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Abstract 

 

A COMPARATIVE ANALYSIS OF FEATURE EXTRACTION 

TECHNIQUES FOR EEG SIGNALS FROM ALZHEIMER PATIENTS 

 
Ramya Priya Mudhiganti 

Thesis chair: Hassan El-Kishky, Ph.D. 

 

The University of Texas at Tyler 

 

May 2012 

 

 This research deals with the study of Alzheimer Disease (AD). 

Electroencephalogram (EEG) signal is a clinical tool for the diagnosis and detection of 

AD. EEG signals are analyzed for the diagnosis of AD applying several linear and non-

linear methods of signal processing. This work studies and implements several measures 

of EEG signal complexity and then compares the complexity features measured or 

extracted from EEG signals. Time domain analysis of EEG signals is performed using 

several signal processing techniques such as higher order moments, entropies and fractal 

dimension calculation using fractal analysis. Frequency domain analysis of EEG signals 

is performed using signal processing techniques such as Welch Power spectrum and 

Discrete Fourier Transform (DFT). EEG signal analysis using Wavelet Transform was 

also performed. Higher order moments, entropies, fractal dimension estimation using 

fractal analysis and Welch Power Spectrum are also implemented along with moving 

windows. This work also deals with the artifact removal or de-noising of EEG signals 

using a band pass filter. EEG signal data recorded from AD subjects and their respective 

age-matched control subjects are used to test the performance of the methods in 
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diagnosing AD. In addition, this work outlines the drawbacks of the methods used and 

compares the methods for the best feature extraction techniques. 
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Chapter One 

 Introduction 

 

Alzheimer disease (AD) is a brain disorder which may lead to complete memory loss. 

AD cannot be cured and it may gradually lead to death [1]. Approximately five percent of 

the United States population suffers from AD and it has become one of the primary 

causes of death in United States of America. Intensive research has been going on in this 

area trying to improve the diagnosis and treatment of AD by detecting the disease in its 

early stages and developing ways to diagnose the disease using advanced medical 

technology [1]. 

AD has four different stages of intensity: preclinical, mild, moderate and severe. The 

symptoms of this disease include memory loss such as not remembering people names 

and regular events, unable to do simple tasks like speaking or writing. People suffering 

from AD are mostly around the age of 65 except in few cases in which it may affect 

people less than the age of 65 [1] .The brain may show the changes in its structure few 

years before the symptoms of AD appear. 

1.1 EEG and ERP 

 

     Electroencephalogram (EEG) signals are measurements of the electrical activity of 

the human brain [2]. Research shows that EEG signals can be very helpful in the 

detection, diagnosis and treatment of the AD. EEG signals recorded for the analysis and 

detection of AD are the coherence values with a selected frequency band. Coherence of 

EEG signals is the coupling between two sub-regions on human scalp per frequency 

band. The application of signal processing techniques on the EEG signals for feature 
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extraction represents one of the main techniques used to diagnose AD. Detailed and 

diligent analyses of the EEG recordings can help in understanding the causes for the brain 

disorder leading to AD. EEG signals are non-linear and non-stationary and their spectrum 

varies with time. EEG signal amplitudes are normally in the range of 10 to 100 micro 

volts and they are divided into different wave groups based on the frequency range [3]. 

The different wave groups are shown in the Table 1.1. EEG signals are recorded by 

placing electrodes on the human scalp as shown in Figure 1.1 [2]. 

 Table 1.1: Frequency range of the wave groups of an EEG signal 

Wave group Starting frequency End Frequency 

Delta 0.5 Hz 3.5 Hz 

Theta 3.5 Hz 7.5 Hz 

Alpha 7.5 Hz 12.5 Hz 

Bheta 12.5 Hz And above 

 

Event related Potential (ERP) is a method of measuring electrical brain activity in 

EEG signal processing. ERP is a neural signal that reflects coordinated neural network 

activity. Moreover, ERP represents the ongoing EEG changes during the simulation [3]. 

ERPs have amplitudes smaller than the ones from the EEG signals and their visualization 

is improved by repeated trials of EEG recordings [3]. ERPs are used to study the 

abnormal and normal nature of EEG signals. 
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Figure 1.1: Electrodes placed on the human scalp for EEG recordings 

1.2 Research Objectives 

 

The main objective of this work is to analyze the EEG signals from a set of AD 

patients and normal persons. Moreover this research aims at comparing the complexity of 

these signals by applying several signal processing techniques to extract discriminating 

features from these signals. In this study, 18 AD subjects and 16 control subjects (normal 

persons) are considered for EEG signal processing to diagnose AD. The EEG recordings 

of the coherence features of these subjects are analyzed and the results are discussed. 

Features of the EEG signals are extracted in the time domain and frequency domain. 

These features are studied and compared between AD subjects and control subjects. The 

best feature extraction techniques are determined and proposed for further study of this 

research. 

1.1 Thesis Outline 

The thesis outline is as follows; Chapter 2 discusses the literature review used in this 

research. Chapter 3 discusses the time domain analysis of EEG signals which includes the 

extraction of statistical features like higher order moments, entropies and fractal values. 

Chapter 4 discusses the frequency domain analysis of EEG signals, which includes the 
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application of the Welch Power Spectrum and the Discrete Fourier Transform. Chapter 5 

discusses artifacts removal of EEG signals and the de-noised signals analysis. Chapter 6 

gives the conclusions and the discussion of the future work of this thesis. 
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Chapter Two 

 Literature Review 

 

Previous studies on EEG signal analysis used several signal processing techniques 

such as Shannon entropy, Higuchi fractal Dimension (HFD), Rescaled Range Analysis 

and Box counting method for fractal dimension estimation, Fast Fourier Transform 

(FFT), Short Time Fourier Transform (STFT), Auto Regressive Moving Average 

Modeling (ARMAX) and adaptive filtering for artifact removal. 

Shannon entropy and HFD methods of analyzing the complexity of EEG signals 

were studied by Fernets [4]. The main reason for choosing the methods by Ferenets is 

their computational efficiency and reliable results when applied to short signal segments. 

Shannon entropy is a measure of order in the signal, and is sensitive to the amplitude 

distribution. Order of a signal is the measure of randomness of the signal. Entropies 

reveal different properties of signals and their main drawback is difficulty in interpreting 

results [4]. 

 A statistical method named Rescaled Range Analysis developed by Hurst was 

used by Islam to analyze long records of data [5]. The two factors used in this analysis 

are Range and the standard deviation of data set. Hurst found that the ratio works well 

with large data records [5]. 

 The fractal dimension of signals in the time domain is calculated using the box-

counting method [6]. Fractal dimension is applicable to data sets that may or may not be 

self-similar over all ranges of time. It has been shown that fractal dimension analysis 

does not differentiate between fractal and non-fractal data sets and gives a measure of the 
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appropriateness of describing the data set using fractal analysis. Author Raghavendra in 

this paper [6] has concluded that the fractal dimension finds applications in distinguishing 

signals having similar mean and variance but of different nature [6]. 

 The fractal dimension of EMG signal was calculated using the R/S method. By 

using this non-linear method any random signal can be analyzed. Hurst found that for 

large values of H, the signal is strongly non-gaussian which means that the signal is 

highly irregular [7]. 

 The raw EEG signal is a time domain signal and the energy distribution of the 

signal is scattered. EEG signals were analyzed to extract the features either in the time or 

the frequency domain. Analysis of EEG signals in frequency is better detecting any brain 

disorder [8]. Hence, the Fast Fourier Transform (FFT) based spectral analysis has been 

used to determine spectrum and spectral components of EEG signals by Suleiman in his 

article [8].  He applied FFT and Short-Time Frequency Transform (STFT) and his results 

showed that the Short Time Fourier Transform (STFT) method was able to differentiate 

between signals for different mental tasks. The STFT gave a better time-frequency 

representation of EEG signals compared to other methods [8]. In the paper by 

Deivanayag [9] has discussed the FFT algorithm in extracting the spectral components of 

an EEG signal. A 1024 point FFT is used to extract the spectral components of EEG 

signal data sets to extract frequency features. 

 In the paper by Shaker, he applied the Discrete Wavelet Transform (DWT) and 

FFT for the spectral analysis of the signals [10]. The results showed that the Wavelet 

Transform outperformed FFT as a classifier of EEG frequencies. The undesired 
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frequencies of the input EEG signal data sets were rejected well using Wavelet 

Transform with more efficiency [10]. 

During EEG signal recording, noise is added to the signal due to the interferences 

from the subject and equipment. Among the artifacts added to the EEG signal, ocular 

artifacts are the ones that need to be removed first [11]. Shooshtari applied two methods 

of artifact removal [11]: Auto Regressive Moving Average (ARMAX) modeling and 

Adaptive filtering. The ARMAX model considers the recorded EEG signal a linear 

combination of brain activity and ocular artifacts and yields better results for higher 

model order until a certain ceiling after which performance of this modeling was not 

effective. The reason for this is that an ARMAX model for lower orders, a negative spike 

appeared at the presence of EOG artifact in the EEG signal. However, this spike was not 

seen when higher order models are considered. ARMAX modeling cannot detect artifacts 

in the early samples of the EEG signal recording which is a drawback that can be 

remedied by adaptive filtering. This method is simple and no complex calculations are 

needed to implement it.  

A band pass filter with a pass band of 0.5 to 40 Hz and filter order 4 is designed 

and used for the processing of EEG signals [9]. The upper cut-off frequency is 40 Hz and 

the lower cut-off frequency is 0.5 Hz. FIR filters are chosen rather than IIR filters as they 

give constant group delay throughout the frequency spectrum and complete stability at all 

frequencies regardless of the size of the filter. This filter was designed in MATLAB. The 

data filtered in this way was analyzed using FFT for extraction of frequency components. 

The data filtered showed a very clear frequeny response [9]. 
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The methods chosen in this study for analysis of EEG signals are: Higher order 

moments, entropies, fractal analysis, Wavelet transform, Welch Power spectrum and 

Discrete Fourier Transform. Artifact removal of EEG signals is performed using a linear 

band pass filter. 
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Chapter Three 

 Time Domain Analysis of EEG Signals 

 

3.1 Introduction 

 

Data sets of EEG signals composed of 18 Alzheimer Disease (AD) subjects and 

16 control (normal persons) subjects are analyzed in the time domain employing several 

non-linear signal processing techniques. These techniques include the estimation of 

higher order moments, Shannon entropy, energy entropy and the fractal dimension 

analysis methods. Generally these methods determine the non-linear behavior of the 

processed these signals. 

3.2 Higher Order Moments 

 

 Higher order moments such as skewness and kurtosis are statistical quantities that 

measure the complexity of the EEG signals and measure signal element distribution [12]. 

3.2.1 Skewness 

 

 Skewness is a measure of the lack of symmetry or the asymmetry of an EEG 

signal data set. Positive skewness indicates that an EEG signal data set is distributed 

more to the left of the mean point and negative skewness indicates that the data set is 

distributed more to the right of the mean point. 

 Skewness of a signal data set      is given by [13], 

  = 
            

  
                                                              (3.1) 

Where   is the mean of the data set,   is the standard deviation of the data set and E is the 

expected value estimator of the signal         
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 The Skewness of the EEG signals for AD subjects and control subjects are 

calculated using the MATLAB signal processing toolbox. The analysis is also made with 

and without using moving windows. The results for the AD and control subjects are 

compared. The bar graph in Figure 3.1 shows the comparison of the skewness for the 

EEG signals without moving windows. 

 

Figure 3.1: Skewness values for AD subjects and control subjects 

 

 From Figure 3.1, it is observed that the skewness values are very high for AD 

subject 2, AD subject 3 and AD subject 16 than their respective age-matched control 

subjects. The average value of the skewness values for control subjects is 2.0990 and 

2.1882 for AD subjects. AD subjects 1, 2, 3, 5, 10, 13 and 16 have a skewness value 

greater than the average skewness value of control subjects. Analysis rate of skewness for 

AD subjects and control subjects is 25% with a false alarm of 6.25%. Analysis rate is the 

number of subjects the method used to analyze EEG signals can differentiate between 
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AD and control subjects. False alarm is the number of control subjects considered as 

normal patients but could be AD patient. 

3.2.1.1 Skewness with Moving Window Analysis 

 

For the moving window analysis, each EEG signal data set is segmented into an 

integer number of windows or segments with a percentage of overlap between windows 

or segments. For a 5%, 15% and 25% overlap the parameter is calculated for a particular 

data set by averaging the values from each individual segment. The Skewness using 

moving window analysis is applied to the EEG signal data sets. The bar graphs from 

Figures 3.2 and 3.3 show the skewness values of EEG signal data sets with the moving 

window analysis having different overlap percentages. 

 

Figure 3.2: Skewness values for AD subjects with moving window analysis 
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Figure 3.3: Skewness values for control subjects with moving window analysis 

 

 Skewness values for AD subjects and control subjects with the moving window 

analysis are lesser compared to the skewness values of EEG signal data sets of AD 

subjects and control subjects without moving window analysis. Mean skewness for AD 

subjects is 1.476, 1.4707 and 1.4733 with 5%, 15% and 25% overlap respectively. Mean 

skewness for control subjects is 1.41, 1.4087 and 1.4241 with 5%, 15% and 25% overlap 

respectively. Analysis rate for skewness with moving windows is also 25% with a false 

alarm of 6.25%. 

3.2.2 Kurtosis 

 

 Kurtosis is a statistical quantity which measures the complexity of an EEG data 

set. It also determines if the EEG signal has a peak or rather flat at the mean point of the 

signal [13]. Higher values of kurtosis indicate that the signal has a sharp peak at the mean 

point of an EEG signal data set and low values of kurtosis indicate that that the signal has 
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a flat nature at the mean point of the signal. The Kurtosis for a signal       is given by 

[13], 

  =
            

               
                                                             (3.2)   

Where   is the standard deviation and E is the expected value estimator of the signal 

    . 

 The Kurtosis for EEG signals from AD subjects and control subjects are 

calculated. The values for the AD subjects and control subjects are compared and shown 

in the Figure 3.4. 

 

Figure 3.4: Kurtosis values for AD subjects and control subjects 

 

 From the Figure 3.4, it is observed that the kurtosis for AD subject 2 and 16 are 

very high compared to the kurtosis values of the respective control subjects, and the 

kurtosis for AD subject 5 is very low compared to the kurtosis value of the respective 

age-matched control subject. AD subjects 1, 2, 3, 6, 10 and 16 have the kurtosis values 

higher than the mean kurtosis from the control subjects which is 9.2564 and 9.8855 for 

AD subjects. 
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3.2.2.1 Kurtosis with Moving Window Analysis  

 

The Kurtosis using moving window analysis is applied to the EEG signal data 

sets. Figures 3.5 and 3.6 show the kurtosis for EEG signal data sets with different overlap 

percentages. 

 

Figure 3.5: Kurtosis values for AD subjects with moving window analysis 

 

 

Figure 3.6: Kurtosis values for control subjects with moving window analysis 
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From Figures 3.5 and 3.6, it is observed that the kurtosis of the EEG signal data 

sets for AD subjects and control subjects with the moving window analysis are lower 

than the kurtosis values calculated without the moving window analysis. Kurtosis for AD 

subjects is 5.9463, 5.9527 and 5.9446 with 5%, 15% and 25% overlap respectively. 

Kurtosis for control subjects is 5.4458, 5.4706 and 5.5965 with 5%, 15% and 25% 

overlap respectively. 

3.3 Entropies 

 

 Entropy is the measure of randomness or uncertainty associated with a random 

variable [14]. Shannon entropy and energy entropy are non-linear methods employed for 

the feature extraction of EEG signals data sets for AD subjects and control subjects. 

Shannon entropy is a statistical quantity which measures the uncertainty of an EEG signal 

and the expected value of the information contained in an EEG signal data set [14]. In 

other words, it is the measure of the order in an EEG signal [4]. Signal order is the degree 

of randomness of the signal. Energy entropy is a statistical quantity which measures the 

distribution of the energy of an EEG signal. Both shannon and energy entropy of EEG 

signal data sets for AD subjects and control subjects are calculated. Figures 3.7 and 3.8 

show the comparison of the entropies values for AD subjects and control subjects. 
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Figure 3.7: Shannon entropy values for AD subjects and control subjects 

 

 

From Figure 3.7, it is observed that the shannon entropy value of AD subject 15 is 

very high compared to the shannon entropy value of the respective control subject. AD 

subjects 1, 2, 3, 4, 5, 9, 13 and 15 have a higher shannon entropy values compared to the 

mean shannon entropy value of the control subjects which is 11.4953 and 12.2306 for AD 

subjects. 

 

Figure 3.8: Energy entropy values for AD subjects and control subjects 
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 From Figure 3.8, it is observed that the energy entropy values are not much 

different for AD subjects and control subjects. AD subjects 1, 6, 7, 8, 10, 11, 12, 14 and 

16 have energy entropy values greater than the mean energy entropy value of control 

subjects which is -1673.1 and -1664.3 for AD subjects. 

3.3.1 Entropies with Moving Window Analysis 

 

 Shannon entropy and energy entropy of EEG signals data sets are also calculated 

using a moving window analysis and values of the entropies are shown in Figures 3.9-

3.12. 

 

Figure 3.9: Shannon entropy values for AD subjects with moving window analysis 
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Figure 3.10: Shannon entropy values for control subjects with moving window analysis 

 

Figure 3.11: Energy entropy values for AD subjects with moving window analysis 
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Figure 3.12: Energy entropy values for control subjects with moving window analysis 

 

 From the Figures 3.9-3.12, it is observed that the entropies values are lesser with 

the moving window analysis compared to the entropies values of EEG signal data sets 

without moving window analysis. Mean shannon entropy for AD subjects is 4.1501, 

4.3886 and 4.6676 and energy entropy is -573.9325, -611.2375 and -651.5833 with 5%, 

15% and 25% overlap respectively. Mean shannon entropy for control subjects is 4.1363, 

4.3568 and 4.6247 and energy entropy is -579.9821, -615.9793 and -654.8878 with 5%, 

15% and 25% overlap respectively. 

3.4 Fractal Analysis 

 

 Fractal is a term which applies to fluctuations or irregularities in time for a time 

series data [5]. When magnifying a fractal signal, the fractal value increases. For a non-

fractal signal or signal with very low complexity, the relationship between the fractal size 

and the magnification factor is a constant when plotted in a log-log scale. For a fractal 
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signal, the relationship is linear which indicates that as the magnification increases, the 

fractal value also increases. Fractal Dimension is a non-linear statistical parameter used 

for the measurement of the complexity of EEG signal data sets of AD subjects and 

control subjects [5]. The self-similarity of an EEG signal is a statistical quantity measured 

by the Hurst component of the rescaled range analysis. It is a non-linear fractal analysis 

method employed to estimate the fractal dimension from the Hurst component of the 

rescaled range analysis [15]. The algorithm behind the estimation of the fractal dimension 

of a signal in this tool is given below [5, 7]: 

The factors range, R and standard deviation, S are defined by, 

                                                                          (3.3) 

 

         ∑            
  

                                                    (3.4) 

 

        ∑      
                                                                 (3.5) 

 

        ∑            
 
                                                            (3.6) 

 

 

Where        is the time series,   is the time span and   is the integer-valued time. 

3.4.1 Hurst Component 

 

The Hurst component (H) is determined for time series data sets which exhibit 

self-similarity attribute by calculating the rescaled range over sub-regions of the data. 

Self-similarity is the similarity of the statistical properties for an entire data set and for 

the sub-regions of a data set. The Hurst component and the fractal dimension are related 

by the following expression. 

D = 2-H                                                                   (3.7) 
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3.4.2 Fractal Analysis Results 

 

The fractal dimensions for the EEG data sets are calculated using the Benoit 1.3 

computational package tool both with and without applying moving window analysis. 

Figures 3.17- 3.19 show the fractal dimensions of the processed EEG signal data sets of 

AD subjects and control subjects. 

 

Figure 3.13: Fractal dimension values for AD subjects and control subjects 

 

 From Figure 3.13, it is observed that AD subjects 8 and 10 have a fractal 

dimension value greater than the mean fractal dimension of control subjects which is 

1.8217 and 1.8110 for AD subjects. 
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Figure 3.14: Fractal dimension values for AD subjects with moving window analysis 

 

 

Figure 3.15: Fractal dimension values for control subjects with moving window analysis 

 

 

 From Figures 3.14 and 3.15, it is observed that the fractal dimension using 

moving window analysis give effective results compared to the fractal dimension without 
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1.2593 with 5%, 15% and 25% overlap respectively. Mean fractal dimension for control 

subjects is 1.2638, 1.2626 and 1.2594 with 5%, 15% and 25% overlap respectively. 

3.5 Summary 

 

In this chapter, the time-domain analysis of EEG signals using signal processing 

techniques namely Higher order moments calculation which include skewness and 

kurtosis calculation, Shannon entropy and energy entropy calculation and fractal 

dimension analysis were discussed. These techniques were also applied using a moving 

window analysis are also discussed. The results of the techniques discussed are the non-

linear features extracted from EEG signal data sets for AD subjects and control subjects. 

The features are compared for the best feature extraction technique of the time domain 

analysis of EEG signals. The techniques are tabulated in table 3.1 with their analysis, 

false alarm and inconclusive rates. Recognition % is the percentage of number of subjects 

the feature extraction technique could differentiate between an AD and the respective 

control subject. False alarm rate is the number of control subjects misinterpreted as an 

AD subject and inconclusive rate is the number of subjects which the technique could not 

give any differentiation. 
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Table 3.1: Recognition and false alarm rates of time domain analysis methods 

 
Time Domain Analysis 

method 

Recognition rate False Alarm rate Inconclusive rate 

Skewness 25 % 6.25 % 68.75 % 

Kurtosis 43.75 % 18.7 % 37.55 % 

Shannon Entropy 31.25 % 12.5 % 56.25 % 

Energy Entropy 31.25 % 18.75 % 50 % 

Fractal Dimension 25 % 12.5 % 62.5 % 

Skewness with Moving 

Windows 

25 % 6.25 % 68.75 % 

Kurtosis with Moving 

Windows 

18.75 % 12.5 % 31.25 % 

Shannon entropy with 

Moving Windows 

25 % 6.25 % 68.75 % 

Energy entropy with 

Moving Windows 

18.75 % 6.25 % 75 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

Chapter Four 

 Frequency and Frequency-Time Domain Analysis of EEG Signals 

 

4.1 Introduction 

 

EEG signal data sets of 18 AD subjects and 16 control subjects are analyzed by 

applying signal processing techniques such as the Wavelet Analysis, the Welch Power 

Spectrum and the Discrete Fourier Transform. These signal processing techniques are 

linear methods applied to extract the linear features of the EEG signals. 

4.2 Wavelet Analysis 

 

The Wavelet Transform is a signal processing tool which can be used for 

processing and analysis of EEG signals. As EEG signals are non-stationary i.e. their 

frequency components vary with time, the Wavelet Transform is applied.  

4.2.1 EEG Signal De-noising Using Wavelets 

 

 Wavelets are used for the de-noising or removing random noise from EEG signals. EEG 

signal de-noising is performed using the Discrete Wavelet Transform (DWT). The DWT 

is preferred to Continuous wavelet Transform (CWT) as CWT gives lot of redundant 

information of the EEG signals [16]. The process of de-noising includes EEG signal 

decomposition, wavelet detail coefficients thresholding and signal reconstruction.  

The Wavelet toolbox in MATLAB is used to implement the wavelet analysis of the EEG 

signals. 

EEG signal decomposition is performed in the wavelet toolbox by using the 

daubechies wavelet function „db5‟ at the level 3 decomposition. EEG signal is 
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decomposed into different frequency components at each level of decomposition. They 

are the approximation coefficients at level 3, A3 and detail coefficients at the levels from 

1 to 3 D1, D2 and D3.  

 There are different thresholding methods available like the default thresholding, 

the soft thresholding and the hard thresholding. After de-noising using the default 

threshold, the signal is smooth, but it may lose some useful signal components. After 

hard threshold de-noising, the restored signal is almost the same than the original signal 

hence it is not preferred. The Soft threshold de-noising eliminates noise effectively and 

has a very good retention of the useful signal components. First level detail coefficients 

are usually considered as noise. Hence D1 detail coefficients are thresholded using the 

soft thresholding. 

 The Signal to noise ratio is calculated for the original data and the de-noised data. 

The signal is decomposed  at level „3‟ by using the wavelet „db5‟.The first level detail 

coefficients, D1 is usually considered as noise for the signal decomposed. The noise is 

separated from the signal and SNR is calculated using the following formula. 

            (
∑       

∑      
)                                              (4.1) 

The de-noised EEG signal data sets for AD subjects and control subjects are 

analyzed with the signal processing techniques discussed in chapter one and the results 

are compared before and after EEG signal de-noising using wavelet analysis. The 

parameters, skewness, kurtosis, Shannon entropy, energy entropy and fractal dimension 

discussed in chapter one are applied for the de-noised EEG signals and the results 

showing the bar graphs are shown in chapter 5. 
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4.3 Welch Power Spectrum 

 

Welch Power Spectrum is used to estimate the power spectral density of EEG 

signals data sets for the extraction of features used in the classification of EEG signals. 

The Welch Power Spectrum is performed by analyzing EEG signals, and plotting the 

Power Spectral Densities (PSDs) in the MATLAB. The frequency components are 

studied and analyzed. 

 In Welch Power Spectrum analysis, an EEG signal data set is divided into an 

integer number of segments with default overlapping percentage between the segments of 

50%. For each segment, a modified periodogram is computed and the PSD estimates are 

averaged. By averaging the PSD estimates of the modified periodograms of the segments, 

the variance of the overall PSD estimate decreases. This is the advantage of Welch Power 

Spectrum method for the extraction of spectral components of EEG signal data sets. 

 The Welch Power Spectrum of EEG signal data sets for AD subjects and control 

subjects is implemented in MATLAB. The plots of the PSD estimates using the Welch 

Power Spectrum method are shown in the Appendix A. A sample Welch Power Spectrum 

plot is shown in Figure 4.6. 
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Figure 4.1: Welch PSD estimate for AD subject 1 and control subject 1 

4.3.1 Welch Power Spectrum with Moving Window Analysis 

 

 Welch Power Spectrum for EEG signal data sets is implemented using moving 

window analysis in which the data sets are segmented and the overlapping percentages 

between the segments are 5%, 15% and 25%. The plots for the Welch PSD estimates of 

the data are shown in Appendix B. A sample plot of Welch Power Spectrum with moving 

windows is shown in Figure 4.7. 

 Figure 4.2: Welch PSD estimate for AD subject 1 and control subject 1 with moving 

window analysis 
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4.4 Discrete Fourier Transform 

 

 Discrete Fourier Transform (DFT) is the signal processing technique used for the 

frequency domain analysis of EEG signals to extract the spectral frequency components 

from EEG signals. 

 The DFT is implemented in MATLAB using the Fast Fourier Transform (FFT) 

algorithm. The plots of the DFT of the EEG signal data sets for AD subjects and control 

subjects are shown in Appendix C. A sample DFT plot is shown in the Figure 4.8. 

 

 

Figure 4.3: The DFT for AD subject 1 and control subject 1 

 

4.5 Comparison of Spectral Analysis Methods 

 

 The DFT and the Welch Power Spectrum methods for spectral analysis give the 

frequency variations of EEG signals with the time which is defined as the frequency 

resolution. Due to the frequency variations, change occurs in the time domain of an EEG 

signal. These techniques give the frequency components but not the times at which these 
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frequency components exist. However, this is possible using wavelet analysis which 

provides both the frequency resolution and the time resolution. 

4.6 Summary 

 

 Frequency domain analysis for EEG signal data sets of AD subjects and control 

subjects employing the signal processing techniques of spectral analysis Wavelet 

analysis, Welch Power Spectrum and Discrete Fourier Transform were discussed in this 

chapter. The methods are compared for the best feature extraction technique in the 

frequency domain analysis which gives the frequency components of EEG signals. 

Frequency domain analysis methods used for analysis of EEG signals are tabulated with 

their analysis and false alarm rates in the Table 4.1. 

Table 4.1: Recognition and false alarm rates of frequency domain analysis methods 

Frequency Domain 

Analysis method 

Recognition rate False Alarm rate Inconclusive rate 

Wavelet Transform 9.36 % 6.25 % 84.39 % 

Welch Power Spectrum 50 % 12.5 %         37.5 % 

Discrete Fourier 

transform 

37.5 % 18.75 %         43.75 % 

Welch Power Spectrum 

with moving windows 

37.5 % 6.25 %         56.25 % 
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Chapter Five 

 Artifact Removal of EEG Signals 

 

5.1 Introduction 

 

 EEG signals are de-noised for the extraction of features which are easy to classify 

compared to the classification of features extracted from raw EEG signals. The influence 

of artifacts present in an EEG signal will make the task of analyzing it more difficult. 

5.2 Artifacts 

 

During EEG signals recording, some unwanted waveforms or artifacts are added 

to the signals [17]. There are three types of artifacts in EEG signals namely 

Electrooculogram (EOG), Electrocardiogram (ECG) and Electromyogram (EMG) signal 

artifacts. The most severe artifacts are due to eye blinks and eyeball movements during 

EEG signal recording [17].  During eye movement, the electric field around the eye 

changes, which produces an electric signal called EOG [11]. These are low frequency 

signals and are very sensitive to interferences. EMG signals are electrical currents 

generated during muscle contraction [18]. ECG signals are electrical currents generated 

in heart muscle during a heartbeat [19]. EOG signal artifacts are seen more below 4 Hz 

frequency, ECG signal artifacts around 1.2 Hz and EMG signal artifacts above 30 Hz 

[17].  

5.3 Artifact Removal 

 

Artifacts need to be removed from EEG signals. Frequencies above 40 Hz do not 

contain any brain activity and hence they are eliminated. A band pass filter is designed 

using the MATLAB signal processing toolbox, with a pass band frequencies in the range 
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of [0.1 Hz, 40 Hz]. EEG signals are band pass filtered  and digitized with a sampling rate 

of 1 KHz. The de-noised EEG signal obtained using a band pass filter is shown in the 

Figure 5.1 

 

Figure 5.1: EEG signal sample before and after artifact removal 

 

EEG signal data sets for 18 AD subjects and 16 control subjects are de-noised 

with the band pass filter and the de-noised data is analyzed using the signal processing 

techniques discussed in chapters three and four. The results analysis after artifact removal 

for the EEG signals are shown in the Figures 5.2-5.21.  
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Figure 5.2: Skewness for AD subjects and control subjects after artifact removal 

 
 

Figure 5.3: Skewness for AD subjects and control subjects with 5% overlap after artifact 

removal 



34 

 

 
Figure 5.4: Skewness for AD subjects and control subjects with 15% overlap after 

artifact removal 

 

 
 

Figure 5.5: Skewness for AD subjects and control subjects with 25% overlap after 

artifact removal 
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Figure 5.6: Kurtosis for AD subjects and control subjects after artifact removal 

 

 
Figure 5.7: Kurtosis for AD subjects and control subjects with 5% overlap after artifact 

removal 
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Figure 5.8: Kurtosis for AD subjects and control subjects with 15% overlap after artifact 

removal 

 
Figure 5.9: Kurtosis for AD subjects and control subjects with 25% overlap after artifact 

removal 
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Figure 5.10: Shannon entropy for AD subjects and control subjects after artifact removal  

 
Figure 5.11: Shannon entropy for AD subjects and control subjects with 5% overlap after 

artifact removal  
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Figure 5.12: Shannon entropy for AD subjects and control subjects with 15% overlap 

after artifact removal 

  
 

Figure 5.13: Shannon entropy for AD subjects and control subjects with 25% overlap 

after aircraft removal   
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Figure 5.14: Energy entropy for AD subjects and control subjects after artifact removal 

 
Figure 5.15: Energy entropy for AD subjects and control subjects with 5% overlp after 

artifact removal 
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Figure 5.16: Energy entropy for AD subjects and control subjects with 15% overlap after 

artifact removal 

 
Figure 5.17: Energy entropy for AD subjects and control subjects with 25% overlap after 

artifact removal 
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Figure 5.18: Fractal dimensions for AD subjects and control subjects after artifact 

removal 

 
Figure 5.19: Fractal dimensions for AD subjects and control subjects with 5% overlap 

after artifact removal 
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Figure 5.20: Fractal dimensions for AD subjects and control subjects with 15% overlap 

after artifact removal 

 
Figure 5.21: Fractal dimensions for AD subjects and control subjects with 25% overlap 

after artifact removal 
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Mean values of skewness, kurtosis, Shannon entropy, energy entropy and fractal 

dimension for AD and control subjects after artifact removal are shown in the table 5.1. 

Table 5.1: Mean parameter values for AD and control subjects after artifact removal 

EEG signal Feature AD subjects mean Control subjects mean 

Skewness 1.6548 1.6614 

Skewness with 5% overlap 0.4972 0.4717 

Skewness with 15% overlap 0.5225 0.517 

Skewness with 25% overlap 0.5945 0.6118 

kurtosis 6.1046 6.0884 

Kurtosis with 5% overlap 2.8163 2.7648 

Kurtosis with 15% overlap 2.9113 2.9475 

Kurtosis with 25% overlap 3.1520 3.3170 

Shannon entropy 9.9468 9.9886 

Shannon entropy with 5% 

overlap 

3.4333 3.4425 

Shannon entropy with 15% 

overlap 

3.6246 3.6294 

Shannon entropy with 25% 

overlap 

3.8671 3.8684 

Energy entropy -1579.1 -1577.6 

Energy entropy with 5% 

overlap 

-546.9193 -546.753 

Energy entropy with 15% 

overlap 

-579.2165 -579.7459 

Energy entropy with 25% 

overlap 

-615.1397 -616.0053 

Fractal dimension 1.2567 1.2518 

Fractal dimension with 5% 

overlap 

1.0983 1.0968 

Fractal dimension with 15% 

overlap 

1.0989 1.0987 

Fractal dimension with 25% 

overlap 

1.1002 1.1008 

 

Also results for the time domain analysis methods applied for de-noised EEG 

signals through Wavelet Transform are shown in the Figures 5.22-5.26. 
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Figure 5.22: Comparison of de-noised and original skewness values for AD subjects and 

control subjects after wavelet analysis 

  

Figure 5.23: Comparison of de-noised and original kurtosis values for AD subjects and 

control subjects after wavelet analysis 
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Figure 5.24: Comparison of de-noised and original Shannon entropy values for AD 

subjects and control subjects after wavelet analysis 

 

 
 

Figure 5.25: Comparison of de-noised and original energy entropy values for AD 

subjects and control subjects after wavelet analysis 
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Figure 5.26: Comparison of de-noised and original fractal dimension values for AD 

subjects and control subjects after wavelet analysis 

 

 5.4 Welch Power Spectrum of Artifacts Removed EEG Signals 

 EEG signal data sets for AD subjects and control subjects are analyzed using 

Welch Power Spectrum to extract the frequency components of EEG signals. The Welch 

Power Spectrum plots are shown in the Appendix D. A sample Welch Power Spectrum 

plot after artifact removal with and without moving windows are shown in Figures 5.22 

and 5.23. 
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Figure 5.27: Welch Power spectrum of AD subject 1 and control subject 1 after artifact 

removal 

 
Figure 5.28: Welch Power spectrum of AD subject 1 and control subject 1 with moving 

window analysis after artifact removal 

5.5 Discrete Fourier Transform of Artifacts Removed EEG Signals 

 

 EEG signal data sets for AD subjects and control subjects are analyzed using DFT 

to extract the frequency components. Frequencies above 40 Hz are removed from EEG 

signals and hence power is almost zero for higher frequencies. This can be observed from 

the figures in Appendix E. A sample DFT plot after artifact removal is shown in Figure 

5.24. 
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Figure 5.29: The DFT of AD subject 1 and control subject 1 after artifact removal 

 

From the Figures 5.26-5.75, it is observed that the DFTs of the artifacts removed 

EEG signals have almost zero power at higher frequencies. The power is very low above 

50 Hz frequency and it is zero after 150 Hz frequency. This indicates that the noise (high 

frequency components) is removed and the analysis of the de-noised EEG signals showed 

effective calculations. 

5.5 Summary 

 Artifact removal of EEG signal data sets for AD subjects and control subjects 

using the band pass filter with a pass band of frequency range [0.1 Hz, 40 Hz] at a 

sampling frequency of 1 KHz was discussed in this chapter. Analysis of the de-noised 

data using the signal processing techniques in time domain and frequency domain 

discussed in chapter three and chapter four were also discussed in this chapter. The 

artifacts removed EEG signals analysis and the results are also discussed in this chapter. 
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Recognition, false alarm and inconclusive rates of the time and frequency domain 

analysis methods for extracting features from artifacts removed EEG signals are shown in 

Tables 5.2 and 5.3. 

Table 5.2: Recognition and false alarm rates of time domain analysis methods for 

artifacts removed EEG signals 

 
Time Domain Analysis 

method 

Recognition rate False Alarm rate Inconclusive rate 

Skewness 37.5 % 12.5 % 50 % 

Kurtosis 37.5 % 25 % 37.5 % 

Shannon Entropy 43.75 % 18.75 % 37.5 % 

Energy Entropy 25 % 18.75 % 56.25 % 

Fractal Dimension 18.75 % 6.25 % 75 % 

Skewness with Moving 

Windows 

50 % 18.75 % 31.25 % 

Kurtosis with Moving 

Windows 

37.5 % 18.75 % 43.75 % 

Shannon entropy with 

Moving Windows 

56.25 % 25 % 18.75 % 

Energy entropy with 

Moving Windows 

25 % 18.75 % 56.25 % 

 

Table 5.3: Recognition and false alarm rates of frequency domain analysis methods for 

artifacts removed EEG signals 

 
Frequency Domain 

Analysis method 

Recognition rate False Alarm rate Inconclusive rate 

Welch Power Spectrum 50 % 18.75 %         31.25 % 

Discrete Fourier 

transform 

43.75 % 18.75 %         37.5 % 

Welch Power Spectrum 

with moving windows 

50 % 25 %         25 % 
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Chapter Six 

 Conclusion and Future Work 

 

6.1 Conclusions 

 Analysis of EEG signals for the diagnosis and detection of AD was studied in this 

work. Time domain and frequency domain analyses of EEG signals for 18 AD subjects 

and 16 control subjects were performed to extract their non-linear and linear features. The 

non-linear features extracted in the time domain analysis using the non-linear methods of 

signal processing namely higher order moments, entropies and fractal analysis with and 

without moving window analysis determined the complexity of EEG signals. The 

frequency domain analysis of EEG signals using linear methods of signal processing 

namely Wavelet Transform, Welch Power Spectrum and DFT determined the frequency 

components of EEG signals. Spectral analysis techniques were applied to analyze EEG 

signals and power spectra of EEG signal data sets were extracted and plotted. EEG 

signals are de-noised using band pass filter designed and all the signal processing 

techniques used before de-noising are used to extract the features of EEG signals after 

artifact removal. The results obtained after artifact removal were effective as the noises in 

EEG signals were removed and hence unwanted information was not extracted while 

extracting the features. 

 In summary, all the signal processing techniques used in this study are compared 

to determine the best feature extraction technique. Among the time domain analysis 

methods, fractal analysis is found to be effective as the fractal dimension values showed 

significant differences between AD subjects and their respective control subjects. Among 

the frequency domain analysis methods, Wavelet Transform method is preferred as it 
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gave both the frequency resolution and time resolution whereas the DFT and Welch 

Power Spectrum gave only the frequency resolution. Analysis and false alarm rates are 

estimated for the feature extraction techniques in time and frequency domain. 

6.2 Future Work 

 This study has taken time domain and frequency domain analysis techniques of 

signal processing to extract features from EEG signals for the diagnosis and detection of 

AD. Based on the results obtained, the best feature extraction technique among the 

techniques applied in this study is determined and the features obtained with this 

technique are used for the classification of EEG signals. The best features obtained in this 

work using the methods discussed are useful in the future research study of EEG signals 

by classifying them. Classification of EEG signals is the next step in the diagnosis of AD. 

The features are given to a classifier chosen and a quantitative index is obtained based on 

which the level of AD is determined. 
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Appendices 

 

Appendix A 

The Welch Power Spectrum Plots for AD Subjects and Control Subjects 

 

 

Figure A-1: Welch PSD estimate for AD subject 2 and control subject 2 

 
Figure A-2: Welch PSD estimate for AD subject 3 and control subject 3 
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Figure A-3: Welch PSD estimate for AD subject 4 and control subject 4 

 

 

Figure A-4: Welch PSD estimate for AD subject 5 and control subject 5 
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Figure A-5: Welch PSD estimate for AD subject 6 and control subject 6 

 

Figure A-6: Welch PSD estimate for AD subject 7 and control subject 7 
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Figure A-7: Welch PSD estimate for AD subject 8 and control subject 8 

 

Figure A-8: Welch PSD estimate for AD subject 9 and control subject 9 
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Figure A-9: Welch PSD estimate for AD subject 10 and control subject 10 

 

Figure A-10: Welch PSD estimate for AD subject 11 and control subject 11 
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Figure A-11: Welch PSD estimate for AD subject 12 and control subject 12 

 

 

Figure A-12: Welch PSD estimate for AD subject 13 and control subject 13 
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Figure A-13: Welch PSD estimate for AD subject 14 and control subject 14 

 

 

Figure A-14: Welch PSD estimate for AD subject 15 and control subject 15 
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Figure A-15: Welch PSD estimate for AD subject 16 and control subject 16 

 

Figure A-16: Welch PSD estimate for AD subject 17  
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Figure A-17: Welch PSD estimate for AD subject 18  
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Appendix B 

The Welch Power Spectrum with Moving Windows Plots for AD Subjects and 

Control Subjects 

 

 Figure B-1: Welch PSD estimate for AD subject 2 and control subject 2 with 

moving window analysis  

 

 Figure B-2: Welch PSD estimate for AD subject 3 and control subject 3 with moving 

window analysis 
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Figure B-3: Welch PSD estimate for AD subject 4 and control subject 4 with moving 

window analysis 

 Figure B-4: Welch PSD estimate for AD subject 5 and control subject 5 with moving 

window analysis 
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Figure B-5: Welch PSD estimate for AD subject 6 and control subject 6 with moving 

window analysis 

 Figure B-6: Welch PSD estimate for AD subject 7 and control subject 7 with moving 

window analysis 
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Figure B-7: Welch PSD estimate for AD subject 8 and control subject 8 with moving 

window analysis 

 Figure B-8: Welch PSD estimate for AD subject 9 and control subject 9 with moving 

window analysis 
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Figure B-9: Welch PSD estimate for AD subject 10 and control subject 10 with moving 

window analysis 

 Figure B-10: Welch PSD estimate for AD subject 11 and control subject 11 with 

moving window analysis 
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Figure B-11: Welch PSD estimate for AD subject 12 and control subject 12 with moving 

window analysis 

 
Figure B-12: Welch PSD estimate for AD subject 13 and control subject 13 with moving 

window analysis 
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Figure B-13: Welch PSD estimate for AD subject 14 and control subject 14 with moving 

window analysis 

 
Figure B-14: Welch PSD estimate for AD subject 15 and control subject 15 with moving 

window analysis 
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Figure B-15: Welch PSD estimate for AD subject 16 and control subject 16 with moving 

window analysis 

 
Figure B-16: Welch PSD estimate for AD subject 17 with moving window analysis 
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Figure B-17: Welch PSD estimate for AD subject 18 with moving window analysis 
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Appendix C 

The DFT Plots for EEG Signals of AD Subjects and Control Subjects 

 

Figure C-1: The DFT of AD subject 2 and control subject 2 

 

Figure C-2: The DFT of AD subject 3 and control subject 3 
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Figure C-3: The DFT of AD subject 4 and control subject 4 

 

 

Figure C-4: The DFT of AD subject 5 and control subject 5 
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Figure C-5: The DFT of AD subject 6 and control subject 6 

 

Figure C-6: The DFT of AD subject 7 and control subject 7 
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Figure C-7: The DFT of AD subject 8 and control subject 8 

 

 

Figure C-8: The DFT of AD subject 9 and control subject 9 
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Figure C-9: The DFT of AD subject 10 and control subject 10 

 

 

Figure C-10: The DFT of AD subject 11 and control subject 11 
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Figure C-11: The DFT of AD subject 12 and control subject 12 

 

 

Figure C-12: The DFT of AD subject 13 and control subject 13 
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Figure C-13: The DFT of AD subject 14 and control subject 14 

 

Figure C-14: The DFT of AD subject 15 and control subject 15 
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Figure C-15: The DFT of AD subject 16 and control subject 16 

 

Figure C-16: The DFT of AD subject 17  
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Figure C-17: The DFT of AD subject 18  
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Appendix D 

The Welch Power Spectrum Plots with and without Moving Windows for Artifacts 

Removed EEG Signals 

 
Figure D-1: Welch Power Spectrum for AD subject 2 and control subject 2 after artifact 

removal 

 
Figure D-2: Welch Power Spectrum for AD subject 3 and control subject 3 after artifact 

removal 
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Figure D-3: Welch Power Spectrum for AD subject 4 and control subject 4 after artifact 

removal 

 
Figure D-4: Welch Power Spectrum for AD subject 5 and control subject 5 after artifact 

removal 
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Figure D-5: Welch Power Spectrum for AD subject 6 and control subject 6 after artifact 

removal 

 
Figure D-6: Welch Power Spectrum for AD subject 7 and control subject 7 after artifact 

removal 
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Figure D-7: Welch Power Spectrum for AD subject 8 and control subject 8 after artifact 

removal 

 
Figure D-8: Welch Power Spectrum for AD subject 9 and control subject 9 after artifact 

removal 
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Figure D-9: Welch Power Spectrum for AD subject 10 and control subject 10 after 

artifact removal 

 

 
Figure D-10: Welch Power Spectrum for AD subject 11 and control subject 11 after 

artifact removal 
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Figure D-11: Welch Power Spectrum for AD subject 12 and control subject 12 after 

artifact removal 

 

 
Figure D-12: Welch Power Spectrum for AD subject 13 and control subject 13 after 

artifact removal 
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Figure D-13: Welch Power Spectrum for AD subject 14 and control subject 14 after 

artifact removal 

 
Figure D-14: Welch Power Spectrum for AD subject 15 and control subject 15 after 

artifact removal 
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Figure D-15: Welch Power Spectrum for AD subject 16 and control subject 16 after 

artifact removal 

 
Figure D-16: Welch Power Spectrum for AD subject 17 after artifact removal 
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Figure D-17: Welch Power Spectrum for AD subject 18 and after artifact removal 

 

 

 

Figure D-18: Welch Power Spectrum for AD subject 2 and control subject 2 with 

moving window analysis after artifact removal 
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Figure D-19: Welch Power Spectrum for AD subject 3 and control subject 3 with 

moving window analysis after artifact removal 
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Figure D-20: Welch Power Spectrum for AD subject 4 and control subject 4 with 

moving window analysis after artifact removal 

 
Figure D-21: Welch Power Spectrum for AD subject 5 and control subject 5 with 

moving window analysis after artifact removal 

 

Figure D-22: Welch Power Spectrum for AD subject 6 and control subject 6 with 

moving window analysis after artifact removal 
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Figure D-23: Welch Power Spectrum for AD subject 7 and control subject 7 with 

moving window analysis after artifact removal 

 
Figure D-24: Welch Power Spectrum for AD subject 8 and control subject 8 with 

moving window analysis after artifact removal 
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Figure D-25: Welch Power Spectrum for AD subject 9 and control subject 9 with 

moving window analysis after artifact removal 

 

Figure D-26: Welch Power Spectrum for AD subject 10 and control subject 10 with 

moving window analysis after artifact removal 
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Figure D-27: Welch Power Spectrum for AD subject 11 and control subject 11 with 

moving window analysis after artifact removal 

 

 

Figure D-28: Welch Power Spectrum for AD subject 12 and control subject 12 with 

moving window analysis after artifact removal 
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Figure D-29: Welch Power Spectrum for AD subject 13 and control subject 13 with 

moving window analysis after artifact removal 

 

 

Figure D-30: Welch Power Spectrum for AD subject 14 and control subject 14 with 

moving window analysis after artifact removal 

 



96 

 

 

Figure D-31: Welch Power Spectrum for AD subject 15 and control subject 15 with 

moving window analysis after artifact removal 

 

 

Figure D-32: Welch Power Spectrum for AD subject 16 and control subject 16 with 

moving window analysis after artifact removal 
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Figure D-33: Welch Power Spectrum for AD subject 17 with moving window analysis 

after artifact removal 

 

 

Figure D-34: Welch Power Spectrum for AD subject 18 with moving window analysis 

after artifact removal 
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Appendix E 

The DFT Plots for Artifacts Removed EEG Signals 

 

Figure E-1: The DFT for AD subject 2 and control subject 2 after artifact removal 

 

Figure E-2: The DFT for AD subject 3 and control subject 3 after artifact removal 
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Figure E-3: The DFT for AD subject 4 and control subject 4 after artifact removal 

 

Figure E-4: The DFT for AD subject 5 and control subject 5 after artifact removal 
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Figure E-5: The DFT for AD subject 6 and control subject 6 after artifact removal 

 

Figure E-6: The DFT for AD subject 7 and control subject 7 after artifact removal 
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Figure E-7: The DFT for AD subject 8 and control subject 8 after artifact removal 

 

Figure E-8: The DFT for AD subject 9 and control subject 9 after artifact removal 



102 

 

 

Figure E-9: The DFT for AD subject 10 and control subject 10 after artifact removal 

 

Figure E-10: The DFT for AD subject 11 and control subject 11 after artifact removal 
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Figure E-11: The DFT for AD subject 12 and control subject 12 after artifact removal 

 

Figure E-12: The DFT for AD subject 13 and control subject 13 after artifact removal 
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Figure E-13: The DFT for AD subject 14 and control subject 14 after artifact removal 

 

Figure E-14: The DFT for AD subject 15 and control subject 15 after artifact removal 
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Figure E-15: The DFT for AD subject 16 and control subject 16 after artifact removal 

 

Figure E-16: The DFT for AD subject 17 after artifact removal 
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 Figure E-17: The DFT for AD subject 18 after artifact removal 

 


	University of Texas at Tyler
	Scholar Works at UT Tyler
	Spring 4-30-2012

	A Comparative Analysis of Feature Extraction Techniques for EEG Signals from Alzheimer patients
	Ramya Priya Mudhiganti
	Recommended Citation


	tmp.1459972487.pdf.6ZsL1

