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Abstract

IMPLEMENTATION OF COMPRESSIVE SENSING ALGORITHMS
ON ARM CORTEX PROCESSOR AND FPGAs

DINESH VEERAMACHANENI

Thesis Chair: Hector A. Ochoa, Ph.D.

The University of Texas at Tyler

May 2015

Nowadays, communication systems require huge amounts of data to be processed.

Some examples of these systems include radar systems, video streaming, and many

other multimedia applications. These systems require large amounts of bandwidth to

satisfy the Nyquist rate. Compressive Sensing is proposed as a way to reduce their

bandwidth requirements.

Compressive Sensing algorithms are generally implemented at the receiver to re-

construct the original signal from a reduced set of samples. This methodology elimi-

nates data which is relatively insignificant. It possesses the potential to eliminate the

use of large bandwidth, cost effective matched filters, and high-frequency analog-to-

digital converters at the receiver in the case of radar systems. Compressive Sensing

is widely used in areas such as Digital Image Processing, Digital Signal Processing,

Radars, and Wireless Sensor Networks.

This research investigates on three main optimization techniques commonly used

in Compressive Sensing: Optimal Matching Pursuit (OMP), Compressive Sampling

Matching Pursuit (CSMP) and Stagewise Orthogonal Matching Pursuit (StOMP).

These algorithms were implemented and tested on an ARM processor, and on a Field

v



Programmable Gate Array (FPGA).

During the first stage of this research, the optimization techniques were imple-

mented in MATLAB. In the second stage, they were implemented on an ARM proces-

sor to accelerate their performance. The algorithms show a considerable acceleration

on the ARM processor compared to MATLAB. In the final stage of the research,

linear algebra operations were implemented on an FPGA to further accelerate their

performance. The results show further improvement when part of the code was im-

plemented on an FPGA.
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Chapter One

Introduction

Data processing applications like video streaming, multimedia, and radars have been

gaining popularity with advancing technology. These applications require data to be

sent through a communication channel. They also require high accuracy; therefore,

large amounts of samples or data points need to be transmitted. As the number of

samples required for transmission increases, the operating frequencies of these sys-

tems also need to be increased. It is well known that in order for these signals to

be properly reconstructed, they need to be sampled at the Nyquist rate. Therefore,

the operating frequencies of systems such as matched filters, and Analog-to-Digital

converters need to be increased, placing a high load on the components at the receiver.

The above mentioned problems can be overcome by implementing a technique

called Compressive Sensing (also called Compressive Sampling). This technique aims

at reconstructing the signal even when it has been sampled at a sub-Nyquist rate.

Compressive Sensing algorithms take advantage of non-adaptive linear projections

and greedy approaches that iterate until the required solution is obtained.

One of the requirements of Compressive Sampling is that the signal needs to be

sparse, meaning that the information rate of the signal is much smaller than suggested

by its bandwidth [1]. In Compressive Sensing, only the most important information

is acquired, and all the remaining values are discarded or are replaced by a predefined

default value. At the end, the transmitter does not transmit the discarded values,

saving bandwidth at the receiver and the transmitter.

Advantages of Compressive Sensing include (but are not limited to) reduction

in bandwidth by sending fewer samples, and elimination of expensive components

in systems like radars. Since the algorithms convert the signal through an iterative
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process via software, the process is much faster than the traditional solution which

includes physical hardware chips or circuits like the matched filters, and Analog to

Digital Convertor’s (ADC’s).

• Applications of Compressive Sensing in Digital Image Processing : A digital im-

age is compressed and under sampled at the transmitter and the reconstruction

algorithms are applied at the receiver to recover the digital image. Applications

include face recognition and image enhancement [2].

• Applications of Compressive Sensing in Digital Signal Processing : A digital

compressed and under sampled signal is sent at the transmitter, and the re-

construction algorithms are applied at the receiver to recover the digital signal.

Applications include signal reconstruction from fewer samples.

• Applications of Compressive Sensing in Radar : For radar systems, parameters

like altitude and angular location of the target need to be tracked. This makes

radar signals more flexible for Compressive Sensing [3]. Compressive Sensing

algorithms are applied on a echo signal captured by the radar to recover the

details of the target.

• Applications of Compressive Sensing in Sensor Networks : Compressive Sensing

is also used in sensor networks, which requires data from the sensor to be

recorded over long periods of time. In this case, Compressive Sensing allows

the user to take a few readings and recover the data, saving power for readings

which are not being taken.

1.1 Organization of Thesis

This thesis is divided into five chapters. Chapter 2 discusses Compressive Sensing,

and the ordinary least squares solution which will be used in the optimization tech-

niques. Chapter 3 describes the design methodology and proposed solution. Chapter

4 presents results showing the execution times and resource utilization for each ar-

chitecture. Chapter 5 includes the conclusions and future work.
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Chapter Two

Background

2.1 Introduction to Compressive Sensing

Compressive Sensing, also known as Compressive Sampling (CS) is a technique de-

veloped by Emmanuel Candes, Terence Tao and David Donoho around the year 2004

[4]. Using this technique it is possible to recover a signal which is sampled below

the Nyquist rate. Traditional sampling theory states that the sampling rate or the

number of samples in a signal should be at least twice the maximum frequency in an

analog signal.

The general procedure for non-Compressive Sensing signals is to acquire the signal

and transmit these data points or projections onto a communication channel. Be-

cause the receivers on the end can receive only signals sampled according to Nyquist

rate, the signal needs to be sampled at the Nyquist rate. As a result, every single

data point needs to be transmitted.

Compressive Sensing is considered an effective solution as long as the signal of

interest is sparse, or it can be made sparse by means of a transformation mapping.

Compressive Sensing utilizes the techniques of ordinary least squares, and QR decom-

position which are used to find the solution for underdetermined systems of equations.

One of the conditions for Compressive Sampling to work is that the signals need to

be sparse. Sparsity refers to the idea that the amount of information in the signal is

much smaller than that suggested by its bandwidth [1].

3



2.1.1 Signal Representation and Measurement Matrix

Signal representation is a key factor in understanding the functionality of any sys-

tem. In Compressive Sensing, the observed signal is defined as the product of a

measurement matrix and the original signal. This idea is represented in equation 2.1.

y = Φx (2.1)

where Φ is the uniform random measurement matrix, x is the solution vector, and y

is the received vector.

Figure 2.1: Compressive Sensing Measurement Matrix [5]

Figure 2.1 shows an example of a measurement matrix, where M < N , x is the

solution vector and Ψ is the transformation mapping to ensure that x is sparse. Ob-

serve that the number of measurements or samples (M) is less than the length of the

under sampled signal (N).

For example, in case of a radar system, the measurement matrix would be con-

structed out of the transmitted signal, and y would be the observed signal reflected

from the target. Using this information it is possible to recover the vector x using

Compressive Sensing techniques [3].

Designing a measurement matrix is a very important factor in Compressive Sens-

ing. There are two types of measurement matrices that can be used: the random

measurement matrix and the predefined measurement matrix. The measurement

matrix Φ shown in Figure 2.1 must allow the reconstruction of the length-N signal

x from M < N measurements. As the number of measurements made is less than

4



the length of the signal, reconstruction by traditional methods is impossible. As

mentioned before if x is K-sparse the problem can be solved provided that M ≥ K

[6]. However, the following condition should be satisfied for any vector υ sharing the

same K nonzero entries as the vector s.

1− ϵ ≤ ∥ Θυ ∥2
∥ υ ∥2

≤ 1 + ϵ (2.2)

where ϵ is greater than zero, Θ = ΦΨ is an M × N matrix and ∥∥2 represents the

second norm of the vector. A sufficient condition for a stable solution for both K-

sparse and compressible signals is that Θ should satisfy equation 2.2 for an arbitrary

3K-sparse vector υ. This condition is referred to as the Restricted Isometric Property

(RIP) [7]. If the rows ϕj from the measurement matrix Φ cannot sparsely represent

the columns of ψi of Ψ and vice versa, it is referred to as incoherent. If Φ is sufficiently

“incoherent” and satisfies the “Restricted Isometric Property (RIP)”, then the infor-

mation of s will be implanted in y such that it can be perfectly recovered with high

probability. Both the RIP and incoherence can be achieved with high probability sim-

ply by selecting the measurement matrix as a random matrix. As mentioned above, if

a signal x composed of N samples is sparse, then the actual signal can be perfectly re-

constructed usingM ≥ cK log(N/K) ≪ N linear projections of x onto another basis.

2.2 Ordinary Least Squares Solution of Underdetermined Systems via

QR Decomposition

Ordinary least squares solution is an effective method used to calculate the solution of

underdetermined system of equations. Let A and B be two different matrices. Even

more, matrix A is a non-square matrix, in which the number of rows is less than

the number of columns. For that reason, it is an undetermined system of equations,

and needs to be solved using the ordinary least squares. The ordinary least squares

procedure is defined by equation 2.3 [8]-[9].

Xk = (((AT ∗ A)−1) ∗ AT ) ∗B (2.3)

The first part of the equation is calculating the product of the matrix A and the

transpose of the matrix A. The inverse of the product of both matrices is calculated

using the procedure as described below [10]-[13].

(AT ∗ A) = Q ∗R (2.4)

5



equation 2.4 shows the decomposition of the product matrix into Q and R where Q

is an orthogonal matrix and R is an upper triangular matrix. An orthogonal matrix

is a matrix in which the transpose of Q and the inverse of Q are the same.

The Q and R decomposition methodology using modified gram schmidt is as fol-

lows [10].

1. The product matrix can be decomposed into a set of columns or vectors as shown

in equation 2.5

C =
[
a1 a2 a3 · · · an

]
(2.5)

2. The a1 vector is assigned to a new vector called u1, and the e1 vector is calculated by

dividing the u1 vector by the norm of u1. This procedure is summarized in equations

2.6 and 2.7

u1 = a1 (2.6)

e1 =
u1

∥ u1 ∥2
(2.7)

3. In the next step, the projection of the vector a2 onto the vector e1 is subtracted

from the vector a2. The vector e2 is calculated by dividing the vector u2 by its norm.

The following equations 2.8 and 2.9 summarize this procedure.

u2 = a2 − (a2 · e1)e1 (2.8)

e2 =
u2

∥ u2 ∥2
(2.9)

4. This process is repeated until all the corresponding vectors of e are calculated.

The resultant QR factorization is given by equation ??

C =
[
a1 a2 a3 · · · an

]

=
[
e1 e2 e3 · · · en

]

a1 · e1 a2 · e1 · · · an · e1
0 a2 · e2 · · · an · e2
...

...
. . .

...

0 0 · · · an · en

 = QR (2.10)

5. The next step is to calculate the inverse of QR as shown in equation 2.11

(QR)−1 = R−1 ∗Q−1 = R−1 ∗QT (2.11)

The computed value from equation 2.11 is substituted back in equation 2.3 to get the

ordinary least squares solution.

6



2.3 Optimization Techniques

Optimization techniques are a quick and easy way to find solutions of sparse signals,

because most of the optimization techniques take advantage of non-adaptive linear

projections to preserve the structure of the signal. The following sections describe and

explain the functionality of three of the most common optimization techniques. These

are the Optimal Matching Pursuit (OMP) [14]-[15], Compressive Sampling Matching

Pursuit (CSMP) [14][16], Stagewise Orthogonal Matching Pursuit (StOMP) [17].

2.3.1 Optimal Matching Pursuit (OMP)

1. The measurement matrix Φ and received vector or observed vector u are the

inputs to the system. A residual vector is defined in order to check the precision of

the solution.

2. Initially at the start of the algorithm the error is equal to the observed vector i.e.

u defined by the following equation 2.12

r = u (2.12)

3. The correlation between the columns of measurement matrix and the residual

vector is calculated using equation 2.13

|⟨r,Φ⟩| (2.13)

4. The column which is most correlated is identified and a support matrix is updated

with the index position of the column number which is most correlated with the

residual vector.

5. A phiactive matrix is updated with the most correlated column on every iteration.

6. An ordinary least squares solution is calculated between the phiactive matrix and

the observed vector u to give a sparse vector result xk as shown in equation 2.14

xk = LS(Φactive, u) (2.14)

7. The residual is re-calculated and is updated for the next iteration using equation

2.15

r = u− Φxk (2.15)

8. The process is repeated from step 3 until the stopping condition is met. The

stopping condition can be one of following: 1. The number of iterations 2. The error

7



value defined by the user.

9. After the process ends, a sparse vector xsparse is created with the length of the

columns of the measurement matrix and is initialized with all zeros, the values of xk

are placed in the xsparse vector at places defined by the support matrix.

2.3.2 Compressive Sampling Matching Pursuit (CSMP)

The Optimal Matching Pursuit (OMP) described previously extracts one most cor-

related column on each iteration. On the other hand, the Compressive Sampling

Matching Pursuit is capable of extracting more than one column on each iteration

defined by a tuning parameter. The functioning of the Compressive Sampling Match-

ing Pursuit is as follows.

1. The measurement matrix Φ and received vector or observed vector u are the inputs

to the system. A residual vector is defined in order to check the degree of the closeness

or error.

2. Initially since this is the start of the algorithm the error is equal to the observed

vector i.e. u defined by the following equation 2.16

r = u (2.16)

3. Define a target sparsity s and tuning parameter α. An nsel parameter is calculated

using equation 2.17 which describes the number of columns to be extracted on every

iteration.

nsel = α ∗ s (2.17)

4. The nsel most correlated columns from the measurement matrix are identified

using equation 2.18

|⟨r,Φ⟩| (2.18)

5. Define ’omega’ vector to have the indexes of the most correlated nsel columns.

6. For the first iteration define T matrix to be the omega matrix. For subsequent

iterations this matrix will get updated with the union of the omega and support

matrix from the previous iterations.

7. Define a phiactive matrix which contains all the most correlated columns specified

by T .

8. Perform an ordinary least squares solution of the phiactive matrix and observed

8



vector u to give a result xt as shown equation 2.19

xt = LS(Φactive, u) (2.19)

9. Sort the xt vector in a descending order and define a xloc variable which consist

the indexes of the sorted columns.

10. Define a sparse vector xk with the length of the columns of the measurement

matrix and is initialized with all zeros.

11. Insert the first s largest values given by xt(xloc(i)) at indexes defined by xk(T (xloc(i)))

as shown in equation 2.20

xk(T (xloc(i))) = xt(xloc(i)) (2.20)

12. Update the residual by subtracting the product of the sparse vector and the

measurement vector with the observed vector as shown in equation 2.21

r = u− Φxk (2.21)

13. Create a support matrix if it is the first iteration, update support for subsequent

iterations by the following equation 2.22

support = T (xloc(1 : s)) (2.22)

The process is repeated from step 4 until the stopping condition is met. The stopping

condition can be one of following: 1. The number of iterations, 2. The error value

required by the user.

2.3.3 Stagewise Orthogonal Matching Pursuit (StOMP)

The Stagewise Orthogonal Matching Pursuit (StOMP) uses a slightly different ap-

proach. A threshold parameter is defined and all the columns with a correlation

coefficient greater than the threshold are extracted. The functionality of the StOMP

is as follows.

1. The measurement matrix Φ and received vector or observed vector u are the inputs

to the system. A residual vector is defined in order to check the degree of the closeness

or error.

2. Initially since this is the start of the algorithm the error is equal to the observed

vector i.e u defined by the following equation 2.23

r = u (2.23)
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3. The threshold parameter σTs is calculated as demonstrated in the equation 2.24

σTs =
∥ r ∥2√

n
Ts (2.24)

4. The correlation between the columns of measurement matrix and the residual

vector is calculated as demonstrated in equation 2.25

|⟨r,Φ⟩| (2.25)

5. All the columns which have a correlation coefficient greater than the set threshold

sigmaTs are selected and all the indexes are stored into another vector named omega.

6. For the first iteration define a support vector which is initialized with omega, for

subsequent iterations update the support with the union of omega and support.

7. Define a phiactive matrix and update the phiactive matrix with the most corre-

lated columns obtained in step 6.

8. Calculate the ordinary least squares solution of phiactive and u as demonstrated

in equation 2.26

xk = LS(Φactive, u) (2.26)

9. A sparse vector xsparse is created with the length of the columns of the measurement

matrix and is initialized with all zeros, the values of xk are placed in the xsparse vector

at locations or indexes defined by the support matrix as shown in equation 2.27.

xsparse(supp(e)) = xk(e) (2.27)

where e is a variable that runs through the length of xk.

10. Update the residual by subtracting the product of the sparse vector and the

measurement vector with the observed vector as shown in equation 2.28

r = u− Φxk (2.28)

11. The process is repeated from step 5 until the stopping condition is met. The

stopping condition can be one of following like the number of iterations or the error

value required by the user.

2.4 Advanced RISC Machine (ARM)

The Advanced RISC Machine (ARM) is a family of processors launched in November

1990 by Advanced RISC Machine (ARM). The ARM processor has a wide range of
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capabilities starting from simple arithmetic calculations to controlling several other

peripherals. ARM is available in both 32-bit and 64-bit architectures. The ARM

processor is widely used in daily applications ranging from hard disk drives, printers,

washing machines, smart meters, gaming and television [18]. One of the most popular

application of ARM is its use in cellphones. Because of its wide range of capabilities

starting from signal processing to multimedia applications, it is best suited for to-

day’s smartphones which are capable of not only receiving signals, but also capable

of processing multimedia applications like video streaming and gaming.

One of the most powerful processors from the ARM family is the “ARM cortex

A9” processor [19]. The ARM cortex A9 uses an architecture v7-A with an eight stage

pipeline. The architecture v7-A of the ARM has features like memory management

unit, multitasking, and trust zone (a feature for secure applications like payments),

and is capable of high performance at low power. The ARM cortex A9 has one of

the fastest (AMBA-AXI) interconnects which makes the movement of data faster

between modules [20].

One of the most important features of the cortex-A9 processor is the NEON Me-

dia Processor Engine (MPE) technology. The NEON MPE is a separate hardware

unit on Cortex-A series processors, together with a vector floating point (VFP) unit

[20]. The overall idea of having a dedicated NEON engine is that if an algorithm

can be designed to exploit dedicated hardware, performance can be maximized. This

means fewer clock cycles are required to process data and therefore more stand-by

time which will decrease the power consumption and increase the performance. The

NEON engine uses a Single Instruction Multiple Data (SIMD) technique in order to

process many data values. The NEON engine is particularly useful for digital signal

processing or multimedia algorithms such as Block-based data processing, FFTs, ma-

trix multiplication, and audio video codecs like MPEG-4.

2.5 Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) is an integrated circuit which can be con-

figured or programmed on the fly depending on the specific application. A Field

Programmable Gate Array consists of basic logic circuits like encoders, decoders,

multiplexer’s and several Look Up Tables(LUT’s) integrated into a block called as a
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Configurable Logic Block (CLB). The CLB performs the operations as specified by

the designer. First, a program needs to be written for the design in VHDL, Verilog,

or System C to obtain proper functionality on the FPGA. The software program

describes connections and interface signals for each module, and the functionality of

the design.

In recent years, FPGA’s have advanced from basic adder, multiplier, DSP blocks

to having a variable precision floating point DSP block on the chip. Nowadays,

FPGA’s are being manufactured with inbuilt hardware in which can one add systems

intelligence through software, data processing and decisions can be executed in real

time with programmable hardware and system interfaces through programmable In-

put Output (I/O) that make the FPGA a complete System-on-a-Chip solution [21].

One of the most popular and advanced FPGA’s is the Xilinx Zynq 7000 Series.

Figure 2.2 shows the Zynq Evaluation and Development (ZED) Board evaluation

kit with an embedded Zynq 7020 FPGA [22]-[23].

The programmable logic of this device is built on a highly advanced 28nm technol-

ogy and is packed with 85,000 logic cells, 53,200 LUT’s, 106,400 Flip-Flops, 560KB

of extensible block RAM, 220 Programmable DSP slices, MSPS ADC’s with up to

17 differential inputs [24]-[25].

The ZedBoard development kit is also embedded with a dual ARM Cortex-A9

processor (Processing System) with an L1 Cache of 32KB and L2 cache of 512KB

and on chip memory of 256KB [22]. The maximum processor clock frequency is 866

MHz. The processor is supported with an external DDR3 memory support, external

memory static memory with 2x Quad-SPI, NAND, NOR and 8 DMA channels. There

are also some other peripherals like two UART, two CAN, two I2C, two SPI, 4*32

GPIO attached to the Processing System [24]-[25].
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Figure 2.2: Zed Board Development Kit XC7Z020CLG484-1 with Zynq Processing
System [22]
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Chapter Three

Proposed Solution

The first step in application development is understanding the basic functionality of

the algorithm or the process. The next step is to simulate its functionality and the

last step is to implement it according to the application.

In order to get a better understanding of the functionality of the optimization

techniques, it was decided to program them in MATLAB. MATLAB is a high level

language and simulation tool used extensively for finding solutions to the mathemati-

cal problems by programming them and then visualizing them. The Optimal Match-

ing Pursuit (OMP), Compressive Sampling Matching Pursuit (CSMP) and Stagewise

Orthogonal Matching Pursuit (StOMP) have been programmed and implemented.

3.1 Implementation in MATLAB

The MATLAB implementation of the optimization techniques is used to envision,

and verify the functionality of the optimization techniques. The inputs to the algo-

rithms are a measurement matrix Φ and an observation matrix u. The algorithms

are required to find out the best fit solution i.e. x. Multiple submodules like matrix

multiplication, ordinary least squares, and QR decomposition are implemented in

MATLAB. Their functionality has been checked with a predefined solution defined

at the beginning of the algorithms.

3.2 Design Flow for Zynq System on Chip (SoC)

It is essential for any application development to have proper design flow in order to

have a fully functional and error free application. Figure 3.1 demonstrates the steps
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starting from the design specification stage to the final testing stage [26].

Figure 3.1: Design Flow for a Zynq SoC [26].

Requirements and specifications: A starting point of any project is defining the

requirements and desired outcomes. System specification contains details such as the

intended functionality, interfaces required and performance criteria.

System design: Most of the design architectures are top-down approaches. The

top-level functionality and flow are designed first, and the internal submodules and

functions are designed later. Depending on the system complexity, the design may be

15



partitioned into hardware, and software. The processor is generally responsible for

task scheduling, and general-purpose tasks. Other computationally intensive and par-

allel tasks can be partitioned and implemented on hardware, i.e. Programmable Logic

(PL). Vivado Integrated Development Environment (IDE) is used to start building

the design and make the necessary hardware connections [27]-[32]. After the design

is built and necessary connections are made, it is exported to Software Development

Kit (SDK) for software development, which involves exporting the addresses of the

individual components of the design and their respective connections [33]-[35].

System integration and testing: The final step is to integrate the hardware and

software, initialize the design and check the functionality of the design.

3.3 Implementation on ARM processor

The first architectural design consists of the Zynq processing system which has an

in built dual core ARM cortex A9 processor. The Zynq processing system not only

encompasses the ARM processor, but is also embedded with several other peripheral

memory interfaces, general purpose ports, high performance ports and Accelerator

Coherency Port (ACP) [24]-[25]. Figure 3.2 shows the architectural block diagram

of a Zynq processing system. The Application Processing Unit (APU) highlighted

in the block diagram consists of 2 ARM cores, associated NEON Media Processing

engine (MPE), Vector Floating Point Unit (VFU), level 1 cache, level 2 cache, scoop

control unit and an associated On Chip Memory (OCM). The Processing System (PS)

and the Programmable Logic (PL) are connected by high performance AXI standard,

which is based on the ARM AMBA 3.0 open standard [25].

3.3.1 AXI Standard

AXI stands for Advanced eXtensible Interface (AXI) which is used to connect the

processor, peripherals, and several other IP blocks on the Programmable Logic (PL)

in an embedded system. The current version of AXI is AXI4. There are three differ-

ent AXI4 bus protocols namely AXI4, AXI4-Lite and AXI4-Stream [26].

AXI4: This is used for memory mapped links providing the highest performance.

In this case an address is supplied, and a data burst size up to 256 data words or
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Figure 3.2: Architectural Block Diagram of a Zynq Processing System [26]

data beats can be achieved.

AXI4-Lite: This is a simplified version of the AXI4 Lite which is also memory

mapped, accepts an address and allows only one data transfer or data word per con-

nection (no bursts).

AXI4- Stream: This is used for high speed streaming data. This mechanism does

not have an address mechanism and just streams in and streams out the data between

source and destination (non-memory mapped).

3.3.2 Vivado Integrated Development Environment (IDE)

The Vivado Integrated Development Environment (IDE) is an environment build for

creating and making connections to the hardware part of the SoC design [27]-[29].
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The development environment is capable of making connections between processor,

memories, peripherals, external interfaces using the above mentioned AXI standard.

The choice of the AXI bus depends on the particular properties of that connection.

The first architectural design consists of the Zynq processing system. The al-

gorithms were processed initially on the ARM processor. A timer was also included

in the design to calculate the amount of clock cycles required to process the algorithm.

The timer is implemented on a programmable logic (PL) through an AXI inter-

connect via AXI4 memory mapped interface. The AXI interconnect essentially acts

as a switch which manages and directs traffic between AXI interfaces. Figure 3.3

shows the architecture of a Zynq processing system with the attached timer.

Figure 3.3: Architectural Design of a Zynq Processing System connected to a Timer.

This architecture was designed in Vivado Integrated Development Environment

(IDE) [30]-[32]. After the necessary connections had been made in Vivado, the hard-

ware connections are converted to a stream of zero’s and one’s understandable by

the processor. This is called as a bitstream. The bitstream, and the hardware ad-

dress map (xparameters.h) containing the address of every component is exported to

Software Development Kit (SDK). The algorithms were written in C code, and im-

plemented on the ARM cortex A9 processor. The code is written in Xilinx -Software
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Development Kit (SDK), and the output is printed on the serial terminal.

Xilinx Software Development Kit (SDK) is an editor to write C code and execute

it on the ARM processor. It is a complete application development, and debugging

environment built on eclipse [33]-[35]. It includes GNU based compiler tool chain

namely GCC compiler, GDB debugger, utilities and exclusive library support for

ARM and NEON extensions using C, C++ languages. It also includes a JTAG de-

bugger, flash programmer, drivers for Xilinx IPs and bare metal application [26].

3.4 Implementation on ARM processor and FPGA

The second design consists of both, the ARM processor, and FPGA in order to lever-

age the capability of the FPGA, and increase the performance of the design. Therefore

it was designed to implement the computationally intensive matrix multiplication al-

gorithms on the FPGA using the Xilinx floating point IP blocks. The floating point

blocks use AXI4-Stream input data and AXI4-Stream output data interfaces.

In order to transfer the data in and out of the processing system a Direct Memory

Access IP block was used in the design. It is also used to convert the memory mapped

data coming out of a memory mapped IP block like a processing system into a stream

data, and vice versa.

Figure 3.4 shows the architecture of a Zynq processing system with associated

floating point blocks. It can be seen that two floating point blocks are used, one for

multiplication and one for addition.

Two Direct memory access IP blocks are used in the circuit in order to transfer

the data to the first floating point unit and one Direct memory access IP block to

transfer the data to the second floating point unit and get back the result. This

design is connected to the high performance (HP) AXI port of the processing system

to have a high performance for transferring the data in and out.
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3.4.1 Operation of a Direct Memory Access (DMA)

Converting a memory mapped data into a stream data: The memory mapped data

that needs to be converted into stream data is sent as an input to the M AXI MM2S,

and the converted stream data is sent out through M AXIS MM2S [36].

Converting a stream data into a memory mapped data: The stream data that needs

to be converted into memory mapped data is sent as an input to the S AXIS S2MM,

and the converted memory mapped data is sent out through M AXI S2MM [36].

3.4.2 Floating Point Unit Operation

The floating point 0unit receives the stream data from the processing unit. It is

configured in the multiply mode which multiplies the two inputs and sends it on to

another floating point unit named floating point 1. The second floating point unit is

configured in the addition mode. The floating point 1 gets the second input from the

processing system which is the previously accumulated data. This accumulated sum

is added at every iteration to each sub-product coming from the floating point 0.

After all iterations are complete the result is obtained from the output of the second

floating point and is transferred to the processing system (PS). More details on the

floating point IP can be found in the Xilinx Website [37].

3.5 Implementation of Matrix Multiplication Block on FPGA

In this architecture, it was designed to implement a matrix multiplication block on an

FPGA with input stream and output stream in order to increase the performance [38].

Vivado High Level Synthesis (HLS) is a design tool used to convert a code written in

high level languages like C, C++ to a hardware description language like VHDL, Ver-

ilog and system C. Vivado HLS is inbuilt with a lot of optimization directives. Few of

them are pipeline, array partition, and array reshape [39]. Vivado HLS is also inbuilt

with a test bench for verification of our design, synthesis and RTL generation tool

to implement the design. After generating the required matrix multiplication block,

the necessary connections are done in Vivado IDE as shown in the Figure 3.5. The

matrix multiplication block is connected to the Accelarator Coherency Port (ACP)

of the processing system to have an accelerated performance over the previous design.
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This design eliminates the use of two DMA’s compared to the previous architec-

ture. This design uses one DMA to stream in both inputs one after the other, process

the matrix multiplication at once, and streams out the result using the same DMA.

As a result, this architecture reduces the overall processing time.
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Chapter Four

Results

The main goal of this research is the implementation of Compressive Sensing algo-

rithms in real time systems. Embedded systems are the perfect candidates because

of their parallel processing capabilities. The following are the results for the imple-

mentations discussed in the earlier chapters.

4.1 MATLAB Results

4.1.1 MATLAB Results for Optimal Matching Pursuit (OMP)

Initially a MATLAB code was implemented for the Optimal Matching Pursuit (OMP)

with an 18× 512 measurement matrix and an 18× 1 observation matrix as inputs.

Figure 4.1 shows the reconstructed sparse signal, which is composed of 512 sam-

ples using Optimal Matching Pursuit (OMP). The simulation results in MATLAB

show that the OMP is working as intended, and has perfectly reconstructed the so-

lution vector from the measurement matrix and the observed matrix. Even more,

Figure 4.1 shows that all samples other than the targets are zero. Therefore, OMP

was able to reconstruct the radar scene perfectly.

4.1.2 MATLAB Results for Compressive Sampling Matching Pursuit

(CSMP)

A 24× 512 measurement matrix and a 24× 1 observation vector are taken as inputs

for the Compressive Sampling Matching Pursuit (CSMP) algorithm.
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Figure 4.1: Reconstructed Sparse Signal using OMP.

Figure 4.2 shows a perfect reconstruction of the sparse vector of 512 samples using

CSMP algorithm.

4.1.3 MATLAB Results for Stagewise Orthogonal Matching Pursuit

(StOMP)

An 18 × 512 measurement matrix, and an 18 × 1 observation vector are taken as

inputs for the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm.

Figure 4.3 shows the reconstructed signal using StOMP. The simulation results

in MATLAB show that the algorithm functioned as intended, and had reconstructed

the signal with good accuracy.

However, a careful observation at the reconstructed vector indicates a small blip

at sample 310. This is due to the way StOMP works. StOMP considers a preset

threshold, and all correlations greater than the preset threshold are extracted in ev-

ery iteration. As a result, a careful and accurate selection of the threshold parameter

is required for the algorithm to work properly.
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Figure 4.2: Reconstructed Sparse Signal using CSMP.

4.2 Execution Times in MATLAB

In this section, the execution times for the OMP, CSMP, and the StOMP in MAT-

LAB will be presented. The codes were tested for different size matrices in order

to compare their performance. Table 4.1 shows the execution times for an 18 × 512

measurement matrix. It is clear by looking at the data that the OMP is the fastest.

It needs to be noted that it was not possible to perform the CSMP algorithm for

an 18 × 512 measurement matrix, because the measurement matrix was not ran-

dom enough for the CSMP to work. Table 4.1 and all further results in MATLAB

discussed in this section are obtained when the algorithms were implemented in MAT-

LAB on Intel corei7 processor running on a 64 bit operating system with 16GB RAM.

Table 4.2 shows the MATLAB results for a 24× 512 input measurement matrix.

In this case, the three different algorithms are working perfectly and they were able

to reconstruct the signal.

By looking at the execution times it is evident that the OMP is faster than the
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Figure 4.3: Reconstructed Sparse Signal using StOMP.

Table 4.1: Execution Times in MATLAB for a 18 × 512 Measurement Matrix and
Three Targets.

OMP CSMP StOMP
Execution Time 8.24 ms * 36.889 ms

Table 4.2: Execution Times in MATLAB for a 24 × 512 Measurement Matrix and
Three Targets.

OMP CSMP StOMP
Execution Time 8.28 ms 39.39 ms 37.05 ms

CSMP and StOMP. However, it is very difficult to judge the performance of the algo-

rithms for a small number of targets, especially the CSMP and the STOMP. It is also

very difficult in MATLAB to measure accurately the time for algorithms which run

in milliseconds, because MATLAB produces different execution time each time the

algorithm is run. Therefore, the execution time of every algorithm was averaged out

for 100 iterations. Finally, a measurement matrix of 700 × 1000 elements was con-

sidered. This matrix was generated using a chaotic radar system, and three targets
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were placed randomly [40]. Figure 4.4 shows the reconstructed radar scene through

optimization techniques.

Figure 4.4: Reconstructed Sparse Signal using Optimization Techniques.

Table 4.3: Comparison of Execution Times of the algorithms for a 700× 1000 Radar
Measurement Matrix and Three Targets.

Execution Times Acceleration Factor against CVX
OMP 11.19 ms 536.19
CSMP 9.15 ms 655.73
StOMP 9.26 ms 647.94
CVX 6 sec 1

Table 4.3 shows the execution times for a 700 × 1000 radar data measurement

matrix with three targets. The performance acceleration is obtained by comparing

the codes running in MATLAB, against Convex optimization technique (CVX).

It is clear that the execution time for CSMP and StOMP for the bigger data set is

lesser than the smaller data set. This is because these algorithms are highly dependent
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on the data being processed, and the amount of information. In other words, the

larger the amount of data to be processed, the more random the measurement matrix

is, increasing the performance of the algorithms.

4.3 Execution Times in ARM Processor

There are three basic optimization levels as discussed below:

The first level optimization performs jump and pop optimizations. The second

level optimization enhances nearly all optimizations that do not involve a speed-space

trade-off. This kind of optimization is the general standard optimization from pro-

gram deployment. The third level of optimization is the highest optimization level.

This one increases more expensive options like using more resources, including those

that increase code size. These optimization levels need to be applied with extreme

caution, if not the optimization could lead to less efficient results than the actual

implementation.

Table 4.4: Number of execution clock cycles of ARM Processor for an 18 × 512
measurement matrix and three targets.

Optimization level OMP CSMP StOMP
No optimization (-O0) 251,347 * 434,846

Optimize (-O1) 47,851 * 85,001
Optimize more (-O2) 53,126 * 88,400
Optimize most (-O3) 4,907,613 * 5,024,685

Table 4.4 shows the number of clock cycles required to execute the algorithms for

different optimization levels. It can be seen that the first level optimization works

better for the algorithms. The second level optimization is worse than the first level

optimization; However, it is better than the actual non optimized implementation.

Third level optimization yielded much worse results than the actual implementation.

Table 4.5 shows the number of clock cycles required for each algorithm to be

executed. It is clear that the optimizations depend on the algorithms, and are not

same for all algorithms. The results show that the OMP and the StOMP require

less number of clock cycles in the first level (-O1). However, CSMP required lesser
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Table 4.5: Number of Execution Clock Cycles of ARM Processor for a 24 × 512
Measurement Matrix with Three Targets.

Optimization level OMP CSMP StOMP
No optimization (-O0) 330,386 1,022,681 561,124

Optimize (-O1) 94,385 3,42,478 153,440
Optimize more (-O2) 96,993 319,479 160,381
Optimize most (-O3) 96,784 331,295 160,255

number of execution cycles in the second optimization level (-O2).

The execution time of the algorithms can be calculated using the formula equation

4.1

t = n× T (4.1)

where t is the execution time, n is the number of clock cycles and T is the time period

of each clock cycle. In this specific case the timer is implemented on a Programmable

Logic (PL) which is running at 100 MHz. The time period T can be calculated using

the formula in equation 4.2

T =
1

f
(4.2)

where f is the frequency. Table 4.6 shows the execution time calculated using equation

4.1 and equation 4.2, and a comparison between these values and the ones from using

MATLAB are presented.

Table 4.6: Comparison of the Execution Times in MATLAB and ARM for a 24×512
Measurement Matrix with Three Targets.

Implementation OMP CSMP StOMP
MATLAB 8.28 ms, 39.39 ms 37.05ms

ARM (Non-Optimized) 3.30 ms 10.22 ms 5.61 ms
ARM (Optimized) 0.94 ms 3.19 ms 1.53 ms

Accelaration Factor (Non-Optimized) 2.50 3.85 6.60
Accelaration Factor (Optimized) 8.80 12.34 24.21

A 700×1000 measurement matrix was taken as an input to the algorithms. Table

4.7 shows the number of clock cycles for different optimization levels.
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Table 4.7: Number of Execution Clock Cycles of ARM Processor for a 700 × 1000
Radar Measurement Matrix with Three Targets.

Optimization level OMP CSMP StOMP
No optimization (-O0) 17,198,286 12,812,619 45,143,213

Optimize (-O1) * 5,160,452 11,081,729
Optimize more (-O2) * 5,230,980 10,851,392
Optimize most (-O3) * 5,236,724 10,828,840

The execution times for the results in Table 4.7 can be calculated using equation

4.1 and equation 4.2 The calculated execution times using equation 4.1and equation

4.2 are shown in 4.8

Table 4.8: Comparison of the Execution Times in MATLAB and ARM considering a
700 by 1000 Measurement Matrix with Three Targets.

Implementation OMP CSMP StOMP
MATLAB 11.19 ms 9.15 ms 9.26 ms

ARM No Optimization (-O0) 171.98 ms 128.12 ms 451.43 ms
ARM Optimize (-O1) * 51.60 ms 110.81 ms

ARM Optimize more (-O2) * 52.30 ms 108.51 ms
ARM Optimize most (-O3) * 52.36 ms 108.28 ms

It is clear from the results that the MATLAB implementation is better than the

ARM implementation. At this moment, there is no a clear reason for this result.

However, it is conjectured that it is due to the following reasons.

1. MATLAB is being run on a computer with high configuration and also a key factor

is that the ARM performs element by element processing whereas MATLAB process

the data in vectorized way which means it considers the data as vectors or arrays and

process it. Vectorization typically uses pre-compiled, optimized functions to execute

it instead of running through the interpreter. Vectorization is typically useful in most

of the matrix manipulations like matrix multiplication, dot product etc. Therefore

this process is much faster than the traditional approach of doing element by element

processing.

2. The performance of the algorithms also might depend on the kind of input data.

3. It also might depend on the proper selection of stack and heap sizes which can
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alter the performance of the algorithms.

4.4 Execution Times for a 12× 12 Matrix Multiplication Using ARM

and Floating Point Units

The previous architecture with an ARM processor is implemented only on the pro-

cessing system, and it doesn’t use the Programmable Logic (PL). A timer is only

implemented on the Programmable Logic (PL) for calculating the number of clock

cycles.

The current architecture with an ARM and floating point units uses the Pro-

grammable Logic(PL) to implement the floating point units and therefore this archi-

tecture utilizes more resources than the previous architecture. It might be obvious

that an architecture which utilizes more resources is faster than the architecture with

lesser resources.

However, a careful observation of the architecture reveals that each and every

element is being transmitted, processed, and sent back which increases the transmit

and receive delays. Also, the calculation is made element by element processing and

computationally intense task is not being processed in each iteration. Only one mul-

tiplication and one addition is performed in one iteration. Therefore this architecture

is slower than the previous implementation of the ARM processor.

Table 4.9: Performance Results of a 12× 12 Matrix Multiplication using an architec-
ture with an ARM Processor, and ARM with Floating Point Units.

Architecture Clock Cycles Accelaration

ARM Processor
Non-Optimized 16,512 *

Optimized 3,649 *

ARM and Floating Point Units
Non-Optimized 1,491,690 0.011

Optimized 1,474,260 0.002

Table 4.9 shows the performance results for a matrix multiplication using an ARM

processor and the architecture with an ARM and floating point units. As shown in

Table 4.9, the number of clock cycles for a 12 × 12 matrix multiplication using an

ARM processor is less than the architecture with an ARM processor and floating
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point units.

4.5 Performance of Matrix Multiplication IP core

Table 4.10 shows the execution clock cycles and the corresponding acceleration factor

for each optimization level in the ARM. Table 4.10 also shows the number of execu-

tion clock cycles from the synthesis report of the matrix multiplication IP core.

It can be observed that the acceleration factor is most for the non-optimized (a)

case and is less for the second level of optimization (-O2). However, it is evident from

the results that the FPGA implementation is accelerated even though the ARM is

optimized.

Table 4.10: Comparison of Execution Clock Cycles for a Matrix Multiplication IP.

Implementation Optimization level 512x18 512x24 1000x700
FPGA matrix mul-
tiplication IP core
(A)

10,363 13,471 706,213

ARM

No optimization (-O0) (a) 68,025 90,074 5,106,373
Accelaration Factor (a/A) 6.56 8.69 7.23

Optimize (-O1) (b) 19,602 27,778 16,19,757
Accelaration Factor (b/A) 1.89 2.06 2.29
Optimize more (-O2) (c) 13,100 19,829 1,149,934
Accelaration Factor (c/A) 1.26 1.47 1.62
Optimize most (-O3) (d) 20,404 27,851 1,618,986
Accelaration Factor (d/A) 1.96 2.06 2.29

4.6 Resource Utilization Reports

Figure 4.5 shows the synthesis report showing the number of resources utilized of the

ARM architecture. Figure 4.5 also shows that only few resources are utilized in the

ARM architecture because we only have a timer implemented on the Programmable

Logic. Notice that this is only a synthesis report and it takes into account the ex-

pected number of resources required. When the actual logic is implemented, the

number of resources may increase or decrease depending on the complexity of the
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design.

Figure 4.5: Synthesis Resource Utilization Report of ARM Processor Architecture.

Figure 4.6 shows the implementation resource utilization report of the ARM ar-

chitecture. The implementation report takes into account the actual transmit delays,

placement and routing, timing issues into account and updates the number of re-

sources required accordingly.

Notice that the resource utilization of the implemented design is less than the

resources required for the synthesized design.

Figure 4.6: Implementation Resource Utilization Report of ARM Processor Archi-
tecture.

Figure 4.7 shows the synthesis report of the resource utilization of the ARM and

floating point units architecture. However, the actual resource utilization is found
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from the implementation report of the implemented design.

Figure 4.7: Synthesis Resource Utilization Report of ARM and Floating Point Units
Architecture.

Figure 4.8 shows the implementation resource utilization of the ARM and floating

point units architecture. Figure shows that the implemented design resource utiliza-

tion is less than the synthesized design resource utilization.

Figure 4.8: Implementation Resource Utilization Report of ARM and Floating Point
Units Architecture.

The current ARM and floating point units architecture utilizes more resources

than the previous ARM architecture. However, the Table 4.9 shows the current ar-

chitecture of ARM and floating point units is less efficient and requires more clock

cycles to process the floating point matrix multiplication. This is because the ARM
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processor has a built in NEON Media Processor Engine (MPE) and Vector Floating

Point unit (VFP) unit which is a dedicated hardware for floating point arithmetic

[41]. Also transmit and receive delays need to be eliminated by streaming large data

at once.

Figure 4.9 shows the synthesis report of the matrix multiplication IP core for

input matrices of 512 × 18 and 18 × 1. It is evident from the synthesis report that

there are huge number of LUT’s, Flip Flop’s, and DSP blocks utilized which are key

elements for matrix multiplication.

Figure 4.9: Synthesis Resource Utilization Report of the Matrix Multiplication IP
core for Matrix Inputs of 18× 512 and 512× 1.

Figure 4.10 shows the synthesis utilization report for matrix multiplication with

inputs 24 × 512 and 512 × 1 and it is evident from the synthesis report that this

matrix multiplication block utilizes more resources than the previous matrix multi-

plication IP core with 18 × 512 and 512 × 1 input matrices. It is also obvious that

36



a matrix multiplication with more number of elements to be processed require more

resources. It is observed in Table 4.10 that there is a considerable acceleration with

this architecture implementation.

Figure 4.10: Synthesis Resource Utilization Report of the Matrix Multiplication IP
core for Matrix Inputs of 24× 512 and 512× 1.

Figure 4.11 shows the synthesis resource utilization of the matrix multiplication

IP core with input matrices 1000x700 and 700x1. It is observed from Table 4.10

that there is a considerable improvement with the current architecture of the matrix

multiplication IP core. However, the practical implementation would not be possible

because of the practical limitations of the available resources on the FPGA board.

Therefore an efficient solution for this problem would be to use multiplexers and de-

multiplexers to reutilize the resources by the process of resource sharing and resource

reutilization.
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Figure 4.11: Synthesis Resource Utilization Report of the Matrix Multiplication IP
core for Matrix Inputs of 700× 1000 and 512× 1.
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Chapter Five

Conclusion and Future Work

5.1 Conclusion

Signal processing and signal reconstruction is an extremely important factor in com-

munication systems. In fact most under sampled signals could not be recovered

back with the regular reconstruction methods. Compressive Sensing is proposed as

a method to recover under-sampled signals; the only condition is that the signal of

interest should be sparse. There are a number of optimization techniques to recover

the under sampled signal. In this research work, it was decided to use the Optimal

Matching Pursuit (OMP), Compressive Sampling Matching Pursuit (CSMP) and

Stagewise Orthogonal Matching Pursuit (StOMP) to recover back the sparse signal

and improve their performance.

Three architectures were designed in order to improve the performance of the op-

timization techniques. The first architecture of the ARM processor shows a reduction

in computation time when compared to the software implementation in MATLAB.

The second architecture utilizes the Programmable Logic (PL) section to implement

a multiply and accumulate unit on the PL. This architecture utilizes more resources

than the first one. However, its execution time is much more than the first architec-

ture. The reason for this is that the second architecture perform operations element

by element, destroying any possibility of parallel processing.

A third architecture was designed in order to leverage, and utilize the features

of the FPGA. The third architecture utilizes more resources than the second archi-

tecture and includes pipelining that improves resource utilization. This architecture

streams in a whole matrix, does matrix multiplication at a time and streams out

the data at once. Data delays for transmitting and receiving each element has been

reduced and also element by element processing had been eliminated by processing
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the whole matrix multiplication in the FPGA.

5.2 Future Work

The current design implements only a portion of the code on the Programmable Logic

(PL). Future work includes all time consuming submodules and tasks like the ordi-

nary least squares to be implemented on a PL and improve the performance. Finally,

future work can also include the implementation of the whole optimization techniques

on the Programmable Logic (PL) and build a custom IP for each of the optimization

techniques. It is expected to have a 100 times acceleration factor if the whole opti-

mization technique could be implemented as an IP. However, implementing the whole

optimization techniques on the Programmable Logic (PL) might pose a serious chal-

lenge due to limited number of resources on the Programmable Logic (PL). Therefore

an efficient solution like pipelining which involves multiplexers and de-multiplexers

needs to be incorporated so that we can reutilize the resources effectively.
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