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Abstract 

 

MODELING POLARIZATION AND CAPACITANCE HYSTERESIS 

OF FERROELECTRIC CAPACITORS 

 

Bikash Shrestha 

Thesis Chair: Ron J. Pieper, Ph. D. 

The University of Texas at Tyler                                                                                           
May 2012 

 
 
 
 

A simulation based comparative study of the polarization hysteresis of the ferroelectric 
capacitor using various ferroelectric models is presented. A 2-dimensional finite element 
device-level model was implemented using SILVACO’s ATLAS device simulator to 
generate the polarization hysteresis characteristics for Au/Poly(vinylidene fluoride-
trifluoroethylene)/Au metal-insulator-metal (MIM) device. Landau free energy 
expression for electric field in terms of polarization is also implemented in MATLAB to 
produce the polarization hysteresis curves of monocrystalline and polycrystalline 
ferroelectrics. The main drawback of previous models was their inability to predict 
polarization saturation   at the same electric field limits as compared with measurements 
taken from a recently fabricated ferroelectric capacitor. A new model for ferroelectric 
polarization hysteresis based on curve fitting algorithm is derived that forces the 
polarization to be saturated at the desired electric field. The MATLAB simulation of this 
model and the experimental hysteresis is compared which shows an excellent level of 
agreement. 

 
The capacitance hysteresis of the ferroelectric capacitor is also analyzed using the 
MATLAB simulation. The new polarization hysteresis model that uses four-point fit 
method is used to derive the mathematical expression for large-signal capacitance. 
Landau-Khalatnikov kinetic equation is used for deriving mathematical expression for 
small-signal capacitance. The capacitance simulation results agreed fairly well with 
physical measurements from a Au-P(VDF-TrFE)-Au capacitor. 
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Chapter 1 

Introduction 

 

1.1 Ferroelectricity: Introduction, History and Applications 

The ever growing computing and communication technology demands for further 

decrease in device size with larger data storage capacity and higher speed [1]. The energy 

efficiency, convenience, affordability and reliability are the major qualities that are 

needed in the next generation computing and communication devices [2]. In recent years, 

ferroelectric material is being viewed as the future of computing because of its 

application in manufacturing fast, compact and low power non-volatile memory devices 

[3]. Beside memory applications, ferroelectrics also show a vast potential in different 

applications such as sensors, RF devices, actuators [4], thermistors and transducers [5]. 

Its potential for memory applications was realized after its discovery in 1920 by Valasek 

in Rochelle salt [6] but progress has long been hampered because of the difficulties in 

material processing and integration [1]. The research interest in ferroelectric memory 

grew significantly since the early 1950s but the requirement of large biases for switching 

the polarization made this application impractical. The feasibility of ferroelectric memory 

was rendered in early 1990s when significant advances were made in sol-gel thin film 

synthesis with coercive biases well below 10V. Since then ferroelectric random access 

memory (FeRAM) with the advantage of non-volatility and ferroelectric transistors are 

being fabricated as ferroelectric memory devices. [7]. Ferroelectricity was not in common 

use before early 1940s because Rochelle salt was the only known ferroelectric material 

and no theoretical interpretation of the phenomenon was given because of the complex 

and unknown crystal structure of Rochelle salt [6]. The discovery of ferroelectricity in 

mixed oxides having perovskite crystalline structure in early 1940s was the turning point 

in the history of ferroelectricity [5]. Because of the simple crystalline structure and 
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practical utility (chemical and mechanically very stable) of perovskite oxides, it attained 

a lot of scientific curiosity that led to the theoretical progress at the microscopic level [6]. 

During the period 1950 to 1960, research into ferroelectrics gained so much attraction 

that many new ferroelectrics were discovered. That’s why this period is considered as the 

‘period of proliferation’ in the ferroelectric history [5]. Early researches in the field of 

ferroelectricity explored the ferroelectric crystals as material for ultrasonic transducers in 

SONAR systems and medical ultrasound imaging. In this period, the development in 

single crystal growth and broad study of ferroelecticity made possible the application of 

ferroelectric materials in electrooptical systems and photothermal imaging. The 

advancement in thin film synthesis and microfabrication in recent decades has resulted in 

the use of ferroelectrics in microelectromechanical systems, nanoscale optics, 

nanophotonics and plasmonics [7]. 

Ferroelectricity is a phenomenon in which spontaneous electric polarization of the 

material can be reversed or switched by applying an external electric field. A ferroelectric 

crystal has two or more orientation states that can be shifted from one to another without 

destroying the crystal by applying an external electric field. According to the geometry of 

the crystals, they are classified into seven systems. These systems are further divided into 

32 crystal classes (point groups) depending on their symmetry with respect to a point. 

Eleven of them have center of symmetry and the remaining 21 belong to non-centric 

crystal classes [6]. Among them, 10 crystal classes possess a unique polar axis and these 

classes are called polar crystal point group. Ferroelectric materials belong to this group 

[8]. However, every polar crystal (for example wurtzite-structure insulator) is not 

ferroelectric because for ferroelectricity the switching of polarization with an applied 

electric field should be possible [9]. The crystal structure of any two of the orientation 

states of ferroelectrics are identical but differ in the direction of spontaneous electric 

polarization [6]. Spontaneous polarization is produced because of the polar displacement 

of the atoms in a unit cell of the ferroelectric crystal [9]. A dipole is formed when two 

equal and opposite charges are separated by certain distance. The product of the point 

charge and the separating distance is called the dipole moment. The number of dipoles 

per unit volume is called polarization. Polarization does not mean charging of the 
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material. The polarized material is electrically neutral. A unit cell of a material possesses 

a dipole moment when the center of positively charged ions and center of negatively 

charged ions do not coincide.  [10]. The material possesses the ferroelectricity only when 

the overall dipole moments within the material do not cancel out completely. The dipole 

moments of the amorphous material are randomly orientated and cancel each other, 

whereas they do not cancel each other in the case of asymmetric crystal. So only the 

asymmetric crystals can possess the ferroelectricity [11]. A ferroelectric material 

possesses electric polarization below certain temperature known as Curie temperature 

(TC) [8]. Above this temperature the center of the positive and negative charge of a unit 

cell of the material coincide with each other and the material can no longer possess 

ferroelectricity. This phase of the material is called paraelectric phase. The spontaneous 

electric polarization can also be affected by the temperature and the external stress. The 

dependence of spontaneous polarization on temperature is pyroelectricity [12] and the 

production of electric polarization by the application of stress is called piezoelectricity 

[6]. The relation between pyroelectricity, piezoelectricity and ferroelectricity is such that 

all the ferroelectric materials are pyroelectric and all the pyroelectric materials are 

piezoelectric [13]. 

 

1.2 Literature Review 

The application of ferroelectrics as a memory has become a popular research field 

in recent years because it performs as a read only memory (ROM) even with the circuit 

configuration similar to that of dynamic random access memory (DRAM) [14]. This 

property of non-volatility in ferroelectric capacitors and transistors is attributed to the 

formation of polarization-Electric field (P-E) hysteresis loop. There have been many 

efforts to model a ferroelectric capacitor but there is still not a universal, accurate and 

physical based model that could describe the material behavior of ferroelectric capacitor 

[15]. A quantitative model for the circuit containing non-ideal ferroelectric capacitor was 

given by Miller et al. The model considers the ferroelectric capacitor as a stack of 

switching ferroelectric layer and non-switching dielectric layers. They chose the 

hyperbolic tangent function to relate polarization and electric field and derived a 



 

4 

 

mathematical model for producing hysteresis loop. The model also satisfies the formation 

of unsaturated hysteresis loop when the applied field is not enough to drive the 

polarization into saturation [16]. P. Gang et al. developed a phenomenological model 

based on the physical behavior of polarization reversal. This model works well for both 

saturated and unsaturated hysteresis loops. This model also can well describe the 

polarization for any arbitrary conditions [15]. A compact model based on dipole 

switching theory which can well describe both saturated and unsaturated hysteresis loop 

is derived by J. Yu et al. [17]. A curve fitting algorithm for modeling polarization 

hysteresis is given by C. Fu et al. that divides one branch of the hysteresis curve into 

three different domain curves with nine unknown constants and extracts the polarization 

values from the measured hysteresis curve to produce an analytic representation [18]. C. 

J. Brennan gave a mathematical model for producing hysteresis loop of ferroelectric thin 

film capacitors based on physical principles, not a curve fitting algorithm [19]. Brennan 

derived the expression for hysteresis of mono-crystalline ferroelectrics from the Landau 

free energy considerations. He also gave the derivation for the hysteresis of 

polycrystalline ferroelectrics considering the spatial orientation and structural phase of 

the crystallites. Y. L. Wang et al. used Landau free energy theory for modeling hysteresis 

of polycrystalline ferroelectrics and followed the curve fitting approach [20]. All the 

models mentioned above have immense contribution in the field of ferroelectric by 

bringing up different perspective for modeling polarization hysteresis but these models 

did not produce sufficient level of agreement with our experimental hysteresis as 

described in detail in Chapter 2. The main drawback of these models was their inability to 

predict polarization saturation at the same electric field limits for which the experimental 

device was saturating. In our recent work, a new mathematical model for generating 

polarization hysteresis based on curve fitting algorithm is derived that forces the 

polarization curve to saturation level at desired electric field [21]. 

 

1.3 Objective  

The polarization hysteresis is a peculiar property of ferroelectrics that can be 

utilized to devise a storage element in integrated nonvolatile memory application [2]. In 
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order for a ferroelectric capacitor to work as a memory device in integrated circuits, an 

accurate model that could describe the behavior of the ferroelectric capacitor should be 

created. The main objective of our thesis is to create such models that could describe the 

formation of polarization and capacitance hysteresis in a ferroelectric capacitor. In this 

thesis, a ferroelectric capacitor based on P(VDF-TrFE) is considered for testing the 

simulation results from different existing models as well as from our new models. The 

comparison of the experimental polarization hysteresis and simulated polarization 

hysteresis from different existing models shows a discrepancy between them. The main 

discrepancies are in the saturation region and in the vicinity of the coercive field of the 

hysteresis loop. This demands for the development of a new practical model for the 

polarization hysteresis of a ferroelectric capacitor which can satisfy the experimental 

hysteresis curve; so a new mathematical polarization hysteresis model is developed using 

the curve fitting algorithm. Our new mathematical model is based on the Y. L. Wang et 

al. model [20]. The first objective is to develop a mathematical formula for calculating 

the constants β1 and β2 which values were chosen by trail and error to fit the experimental 

hysteresis data within context of Y. L. Wang et al. model. The simulation of polarization 

hysteresis using this model does not agree with the experimental hysteresis adequately; so 

further modification is done in the model using both three-point fit and four-point fit 

approaches. Considering the four points in a branch of the hysteresis curve, the model 

gives an excellent level of agreement with experimental polarization hysteresis and the 

mathematical complexity is still in the satisfactory level. 

Another objective of this thesis work is to be able to model the capacitance 

hysteresis by using polarization hysteresis. The model of S. L. Miller et al. polarization 

hysteresis is modified to generate large-signal capacitance and simulated using Silvaco’s 

Atlas device simulator and MATLAB. Our new model for polarization that uses four-

point fit approach is also applied to generate the mathematical model for large-signal 

capacitance and implemented in MATLAB. Since the experimental capacitance 

hysteresis is small-signal capacitance, no comparison is done between experimental 

capacitance hysteresis and simulation results from large-signal capacitance models. 

Finally, a model for small-signal capacitance which considers the Landau-Khalatnikov 
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dynamic equation is simulated using MATLAB and the comparison with experimental 

capacitance hysteresis shows a fair level of agreement. 

 

1.4 Thesis Organization 

The theory of ferroelectrics and the formation of polarization hysteresis are 

discussed in Chapter 2 considering the perovskite oxide as a ferroelectric. A brief 

description about our experimental ferroelectric capacitor and our experimental 

ferroelectric material P(VDF-TrFE) are also given. The most sections of the Chapter 2 

describe the existing models for polarization hysteresis, their implementation in 

simulation tools and comparison of the simulation results with experimental polarization 

hysteresis. In Chapter 3, new mathematical models for predicting polarization hysteresis 

and the comparison of simulation results with experimental hysteresis are presented. 

These models include the model based on predicting coefficients β1 and β2 of Y. L. Wang 

et al. model, the model with the Three-point fit approach and the model with the four-

point fit approach. Chapter 4 discusses the capacitance modeling. Large-signal 

capacitance models using modified Miller et al. model and using four-point fit model are 

described and simulated in MATLAB. This chapter also discusses about small-signal 

capacitance model and the comparison of simulated curve with experimental one. Finally 

in Chapter 5, the thesis is concluded summarizing the contributions of this thesis work and some 

suggestions for future work. 
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Chapter 2 

Background Study 

 

2.1 Perovskite Oxide and Ferroelectric Theory  

Since perovskite oxides are widely studied ferroelectrics, the ferroelectricity 

phenomenon and its related terms are discussed considering perovskike oxide with 

general formula ABO3 as an example. A and B each represents a cation element or a 

mixture of the cations and O stands for an oxygen element. It has a simple cubic lattice 

structure with 5 atoms per unit cell. There are two ways of viewing a unit cell of the 

perovskite crystal as shown in the Figure 2.1 [9].  

 

Figure 2.1: Two different views of a unit cell of a perovskite oxide [9]. 

 

If atom A is considered at the corner of the cube, atom B will be at the center and 

Oxygen will be at the center of each face. If atom B is taken at the corner, atom A will be 

at the center and Oxygen at the midpoint of each edge [9]. The crystal structure is exactly 

cubic with center of symmetry above the Curie temperature (TC) where it losses the 

ferroelectric properties [23]. Below the Curie temperature, the macroscopic strain causes
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the electrostrictive distortion involving displacement of the cations relative to the anions 

in the unit cell that produces the polarization [8, 9, 24]. The crystal undergoes tetragonal, 

orthorhombic or rhombohedral ferroelectric phase transition depending on the direction 

of polarization and temperature conditions [8]. Fig 2.2 shows the generation of 

polarization in BaTiO3 unit cell because of the shifting of Ba and Ti sub-lattices relative 

to the negatively charged Oxygen. 

 

Figure 2.2: Generation of polarization in a BaTiO3 unit cell [9]. 

 

The direction of polarization within a crystal is not uniformly aligned in a same 

direction; it depends on the electrical and mechanical boundary conditions imposed on 

the crystal sample [13]. The region of the crystal where the uniformly orientated 

spontaneous polarization lies is called ferroelectric domain, and the region between the 

two domains is called the domain wall as shown in the Figure 2.3. Ferroelectric domains 

are formed to minimize the electrostatic energy of the depolarizing field and elastic 

energy associated with the mechanical conditions to which the ferroelectric crystal is 

subjected [13]. The depolarization field is one of the factors controlling ferroelectric 

phase stability [7]. It is produced because of the non-homogeneities in the spontaneous 

polarization distribution [13, 25]. Surface charges formed by spontaneous polarization 

gives rise to an electric field, called depolarizing field (Ed) which is oriented opposite to 

the spontaneous polarization as shown in the Figure 2.4 [13]. The formation mechanism 

of domains and domain walls results in hysteresis curve which shows relationship 

between applied electric field and electric polarization [23, 26]. The application of 

external field produces force which exerts pressure on the domain walls that tends to 

reorient the domains in the direction of applied electric field [13, 26]. When all the 

domains in a crystal are orientated only in one direction, it is said to be in single-domain 
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or mono-domain state. This process of reorienting domains and producing single domain 

crystal is called polling [13]. When small alternating field is applied to the natural multi-

domain ferroelectric crystal, polarization increases linearly with the field amplitude, 

corresponding to line segment AB in the hysteresis curve as shown in Figure 2.5. As the 

field increases, polarization of domains starts to switch nonlinearly along the direction of 

the field as given by the line segment BC in the hysteresis curve. C is the point where all 

the domains of the crystal are oriented in one direction and the corresponding 

polarization value refers to spontaneous polarization (PS). Further increase in the external 

applied field beyond this point again gives a linear relationship with polarization. When 

the external applied electric field starts decreasing, some of the domains switch back but 

the crystal still possesses some polarization value at zero applied fields which is called 

remnant polarization (PR) [13]. The polarization is brought back to zero by applying 

negative electric field equivalent to the portion AF in the hysteresis curve. This electric 

field corresponding to zero polarization is called coercive field (EC). Further decrease in 

field causes the domains to completely switch in the opposite direction. Reversing the 

field again and going back to positive saturation point completes the formation of the 

hysteresis loop [13, 23]. An ideal hysteresis loop is symmetrical on both X and Y axes, so 

the magnitude of positive and negative PS, PR and EC are equal. The shape of the 

hysteresis loop may depend upon the thickness of the crystal, presence of charged 

defects, mechanical stresses, preparation conditions and thermal treatment [13, 26]. The 

variation of polarization (P) with electric field (E) in ferroelectric hysteresis curve is 

similar to the variation of magnetization (M) of ferromagnets with magnetizing field (H) 

[11]. Consequently the term “Ferroelectricity” originates from the analogy to 

“Ferromagnetism’. 

 
                                                 (a)                                         (b)  

Figure 2.3: Domains and domain walls (a) before poling and (b) after poling [13]. 
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Figure 2.4: Spontaneous polarization (PS) and depolarizing field (Ed) [13]. 

 

 

Figure 2.5: Ferroelectric polarization hysteresis loop. Hexagon represents schematically 
repartition of two polarization states. [13]. 

 

2.2 P(VDF-TrFE) 

Organic ferroelectrics have gained much attention over last several years because 

of easy and simple device fabrication methods, chemical stability, mechanical flexibility, 

light weight and low cost [27, 28, 29]. Among many organic ferroelectrics, 

polyvinylidene fluride copolymer with trifluoroethylene (P(VDF-TrFE)) is a promising 

candidate in the most of the ferroelectric applications because of its advantageous 

properties such as large remnant polarization, good thermal stability, absence of size 

effects, short switching time and compatibility with many organic molecules and 

biomolecules [11, 29, 30, 31, 32]. It demonstrates the polarization switching in 

nanometer scale making it suitable ferroelectric material for the applications in 
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nanotechnology and microelectronics [31]. The molecular formula of PVDF is (CH2-

CF2)n and its copolymer P(VDF-TrFE) is (CH2CF2)n-(CHFCF2)m [11]. The molecular 

structure of P(VDF-TrFE) is shown in Figure 2.6. The Fluorine atom in PVDF has higher 

electron affinity than Hydrogen, so the electrons are shifted more towards Fluorine 

forming dipoles. PVDF films processed directly from melt or from a solution are not 

ferroelectric because the dipole moments in such crystal cancel with each other. 

Additional work such as stretching the copolymer to change the crystal conformation is 

required to make these films ferroelectric. Another way to make these films ferroelectric 

is to make PVDF copolymer with TrFE. The presence of additional Fluorine atom in 

TrFE changes crystal conformation that aligns the direction of the dipole moment [11].  

 

Figure 2.6: Molecular structure of P(VDF-TrFE) [11]. 

  

2.3 Experimental Ferroelectric Capacitor 

The device structure of the experimental ferroelectric capacitor is given in the 

Figure 2.7. Gold with the work function=5.1 eV is used as the electrodes and P(VDF-

TrFE) copolymer with 70/30 mol ratio is used as ferroelectric insulator. The copolymer 

P(VDF-TrFE) of thickness 210 nm is annealed at 133 0C for 2 hours in a vacuum oven 

[33]. The area of the device is 0.0005 cm2. The electrical performance of the device is 

characterized using polarization (P) - voltage (V) and capacitance (C) - voltage (V) 

characteristics as shown in the Figure 2.8 and Figure 2.9 respectively. The measurement 

device RT66B from Radiant Technology is used to measure the P-V characteristics where 

as HP4284 from Agilent is used to measure the C-V characteristics. These experimental 
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curves shown in Figure 2.8 and Figure 2.9 are taken from D. Mao et al. corresponding to 

133 0C annealing temperature and 210 nm P(VDF-TrFE) thickness [33].            

         

Figure 2.7: Experimental capacitance device structure. 
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Figure 2.8: Experimental polarization hysteresis. 
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Figure 2.9: Experimental small-signal C-V curve. 
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Ferroelectric polarization was measured using standard ferroelectric memory 

characterization method known as positive up negative down (PUND) method [34]. In 

this method, the pulse shown in Figure 2.10 is applied to the ferroelectric capacitor. The 

first negative pulse initializes the capacitor into negative polarization. The second pulse 

measures the charge switched from negative remnant polarization state to positive 

maximum polarization state denoted by Psw, corresponding to the integration of current in 

switching transient. The third pulse is used to measure non-switched charge from positive 

maximum polarization to the positive remnant polarization state denoted by Pns, 

equivalent to the integration of current when the capacitor is switched at the same 

polarity. The fourth and the fifth pulses measure both Psw and Pns in the opposite direction 

[34]. The values of PS, PR and EC are extracted from the polarization hysteresis. The 

positive sweep curve and negative sweep curve are not symmetric; so the extracted 

values of PS, PR and EC for two different sweeps are different as tabulated in Table 2.1. 

 

Figure 2.10: Applied voltage signal for PUND measurement [34]. 

 

Table 2.1: Extracted values of the parameters from experimental polarization hysteresis. 

Parameters  Experimental  
(+ve sweep)  

Experimental  
(-ve sweep)  

Experimental 
(average)  

E
C
  0.5145x10

6
 V/cm  -0.4549x10

6
 V/cm  0.4847x10

6
 V/cm  

P
R
  -7.41x10

-6
 C/cm

2
  7.29x10

-6
 C/cm

2
  7.35x10

-6 
C/ cm

2
  

P
S
  8.461x10

-6
 C/cm

2
  -8.2274x10

-6
 C/cm

2
  8.34x10

-6
 C/ cm

2
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2.4 Polarization Hysteresis Modeling 

Accurate modeling of a ferroelectric capacitor has always been a difficult task. 

This is because the P-V and C-V characteristics of ferroelectric capacitor depend not only 

on the present position but also on its history [19, 35]. There have been many attempts to 

model ferroelectric capacitors as mentioned in Chapter 1. In this chapter, we discuss 

some of those ferroelectric hysteresis models and implement to satisfy our experimental 

hysteresis.  

 

2.4.1 S. L. Miller et al. Model [16] 

S. L. Miller et al. developed a mathematical model for characterizing the circuit 

behavior containing non-ideal ferroelectric capacitor. This model is used in the current 

finite element device simulator Atlas from Silvaco International [36]. They viewed a 

ferroelectric capacitor as the stack of switching ferroelectric layer and non-switching 

dielectric layers. The non-switching dielectric layers are generated due to the physical 

and electrical interaction of ferroelectric with electrodes. These layers bring the non-

ideality in the ferroelectric capacitor. These layers are considered adjacent to each 

electrode. There is a ferroelectric switching layer between two non-switching dielectric 

layers where dipole polarization is function of electric field and previous history. When 

applied electric field ( E ) is varied between two same but opposite values enough to align 

all dipoles in one direction, the dipole polarization (Pd) approaches the value of the 

spontaneous polarization (PS). It also considers that dipole polarization is zero where the 

electric field equals to the coercive field (EC) and it has some value at zero fields which is 

remnant polarization (PR). The two branches of saturated switching dipole polarization 

curve is assumed to be symmetric which is expressed by, 

( ) ( )d dP E P E− += − −                                                   (2.1) 

where, ( )dP E− and ( )dP E+  are negative and positive going polarization branches of the 

hysteresis loop respectively. The behavior of dipole switching as a function of electric 

field is given by hyperbolic tangent function. This mathematical function satisfies the 
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physical requirements for hysteresis formation and has convenient mathematical 

properties. So the relation between ( )dP E+ and electric field ( E ) is given by, 

( )
( ) tanh

2
C

d S

E E
P E P

δ
+ − =   

                                           (2.2) 

The expression for δ is predicted using the relation, (0)d RP P+ = − . The detail mathematical 

derivation is given in Appendix A. 

1
1 /

log
1 /

R S
C

R S

P P
E

P P
δ

−
  +

=   −  
                                           (2.3) 

The electric field and voltage are related as,  

         VE t=                                                             (2.4) 

where “t” is the thickness of the ferroelectric material as shown in Figure 2.7. The 

negative branch of saturated switching dipole polarization is calculated by using (2.1). 

This mathematical model is implemented within Silvaco’s ATLAS device 

simulator for ferroelectrics and MATLAB and compared with experimental polarization 

hysteresis as shown in Figure 2.11 and Figure 2.12. The corresponding values of 

parameters for the simulation and the experimental values are listed on Table 2.2.  
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Figure 2.11: Experimental and SILVACO simulated hysteresis curves using 
mathematical expression from S. L. Miller et al. 
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Figure 2.12: Experimental and MATLAB simulated hysteresis curves using mathematical 
expression from S. L. Miller et al. 

 

Table 2.2: Experimental values and corresponding Silvaco and MATLAB simulation 
parameters for model by S. L. Miller et al. 

Parameters Experimental 
Silvaco MATLAB 

Sim1 Sim2 Sim1 Sim2 
EC (V/cm) 4.847x105 4.847x105 4.847x105 4.847x105 4.847x105 

PR (C/cm
2
) 7.35x10-6 7.35x10-6 8.25x10-6 7.35x10-6 8.338x10-6 

PS (C/cm
2
) 8.34x10-6 8.34x10-6 8.34x10-6 8.34x10-6 8.34x10-6 

permittivity 9 9 9 9 9 
 

 

The simulation curves “Sim1” for both Silvaco and MATLAB simulations is 

generated using exactly the same parameter values from the experiment. This simulation 

curve did not reach the saturation level as experimental hysteresis. By adjusting the 

remnant polarization (PR) to be slightly higher than experimental data as shown in Table 

2.2, the “Sim2” model curves for both Silvaco and MATLAB simulations go into 

saturation faster. Although agreement between experiment and “Sim2” model is better in 

the polarization saturation, the discrepancy for remnant polarization at E=0 is apparent in 

Figure 2.11 and Figure 2.12. 
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2.4.2 Landau Free Energy Model for Monocrystalline Ferroelectrics [19] 

Landau theory is symmetry based analysis that describes the system’s equilibrium 

behavior near the phase transition [9]. A ferroelectric system cannot change smoothly 

between ferroelectric and paraelectric phases because the two phases are symmetrically 

distinct. Landau theory characterizes the phase transition in terms of an order parameter 

which is a physical entity that is zero at high symmetry and has a finite value when 

symmetry is lowered. The polarization (P) is the order parameter for paraelectric-

ferroelectric phase transition. The free energy F(P) whose minimum determines the 

equilibrium state of the system, can be expanded as a power series of order parameter in 

the vicinity of the phase transition [9]. The polarization hysteretic behavior of mono-

crystalline ferroelectric is derived from the Landau-Devonshire expression for free 

energy F(P) in terms of polarization which is given as [19], 

 2 4
0( ) .....

2 4
F P F P P

α β
= − + + ..                                      (2.5) 

where α and β are Landau coefficients and F0 is the free energy in paraelectric state. 

Taking the derivative of above equation and neglecting the higher order terms, we get the 

following expression for the electric field ( E ) as a function of polarization [19]. 

3F
E P P

P
α β∂

= = − +
∂

       or         3 0P P Eβ α− − =                        (2.6) 

The zeros of this function gives value of spontaneous polarization and the value of E  at 

local minimum and maximum gives the value of coercive field [19]. Landau coefficients 

can be calculated from the experimental measured values of PS and EC using the formula 

given below. The detail mathematical derivation for finding α and β is given in the 

Appendix B. 

2
sPα β=                                                           (2.7) 

3

3 3
2

C

S

E
P

β = −                                                        (2.8)                            
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The value of polarization for each value of electric field ( E ) is calculated by finding the 

cubic roots of (2.6) as follows [19]. 

1( )P E S T= +                                                        (2.9)                 

 2

1 1
( ) ( ) 3( )

2 2
P E S T j S T= − + + −                                        (2.10) 

3

1 1
( ) ( ) 3( )

2 2
P E S T j S T= − + − −                                         (2.11)      

where, 1j = − , 

3 23S R Q R= + +                                                  (2.12)  

3 23T R Q R= − +                                                  (2.13) 

Equations (2.9) to (2.13) represent the reported rules needed to solve a cubic equation 

[37]. Because the coefficient ‘a1’of E2 in (2.6) is zero, the R and Q terms were expressed 

as [19], 

2*
E

R
β

=                                                         (2.14) 

3*
Q

α
β

= −                                                        (2.15) 

There are three values of polarization for each value electric field ( E ) as given by (2.9) 

(2.10) and (2.11). One polarization value for each value of electric field ( E ) is 

determined by selecting a real valued root which is closest in the value to the previous 

polarization point [19]. 

This mathematical model is implemented in MATLAB and compared with 

experimental polarization hysteresis as shown in Figure 2.13. The values of the 

parameters used for the simulation are tabulated in Table 2.3. The parameter PR is not 

needed for this simulation. The calculated value of α and β are also given in Table 2.3. 

Simulation hysteresis shows good level of agreement with experimental hysteresis in 

saturation region for much lower value of PS than experimental value as given in above 
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table. The simulation hysteresis curve also shows a sudden switching of the polarization 

at coercive field as shown in Figure 2.13. This could be adjusted by considering higher 

order terms of Landau-Devonshire expression or by using a more sophisticated molecular 

force model [19]. 

 

Table 2.3: Experimental and MATLAB simulation parameters for model using Landau 
free energy theory for monocrystalline ferroelectric. 

Parameters  Experimental   MATLAB 

E
C
  0.4847x10

6
 V/cm  0.4847x10

6
 V/cm 

P
S
  8.34x10

-6
 C/ cm

2
  6.8x10

-6
 C/ cm

2
 

α N/A 1.85x1011 cm/F 
β N/A 4.0x1021 cm

5
/F.C

2
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Figure 2.13: Experimental and MATLAB simulated hysteresis curve using Landau theory 
for monocrystalline ferroelectric.  

 

2.4.3 J. Yu et al. Model [17] 

Modeling of a ferroelectric capacitor can be categorized into two areas; 

behavioral models and physical models. Behavioral models characterize the ferroelectric 

capacitor with the circuit point of view which doesn’t need the detailed knowledge of the 
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ferroelectric theory, so these models cannot explain the material behavior of the 

ferroelectric capacitor [17, 35]. However, physical models consider the theory of 

ferroelectrics and hence explain the physical character of the ferroelectric capacitor. J. Yu 

et al. developed a physical model for characterizing the polarization hysteresis based on 

dipole switching theory. This model also considers the ferroelectric capacitor as a stack 

of two non-switching dielectric layers and a switching dielectric layer in between as 

assumed by Miller et al. The total polarization of a ferroelectric capacitor is the sum of 

polarization due to switching dielectric and polarization contributed by non-switching 

dielectric. 

f dP P P= +                                                       (2.15) 

The polarization due to non-switching dielectric Pd has linear relationship with applied 

field E. 

dP Eα=                                                           (2.16) 

where α is a constant determined by experiment. The relation between polarization due to 

switching dielectric (ferroelectric polarization) and applied field is determined by the 

dipole switching theory which is given by, 

( )11 1
( ) tan

2f m m sat D CP P P P E Eδ
π

− = − + − − +   
 

                        (2.17) 

So the total polarization is given by, 

( )11 1
( ) tan

2m m sat D CP P P P E E Eδ α
π

− = − + − − + +   
 

                    (2.18) 

The expressions of polarization for positive field sweep and for negative field sweep can 

be written separately as follows. 

( )11 1
( ) tan

2U m m sat CP P P P E E Eδ α
π

+ + + − + + +  = − + − − + +   
                  (2.19) 

( )11 1
( ) tan

2D m m sat CP P P P E E Eδ α
π

− − − − − − −  = − + − − + +   
                   (2.20) 
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where Pm, Psat and EC are polarization for maximum electric field, saturation polarization 

and coercive field respectively. The sign on the superscript gives the positive or negative 

value of them accordingly. 

The constants α+, α-, δ+ and δ- can be calculated using following relations. The 

detail mathematical derivation for finding out δ+ and δ- is given in the Appendix C. 

m sat

m

P P
E

α
+ +

+
+

−
=                                                      (2.21) 

m sat

m

P P
E

α
− −

−
−

−
=                                                      (2.22) 

2
tan

2
m sat R

m sat

C

P P P
P P

E

π

δ

+ + −

+ +
+

+

  − −
  +  = −                                      (2.23) 

2
tan

2
m sat R

m sat

C

P P P
P P

E

π

δ

− − +

− −
−

−

  − −
  +  = −                                       (2.24) 

The model is implemented in MATLAB and the simulation result is compared with the 

experimental hysteresis as shown in the Figure 2.14. The simulation curve still suffers 

from the saturation issue. It could not reach the maximum polarization value for the 

maximum applied voltage. All the values of the parameters used for the simulation are 

same as the experimental values which are listed in the Table 2.4. 

 

Table 2.4: Experimental and MATLAB parameters for J. Yu et al. model. 

Parameters 
Experimental MATLAB 

+ve sweep -ve sweep +ve sweep -ve sweep 
EC (V/cm) 5.145x105 -4.4549x105 5.145x105 -4.4549x105 

PR (C/cm
2
) -7.41x10-6 7.29x10-6 -7.41x10-6 7.29x10-6 

PS (C/cm
2
) 8.461x10-6 -8.2274x10-6 8.461x10-6 -8.2274x10-6 

Pmax (C/cm
2
) 8.461x10-6 -8.2274x10-6 8.461x10-6 -8.2274x10-6 
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Figure 2.14: Experimental and MATLAB simulated hysteresis curve using J. Yu et al. 
model. 

 

2.4.4 Y. L. Wang et al. Model for Polycrystalline Ferroelectrics [20] 

A single domain ferroelectric converts into multi-domain ferroelectric during the 

domain switching process. Hence a single domain model for polarization hysteresis 

cannot perfectly describe polarization reversal process in the vicinity of coercive field. As 

an example, the Landau theory for mono-crystalline ferroelectrics given by C. J. Brenann 

shows an abrupt switching of dipoles at coercive field as explained in Section 2.4.2. A 

polycrystalline ferroelectric consists of many grains which are formed by lots of unit 

cells. The polarization distribution of polycrystalline ferroelectrics can be affected by 

grain orientation, grain size and grain boundary. A polycrystalline ferroelectric may have 

different grain orientation without applied field but upon the application of applied 

electric field, it can only have two possible spontaneous polarization states which are 

upward polarization ( upP ) and downward polarization ( downP ) and they are related as 

up downP P= − . The total free energy of the polycrystalline ferroelectrics is the sum of the 

free energies due to paraelectric state, upward polarization, downward polarization and 

domain walls.  
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0 up down wallF F F F F= + + +                                            (2.25) 

The free energy for a polycrystalline ferroelectric can be expressed in terms of Pup as 

follows. 

2 4
0 (1 2 )

2 4up up up upF F P P EP
α β α= − + + −                                  (2.26) 

where α  and β  are Landau coefficients and 0F  is the free energy in paraelectric state. 

Here it is considered that 1down upα α= − , where αup and αdown are the volume fractions of 

upward polarization and downward polarization in the whole volume, respectively. Here 

αup includes the free energy part from the domain walls. Pup can be determined when the 

derivative of above equation is zero. 

3 (1 2 ) 0up up upP P Eα β α− + + − =                                         (2.27) 

Now the average polarization (P) for each values of electric field (E) can be determine as, 

   (2 1)up up down down up upP P P Pα α α= + = −                                   (2.28) 

Here, Pup is the spontaneous polarization when the polarization reversal is completely 

saturated under the applied field. This implies that according to (2.28), the function αup 

should depend on applied electric field and reflect the polarization distribution along 

electric field. The expression for αup is obtained by fitting the formula with experimental 

hysteresis which is given as, 

3
1 2arctan[ ( ) ( ) ] 2c c

up

E E E E πβ β
α

π

− + − +
=                             (2.29) 

where β1 and β2 are constants. The value of αup changes sharply from 0 to 1 in the vicinity 

of EC when the electric field is increased from –E0 to +E0, where –E0 and +E0 are 

minimum and maximum applied electric field respectively. If the applied electric field is 

not large enough to completely saturate the ferroelectric material at both limits in field, 

the value of ( )up Eα  cannot reach 0 or 1 for the applied electric field and the polarization 

hysteresis losses the symmetry. Replacement of ( )up Eα  by ( )up Eα ′  has been employed to 



 

24 

 

restore the symmetry and to improve agreement with experimental results in saturation 

region. 

0 01 ( ) ( )
( ) ( )

2
up up

up up

E E
E E

α α
α α

− − −
′ = +                                (2.30) 

When E0 is large enough for polarization saturation, 0( ) 1up Eα =  and 0( ) 0up Eα − = , thus 

( ) ( )up upE Eα α′ = . Hence (2.30) can be applied for both saturated and unsaturated 

hysteresis loops. 

The mathematical model that uses Landau free energy theory for polycrystalline 

ferroelectrics is implemented in MATLAB to simulate the hysteresis curve and compared 

with experimental hysteresis as shown in Figure 2.15. Values of the parameters used for 

the simulation are listed on the Table 2.5. The value of a Landau coefficient α  is 

calculated using the following formula. 

 ( ) ( )0/CT T Cα ε= − − ×                                             (2.31) 

Where, CT  is the ferroelectric Curie-Weiss temperature, 0ε  is dielectric permittivity of 

free space and C  is Curie-Weiss constant.  

The value of upP  is predicted by solving the cubic equation (2.27) and selecting 

only the real and the closest to the previous upP  value. The values of α  and β  are given 

in Table 2.5 and upα  is calculated using (2.21). upP  is almost constant and equal to the 

spontaneous polarization as shown in Figure 2.15. The simulation curve that uses upα  

suffers from the polarization saturation problem and asymmetry. This simulation 

hysteresis is bigger in shape than the experimental hysteresis and also closed loop is not 

formed as shown in the inset of above Figure. Using upα ′  instead of upα  maintains the 

symmetry even in the unsaturated condition. The hysteresis loop is closed and shows a 

better agreement with experimental hysteresis as shown in Figure 2.15. This mathematical 

model shows overall improvement in describing the polarization hysteresis but fails to 

approximate the slope of the experimental hysteresis in the vicinity of EC. This model also 

has the discontinuity at E=0 which is explained by (2.27) and can be observed in the 



 

25 

 

Figure 2.15. Another drawback of this approach was that the paradigm presented did not 

include a systematic analytic scheme to predict the constants β1, β2 and β. These constants 

used in the simulation tests were selected by trial and error to approximately optimize 

agreement with experimental data.   
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Figure 2.15: Experimental and MATLAB simulated polarization hysteresis using Landau 

free energy expression by Y. L. Wang et al. [20]. 

 

Table 2.5: Simulation parameters for the polarization hysteresis of ferroelectric using 
Landau free energy expression by Y. L. Wang et al. [20]. 

Parameters  Values  

E
C
  4.847x105 V/cm 

T 300 K 

 ε0 8.8541x10-14 F/cm 

Tc 443 K [38] 

C 500 K [39] 

β1 1.2x10-5 cm/V 

β2 -4.357x10-19 cm3/V3 

α 3.23x1012 cm/F 

β 4.1x1022 cm
5
/F.C

2
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2.4.5 Modified Y. L. Wang et al. Model 

 Y. L. Wang et al. model gives the formula for calculating α as in (2.31) but this 

model does not give the formula for predicting β. In section 2.4.2 it is discussed that α 

and β can be calculated if either of them is known as given by (2.7). This is an approach 

to find α and β by combining these two models. Knowing the constant α from (2.31), β 

can be calculated using (2.7) as follows. 

2
SP

αβ =                                                         (2.32) 

Table 2.6 includes the calculated value of β which is little higher than previously 

assumed in Y. L. Wang et al. model. To compensate for the increase in β value, the 

constant β1 is also modified as given in Table 2.6. The corresponding MATLAB 

simulation is shown in Figure 2.16 which is similar in agreement with experimental as 

compared with Figure 2.15. With this modification only two constants β1 and β2 are 

needed to be selected by trial and error. 
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Figure 2.16: Experimental and MATLAB simulated polarization hysteresis using 
modified Y. L. Wang et al. model. 

 

 



 

27 

 

Table 2.6: Simulation parameters for the polarization hysteresis of ferroelectric using 
modified Y. L. Wang et al. model. 

Parameters  Values  

PS 8.34x10
-6

 C/ cm
2
 

α 3.23x1012 cm/F 

β 4.6x1022 cm
5
/F.C

2
 

β1 1.6x10-5 cm/V 

β2 -4.357x10-19 cm3/V3 
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Chapter 3 

New Models for Predicting Polarization 

 

3.1 Introduction 

Although the ferroelectric models discussed in Chapter 2 provided the 

mathematical and physical formulism to predict polarization hysteresis, they did not give 

an excellent level of agreement with the experimental data. These models suffered from 

deficiencies in terms of their ability to correctly replicate saturation and critical slope 

conditions when compared with experimental data as explained previously. This chapter 

includes the mathematical models that minimize the shortcomings of above models and 

give better agreement with experimental hysteresis. In this Chapter, a curve fitting 

approach is taken to systematically determine the constants needed to describe the 

coefficient αup introduced in Y. L. Wang et al. model [20]. The initial approach is to 

predict the parameters for unknown constants β1 and β2 with a two term cubic polynomial 

as used in the argument of hyperbolic tangent (2.29). To improve the curve fitting other 

approaches involving two terms cubic with different curve fitting points, standard three 

terms cubic with three curve fitting points, and four terms standard quadratic with four 

curve fitting points were also implemented. These approaches were not sufficiently 

successful in generating a close agreement with experimental curve to warrant inclusion 

in this thesis work. To improve the slope of the polarization curves in the vicinity of EC, 

other approaches involving the unit step function in the argument of hyperbolic tangent 

(2.29) are implemented. The approaches involving three matching conditions with a unit 

step function and four matching conditions with two unit step functions provided a 

faithful replication of the experimental hysteresis. 
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3.2 Model Based on Predicting Coefficients β1 and β2  

Y. L. Wang et al. model does not give the expressions for calculating the 

coefficients β1, β2 and β. Their values are chosen in order to provide a good agreement 

with experimental hysteresis. The expressions for these constants are derived considering 

the fact that Pup is the highest polarization value of the experimental hysteresis loop 

which is spontaneous polarization [20]. This consideration Pup=PS eliminates the need of 

calculating α and selecting β which are ingredients in Y. L. Wang et al. model. A curve 

fitting approach is considered for finding out the values of constants β1 and β2. Two 

points on positive going branch hysteresis curve at E=0 and E=-EC are considered as 

shown in Figure 3.1. The expression for the polarization using Y. L. Wang et al. model 

is, 

(2 1)up upP Pα= −                                                         (3.1) 

The polarization at the two points as mentioned above can be written in generalized form as 

follows. The polarization values at those points are directly extracted from experimental 

hysteresis and are given in Table 3.1. 

(2 1)j upj upP Pα= −    for j= 1and 2.                                           (3.2) 

Using (3.2), the normalized polarization is defined as, 

(2 1)j
j upj

up

P
r

P
α= = −                                                 (3.3) 

For a point in the hysteresis upα  can be calculated if the polarization at that point is 

known using a formula derived from (3.3). 

( 1)

2
j

upj

r
α

+
=                                                        (3.4) 

The formula for the upα  from Y. L. Wang model in generalized form can be written as, 

( )tan 2j upjX ππα= −                                                 (3.5) 

where, from the two term cubic used in Y. L. Wang model, 
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3
1 2( ) ( )j j C j CX E E E Eβ β= − + −                                        (3.6) 

Data for (3.2)-(3.5) evaluated at the two locations as shown in Figure 3.1 are summarized 

on Table 3.1. 

 

Table 3.1: Values of the terms for calculating β1 and β2. 

j E Pj  rj αupj Xj 
1 0 -7.35x10

-6
 C/cm2 -0.881 0.059 -5.3 

2 -EC -7.994x10
-6

 C/cm2 -0.958 0.02 -7.66 

 

 

For the value of j= 1 and 2, (3.6) yields two equations.  

3
1 1 2( ) ( )C CX E Eβ β= − + −                                             (3.7) 

3
2 1 2( 2 ) ( 2 )C CX E Eβ β= − + −                                          (3.8) 

Equations (3.7) and (3.8) can be solved for the constants β1 and β2 using inverse matrix 

method as follows. 

6
1 11

18 3 3
2 2

9.31 10 /

6.91 10 /

X cm V
M

X cm V

β
β

−
−

−

 ×   
= =      ×     

                                (3.9) 

where, from (3.7) and (3.8) it can be seen, 

3

32 8
C C

C C

E E
M

E E

 − −
=  − − 

                                                (3.10) 

Now the polarization can be calculated using (3.1) where, 

arctan[ ( )] 2( )up

X E
E

π
α

π

+
=                                          (3.11) 

The expression for X (E) which is consistent with Y. L. Wang et al. model is given as, 

3
1 2( ) ( ) ( )C CX E E E E Eβ β= − + −                                     (3.12) 
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The MATLAB simulation of the hysteresis curve by using constants β1 and β2 

from (3.8) is compared with experimental hysteresis curve as shown in Figure 3.1. The 

values of other simulation parameters are same with the average experimental values as 

given in Table 2.1. Comparison of simulated hysteresis with experimental hysteresis 

shows an excellent match in the region where the curve matching points are taken but the 

simulated curve did not exhibit saturation at the maximum applied electric field. 
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Figure 3.1: Experimental and MATLAB simulated polarization hysteresis of ferroelectric 
by calculating the constants β1 and β2. 

 

3.3 New Practical Model with Three-point Fit   

Above simulation results shows that the expression for αup is not good enough to 

fit our experimental hysteresis. In order to force the curve to saturate early and form a 

closed loop, another point near the saturation level and in the vicinity of EC is considered 

as shown in Figure 3.3. The point is selected at EC(1+z) where the value of z is arbitrarily 

taken to be 0.2 but should satisfy the following condition. 

max0 (1 )CE z E< ± <                                                (3.13) 

Where Emax is the maximum electric field associated with maximum applied voltage. The 

expression of Xj for finding the αupj is modified as follows. 
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3 5
1 2 3( ) ( ) ( ) ( )j j C j C j C j CX E E E E u E E E Eβ β β= − + − − + −                 (3.14) 

In this expression, a unit step function is considered that forces the polarization to 

saturate faster on positive side. The unit step function ( )u x  is a function whose value is 1 

for 1x ≥  and 0 otherwise. Figure 3.2 shows a unit step function which is defined by 

following equation. 

1 1
( )

0

x
u x

otherwise

≥
= 


                                           (3.15) 

 
Figure 3.2:  Unit step function. 

 

As seen from Figure 3.3, three points are considered on the positive going branch 

hysteresis and therefore there are three unknown constants β1, β2 and β3 to be calculated. 

Data for (3.2)-(3.5) evaluated at the three points for j=1, 2 and 3 as shown in Figure 3.3 

are summarized on Table 3.2. 

 

Table 3.2: Values of the terms for calculating β1, β2 and β3. 

j E Pj  rj αupj Xj 

1 0 -7.35x10
-6

 C/cm2 -0.881 0.059 -5.3 

2 -EC -7.994x10-6 C/cm2 -0.958 0.02 -15.323 

3 EC(1+z) 7.15x10-6 C/cm2 0.857 0.928 4.386 

 

 

For the values of j= 1, 2 and 3, (3.14) yields three different equations which can be solved 

for the constants β1, β2 and β3 using inverse matrix method as follows. 
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5
1 1

1 15 3 3
2 2

40 5 5
3 3

1.061 10 /

3.686 10 /
5.883 10 /

X cm V

M X cm V
X cm V

β
β
β

−

− −

−

 ×   
    = = ×    
     ×     

                              (3.16) 

where  

5

5

3 5

0 ( )

2 0 ( 2 )

( ) ( )

C C

C C

C C C

E E

M E E

zE zE zE

 − −
 = − − 
 
 

                                        (3.17) 

Knowing the values of constants β1, β2 and β3 the positive going polarization curve can 

be plotted using (3.1). The expression for αup(E) is given by (3.9) and X (E) can be 

expressed as, 

3 5
1 2 3( ) ( ) ( ) ( ) ( )C C C CX E E E E E u E E E Eβ β β= − + − − + −                  (3.18) 

The polarization hysteresis curve using three-point fit model is obtained by 

substituting (3.18) into (3.11) which is finally substituted back into (3.1). The comparison 

of MATLAB simulation and the experimental polarization hysteresis curve is shown in 

Figure 3.3.  
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Figure 3.3:  Experimental and MATLAB simulated polarization hysteresis of 
ferroelectric by using new practical model with three-point fit. 
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The values of other simulation parameters are same with the average experimental 

values as given in Table 2.1. Comparison of simulated hysteresis with experimental 

hysteresis shows an improved level of agreement in saturation. The problem of not 

reaching the polarization saturation point at desired electric field is solved using this 

model and a complete hysteresis loop is formed. The only region where the simulation 

curve does not show good level of agreement with experimental hysteresis is the region 

just below the coercive field. This problem will be taken care in next section. 

 

3.4 New Practical Model with Four-point Fit   

The need of this model is to give a better level of agreement with the experiment 

hysteresis in the region below coercive field. It is clear from above section that choosing 

a point near the saturation level and using unit step function forces the simulation curve 

to pass through that point. Now we take one more point just below the coercive field as 

shown Figure 3.4 and use unit step function to increase the slope of simulation curve at 

that region. The point is selected at EC(1-z) where the value of z is arbitrarily taken to be 

0.2 but should generally satisfy the following condition. 

max0 (1 )CE z E< ± <                                                (3.19) 

Where Emax is the maximum electric field associated with maximum applied voltage. The 

expression for Xj to find αupj is modified as follows. 

2
1 2( ) ( ) ( )j j C j C j CX E E E E u E Eβ β= − + − − +       

 2 3
3 4( ) ( ) ( )j C C j j CE E u E E E Eβ β− − + −                               (3.20) 

In this expression, two unit step functions are considered that take care of polarization 

slope changes in the vicinity of the coercive field. Because four points are considered on 

the positive going branch hysteresis, there are four unknown constants β1, β2, β3 and β4 to 

be calculated. Data for (3.2)-(3.5) evaluated at the four locations as shown in Figure 3.4 

are summarized on the Table 3.3. 
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Table 3.3: Values of the terms for calculating β1, β2, β3 and β4. 

j E Pj  rj αupj Xj 

1 0 -7.41x10
-6

 C/cm2 -0.875 0.062 -5.06 

2 -EC -7.994x10-6 C/cm2 -0.944 0.027 -11.5 

3 EC(1+z) 7.68x10-6 C/cm2 0.907 0.953 6.84 

4 EC(1-z) -5.42x10-6 C/cm2 -0.640 0.179 -1.57 

 

 

For the values of j= 1, 2, 3 and 4, (3.20) yields three different equations which can be 

solved for the constants β1, β2, β3 and β4 using inverse matrix method as follows. 

5
1 1

10 2 2
2 21

11 2 2
3 3

17 3 3
4 4

1.76 10 /

4.73 10 /

2.40 10 /

1.72 10 /

X cm V
X cm V

M
X cm V
X cm V

β
β
β
β

−

−
−

−

−

 ×   
     ×    = =
     ×
    

×     

                              (3.21) 

where, 

2 3

2 3

2 3

2 3

0 ( ) ( )

2 0 ( 2 ) ( 2 )

( ) 0 ( )

0 ( ) ( )

C C C

C C C

C C C

C C C

E E E

E E E
M

zE zE zE

zE zE zE

 − − −
 − − − =
 
 
− − −  

                               (3.22) 

Knowing the values of constants β1, β2, β3 and β4, the positive going polarization curve 

can be plotted by using (3.1). The expression for αup(E) is given by (3.9) and X(E) can be 

expressed as, 

2 2 3
1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( )C C C C C CX E E E E E u E E E E u E E E Eβ β β β= − + − − + − − + −   (3.23) 

Although the ideal hysteresis curve should be symmetric, our experimental 

hysteresis is not symmetric. So using the anti-symmetry of αup to generate the negative 

going branch polarization curve does not give satisfactory agreement with corresponding 

experimental negative going branch hysteresis. Similar mathematical approach as used 

for generating positive going hysteresis can be employed for generating the negative 
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going hysteresis curve. The four points are taken on the negative going branch curve and 

Pdowm and αdown are used for mathematical calculation instead of Pup and αup. The detail 

mathematical expression for generating negative going branch polarization curve using 

four-point fit model is given in the Appendix D. The values of the parameters used for 

simulating both parts of the polarization curve are given in Table 3.4. Polarization data 

{P1, P2, P3, P4) for negative sweep were taken at the electric fields E= {0, +EC, -EC(1+z), 

-EC(1-z) } respectively. The MATLAB simulation with this model and experimental 

hysteresis is compared in Figure 3.4. The simulation curve shows an excellent match with 

the experimental hysteresis. The problems with most of the ferroelectric hysteresis 

models of not reaching the saturation level early and polarization curve slope issue are 

solved using this model as shown in Figure 3.4. The polarization saturation and the slope 

of the polarization curve depend upon the selection value of the constant ‘z’. Lower the 

value of ‘z’, faster the polarization saturates and vice versa. So the value of ‘z’ provides 

flexibility to our model to be applicable with any other device’s experimental hysteresis. 

Our approach of modeling hysteresis curve is similar to the approach employed by C. Fu 

et al. The positive part of our model is that it considers single polarization domain curves 

with four unknown constants; whereas C. Fu et al. consider three polarization domain 

curves with nine unknown constants. Our consideration highly reduces the mathematical 

complexity and also shows the excellent level of agreement with experimental hysteresis 

curve as shown in Figure 3.4. 

 

Table 3.4: Values of the simulation parameters for polarization hysteresis of ferroelectric 
by using new practical model with four-point fit. 

Parameters Values (positive sweep)  Values (negative sweep)  

E
c
  5.145x10

5
 V/cm -4.549x10

5
 V/cm 

P
S
 8.46x10

-6
 C/cm

2
 -8.22743x10

-6
 C/cm

2
 

P
R
=P1 -7.41x10

-6
 C/cm

2
  7.2938x10

-6
 C/cm

2
  

P
C
=P2 -7.994x10

-6
 C/cm

2
  8.0x10

-6
 C/cm

2
  

P
3
  7.68x10

-6
 C/cm

2 
 (z=0.2)  -7.0x10

-6
 C/cm

2 
(z=0.2)  

P
4
  -5.42x10

-6
 C/cm

2 
(z=0.2)  5.0x10

-6
 C/cm

2 
(z=0.2)  
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Figure 3.4: Experimental and MATLAB simulated polarization hysteresis of ferroelectric 
by using new practical model with four-point fit. 
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Chapter 4 

Capacitance Modeling 

 

4.1 Introduction 

Capacitance (C)-Voltage (V) hysteresis characteristic is one of the most well 

known behaviors of the ferroelectric capacitors [40]. Since ferroelectric capacitance is 

directly proportional to ferroelectric permittivity and the ferroelectric permittivity is field 

dependent, the ferroelectric capacitance also depends on the applied field.  The C-V 

hysteresis of a ferroelectric capacitor is caused by the polarization orientation under the 

applied field [40]. Ferroelectric permittivity is very large about the coercive field because 

a very small change in electric field near the coercive field causes a very large change in 

the ferroelectric polarization. Ferroelectric permittivity is the highest when ferroelectric 

capacitor is neutral or not polarized [41] that explains the formation of peaks at positive 

and negative coercive field on a C-V hysteresis. The C-V characteristic of a ferroelectric 

capacitor is also affected by the space-charge concentration at the ferroelectric to contact 

interface because it has an adverse effect on permittivity and switching characteristics 

[41]. Spontaneous polarization produces a high electric field that causes band bending 

and ionization of trap states. This phenomenon causes the formation of space charge at 

the contacts to screen the polarization of the ferroelectric which lowers the permittivity. 

Therefore a ferroelectric capacitor can be viewed as having three layers with high 

permittivity layer sandwiched between two low permittivity layers [41].   

There are two ways of obtaining the capacitance of a ferroelectric capacitor [42, 

22]. One way is by measuring the capacitance directly with small ac signal together with 

slow varying dc bias. The capacitance curve measured by this method is called the small-

signal capacitance. The experimental capacitance curve shown in Fig 2.9 is small signal 

capacitance. Another method of obtaining capacitance is by taking the derivative of its 
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polarization hysteresis loop which is called large-signal capacitance. Analyses have 

shown that the peak values of large-signal C-V curves are sharper and higher than that of 

small-signal C-V curves [42, 22]. Ferroelectric thin films are used with large signal in the 

memory applications whereas they are used with small signal in the application as tuning 

varactor. This implies that for the proper application of ferroelectric thin films, its large 

signal and small signal performance should be investigated in detail [22]. In this chapter, 

large signal capacitance is obtained using modified S. L. Miller et al. model and our new 

four-point fit model. Finally a small signal capacitance model by H. Li is implemented in 

MATLAB and compared with our C-V hysteresis. 

 

4.2 Large-Signal Capacitance Modeling 

A general expression for finding the large signal capacitance of a ferroelectric 

capacitor is derived considering the theory from the physics. When an electric field is 

applied in a dielectric material, the bound charges in the material are separated inducing 

electric dipole moment. This electric displacement field (D) is defined by [43], 

0 totD E Pε= +                                                       (4.1) 

where E is the applied electric field, ε0 is the vacuum permittivity and Ptot is the total 

polarization which is the sum of the polarization due to linear displacement and 

polarization due to ferroelectric switching dipoles. 

tot l fP P P= +                                                         (4.2) 

Polarization due to linear displacement is defined as, 

   0l lP Eε χ=                                                           (4.3) 

where χl is the electric susceptibility of the ferroelectric which is related to the relative 

permittivity of the ferroelectric as, 

1r lε χ= +                                                            (4.4) 

Using (4.2), (4.3) and (4.4), the expression for D can be written as, 

0 0 0l f r fD E E P E Pε ε χ ε ε= + + = +                                        (4.5) 

In a capacitor, the electric displacement filed is equal to the surface charge density (σ) 

which is defined as charge per unit surface area. 
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QD Aσ= =                                                        (4.6) 

From (4.5) and (4.6), 

0( )r fQ A E Pε ε= +                                                   (4.7) 

The capacitance of a ferroelectric capacitor is defined as, 

0

1 f
r

dPdQ dQ A
C

dV t dE t dE
ε ε
 

= = = + 
 

                                      (4.8) 

where t is the thickness of ferroelectric dielectric. The expression for /fdP dE  depends 

on the model used to find Pf. Two models for finding Pf are considered and applied to 

obtain large signal capacitance as given in following sections. 

 

4.2.1 Large-Signal Capacitance Modeling Using S. L. Miller et al. Model 

The expression of polarization hysteresis from Miller et al. model can be 

modified to develop the equations which define the relationship between applied voltage 

and capacitance of the ferroelectric capacitor. Because polarization hysteresis is used to 

obtain the ferroelectric capacitance in this model, the capacitance obtained is large signal 

capacitance. The derivative of the polarization given in (2.2) defined by S. L. Miller et al. 

model yields,  

2( ) 1
sec

2 2
d C

S

dP E E E
P h

dE δ δ

+  −  =   
  

                                  (4.9) 

which is based on math identity given as [37], 

2tanh sec
d du

u h u
dx dx

=                                               (4.10) 

Using (4.9) in (4.8), the expression for large signal capacitance is, 

( )A
C E

t
ε=                                                       (4.11) 

ε(E) is the field dependent permittivity for the ferroelectric capacitors given by [36], 
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( ) 2
0 sec

2 2
S C

r

P E E
E hε ε ε

δ δ
 −  = +   

  
                                    (4.12) 

This mathematical expression is implemented within Silvaco’s ATLAS device simulator 

for ferroelectrics and MATLAB. The simulation results are shown in the Figure 4.1 and 

Figure 4.2. The values of the parameters for both the simulations are exactly same with 

the experimental values as given in Table 2.1. The value of relative permittivity used for 

P(VDF-TrFE) is 10 [ 44]. 
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Figure 4.1: MATLAB simulated large signal C-V curve using modified Miller et al. 
model. 
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Figure 4.2: Silvaco simulated large signal C-V curve using modified Miller et al. model. 
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As expressed by (4.11), the permittivity of the ferroelectric material changes with 

respect to electric field and capacitance changes accordingly. When E=EC, the field 

dependent permittivity is maximum according to (4.11) and it is visible on both the 

simulation curves. Though both of the simulation curves are generated using the same 

mathematical model, they are not identical. Due to limitations in the availability of 

Silvaco source code a thorough comparison of Miller model implementation by Silvaco is 

not possible. The capacitance curves simulated using this model is large-signal 

capacitance but the experimental capacitance curve is small-signal capacitance, hence no 

graphical comparison is made between them. As demonstrated The peaks of both large-

signal simulation curves are higher but not sharper than the experimental small-signal C-

V curve.  

 

4.2.2 Large-Signal Capacitance Modeling Using New Four-point Fit Model 

The proposed four-point curve fitting algorithm for the polarization data which 

was discussed in section 3.4 is used to find the large signal capacitance. This model 

considers the following expression of polarization. 

(2 1)up upP Pα= −                                                    (4.13) 

where  

arctan( ) 2
up

x π
α

π

+
=                                                 (4.14) 

2 2 3
1 2 3 4( ) ( ) ( ) ( ) ( ) ( )c c c c c cx E E E E u E E E E u E E E Eβ β β β= − + − − + − − + −           (4.15) 

Taking the derivative of (4.13) with respect to E and using (4.14) and (4.15), 

2

1 1
2

(1 )up

dP dx
P

dE x dEπ
=

+
                                            (4.16) 

which makes use of the math identity [37], 

1
2

1
tan

1
d dy

y
dx y dx

− =
+

                                             (4.17) 
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Taking the derivative of (4.15) with respect to E, 

( ) ( ) ( ) ( ) ( )2
1 2 3 42 2 3C C C C C

dx
E E u E E E E u E E E E

dE
β β β β= + − − + − − + −   (4.18) 

For clarity it should be noted that the impulse functions singularities generated by 

differentiating unit step functions at CE E= ±  in expression (4.15) do not appear in (4.18) 

due to zero factor multipliers at CE E= ± . The differentiation of unit step function is 

given by [37], 

( ) ( )
d

u y y
dy

δ=                                                 (4.19) 

Using (4.16) and (4.17) in (4.8), the large-signal capacitance can be obtained. This 

mathematical model is implemented in MATLAB and the simulation result is compared 

with experimental small-signal capacitance as shown in the Figure 4.3. The experimental 

small-signal capacitance curve is scaled by 200 times to make a visible overlay with the 

analytic large-signal capacitance. The values of the parameters used for this simulation 

are same as tabulated in Table 3.4. 
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Figure 4.3: Overlay of analytic large-signal and experimental small-signal capacitance. 
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 The analytic large-signal capacitance simulation curve has very sharp peaks and 

the peak values are much higher than that for experimental small signal capacitance 

which can be observed from Figure 4.3. This model satisfies the analysis stated in H. Li 

et al. that large-signal capacitance has higher and sharper peaks than small-signal 

capacitance curve. The asymmetry of our experimental polarization hysteresis causes the 

two peaks of the large-signal capacitance curve not to be at the same capacitance value. 

As described by (4.8), ferroelectric capacitance depends on the derivative of its 

polarization hysteresis. Since experimental data for the polarization hysteresis is provided 

[33], an approach that uses the numerical derivative from the experimental polarization 

hysteresis is also implemented. The expression for large-signal capacitance using 

numerical derivative approach is given by, 

exp0 r
num

P
C A

t V
ε ε ∆ 

= + ∆ 
                                            (4.20) 

The large-signal capacitance curve generated using point to point numerical derivative 

method is shown in Figure 4.4. It can be seen that considering all the data points for 

numerical derivative, the calculate large-signal capacitance is highly noisy.  
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 Figure 4.4: Large-signal capacitance using point to point numerical derivative. 
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In order to produce less noisy large-signal capacitance curve, the derivative is 

taken by skipping every three points and the result is compared with analytical approach 

of finding large-signal capacitance as shown in Figure 4.5. Though this approach discards 

the mathematical complexity issue of curve fitting algorithm, the simulated capacitance 

curve using this approach is still fairly noisy as compared to the analytical four-point fit 

approach as shown in Figure 4.5. 
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Figure 4.5: Overlay of large-signal capacitance produced using analytical approach and 
numerical derivative approach by skipping every three points. 

 

4.3 Small-Signal Capacitance Modeling 

Usually ferroelectric capacitance measurements are performed with a small 

applied ac voltage whereas analyses of the capacitance are performed by the derivative of 

the polarization hysteresis [22]. The difference between large-signal and small-signal 

capacitance is because of the change in space charge in the film during small-signal 

capacitance measurement [42, 22]. D. Bolten et al. gave that the small-signal capacitance 

is attributed to reversible polarization and domain wall motion but the detail mechanism 

and its relationship with large-signal capacitance were not addressed [22, 45]. In this 
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section, a theoretical mechanism of small-signal capacitance is explained using Landau-

Khalatnikov kinetic equation which is given by [22, 46], 

dP dF
dt dP

γ = −                                                      (4.17) 

where γ is polarization damping constant or kinetic coefficient [47] and F is the Landau 

free energy. Ferroelectric capacitance is proportional to its permittivity, which is directly 

related to ferroelectric polarization. The total polarization of a ferroelectric capacitor is 

contributed by switching dipoles as well as the linear polarization. So a ferroelectric 

capacitor can be modeled into the circuit as shown in the following figure. 

 

Figure 4.6: Circuit model of a ferroelectric capacitor [22, 48]. 

 

In the above figure, C0 is the linear capacitance, CF is the capacitance due to dipole 

polarization and RS is the dipole resistance determined by material properties and 

dimensions as given below. 

S
LR A
γ=                                                             (4.18) 

Where, L is the thickness of the ferroelectric film and A is the cross-sectional area. 

Assuming C0 to be very small, the Landau-Khalatnikov dynamic equation for the above 

circuit can be written as [22, 48], 

3

S

Q Q dQ
L V R

A A dt
α β
    − + + =    
     

                                    (4.19) 
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where α and β are Landau coefficients which are calculated using (2.7) and (2.8), Q is the 

charge in the ferroelectric given by (4.7). Taking the derivative of (4.19) with respect to 

V and after arranging the terms leads to, 

( )

2

2 2

1

3 /

S

d Q
A R

dVdtdQ
C

dV L Q Aα β

 
− 

 = =
+

                                         (4.20) 

Applying
d
dt

ω= , where 2 fω π=  and solving for 
dQ
dV

 from (4.20), the expression for 

the small-signal capacitance becomes, 

1 2
ideal

ideal S

CdQ
C

dV C R fπ
= =

+
                                          (4.21) 

where, the ideal capacitance is taken as the large-signal capacitance given as [22], 

( )2 23 /ideal

A
C

L Q Aα β
=

+
                                            (4.22) 

The detail derivation for small-signal capacitance is given in Appendix E. 

According to (4.21), the small-signal capacitance is dependent on the frequency (f) of the 

ac signal. The value of small-signal capacitance decreases with increase in the frequency 

of ac signal. As capacitance is dependent on charge and charge is related to polarization 

as given in (4.7), our new model with four-point fit is applied to calculate the 

polarization. The MATLAB simulation of this small-signal capacitance model and the 

experimental capacitance curve are compared in Figure 4.7 and the values of the 

simulation parameters are given in Table 4.1. The comparison of simulation curve for 

small signal capacitance with experimental capacitance demonstrates much better level of 

agreement as shown in Figure 4.7 than seen with large signal capacitance. Although the 

shape of the simulation capacitance hysteresis does not match perfectly with 

experimental hysteresis, the peak values of the simulation curve show excellent level of 

agreement with experimental peaks. 
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Figure 4.7: Experimental and MATLAB simulated small-signal capacitance curve.  

 

Table 4.1: Values of MATLAB simulation parameters for small-signal capacitance 
modeling. 

Parameters Values  

Kinetic coefficient (γ) 2x10
5
 Ω-cm 

ac frequency (f) 1x10
6
 Hz 

Device area (A) 0.0005 cm2 

Film thickness (L) 210x10
-7

 cm  

RS 8400 Ω 

 ε0 8.8541x10-14 F/cm 

εr 10 

α 1.27x1011 cm/F 

β 1.77x1021 cm
5
/F.C

2
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Chapter 5 

Conclusion and Future Work  

  

5.1 Conclusion 

A brief overview of ferroelectric capacitor, its basic properties and its potential in 

memory applications were discussed. Characterization techniques of the polarization 

hysteresis for a ferroelectric capacitor based on polymer P(VDF-TrFE) have been 

studied. Models, based on physical electronic descriptions [16, 17, 20] were implemented 

and results were compared with the experimental curve which showed limited agreement. 

An approach of predicting Landau coefficient β from α using Landau theory for 

monocrystalline ferroelectrics, where α comes from Y. L. Wang et al. model was also 

implemented in the MATLAB. Although this model provided a valuable extension of the 

Y. L. Wang et al. model, the result showed a limited agreement with experimental 

hysteresis. The problem with these models is that they were unable to reach the 

polarization saturation fast enough with desired electric field to produce satisfactory 

overlap with the experimental data. A mathematical derivation for calculating the values 

of the constants β1 and β2 from the Y. L. Wang et al. model, using curve fitting, was 

presented. Although improved on prior results, the two-point curve fitting was still not in 

satisfactory agreement with experimental data for all points along the polarization curve. 

Finally a model free of the polarization saturation issue was derived using an expanded 

four-point curve fitting algorithm. This model was implemented in MATLAB which 

showed an excellent level of agreement with experimental hysteresis. This curve fitting 

approach requires only four unknown constants which is significantly simpler than a 

previous approach [18] for modeling polarization curves requiring nine unknown 

constants.  
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The two ways of obtaining the capacitance of a ferroelectric capacitor were 

discussed. The large- signal capacitance was obtained by the derivative of the 

polarization hysteresis generated using S. L. Miller et al. model and our new four-point 

fit model. The mathematical expressions were implemented in the MATLAB simulation 

tool. Landau-Khalatnikov kinetic equation was used to derive the mathematical 

expression for small-signal capacitance and the simulation result was compared with 

experimental capacitance curve which showed a good level of agreement. The 

simulations of large and small signal capacitance also proved the fact that the peak values 

of large-signal C-V curves are sharper and higher than that of small-signal C-V curves. 

 

5.2 Future work 

The new four-point fit model works fine for our experimental data based on AU-

P(VDF-TrFE)-AU ferroelectric capacitor. This new model needs to be tested for other set 

of experimental data based on different ferroelectric materials in order to confirm the 

applicability of the model. 

The large-signal capacitances predicted from S. L. Miller et al. model using 

Silavaco and MATLAB simulations are expected to be consistent. The cause of 

discrepancy between them needs to be reviewed. Limits in performing the review are 

expected as the source code for Silvaco software is not made available. Although the 

peaks of the small-signal capacitance curve shows good level of agreement with 

experimental peaks, the overall shape of the curve does not give a good match with 

experimental capacitance. This implies that further detail inspection on mathematical 

formulation of the small-signal capacitance is needed. 

In this work, only simulations of the ferroelectric capacitors are considered. 

Transistors using ferroelectric materials as gate oxides are also excellent memory 

devices. For the memory applications, ferroelectric capacitors should be connected along 

with transistors in the circuit. So the simulations of transistors with ferroelectric gate 

oxide and the simulation of ferroelectric capacitors in the circuit are recommended to 

further analyze the ferroelectric materials for use in memory applications. 
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Appendices 

 

Appendix A: Mathematical Derivation for Finding δ in S.L. Miller et al. Model 

 

Expression for positive going branch of polarization hysteresis from S. L. Miller et al. 

model, 

( )
( ) tanh

2
C

d S

E E
P E P

δ
+ − =   

                                           (A1) 

The expression for δ is predicted using the relation, (0)d RP P+ = − . So (A1) becomes, 

tanh
2

C
R S

E
P P

δ
− − =   

                                                (A2) 

From (A2), 

1tanh
2

C R

S

E P
Pδ

−  
=  

 
                                                  (A3) 

The formula for inverse hyperbolic tangent is given by, 

( ) [ ]1 1tanh ln(1 ) ln(1 )2Z Z Z− = + − −                                     (A4) 

From (A4), 

( )1 11tanh ln2 1
Z

Z
Z

−  +  =   −  
                                           (A5) 

(A3) can be written as, 

1
1 ln22 1
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                                              (A6) 

So the expression for δ is, 
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Appendix A (Continued) 
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Appendix B: Mathematical Derivation to Find α and β for Landau Free Energy 

Model for Monocrystalline Ferroelectrics 

 

The expression electric field in terms of polarization is, 

3( )E P P Pα β= − +                                                    (B1) 

Equating (B1) to 0 gives the value of PS. 

 3 0S SP Pα β− + =                                                       (B2) 

From (B2), 

1
2

SP
α
β

 
± =  

 
                                                         (B3) 

For maxima and minima, taking first derivative of (B1) with respect to P and equating to 

0, 

2( )
3 0

dE P
P

dP
α β= − + =                                                 (B4) 

From (B4), 

1
2

3
P

α
β

 
= ±  

 
                                                       (B5) 

Taking second derivative of (B1) with respect to P, 

2

2

( )
6

d E P
P

dP
β=                                                       (B6) 

For positive value of P, (B6) is positive; so positive value of P from (B5) determines the 

minima. For negative value of P, (B6) is negative; so negative value of P from (B5) 

determines the maxima. The value of E at local minima and maxima gives the value of 

EC which can be written as, 
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Appendix B (Continued) 

 

1 2 3 2

3 3CE
α αα β
β β

   
± = − +   

   
                                                (B7) 

From (B3), 

2
SPα β=                                                            (B8) 

Using (B8) in (B7), for positive value of EC, 

1 2 3 22 2
2

3 3
S S

C S

P P
E P

β β
β β

β β
   

= − +   
   

                                       (B9) 

From (B9), 

3 3

3 3 3
S S

C

P P
E

β β
= − +                                                    (B10) 

and after solving (B10) for β, 

3

3 3
2

C

S

E
P

β = −                                                         (B11) 

Hence α and β are calculated using (B8) and (B11). 
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Appendix C: Mathematical Derivation to Find δ+ and δ- for J. Yu et al. Model 

 

Derivation of δ+: 

Positive going polarization branch is expressed by 

( )11 1
( ) tan

2U m m sat CP P P P E E Eδ α
π

+ + + − + + +  = − + − − + +   
                      (C1) 

When the applied electric field is zero, (C1) becomes, 

11 1
( ) tan 0

2R m m sat CP P P P Eδ
π

− + + + − + +  = − + − + +   
                              (C2) 

From (C2), 

11 1
( ) tan ( )

2m sat C m m sat RP P E P P P Pδ
π

+ + − + + + + + −  + − = − + −   
                         (C3) 

From (C3), 

1 2
tan

2
m sat R

C
m sat

P P P
E

P P
π

δ
+ + −

− + +
+ +

 − −
 − =    + 

                                       (C4) 

From (C4), the expression for δ+ can be written as, 

2
tan

2
m sat R

m sat

C

P P P
P P

E

π

δ

+ + −

+ +
+

+

  − −
  +  = −                                           (C5) 

Derivation of δ-: 

Negative going polarization branch is expressed by 

( )11 1
( ) tan

2D m m sat CP P P P E E Eδ α
π

− − − − − − −  = − + − − + +   
                      (C6) 

When the applied electric field is zero, (C6) becomes, 
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Appendix C (Continued) 

 

11 1
( ) tan 0

2R m m sat CP P P P Eδ
π

+ − − − − − −  = − + − + +   
                              (C7) 

From (C7), 

11 1
( ) tan ( )

2m sat C m m sat RP P E P P P Pδ
π

− − − − − − − − +  + − = − + −   
                         (C8) 

From (C8), 

1 2
tan

2
m sat R

C
m sat

P P P
E

P P
π

δ
− − +

− − −
− −

 − −
 − =    + 

                                        (C9) 

From (C9), the expression for δ- can be written as, 

2
tan

2
m sat R

m sat

C

P P P
P P

E

π

δ

− − +

− −
−

−

  − −
  +  = −                                          (C10) 
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Appendix D: Mathematical Expression for Generating Negative Going Branch 

Polarization Curve Using Four-point Fit Model 

 

The relation between Pup and Pdown is given by, 

       up downP P= −                                                         (D1) 

upα and downα are related as, 

( )1down upα α= −                                                     (D2) 

The expression for average polarization is given as, 

up up down downP P Pα α= +                                                (D3) 

Using (D1), (D2) and (D3) 

(1 )down down down downP P Pα α= − − +                                        (D4) 

From (D4), 

2down down downP P Pα= − +                                               (D5) 

From (D5), 

(2 1)down downP Pα= −                                                  (D6) 

The value of coercive field (EC) and Pdown are taken to be negative. The expression for Xj 

to find αupj is modified as follows. 

2
1 2( ) ( ) ( )j j C j C j CX E E E E u E Eβ β= − + − − +  

2 3
3 4( ) ( ) ( )j C C j j CE E u E E E Eβ β− − + −                                   (D7) 

Data for (3.2)-(3.5) evaluated at the four locations as shown in the following figure are 

summarized on the table below. 
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Appendix D (Continued) 

 

Table D.1: Values of the terms for calculating β1, β2, β3 and β4 for negative going 
polarization curve. 

j E Pj  rj αupj Xj 

1 0 7.29x10
-6

 V/cm2 -0.886 0.056 -5.55 

2 -EC 8.0x10-6 V/cm2 -0.972 0.013 -23.01 

3 EC(1+z) -7.06x10-6 V/cm2 0.858 0.929 4.41 

4 EC(1-z) 5.07x10-6 V/cm2 -0.617 0.191 -1.45 

 

 

For the values of j= 1, 2, 3 and 4, (D7) yields three different equations which can be 

solved for the constants β1, β2, β3 and β4 using inverse matrix method as follows. 

5
1 1

11 2 2
2 21

10 2 2
3 3

17 3 3
4 4

1.89 10 /

3.66 10 /

3.20 10 /

4.79 10 /

X cm V
X cm V

M
X cm V
X cm V

β
β
β
β

−

−
−

−

−

 − ×   
     ×    = =
     ×
    
− ×     

                                (D8) 

where, 

2 3

2 3

2 3

2 3

( ) 0 ( )

2 ( 2 ) 0 ( 2 )

0 ( ) ( )

( ) 0 ( )

C C C

C C C

C C C

C C C

E E E

E E E
M

zE zE zE

zE zE zE

 − − −
 − − − =
 
 
− − −  

                                 (D9) 

Knowing the values of constants β1, β2, β3 and β4, the negative going polarization curve 

can be plotted using (3.1). 
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Appendix D (Continued) 
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Figure D.1: Experimental and MATLAB simulated polarization hysteresis of ferroelectric 

by using new practical model with four-point fit on negative going curve. 
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Appendix E: Mathematical Derivation for Small-Signal Capacitance 

 

Rewriting (4.19), 

3

S

Q Q dQ
L V R

A A dt
α β
    − + + =    
     

                                           (F1) 

Taking the derivative of above equation with respect to V, 

2
2

3 3 1 S

dQ dQ d Q
L Q R

A dV A dV dtdV
α β  − + + =  

  
                                      (F2) 

From (F2), 

2 2

3

3
1S

dQ Q d Q
L R
dV A A dtdV

α β 
− + = − 

 
                                          (F3) 

From (F3), 

( )

2
3

2 2

1

3

S

d Q
A R

dtdVdQ
dV L A Qα β

 
− 

 =
+

                                               (F4) 

From (F4), 

( )

2

2 2

1

3 /

S

d Q
A R

dVdtdQ
C

dV L Q Aα β

 
− 

 = =
+

                                               (F5)      

Where, 

( )2 23 / ideal

A
C

L Q Aα β
=

+
                                               (F6) 

Applying
d
dt

ω= , where 2 fω π= , from (F5) and (F6), the expression for capacitance is,   

2ideal ideal S

dQ dQ
C C C R f

dV dV
π= = −                                            (F7) 
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Appendix E (Continued) 

 

Solving for 
dQ
dV

 from (E7) we get, 

1 2
ideal

ideal S

CdQ
C

dV C R fπ
= =

+
                                                  (F8) 

The equation (F8) is the expression for small-signal capacitance of a ferroelectric 

capacitor where the dependence on the large-signal capacitance is explicit. 
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Appendix F: MATLAB Code for Polarization Hysteresis Using S. L. Miller et al. 

Model 

 

clc; 
clear all; 
close all; 
format long; 
load Expt2.dat; %Loads the experimental data 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
L=0.210e-4;  % Length of the device in cm 
Ec=4.847e5;  % Expt coercieve electric field in V/cm 
Pr1=7.35e-6; % Expt Remnant polarization in C.cm^2 
Pr=8.338e-6; % Modified Remnant polarization in C.cm^2 
Ps=8.34e-6;  % Spontaneous polarization in C.cm^2 
  
V=[-20:.4:20]; % External voltage range 
[m,n]=size(V); 
A = zeros(n,2); 
B = zeros(n,2); 
%E=V/L; 
Prs1=Pr1/Ps; 
Prs=Pr/Ps; 
dlt1=Ec*(1/(log10((1+Prs1)/(1-Prs1)))); % Calculating delta for Sim1 
dlt=Ec*(1/(log10((1+Prs)/(1-Prs))));    % Calculating delta for Sim2 
for i=1:n 
    E=V(i)/L;  % Electric field 
    Pd1=Ps*tanh((E-Ec)/(2*dlt1));  % Polarization for Sim1 curve 
    Pd=Ps*tanh((E-Ec)/(2*dlt));    % Polarization for Sim2 curve 
    Pdd1(i)=Pd1; 
    A(i,1) = Pd; 
    A(i,2) = V(i); 
end; 
  
plot(expt_vol,expt_pol,'^r'); 
hold on; 
plot(A(:,2),Pdd1,'bo'); 
plot(A(:,2),A(:,1),'k*'); 
legend( 'Expt','Sim1','Sim2'); 
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
save file_data.dat; 
Ec=-Ec; 
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Appendix F (Continued) 

 

dlt1=Ec*(1/(log10((1+Prs1)/(1-Prs1)))); 
dlt=Ec*(1/(log10((1+Prs)/(1-Prs)))); 
% Pd=Ps*tanh((E-Ec)/(2*dlt));  
V=[20:-0.4:-20]; 
%V=[-20:0.2:20]; 
  
for i=1:n 
    E=V(i)/L; 
    Pd1=Ps*tanh((E-Ec)/(2*dlt1));  
    Pd=Ps*tanh((E-Ec)/(2*dlt));  
    Pddd1(i)=-Pd1; 
    B(i,1) = -Pd; 
    B(i,2) = V(i); 
end; 
plot(expt_vol,expt_pol,'^r'); 
plot(B(:,2),Pddd1,'bo'); 
plot(B(:,2),B(:,1),'k*'); 
hold on; 
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Appendix G: Silvaco Code for Polarization and Capacitance Hysteresis Using S. L. 

Miller et al. Model 

 

# Au MIM ferro Capacitor 
 
go atlas 
title Ferroelectric Capacitor 
 
set cathode_thick=0.02 
set ferro_thick = 0.21 
set anode_thick = 0.02  
set total_thick = $ferro_thick+$anode_thick 
set dev_length = 500 
set Ec = 0.4847e6 
 
########### MESH SPECIFICATION 
 
MESH width=100 
 
X.MESH LOCATION=0.0             SPACING=10 
X.MESH LOCATION=$dev_length     SPACING=10 
 
y.mesh l=-$cathode_thick spacing=0.01 
y.mesh l=0.0             spacing=0.01 
y.mesh l=$ferro_thick    spacing=0.01 
y.mesh l=$total_thick    spacing=0.01 
 
###########   MATERIALS 
REGION num=1 user.MATERIAL=P(VDF-TrFE)  x.min=0.0 x.max=$dev_length    
y.min=0.0  y.max=$ferro_thick  
########### 
 
###########   ELECTRODES 
elect num=1   name=anode    x.min=0  x.max=$dev_length  y.min= -$cathode_thick 
y.max=0.0           material=gold 
elect num=2   name=cathode  x.min=0  x.max=$dev_length  y.min=$ferro_thick     
y.max=$total_thick  material=gold 
########### 
 
###########  MATERIAL PARAMETERS 
material  region=1 user.group=insulator user.default=Si3N4 \ 
          ferro.pr=7.35e-6  ferro.ps=8.34e-6  ferro.ec=$Ec ferro.eps=10 
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Appendix G (Continued) 

 

###########  ELECTRODE PARAMETERS 
# gold 
contact name=anode   workfunc=5.1 
# gold 
contact name=cathode workfunc=5.1 
########### 
########### DEVICE STRUCTURE 
save outfile=MIS_ferro.str 
tonyplot MIS_ferro.str 
########### 
 
########### MODEL AND DEFECT PARAMETERS 
model reg=1 ferro print 
########## 
 
solve init 
solve vanode=0 
save outfile=MIS_ferro.str 
 
method newton gummel itlimit=50 trap 
log outfile=Simulation.log  
 
probe polarization dir=90 x=250 y=0.11 
probe permittivity dir=90 x=250 y=0.11 
 
solve vfinal=20 vstep=0.4 name=anode ac freq=1e6 direct 
material region=1 ferro.ec=-$Ec  
solve vfinal=-20 vstep=-0.4 name=anode ac freq=1e6 direct 
material region=1 ferro.ec=$Ec  
solve vfinal=20 vstep=0.4 name=anode ac freq=1e6 direct 
 
extract name="cap_den" curve(v."anode",c."anode""cathode") outfile="cap_den.dat" 
 
tonyplot Simulation.log -overlay Experimental2.log -set polarization.set 
tonyplot cap_den.dat  
quit 
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Appendix H: MATLAB Code for Polarization Hysteresis Using Landau Free 

Energy Model for Monocrystalline Ferroelectrics 

 

clc; 
format long; 
close all;  
clear all; 
load Expt2.dat;  % Loads the experimental data 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
Ps=6.8*10^-6;    % Spontaneous polarization in C/cm^2  % 6.5*10^-2 C/m^2 
ec=-4.847*10^5;  % Coercive field in V/cm  % -5*10^7 V/m 
t=210;           % P(VDF-TrFE) thickness in nm  % 210*10^-7 cm 
b=-((3*(3^(1/2))*ec)/(2*Ps^3))  % Beta (cm^5/(F*C^2)) 
a=b*Ps^2         % Alpha (cm/F) 
  
V=20;            % potential (V) 
E=V/(t*10^(-7)); % Electric field (V/cm) 
  
%%% finding cubic roots of b.P^3 - a.P = E  comparing with 
% x^3+a1.x^2+a2.x+a3=0 as in math hand book. 
Q1=-(a/(3*b));  
Q=round(Q1*1e20)/1e20;  % Rounding Q1 to 20 decimal places 
R1=E/(2*b); 
R=round(R1*1e20)/1e20; 
D=((Q).^3)+((R).^2); 
S1=(((R)+((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
S=round(S1*1e20)/1e20; 
T1=(((R)-((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
T=round(T1*1e20)/1e20; 
  
p1=S+T;                                         % First root 
p2=-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i); % Second root 
p3=-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i); % Third root 
     
real1(1)=p1;   % First root is always real 
plot(expt_vol,expt_pol,'r^'); 
hold on; 
plot(V, real1(1), '*');  
hold on;         
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)');  
legend('Experimental','Simulated'); 



 

73 

 

Appendix H (Continued) 

 

%%%%%%%% 
n=((20+20)/.4)+1; 
V=20:-0.4:-20; 
% For selecting a root which is closest to the previous root 
for m=2:n; 
    E(m)=V(m)/(t*10^(-7)); 
    Q1=-(a/(3*b)); 
    Q=round(Q1*1e20)/1e20; 
    R1=E(m)/(2*b); 
    R=round(R1*1e20)/1e20; 
    D=((Q).^3)+((R).^2); 
  
    if (D>0 ) 
         
         if(D>0 && R1<0) 
         S=(-abs((D).^(1/2)-abs(R)).^(1/3)); 
         T=(-abs((D).^(1/2)+abs(R)).^(1/3)); 
         p1=S+T; 
         p2=-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i); 
         p3=-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i); 
         real1(m)=p1; 
         plot(V(m), real1(m), '*');  
         hold on; 
         else 
              S1=(((R)+((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              S=round(S1*1e20)/1e20; 
              T1=(((R)-((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              T=round(T1*1e20)/1e20; 
              p1=S+T; 
              p2=(-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i)); 
              p3=(-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i));          
     
              real1(m) = p1; 
          
              plot(V(m), real1(m), '*');  
              hold on; 
         end; 
    else  
              S1=(((R)+((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              S=round(S1*1e20)/1e20; 
              T1=(((R)-((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              T=round(T1*1e20)/1e20; 
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Appendix H (Continued) 

 

              p1=S+T; 
              p2=(-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i)); 
              p3=(-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i));     
              dist = [abs(real1(m-1)-p1) abs(real1(m-1)-p2) abs(real1(m-1)-p3)]; 
              if (dist(1) < dist(2)) 
                   small = p1; 
                   real1(m)=small; 
                   index = 1; 
                   plot(V(m),real1(m), '*'); 
                   hold on; 
                   else 
                        small = p2; 
                        real1(m)=small; 
                        index = 2; 
                        plot(V(m),real1(m), '*'); 
                        hold on; 
              end 
              if(dist(3) < dist(index)) 
                   small = p3; 
                   real1(m)=small; 
                   index = 3; 
                   plot(V(m),real1(m), '*'); 
                   hold on; 
              end 
  
    end 
end 
plot(V,real1); 
hold on; 
  
%%% For another part of hysteresis loop 
  
V=-20; 
E=V/(t*10^(-7)); 
Q1=-(a/(3*b)); 
Q=round(Q1*1e20)/1e20;  % Rounding Q1 to 20 decimal places 
R1=E/(2*b); 
R=round(R1*1e20)/1e20; 
D=((Q).^3)+((R).^2); 
S=(-abs((D).^(1/2)-abs(R)).^(1/3)); 
T=(-abs((D).^(1/2)+abs(R)).^(1/3)); 
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Appendix H (Continued) 

 

p1=S+T; 
p2=-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i); 
p3=-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i);          
  
real2(1)=p1; 
plot(V, real2(1), '*');  
hold on;         
%%%%%%%% 
n=((20+20)/.4)+1; 
V=-20:0.4:20; 
% For selecting a root which is closest to the previous root 
for m=2:n 
    E(m)=V(m)/(t*10^(-7)); 
    Q1=-(a/(3*b)); 
    Q=round(Q1*1e20)/1e20; 
    R1=E(m)/(2*b); 
    R=round(R1*1e20)/1e20; 
    D=((Q).^3)+((R).^2); 
  
    if (D>0 ) 
         
         if(D>0 && R1<0) 
         S=(-abs((D).^(1/2)-abs(R)).^(1/3)); 
         T=(-abs((D).^(1/2)+abs(R)).^(1/3)); 
         p1=S+T; 
         p2=-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i); 
         p3=-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i); 
         real2(m)=p1; 
         plot(V(m), real2(m), '*');  
         hold on; 
         else 
              S1=(((R)+((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              S=round(S1*1e20)/1e20; 
              T1=(((R)-((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              T=round(T1*1e20)/1e20; 
              p1=S+T; 
              p2=(-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i)); 
              p3=(-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i));        
  
              real2(m) = p1; 
          
              plot(V(m), real2(m), '*');  
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Appendix H (Continued) 

 

              hold on; 
         end; 
    else  
              S1=(((R)+((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              S=round(S1*1e20)/1e20; 
              T1=(((R)-((((Q).^3)+((R).^2)).^(1/2))).^(1/3)); 
              T=round(T1*1e20)/1e20; 
              p1=S+T; 
              p2=(-((0.5).*(S+T))+((S-T).*((3.^(1/2))./2).*i)); 
              p3=(-((0.5).*(S+T))-((S-T).*((3.^(1/2))./2).*i));        
              dist = [abs(real2(m-1)-p1) abs(real2(m-1)-p2) abs(real2(m-1)-p3)]; 
              if (dist(1) < dist(2)) 
                   small = p1; 
                   real2(m)=small; 
                   index = 1; 
                   plot(V(m),real2(m), '*'); 
                   hold on; 
                   else 
                        small = p2; 
                        real2(m)=small; 
                        index = 2; 
                        plot(V(m),real2(m), '*'); 
                        hold on; 
              end 
              if(dist(3) < dist(index)) 
                   small = p3; 
                   real2(m)=small; 
                   index = 3; 
                   plot(V(m),real2(m), '*'); 
                   hold on; 
              end 
  
    end 
end 
plot(V,real2); 
hold on; 
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Appendix I: MATLAB Code for Polarization Hysteresis Using J. Yu et al. Model 

 

clc;  
clear all;  
close all; 
%%%%loading experimental data 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
%%%%%%% 
  
ecp=(5.145e5)*(1e2);   %V/m positive coercive field 
ecn=-(4.549e5)*(1e2);  %V/m negative coercive field 
%t=210; %thickness in nm 
T=210e-9;  % thickness in m 
  
pmaxp=(8.461*10^-6)*(1*10^4);   %C/m^2 maximum positive polarization 
pmaxn=-(8.2274*10^-6)*(1*10^4); %C/m^2 maximum negative polarization 
psatp=(8.461*10^-6)*(1*10^4);   %C/m^2 positive saturation polarization 
psatn=-(8.2274*10^-6)*(1*10^4); %C/m^2 negative saturation polarization 
prp=(7.29*10^-6)*(1*10^4);      %C/m^2 positive remnant polarization 
prn=-(7.41*10^-6)*(1*10^4);     %C/m^2 negative remnant polarization 
  
vmaxp=20;                 %maximum positive applied voltage in volt 
vmaxn=-20;                %maximum negative applied voltage in volt 
emaxp=vmaxp/T;            %maximum positive electric field in v/m 
emaxn=vmaxn/T;            %maximum positive electric field in v/m 
ap=(pmaxp-psatp)/emaxp    %alpha+ 
an=(pmaxn-psatn)/emaxn    %alpha- 
  
%for calculating delta+ 
x=((pmaxp-(2*prn)-psatp)/(pmaxp+psatp)); 
ddp=-(tan(x*(pi/2))/ecp)  %delta+ 
  
%for calculating delta- 
z=((pmaxn-(2*prp)-psatn)/(pmaxn+psatn)); 
ddn=-(tan(z*(pi/2))/ecn)  %delta- 
  
n=((vmaxp-vmaxn)/.2)+1; 
%for positive sweep 
V=vmaxn:0.2:vmaxp; 
for m=1:n 
    E(m)=V(m)./T; 
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Appendix I (Continued) 

 

    y(m)=-(ddp.*(ecp-E(m))); 
    PDUP(m)=pmaxp-((pmaxp+psatp).*((atan(y(m))./pi)+0.5))+(ap.*E(m)); 
    PP(m)=PDUP(m)*1e-4; %polarization in C/cm2 
end; 
plot(expt_vol,expt_pol,'r^'); 
hold on; 
plot (V, PP,'b*') 
legend('Experimental','Simulated'); 
%for negative sweep 
VV=vmaxp:-0.2:vmaxn; 
for m=1:n 
    EE(m)=VV(m)./T; 
    yy(m)=-(ddn.*(ecn-EE(m))); 
    PDDN(m)=pmaxn-((pmaxn+psatn).*((atan(yy(m))./pi)+0.5))+(an.*EE(m)); 
    PPPP(m)=PDDN(m)*1e-4; %polarization in C/cm2 
end; 
plot (VV, PPPP,'b*') 
hold on; 
xlabel('Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
  
 
 

 



 

79 

 

Appendix J: MATLAB Code for Polarization Hysteresis Using Y. L. Wang et al. 

Model 

 

clc; 
clear all; 
close all; 
  
%%%% 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
%%%%%%% 
  
B1=1.2*10^-7; %1.622*(3.1407e-6)*1.89e-2;  %m/V % increase this to get more steep 
curve  
B2=-4.357*10^-25;  %-6.4534e-20*(1.89e-2)^3;   % m^3/V^3, 
  
eps_ferro=10; 
PR=(7.35*10^-6)*(1*10^4); %C/m^2 % if decreased, polarization constant/ extreme 
decrease in capacitance (desired) 
%Ps=7e-6 % C/cm^2 
PS=(8.34*10^-6)*(1*10^4); %C/m^2 % if increased, polarization constant/ small 
increase in capacitance 
%Ec=0.5e6    %V/cm 
EC=(0.4847*10^6)*(1*10^2);  %V/m % if increased, thickness of polarization curve 
increases/ slight decrease in capacitance 
%t=210; %thickness in nm 
T=210*10^-9;  % thickness in m 
%fer_area = 500e-4*100e-4;  % AREA in cm^2 
fer_area = 5e-4*1e-4;  % AREA in m^2  
% calculation of delta (for capacitance) 
Prs=PR/PS; 
dlt=EC*(1/(log10((1+Prs)/(1-Prs)))); 
  
% for calc of a 
tpc=27;  %room temp in centigrade 
tp=300;  % in kelvin 
t0c=170;   %Curie Weiss temp in centigrade 
t0=443;  % Curie Weiss temp in kelvin 
C=500;   %Curie Weiss constant in Kelvin 
ee0=8.8541e-12;  %permitivity of free space (F/m) 
a=-((tp-t0)/(ee0*C)); % alfa (m/F), should be negative and without  
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Appendix J (Continued) 

 
%factor '2'(as in original formula) to compensate the change in formula 
b=4.1e12;  % beta (m^5/(F*C^2))(directly choosen)  
%increase in this value decreases height of hysteresis 
V0=20; 
E0=V0/T; 
aupp=(atan((B1.*(E0-EC))+(B2.*(E0-EC).^3))+(pi./2))./pi 
aupn=(atan((B1.*(-E0-EC))+(B2.*(-E0-EC).^3))+(pi./2))./pi 
  
  
n=((V0+V0)/.4)+1; 
V=V0:-0.4:-V0; 
for m=1:n 
    E(m)=V(m)./T; 
    aup(m)=(atan((B1.*(E(m)-EC))+(B2.*(E(m)-EC).^3))+(pi./2))./pi; 
    baup(m)=aup(m)+((1-aupp-aupn)./2);  %alfa up prime  
    p3 = [b 0 -a (1-(2.*baup(m))).*E(m)];  
    r3 = roots(p3) ; 
    Pup(m) = abs(r3(1)); 
    P(m)=((2.*baup(m))-1).*Pup(m);  %in C/m2 
    PP(m)=P(m)*1e-4; % in C/cm2 
    Pa(m)=((2.*aup(m))-1).*Pup(m);  %in C/m2 
    PPa(m)=Pa(m)*1e-4; % in C/cm2 
    %above part is for for calculating polarization 
     
     
    eps(m)=eps_ferro+(((PS-(P(m).^2)./PS))./(2.*dlt.*ee0));  
    cap_ferr(m)= ((eps(m).*ee0)*fer_area)./T; 
    FP(m)=-P(m);    % fliping polarization value in C/m2 
    FPP(m)=-PP(m);  % fliping polarization value in C/cm2 
    FPPa(m)=-PPa(m); 
    hold on; 
end; 
  
figure (1) 
%plot (V, PPa,'b.','MarkerSize',10) 
plot (V, PPa,'b.'); 
plot (V, PP,'kx') 
plot(expt_vol,expt_pol,'r^'); 
plot(V, Pup*1e-4, 'g*') 
legend( 'Using \alpha_u_p','Using \alpha^I_u_p','Experimental','P_u_p'); 
 figure (2) 
plot(V, aup,'k') 
hold on; 
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Appendix J (Continued) 

 

plot(V, baup) 
%%%%%%%%%%%%%%%%% 
  
VV=-V0:0.4:V0;  
for m=1:n 
    eps(m)=eps_ferro+(((PS-(FP(m).^2)./PS))./(2.*dlt.*ee0));  
    cap_ferr2(m)= ((eps(m).*ee0)*fer_area)./T; 
    hold on; 
end; 
  
figure (1) 
  
plot (VV, FPP,'kx'); 
plot (VV, FPPa,'b.'); 
hold on; 
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
box on; 
  
axis([-20 20 -1e-5 1e-5]) 
  
h1 = figure(1); 
h2 = get(h1,'CurrentAxes'); 
% Note: edit these numbers to change position 
% and size of inset plot 
h3 = axes('pos',[.757 .16 .15 .2]); 
plot (V, PP,'kx','MarkerSize',5) 
hold on 
plot (V, PPa,'O','MarkerEdgeColor','b','MarkerFaceColor','b','MarkerSize',2); 
hold on 
plot (VV, FPP,'kx','MarkerSize',5) 
hold on 
plot (VV, FPPa,'O','MarkerEdgeColor','b','MarkerFaceColor','b','MarkerSize',2); 
hold on 
% xlabel('V') 
% ylabel('P') 
axis([15.8 20.1 0.72e-5 0.88e-5]) 
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Appendix K: MATLAB Code for Polarization and Capacitance Hysteresis Using 

Model Based on Predicting Coefficients β1 and β2 

 

clc; 
clear all; 
close all; 
  
%%%% 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
%%%%%%% 
  
area=5e-4*1e-4;  % AREA in m^2 % 
eps_ferro=10;     % Relative permittivity of P(VDF-TrFE) 
ee0=8.8541e-12;  % permitivity of free space (F/m) 
%t=210; %thickness in nm 
T=210e-9;  % thickness in m 
Cc=(area*ee0*eps_ferro)/T; % Capacitance 
EC=(4.847e5)*(1e2);  %V/m 
  
% For calculating beta1 and beta2 
PRneg=-(7.35*10^-6)*(1*10^4); %C/m^2 negative remnant polarization 
PC=-(7.994*10^-6)*(1*10^4);   %C/m^2 Polarization at negative coercive field 
PUP=(8.34*10^-6)*(1*10^4);    %C/m^2 Spontaneous polarization  
r1=PRneg/PUP 
r2=PC/PUP 
aup1=(1+r1)/2 
aup2=(1+r2)/2 
x1=-tan(pi*(aup1-0.5)) 
x2=-(tan(pi*(aup2-0.5)))/2 
B2=(x2-x1)/(3*EC^3) 
B1=((4*x1)-x2)/(3*EC) 
  
pvec= [PC PRneg  ]/(1*10^4); 
Vvec=[ -T*EC  0  ]; 
  
V0=20; 
E0=V0/T; 
aupp=(atan((B1.*(E0-EC))+(B2.*(E0-EC).^3))+(pi./2))./pi; 
aupn=(atan((B1.*(-E0-EC))+(B2.*(-E0-EC).^3))+(pi./2))./pi; 
k=((1-aupp-aupn)./2); 
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Appendix K (Continued) 

 

n=((V0+V0)/.05)+1; 
V=V0:-0.05:-V0; 
for m=1:n 
    E(m)=V(m)./T; 
    x(m)=(B1.*(E(m)-EC))+(B2.*(E(m)-EC).^3); 
    aup(m)=(atan(x(m))+(pi./2))./pi; % alpha up 
    baup(m)=aup(m)+k;  % alpha up prime 
    %P(m)=((2.*baup(m))-1).*PUP; % in C/m2 
    P(m)=((2.*aup(m))-1).*PUP; % in C/m2 
    PP(m)=P(m)*1e-4; % in C/cm2 
    %plot (V(m), PP(m),'b*') 
    FP(m)=-PP(m);  % fliping polarization value 
     
    %for capacitance 
    xx(m)=1./(1+(x(m).^2)); 
    y(m)=B1+(3.*B2.*((E(m)-EC).^2));  
    daupdv(m)=(xx(m).*y(m))./(pi.*T); 
    C(m)=Cc+(2.*area.*PUP.*daupdv(m)); 
    hold on; 
end; 
figure(1); % Polarization plot 
plot(expt_vol,expt_pol,'r^'); 
plot (V, PP,'bx') 
  
plot( Vvec, pvec,'O','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',11); 
hold on; 
  
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
box on; 
VV=-V0:0.05:V0;  
figure(1); % Polarization plot 
plot (VV, FP,'bx') 
hold on; 
legend( 'Experimental','Simulated'); 
  
figure(2); % Capacitance plot 
plot(V,C,'g*'); 
hold on; 
plot(VV,C,'g*'); 
xlabel('Voltage (V)'); 
ylabel('capacitance (F)'); 
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Appendix L: MATLAB Code for Polarization Hysteresis Using New Practical 

Model with Three-point Fit 

 

clc; 
clear all; 
close all; 
n1=3;%  exponent for u term in expression 
n2=5; 
  
%%%% 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
%%%%%%% 
  
Vo=20; 
  
%Ec=-0.5e6    %V/cm 
EC=(4.847e5)*(1e2);  %V/m 
z=0.2 % E3=EC(1+z) 
% new model based on  recognition there is no perfect cubic symmetry respect to Ec 
%t=210; %thickness in nm 
T=210e-9;  % thickness in m 
Vcon=(1+z)*EC*T 
  
%  use  two values but on negative side of  Ec 
PRneg=-(7.35*10^-6)*(1*10^4); %C/m^2 negative remnant polarization 
PC=-(7.994*10^-6)*(1*10^4); %C/m^2 polarization at negative coercieve field 
P3=(7.15*10^-6)*(1*10^4); %C/m^2 polarization at V3 ( using z  factor) 
PUP=(8.34*10^-6)*(1*10^4); %C/m^2 Pmax or Ps 
  
% for calculation B1, B2, B3 
r1=PRneg/PUP 
r2=PC/PUP 
r3=P3/PUP 
pvec= [PC PRneg  P3 ]/(1*10^4); 
Vvec=[ -T*EC  0   T*EC*(1+z) ]; 
aup1=(1+r1)/2 
aup2=(1+r2)/2 
aup3=(1+r3)/2 
x1=tan(pi*(aup1-0.5))%  at  zero 
x2=tan(pi*(aup2-0.5)) %  at  -EC 
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Appendix L (Continued) 

 

x3=tan(pi*(aup3-0.5)) %  at  +EC(1+z) 
  
Vmax=Vo; 
Vmin=-Vo; 
N=900; 
stair=0:N;  % sequence  starts at zero and ends on N 
une=ones(size(stair)); 
V=Vmin*une+  (Vmax-Vmin)/N*stair; %  allowed values for V 
Efield=V/T;  % allowed electric field values 
  
%  x= B1*(EFIELD -EC)+ B2* u(EFIELD -EC)*(EFIELD -EC)^n1 +B3*(EFIELD -
EC)^n2  
%EField=0; 
%x1= -EC* B1 +   0   +           B3*(-EC)^n2 
%EField=-EC; 
%x2= - 2*B1*EC  + 0   +          B3*(-2*EC)^n2 ; 
% EFIELD= EC(1+z)  
%x3= z* B1*EC +    B2*(z*EC)^n1 +     B3*(z*EC)^n2 
%%%%%%%%%%%%%%%% 
  
a=-EC;  b=0;     c=(-EC)^n2; 
d=-2*EC;  e=0;    f=(-2*EC)^n2; 
g=z*EC;   h=(z*EC)^n1;   k=(z*EC)^n2; 
% invers matrix coefficients 
A=e*k-f*h;  D= c*h-b*k;   G=b*f-c*e; 
B=f*g-d*k;  E= a*k-c*g;   H=c*d-a*f; 
C=d*h-e*g;   F=g*b-a*h;    K=a*e-b*d 
%  detA in denominator is not yet included 
detA=a*A+b*B+c*C; 
B1=(A*x1+D*x2+G*x3)/detA% predicted constant 
B2=(B*x1+E*x2+H*x3)/detA% predicted constant  
B3=(C*x1+F*x2+K*x3)/detA% predicted constant 
  
text1=num2str( n1)  
text2=num2str( n2) 
Gtext=strcat( ' exponents  unit step  and for extra power term ', text1, ' ',text2) 
  
  
u= 0.5*( (sign(Efield-(EC)*une))+une); % unit step function 
  
x=B1*(Efield-EC*une)+ B2*u.*(Efield-EC*une).^(n1*une)+ B3*(Efield -
EC*une).^(n2*une)  



 

86 

 

 Appendix L (Continued) 
 

% predict Xarray values and alpha_up 
aup= (atan(x)+une*pi/2)/pi; 
P=(2*aup-une)*PUP; 
PP=P*1e-4; % in C/cm2 
plot(expt_vol,expt_pol,'r^');  
hold on; 
for m=1:N+1 
    plot (V(m), PP(m),'bx') 
    FP(m)=-PP(m);  % fliping polarization value 
    hold on; 
end; 
  
legend( 'Experimental','Simulated'); 
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
  
for m=1:N+1 
    VV(m)=V(N+2-m); 
    hold on; 
end; 
plot (VV, FP,'bx') 
hold on;   
plot( V, PP, Vvec, pvec,'O','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10); 
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Appendix M: MATLAB Code for Polarization and Capacitance Hysteresis Using 

New Practical Model with Four-point Fit 

 

clc;clear all;close all; 
%%%% 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
%%%%%%% 
area=5*10^-8;    % AREA in m^2 % 
eps_ferro=10;     % Relative permittivity of P(VDF-TrFE) 
ee0=8.8541e-12;  %permitivity of free space (F/m) 
%t=210;          %thickness in nm 
T=210e-9;        % thickness in m 
Cc=(area*ee0*eps_ferro)/T; % For total capacitance calculation 
  
%%%%positive sweep 
EC=(5.145e5)*(1e2);  %V/m coercieve field 
z=0.2                % E3=EC(1+z) 
z4=0.2               % E3=EC(1+z4) 
Vcon=(1+z)*EC*T 
Vconneg=(1-z4)*EC*T 
PRneg=-(7.41*10^-6)*(1*10^4);     %C/m^2 negative remnant polarization 
PC=-(7.994*10^-6)*(1*10^4);       %C/m^2 polarization at negative coercieve field 
P3=(7.68*10^-6)*(1*10^4);         %C/m^2 polarization at V3 at Vcon 
P4=-(5.42*10^-6)*(1*10^4);        %C/m^2 polarization at V4 at Vconneg 
PUP=(8.460834961*10^-6)*(1*10^4); %C/m^2 max pol or spontaneous pol 
pvec= [PC PRneg  P3 P4 ]/(1*10^4); 
Vvec=[ -T*EC  0   T*EC*(1+z) T*EC*(1-z4) ]; 
% for calculation B1, B2, B3 
r1=PRneg/PUP 
r2=PC/PUP 
r3=P3/PUP 
r4=P4/PUP 
  
aup1=(1+r1)/2 
aup2=(1+r2)/2 
aup3=(1+r3)/2 
aup4=(1+r4)/2 
  
x1=tan(pi*(aup1-0.5)) 
x2=tan(pi*(aup2-0.5)) 
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Appendix M (Continued) 

 

x3=tan(pi*(aup3-0.5)) 
x4=tan(pi*(aup4-0.5)) 
% calculating B1, B2,B3,B4 using matrix inversion method using inv function 
%  x= B1*(EFIELD -EC)+ B2*(EFIELD -EC)^2* u( E-EC)  + B3*(EFIELD-EC)^2 
u(EC-E)  + B4*(EFIELD -EC)^3  
  
%EField=0; 
%x1= -EC* B1 +    B2*0   B3*(-EC)^2)  +    B4*(0-EC)^3 
%EField=-EC; 
%x2= - 2*B1*EC  + B2*0     B3*(-2*EC)^2)  +      B4*(-2*EC)^3 ; 
% EFIELD= EC(1+z)  
%x3= z* B1*EC +    B2*(z*EC)^2 +     B3*0  +  B4*(z*EC)^3 
% EFIELD= EC(1-z)  
%x4= -z* B1*EC +    B2*0 +    B3*(-z*EC)^2  +   B4*(-z*EC)^3 
%%%%%%%%%%%%%%%% 
  
A=[-EC       0         (-EC)^2      (-EC)^3;  
    -(2*EC)  0         (-2*EC)^2      (-2*EC)^3 ; 
      z*EC  (z*EC)^2   0             (z*EC)^3;  
      -z4*EC  0         (-z4*EC)^2        (-z4*EC)^3]; 
I=inv(A) 
X=[x1; x2; x3; x4] 
  
B=I*X 
B1=B(1) 
B2=B(2) 
B3=B(3) 
B4=B(4) 
%%%%%% 
Vo=20; 
Vmax=Vo; 
Vmin=-Vo; 
N=1000; 
stair=0:N;  % sequence  starts at zero and ends on N 
une=ones(size(stair)); 
V=Vmin*une+  (Vmax-Vmin)/N*stair; %  allowed values for V 
Efield=V/T;  % allowed electric field values 
up= 0.5*( (sign(Efield-EC*une))+une); 
um=0.5*( (sign(EC*une-Efield))+une); 
  
x= B1*(Efield-EC)+ B2*(Efield -EC).^(2*une).*up   + B3*(Efield-EC).^(2*une).*um + 
B4*(Efield -EC).^(3*une);  
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Appendix M (Continued) 

 

aup= (atan(x)+une*pi/2)/pi; 
P=(2*aup-une)*PUP; 
PP=P*1e-4; % in C/cm2 
figure(1); 
plot( V, PP, 'x') 
hold on; 
plot(expt_vol,expt_pol,'r^'); 
hold on; 
plot( V, PP, Vvec, pvec,'O','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10); 
  
for m=1:N+1 
    %for capacitance 
    xx(m)=1./(1+(x(m).^2)); 
    y(m)=B1+(2.*B2.*((Efield(m)-EC).*up(m)))+(2.*B3.*((Efield(m)-
EC).*um(m)))+(3.*B4.*((Efield(m)-EC).^2));  
    daupdv(m)=(xx(m).*y(m))./(pi.*T); 
    C(m)=Cc+(2.*area.*PUP.*daupdv(m)); 
end; 
figure(2); %capacitance plot 
plot(V,C,'bx'); 
hold on; 
xlabel('Voltage (V)'); 
ylabel('capacitance (F)'); 
  
%%%%% for down sweep part 
ECN=-(4.549e5)*(1e2);  %V/m negative coercieve electric field 
z=0.2 % E3=ECN(1+z) 
z4=0.2 % E3=ECN(1+z4) 
%t=210; %thickness in nm 
T=210e-9;  % thickness in m 
Vcon=(1+z)*ECN*T %v3 
Vconneg=(1-z4)*ECN*T  %v4 
PRpos=(7.2938*10^-6)*(1*10^4); %C/m^2 positive remnant polarization 
PC=(8.0*10^-6)*(1*10^4);       %C/m^2 polarization at positive coercieve field 
P3=-(7.06042*10^-6)*(1*10^4);  %C/m^2 polarization at V3 at Vcon 
P4=(5.0765*10^-6)*(1*10^4);    %C/m^2 polarization at V4 at Vconneg 
PUP=-(8.22743*10^-6)*(1*10^4); %C/m^2 max pol or spontaneous pol 
pvec= [PC PRpos P3 P4 ]/(1*10^4); 
Vvec=[ -T*ECN  0   T*(ECN)*(1+z) T*(ECN)*(1-z4) ]; 
  
r1=PRpos/PUP 
r2=PC/PUP 
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Appendix M (Continued) 

 

r3=P3/PUP 
r4=P4/PUP 
  
aup1=(1+r1)/2 
aup2=(1+r2)/2 
aup3=(1+r3)/2 
aup4=(1+r4)/2 
  
x1=tan(pi*(aup1-0.5)) 
x2=tan(pi*(aup2-0.5)) 
x3=tan(pi*(aup3-0.5)) 
x4=tan(pi*(aup4-0.5)) 
% calculating B1, B2,B3,B4 using matrix inversion method using inv function 
%  x= B1*(EFIELD -ECN)+ B2*(EFIELD -ECN)^2* u( E-ECN)  + B3*(EFIELD-
ECN)^2 u(ECN-E)  + B4*(EFIELD -ECN)^3  
  
%EField=0; 
%x1= -ECN* B1 +    B2*(-ECN)^2)   B3*0  +    B4*(0-ECN)^3 
%EField=-ECN; 
%x2= - 2*B1*ECN  + B2*(-2*ECN)^2)     B3*0  +      B4*(-2*ECN)^3 ; 
% EFIELD= ECN(1+z)  
%x3= z* B1*ECN +    B2*0 +     B3*(z*ECN)^2  +  B4*(z*ECN)^3 
% EFIELD= ECN(1-z)  
%x4= -z* B1*ECN +    B2*(-z*ECN)^2  +    B3*0  +   B4*(-z*ECN)^3 
%%%%%%%%%%%%%%%% 
  
A=[-ECN       (-ECN)^2     0             (-ECN)^3;  
    -(2*ECN)     (-2*ECN)^2      0     (-2*ECN)^3 ; 
      z*ECN     0          (z*ECN)^2     (z*ECN)^3;  
      -z4*ECN    (-z4*ECN)^2    0           (-z4*ECN)^3]; 
I=inv(A) 
X=[x1; x2; x3; x4] 
  
B=I*X 
B1=B(1) 
B2=B(2) 
B3=B(3) 
B4=B(4) 
%%%%%% 
Vo=20; 
Vmax=Vo; 
Vmin=-Vo; 
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Appendix M (Continued) 

 

N=1000; 
stair=0:N;  % sequence  starts at zero and ends on N 
une=ones(size(stair)); 
V=Vmin*une+  (Vmax-Vmin)/N*stair; %  allowed values for V 
Efield=V/T;  % allowed electric field values 
up= 0.5*( (sign(Efield-ECN*une))+une); 
um=0.5*( (sign(ECN*une-Efield))+une); 
  
x= B1*(Efield-ECN)+ B2*(Efield -ECN).^(2*une).*up   + B3*(Efield-
ECN).^(2*une).*um + B4*(Efield -ECN).^(3*une);  
aup= (atan(x)+une*pi/2)/pi; 
P=(2*aup-une)*PUP; 
PP=P*1e-4; % in C/cm2 
figure(1); 
plot( V, PP, 'x') 
hold on; 
plot(expt_vol,expt_pol,'r^'); 
hold on; 
plot( V, PP, Vvec, pvec,'O','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',10); 
%plot( V, PP, Vvec, pvec,'s'); 
legend( 'simulated','experimental'); 
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
  
for m=1:N+1 
    %for capacitance 
    xx(m)=1./(1+(x(m).^2)); 
    y(m)=B1+(2.*B2.*((Efield(m)-ECN).*up(m)))+(2.*B3.*((Efield(m)-
ECN).*um(m)))+(3.*B4.*((Efield(m)-ECN).^2));  
    daupdv(m)=(xx(m).*y(m))./(pi.*T); 
    C(m)=Cc+(2.*area.*PUP.*daupdv(m)); 
end; 
figure(2); %capacitance plot 
plot(V,C,'bx'); 
hold on; 
xlabel('Anode Voltage (V)'); 
ylabel('capacitance (F)'); 
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Appendix N: MATLAB Code for Large-Signal Capacitance Hysteresis Using Point 

to Point Numerical Derivative 

 

clc;clear all;close all; 
%%%% 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
%%%%%%% 
 format long; 
load Expt2nega.dat; 
expt_vol1 = Expt2nega(:,1); 
expt_pol1 = Expt2nega(:,2); 
load Expcapa1.dat; 
expv=Expcapa1(:,1); 
expc=Expcapa1(:,2); 
load Expt2pos.dat; 
exptposvol = Expt2pos(:,1); 
exptpospola = Expt2pos(:,2); 
%%%%%%% 
  
areacgs=5e-4 
eps_ferro=10;     % Relative Permittivity of P(VDF-TrFE) 
ee0=8.8541e-12;  % permitivity of free space (F/m) 
ee0cgs=8.8541e-14; 
%t=210; %thickness in nm 
T=210e-9;        % thickness in m 
Tcgs=210e-7; 
 
%%% jumping points  
      jump=3; 
      R=rem (251, (jump+1)); 
      N=1+((251-R)/(jump+1)); 
       
      rmexptv(1)= expt_vol1(1);    
      rmexptp(1)= expt_pol1(1); 
  for n=1:1:(N-1) 
      rmexptv(n+1)= expt_vol1(1+(jump+1).*n); 
      rmexptp(n+1)= expt_pol1(1+(jump+1).*n); 
  end; 
       
derN= diff(rmexptp)./diff(rmexptv); 
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Appendix N (Continued) 

 

derNN=round(derN.*1e40)./1e40;  
for n=1:(N-1) 
 exptnegV(n)= rmexptv(n); 
    Cnumneg(n) = (areacgs/Tcgs).*((ee0cgs*eps_ferro)+(Tcgs*derNN(n))); 
end 
%positive part 
for j=1:251 
        exptposvol2(j)= exptposvol(252-j); 
    exptpospola2(j) = exptpospola(252-j); 
end; 
%%% removing two points  
      rmexptvp(1)= exptposvol2(1);    
      rmexptpp(1)= exptpospola2(1); 
  for n=1:1:(N-1) 
      rmexptvp(n+1)= exptposvol2(1+(jump+1).*n); 
      rmexptpp(n+1)= exptpospola2(1+(jump+1).*n); 
  end; 
derP= diff(rmexptpp)./diff(rmexptvp); 
derPP=round(derP.*1e40)./1e40;  
  
for n=1:(N-1) 
 exptposV(n)= rmexptvp(n); 
    Cnumpos(n) = (areacgs/Tcgs).*((ee0cgs*eps_ferro)+(Tcgs*derPP(n))); 
end 
 
figure(1); %capacitance plot 
plot(exptnegV, Cnumneg, 'k', 'linewidth', 2.5 ); 
hold on; 
plot(exptposV, Cnumpos ,'r', 'linewidth', 2.5 ); 
legend ('Num-derv-neg-sweep', 'Num-derv-pos-sweep'); 
xlabel('Voltage (V)'); 
ylabel('capacitance (F)'); 
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Appendix O: MATLAB Code for Capacitance Hysteresis Using S. L. Miller et al. 

Model 

 

clear all;close all; clc; 
L=0.210e-4;         % Thickness of the device in cm 
Ec=4.847e5;         % Coercive field (V/cm) 
Pr=7.35e-6;          % Remnant Polarization (C/cm^2) 
Ps=8.34e-6;          % Spontaneous Polarization (C/cm^2) 
eps_ferro=10;         % Relative permittivity of P(VDF-TrFE) 
epso=8.854e-14;  % Permittivity of free space (F/cm) 
V=[-20:.4:20]; 
[m,n]=size(V); 
A = zeros(n,2); 
B = zeros(n,2); 
eps_E=zeros(n,2); 
cap_den=zeros(n,2); 
fer_area = 500e-4*100e-4;  % AREA 
Prs=Pr/Ps; 
dlt=Ec*(1/(log10((1+Prs)/(1-Prs)))); % Delta 
for i=1:n 
    E=V(i)/L; 
    %eps_E=eps_ferro+(Ps*2*dlt*(sech((E-Ec)/(2*dlt)))^2);  
    % Field dependent permittivity 
    eps_E=epso*eps_ferro+(Ps*(sech((E-Ec)/(2*dlt)))^2)/(2*dlt);  
    cap_ferr= (eps_E*fer_area)/L;  
    cap_den(i,2) = cap_ferr 
    cap_den(i,1) = V(i) 
end 
figure(1); 
plot(cap_den(:,1), cap_den(:,2),'-*b');  
hold on; 
V=[-20:.4:20]; 
Ec=-Ec; 
for i=1:n 
    E=V(i)/L; 
    eps_E=epso*eps_ferro+(Ps*(sech((E-Ec)/(2*dlt)))^2)/(2*dlt);  
    cap_ferr= (eps_E*fer_area)/L;  
    cap_den(i,2) = cap_ferr 
    cap_den(i,1) = V(i) 
end 
plot(cap_den(:,1),cap_den(:,2),'-*b');   
xlabel('Anode Voltage (V)'); 
ylabel('Capacitance (F)'); 
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Appendix P: MATLAB Code for Small-Signal Capacitance Hysteresis 

 

clc;  
clear all;  
close all; 
 %%%% 
format long; 
load Expt2.dat; 
expt_vol = Expt2(:,1); 
expt_pol = Expt2(:,2); 
load Expcapa1.dat; 
expv=Expcapa1(:,1); 
expc=Expcapa1(:,2); 
%%%%%%% 
area=5*10^-8;        % AREA in m^2 % 
eps_ferro=10;           % Relative Permittivity of P(VDF-TrFE) 
ee0=8.8541e-12;     % permitivity of free space (F/m) 
T=210e-9;               % thickness in m 
Cc=(area*ee0*eps_ferro)/T; 
f=1*10^6                % frequency in Hertz 
y=2e3                      % viscosity coefficient  
w=2*pi*f; 
RS=(y*T)/area; 
%EC=(5.145e5)*(1e2); %V/m original 
EC=(4.145e5)*(1e2);  %V/m 
z=0.2                           % E3=EC(1+z) 
z4=0.2                         % E3=EC(1+z4) 
   
Vcon=(1+z)*EC*T 
Vconneg=(1-z4)*EC*T 
PRneg=-(7.41*10^-6)*(1*10^4);          %C/m^2 negative remnant polarization 
PC=-(7.994*10^-6)*(1*10^4);              %C/m^2 polarization at negative coercieve field 
P3=(7.68*10^-6)*(1*10^4);                  %C/m^2 polarization at V3 at Vcon 
P4=-(5.42*10^-6)*(1*10^4);                 %C/m^2 polarization at V4 at Vconneg 
PUP=(8.460834961*10^-6)*(1*10^4); %C/m^2 max pol or spontaneous pol 
 pvec= [PC PRneg 0 P3 P4 ]/(1*10^4); 
Vvec=[ -T*EC  0 T*EC  T*EC*(1+z) T*EC*(1-z4) ]; 
b=((3*(3^(1/2))*EC)/(2*PUP^3))  % beta 
a=b*PUP^2                                     % alpha 
% for calculation B1, B2, B3 and B4 
r1=PRneg/PUP; 
r2=PC/PUP; 
r3=P3/PUP; 
r4=P4/PUP; 
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Appendix P (Continued) 
 

aup1=(1+r1)/2; 
aup2=(1+r2)/2; 
aup3=(1+r3)/2; 
aup4=(1+r4)/2; 
  
x1=tan(pi*(aup1-0.5)) 
x2=tan(pi*(aup2-0.5)) 
x3=tan(pi*(aup3-0.5)) 
x4=tan(pi*(aup4-0.5)) 
%  x= B1*(EFIELD -EC)+ B2*(EFIELD -EC)^2* u( E-EC)  + B3*(EFIELD-EC)^2 
u(EC-E)  + B4*(EFIELD -EC)^3  
  
%EField=0; 
%x1= -EC* B1 +    B2*0   B3*(-EC)^2)  +    B4*(0-EC)^3 
%EField=-EC; 
%x2= - 2*B1*EC  + B2*0     B3*(-2*EC)^2)  +      B4*(-2*EC)^3 ; 
% EFIELD= EC(1+z)  
%x3= z* B1*EC +    B2*(z*EC)^2 +     B3*0  +  B4*(z*EC)^3 
% EFIELD= EC(1-z)  
%x4= -z* B1*EC +    B2*0 +    B3*(-z*EC)^2  +   B4*(-z*EC)^3 
%%%%%%%%%%%%%%%% 
%finding B1, B2, B3, B4 using inverse matrix method 
  
A=[-EC       0         (-EC)^2      (-EC)^3;  
    -(2*EC)  0         (-2*EC)^2      (-2*EC)^3 ; 
      z*EC  (z*EC)^2   0             (z*EC)^3;  
      -z4*EC  0         (-z4*EC)^2        (-z4*EC)^3]; 
I=inv(A) 
X=[x1; x2; x3; x4] 
  
B=I*X 
B1=B(1) 
B2=B(2) 
B3=B(3) 
B4=B(4) 
%%%%%% 
Vo=20; 
Vmax=Vo; 
Vmin=-Vo; 
N=1000; 
stair=0:N;  % sequence  starts at zero and ends on N 
une=ones(size(stair)); 
V=Vmin*une+  (Vmax-Vmin)/N*stair; %  allowed values for V 
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Appendix P (Continued) 

 

Efield=V/T;  % allowed electric field values 
  
up= 0.5*( (sign(Efield-EC*une))+une); 
um=0.5*( (sign(EC*une-Efield))+une); 
  
x= B1*(Efield-EC)+ B2*(Efield -EC).^(2*une).*up   + B3*(Efield-EC).^(2*une).*um + 
B4*(Efield -EC).^(3*une);  
aup= (atan(x)+une*pi/2)/pi; 
P=(2*aup-une)*PUP; 
PP=P*1e-4; % in C/cm2 
  
plot( V, PP, 'x') 
hold on; 
 plot( V, PP, Vvec, pvec,'s'); 
  
for m=1:N+1 
    plot (V(m), PP(m),'b*') 
    FP(m)=-PP(m);  % fliping polarization value 
    hold on; 
end; 
xlabel('Anode Voltage (V)'); 
ylabel('Polarization (C/cm^2)'); 
  
for m=1:N+1 
    VV(m)=V(N+2-m); 
end; 
plot( VV, FP, 'x') 
hold on; 
plot(expt_vol,expt_pol,'r^'); 
box on; 
grid on; 
for m=1:N+1 
    %for capacitance 
    xx(m)=1./(1+(x(m).^2)); 
    y(m)=B1+(2.*B2.*((Efield(m)-EC).*up(m)))+(2.*B3.*((Efield(m)-
EC).*um(m)))+(3.*B4.*((Efield(m)-EC).^2));  
    daupdv(m)=(xx(m).*y(m))./(pi.*T); 
    C(m)=Cc+(2.*area.*PUP.*daupdv(m)); 
     %% for small signal capacitor 
    Q(m)=area.*((ee0.*eps_ferro.*Efield(m))+P(m)); %% charge 
    term(m)=area./(T.*(a+(3.*b.*((Q(m)./area).^2)))); 
    term2(m)=(1+(RS.*w.*term(m))); 
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Appendix P (Continued) 

  

   Csmall(m)=area./((T.*(a+(3.*b.*((Q(m)./area).^2))))+(area.*RS.*w)); 
    end; 
figure(2); %capacitance plot 
plot(V,C,'bx'); 
hold on; 
plot(VV,C,'bx'); 
plot(expv,expc,'r^'); 
box on; 
xlabel('Anode Voltage (V)'); 
ylabel('Capacitance (F)'); 
grid on; 
 
figure(3); %capacitance plot 
plot(V,Csmall,'bx'); 
hold on; 
plot(VV,Csmall,'bx'); 
hold on; 
plot(expv,expc,'r^'); 
xlabel('Anode Voltage (V)'); 
ylabel('Capacitance (F)'); 
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