

The method of designing WPT systems using reflected impedances in loosely-

coupled coils is validated with both experimental and theoretical data. However, the WPT 

system design method neglects the mutual inductance M24 which reduces the resistance 

reflected into L2, which limits the maximal efficiency of the WPT network.  This finding 

thus calls into question the design model.  It has been shown that including M24 in the 

design corrects the discrepancies between calculated and measured values of resistance at 

the terminals of L2. The large deviation of effective value of L1 from expectations shows 

the sensitivity of the WPT system.  Giving consideration to these findings, however, the 

direct design process outlined above does appear to be useful in first-pass design which 

may then be refined or improved by analysis with the complete model.  
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Chapter Six 

Conclusions and future work 

6.1 Conclusions 

The primary data gathered from the performed experiments is useful in shaping 

the future of the wireless power transfer, as it progresses toward high power and 

efficiency goals. In this thesis developed numerical tools used for designing and 

analyzing four-coil wireless power transfer are successfully demonstrated with 

experiments. 

 Proposed Model of four-coil WPT network described in Chapter Three of the 

thesis was incorporated into Matlab simulator tool and validated with experimental work.  

 Method of magnetic vector potential for computation of self- and mutual 

inductances was incorporated into Matlab simulator tools and validated.  Matlab based 

numerical tools used for calculating the self- and mutual inductances of the coil are 

developed by using magnetic vector potential method which acts as a substitute for Finite 

Element Analysis (FEA) where the user needs to have prior knowledge of the software. 

Design methodology using reflected impedances in loosely-coupled inductors for 

a four-coil WPT network was presented and found to be useful, although the simple 

model’s predictions are significantly affected by mutual couplings that the model ignores. 

The efficiencies reached by the designed model described in Chapter Five of the thesis 

were over 76% with an air gap distance of about 102mm.  

6.2 Future work 

The immediate extension of this thesis could be validating the designed four-coil 

method under non co-axial and non-parallel geometries with nonlinear (instead of 

resistive) loads and by driving the designed system with non-square rectangular inputs for 

harmonic suppression and compare it with the designed numerical tools.  

Study of the effects of component tolerances, multiple receivers with agile 

frequency selection and high-permeability materials to shape magnetic fields on the 

performance of the designed system.  
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