
University of Texas at Tyler
Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Spring 5-28-2015

Fast Semivariogram Computation Using FPGA
Architectures
Yamuna Sri Lagadapati

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Electrical
Engineering at Scholar Works at UT Tyler. It has been accepted for
inclusion in Electrical Engineering Theses by an authorized administrator
of Scholar Works at UT Tyler. For more information, please contact
tbianchi@uttyler.edu.

Recommended Citation
Lagadapati, Yamuna Sri, "Fast Semivariogram Computation Using FPGA Architectures" (2015). Electrical Engineering Theses. Paper 28.
http://hdl.handle.net/10950/277

http://www.uttyler.edu/graduate/?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.uttyler.edu/graduate/?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/ee?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/277?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tbianchi@uttyler.edu

FAST SEMIVARIOGRAM COMPUTATION USING FPGA

ARCHITECTURES

by

YAMUNA SRI LAGADAPATI

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science in Electrical Engineering
Department of Electrical Engineering

Mukul Shirvaikar, Ph.D., Committee Chair

College of Engineering and Computer Science

The University of Texas at Tyler
May 2015

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my advisor Professor Dr.

Mukul Shirvaikar, for being a tremendous mentor. I am grateful to him for his

exceptional guidance, encouragement, support and patience to complete my thesis

successfully. I would also like to thank my committee members, Professor Dr. Ron J.

Pieper, Professor Dr. Hector Ochoa, for serving as my committee members even at

hardship. I also want to thank them for letting my defense be an enjoyable moment, and

for your brilliant comments and suggestions.

A special thanks to my parents and family for their constant encouragement and financial

support to pursue my master of science in Electrical Engineering and for all of the

sacrifices that you’ve made on my behalf. I would also like to thank all of my friends

who supported me in writing, and encouraged me to strive towards my goal. At the end I

would like express appreciation to my beloved husband Sundeep who spent sleepless

nights with and was always my support in the moments when there was no one to answer

my queries.

I would like to thank each and every person for their encouragement and support to

complete my thesis work successfully.

ii

TABLE OF CONTENTS

List of Tables ... iv

List of Figures ... v

Abstract ... vii

Chapter One Introduction ... 9

1.1 Introduction to Texture ... 9

1.2 Various Texture Analysis Techniques .. 10

1.3 Objective and Framework ... 12

1.4 Organization of Thesis .. 12

Chapter Two Past Work .. 14

Chapter Three Technical Background .. 18

3.1 Semi-variogram ... 18

3.1.1 Range (L) ... 19

3.1.2 Sill Variance (C) .. 19

3.1.2 Nugget Variance () ... 20

3.2 Different Types of Semivariogram Models .. 22

3.3 Field Programmable Gate Arrays: .. 25

Chapter Four Methods and Experimental Procedures .. 28

4.1 Architecture Version 1 (Not Pipelined): ... 29

4.2 Architecture Version 2 (Pipelined): .. 32

4.3 Architecture Version 3 (Pipelined and Hardware Reutilization): 34

4.4 Image Buffer and Counter Module ... 34

4.4.1 Architecture Version 1 ... 34

4.4.2 Architecture Version 2 ... 36

4.5 Distance Module ... 38

0C

iii

4.5.1 Architecture Version 1 ... 38

4.5.2 Architecture Version 2 ... 39

4.6 Difference Module .. 40

4.6.1 Architecture Version 1 ... 40

4.6.2 Architecture Version 2 ... 40

4.7 Sorting Module ... 42

4.7.1 Architecture Version 1 ... 42

4.7.2 Architecture Version 2 ... 43

4.8 Variogram Calculation Module .. 44

Chapter Five Results and Design Implementation ... 46

5.1 Image Buffer Implementation Results .. 46

5.2 Distance Module Implementation Results .. 48

5.3 Difference Module Implementation Results ... 50

5.4 Sorting module Implementation results .. 52

5.5 Variogram Calculation Module Implementation Results 54

5.5.1 Implementation for Architecture Version 1 54

5.5.2 Implementations for Architecture Version 2 for a 10 × 10 Image 55

5.5.3 Implementations for Architecture Version 2 for a 20 × 20 Image 56

Chapter Six Discussion and Conclusion ... 61

6.1 Conclusion .. 61

6.2 Future Work .. 62

References ... 63

Appendix A VHDL Code ... 65

iv

LIST OF TABLES

Table 2.1 Summary of All Previous Studies ... 17

Table 3.1 Stochastic Parameters of Experimental Variogram .. 20

Table 3.2 Calculation of Difference of Pixels in the 1-D Array to Compute Variogram for

Lag Distance h=1 .. 21

Table 3.3 Number of Computations for Variogram Calculation for 𝑃 = 𝑀 × 𝑁 Image . 24

Table 5.1 Computational Time Comparison for Matlab Code, Non-Pipelined and

Pipelined Architecture Versions of Implementations. .. 58

Table 5.2 Verification of the Semivariogram Values Computed Using the Specified

Algorithm for a 10 × 10 Image. .. 58

Table 5.3 Verification of the Semivariogram Values Computed Using the Specified

Algorithm for a 20 × 20 Image. .. 59

Table 5.4 Device Utilization and Synthesis Report .. 60

v

LIST OF FIGURES

Figure 3.1 Characteristics of Semivariogram ... 20

Figure 3.2 Types of Semivariogram Models .. 23

Figure 3.3 Xilinx XUPV5-LX110T Development Kit with Virtex 5 FPGA 27

Figure 4(a) Cropped Image of the Hip Used for Experiments .. 29

Figure 4(b) Original Scanned Image of the Hip Used for Experiments 29

Figure 4.1(b) Block Diagram of Architecture Version 1 (Non Pipelined) 31

Figure 4.2(a) Timing Diagram of Architecture Version 2 (Pipelined) 32

Figure 4.2(b) Block Diagram of Architecture Version 2 (Pipelined) 33

Figure 4.4.1 (a) Block Diagram of Counter Module (Not Pipelined) 35

Figure 4.4.1 (b) Block Diagram of Image Buffer Module (Not Pipelined) 36

Figure 4.4.2 (a) Block Diagram of Counter Module (Pipelined) 37

Figure 4.4.2 (b) Block Diagram of Image Buffer Module (Pipelined) 37

Figure 4.5.1 Block Diagram of Distance Module (Not Pipelined) 38

Figure 4.5.2 Block Diagram of Distance Module (Pipelined) .. 39

Figure 4.6.1 Block Diagram of Difference Module (Not Pipelined) 40

Figure 4.6.2(a) Block Diagram of Difference Module (Pipelined) 41

Figure 4.6.2(b) Block Diagram for Skipping Algorithm .. 42

Figure 4.7.1 Block Diagram of Sorting Module (Not Pipelined) 43

Figure 4.7.2 Block Diagram of Sorting Module (Pipelined) .. 44

Figure 4.8 Block Diagram of Variogram Module .. 45

Figure 5.1 (a) Implementation Results for Image Buffer (Not Pipelined) 46

Figure 5.1 (b) Implementation Results of 10 × 10 Image Buffer (Pipelined) 47

Figure 5.1 (c) Implementation Results of 20 × 20 Image Buffer (Pipelined) 47

Figure 5.2 (a) Implementation Results for Distance Module (Not Pipelined) 48

vi

Figure 5.2 (b) Implementation Results of 10 × 10 Image Distance Module (Pipelined) . 49

Figure 5.2 (c) Implementation Results of 20 × 20 Image Distance Module (Pipelined) . 49

Figure 5.3 (a) Implementation Results for Difference Module (Non-Pipelined) 50

Figure 5.3 (b) Implementation Results of 10 × 10 Image Difference Module (Pipelined)

... 51

Figure 5.3 (c) Implementation Results of 20 × 20 Image Difference Module (Pipelined)

... 52

Figure 5.4 (a) Implementation Results for Sorting Module (Non-Pipelined) 53

Figure 5.4 (b) Implementation Results for Sorting Module (Pipelined) 54

Figure 5.5.1 .Implementation Results for Architecture Version 1 55

Figure 5.5.2 Implementation Results for Architecture Version 2 for a 10 × 10 Image 56

Figure 5.5.3 Implementation Results for Architecture Version 2 for a 20 × 20 Image 57

vii

ABSTRACT

FAST SEMIVARIOGRAM COMPUTATION USING FPGA

ARCHITECTURES

 Yamuna Sri Lagadapati

Thesis Chair: Mukul Shirvaikar, Ph. D.

The University of Texas at Tyler
May 2015

The semivariogram is a statistical measure of the spatial distribution of data, and is based

on Markov Random Fields (MRFs). Semivariogram analysis is a computationally

intensive algorithm that has typically seen applications in the geosciences and remote

sensing areas. Recently, applications in the area of medical imaging have been

investigated, resulting in the need for efficient real time implementation of the algorithm.

A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel

values between any two data locations with a lag distance of h. Due to the need to

examine each pair of pixels in the image or sub-image being processed, the base

algorithm complexity for an image window with n pixels is 𝑂(𝑛2).

Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding

applications due to their parallel processing capability. FPGAs also tend to operate at

viii

relatively modest clock rates measured in a few hundreds of megahertz. This thesis

presents a technique for the fast computation of the semivariogram using two custom

FPGA architectures. A modular architecture approach is chosen to allow for replication

of processing units. This allows for high throughput due to concurrent processing of pixel

pairs. The current implementation is focused on isotropic semivariogram computations

only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T

development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans

are utilized for the experiments. Implementation results of the first architecture shows

that a significant advantage in computational speed is attained by the architectures with

respect to Matlab implementation on a personal computer with an Intel i7 multi-core

processor. It is also observed that the massively pipelined architecture is nearly 100 times

faster than the non-pipelined architecture.

9

CHAPTER ONE

INTRODUCTION

 Medical image processing is a rapidly advancing area with many modalities like

X-ray, Magnetic resonance imaging (MRI), and ultra-scanning etc.,. Automated

processing of medical images can provide medical personnel invaluable assistance in the

diagnostic process. Large amounts of data are used to represent a typical image, so the

analysis of an image needs a large amount of memory and can take more time. In order to

reduce the amount of data, an image is typically processed to generate a set of features.

Feature extraction is a primitive type of pattern recognition, and it is very important to

extract information from an image and may involve features such as color, shape, and

texture. Features can be used to extract quantitative information about an image or for the

tasks such as searching, retrieval, and storage. Features are divided into different classes

based on the kind of properties they describe. Proper selection of features is critical to aid

diagnosis using medical imaging.

1.1 Introduction to Texture

Texture is an important feature, which quantifies gray level differences (contrast), over a

defined size of area where change occurs (window), and directionality. It plays an

important role in human vision and in image classification. Pictures of flowers, walls,

water, or patterns on a fabric or single objects are distinguished according to their texture.

The observation of texture depends on certain conditions such as light, angle, distance, or

other environmental effects. Texture features contain not only the visual characteristics

information, but also the characteristics which cannot be visually differentiated.

“Texture” as it is used in this context refers to the visual effect produced by the spatial

distribution of pixel value variation over relatively small areas.

10

Texture is the pattern of information or arrangement of the structure found in a picture,

which uses features in the analysis and interpretation of images. There are two types of

texture based on spatial frequency, namely, fine and coarse. Fine textures have high

spatial frequencies or a high number of edges per unit area. Coarse textures have low

spatial frequencies or a small number of edges per unit area. Texture analysis on

radiographs is a common way to investigate bone microarchitecture. Stochastic

parameters range, nugget and sill are calculated from the semivariogram plot can be used

to represent spatial variations in bone image. As the lag distance increases, it is suggested

that the bone is more dissimilar on average. Correlation length describes the degree of

smoothness or roughness in the map. A relatively larger correlation length implies a

smooth variation, whereas a smaller correlation length corresponds to acute changes over

the spatial domain. The semi-variance converges to the sum of the nugget variance and

the sill variance when the separation distance (h) approaches infinity.

1.2 Various Texture Analysis Techniques

Texture analysis is generally a difficult problem due to the diversity and complexity of

natural textures. Texture features should use a minimal amount of resources while being

able to accurately describe the underlying phenomena of interest of the data. There

are four different types of texture features: statistical, structural, model based, and

transform based.

Statistical texture features can be obtained using the higher order statistics of pixel gray

levels. First order statistical features measure the probability of observing a gray value in

the image at a randomly chosen location. First order statistics can be computed from the

histogram of pixel intensities in the image. These depend only on individual pixel values,

and not on the interaction or co-occurrence of neighboring pixel values. The average

intensity in an image is an example of the first order statistic. Gray level co-occurrence

matrix [GLCM] is the second statistical texture analysis introduced by Haralick, et al [1].

This technique is commonly used in texture analysis, because it provides a large set of

features for each sample and it can be assumed that at least one of these features reflects

the small variation of texture. Several statistical parameters can be extracted from the

11

GLCM, to quantify the spatial relationship between pixels within the area under

investigation.

Probability models have gained wide acceptance, because of their modelling power and

expressiveness. These models pose the problem of texture analysis in a statistical setting,

which allows a wide range of well-established theories and methodologies in

mathematical statistics to be introduced into texture modelling. In particular, Markov

random fields (MRFs), which describe a texture in terms of spatial geometry and

quantitative strengths of inter-pixel statistical dependency. The semivariogram is a

method that can be applied to two dimensional plain-projection images and is based on

Markov random fields (MRF).

Semivariogram analysis is a computationally intensive algorithm that has typically seen

applications in the geosciences and remote sensing areas [2]. Recently, applications in the

area of medical imaging have been investigated, resulting in the need for efficient real

time implementation [3]. The semivariogram is a plot of semi variances for different lag

distances between pixels. It is commonly represented as a graph that shows the variance

in measure with distance between all pairs of sampled locations. Such a graph is helpful

to build a mathematical model that describes the variability of the measure with location.

It is a property used to express the degree of relationship between pixels of an image. The

semivariance value typically increases with the lag distance converging to a constant

limit called the “sill”. The sill of a model can be used to describe the variability as well.

The variance gradually increases till a threshold is reached in the distance of separation.

This threshold is called a “range”. Once the distance between two points is beyond range,

the variance becomes independent of the distance and maintains a constant value. Thus,

the inverse of the range can be used to measure variability. When the variogram is

extrapolated to zero distance, the variance reaches a non-zero value called a nugget. The

value increases rapidly at low lags, and then progresses linearly. Strictly speaking, this

value should be zero when the distance between two points is zero. However, some

factors such as sampling error may cause dissimilar values for samples at locations close

to each other.

12

The semivariogram displays the average change of a property and relation between a pair

of pixels with changing lags. It can be used as a descriptor of second-order statistics

within the image and hence provide a quantitative measure of texture. The determination

of the spatial variability of field parameters is usually based on the concept that sampled

values at nearby locations are more similar than those from further apart. Measurements

from the field are usually gathered as point data, such as an individual plant. Geostatitical

analysis methods can be used to interpolate the measurements to create a continuous

surface map or to describe its spatial pattern. As a powerful tool in geostatistics,

variogram describes the spatial dependence of data and gives the range of spatial

correlation, within which the values are correlated with each other, and beyond which

they become independent. The effect of sampling on the accuracy of sample variogram

was studied from independently generated random fields and from experimental data.

Variogram has been estimated and investigated in a wide range of remote sensing

applications.

1.3 Objective and Framework

This work intends to implement the semivariogram calculation with an FPGA module

taking advantage of its re-configurability characteristics. The aim is to have faster

calculation times using design techniques to implement parallelism and pipelining, which

is not possible with dedicated DSP designs. The FPGA Kit used in this project is the

Xilinx XUPV5-LX110T Development Kit, which utilizes the Virtex5 FPGA. A VHDL

test bench was designed to verify the functionality followed by synthesizing the design,

real hardware, and developing test applications to verify functionality and performance of

the design.

1.4 Organization of Thesis

This thesis is divided into six chapters. Chapter 2 gives a brief study about the previous

works, which are related to the current study. Chapter 3 explains the technical terms

(variogram, parameters like range, sill, and nugget), and describes the FPGA board used

in the current study. Chapter 4 describes the architectures implemented and experimental

procedures to find the semivariogram values. Chapter 5 lists and analyzes the simulation

13

and implementation results for the architectures, computing the variogram values.

Chapter 6 consists of the conclusion and future improvements.

14

CHAPTER TWO

PAST WORK

 A brief literature survey reveals past attempts at implementing algorithms such as

the variogram on FPGA hardware to increase its speed. Marcotte, proposed two programs

based on the Fast Fourier Transform (FFT) algorithm to compute direct, cross, and

pseudo-cross variogram for the fast computation of variogram [4]. This paper shows how

to compute an experimental variogram for data that are on a regular grid (like the pixels

of an image). The grid does not need to be complete; any missing data on the grid is

simply represented as NaN. The computation use the FFT which is orders of magnitude

faster than the usual approach based on scanning each available pair of data in turn. The

computation of variograms using the FFT is done by defining two indicator matrices

which have ones at each data point and zeros elsewhere. These two indicator matrices are

used in process of calculating the variogram. The computation is performed at lower cost

by shifting the data matrix, and the data pairs are formed by overlapping the original

matrix and shifted matrix. The FFT approach is shown to be faster than the spatial

approach for calculating the variograms especially when repetitive variogram

computations are required.

Most other work appears to focus on the fast computation of gray-level co-occurrence

matrices (GLCM). It is worth examining these approaches since the GLCM also involves

comprehensive pixel-pair data extraction. GLCM is computed using the frequency of

occurrence of pixel pair values in the image. Roumi proposed an FPGA-based

architecture for parallel computation of symmetric co-occurrence matrices [5].

Symmetrical algorithms are faster than non-symmetrical, and also a hardware

implementation consumes less area and less power compared to a software

implementation. He proposed an FPGA architecture which is capable of calculating

GLCMs in parallel for four different distances in four directions. The approach improves

15

by a factor of 2 to 4 the processing time for simultaneous computation of sixteen co-

occurrence matrices. The feature calculation operation has two steps. In the first step,

mean, contrast, entropy, and dissimilarity are calculated by four different Processing

Elements (PEs). Processing elements contain multipliers and adders that execute in

parallel. Furthermore, for increasing the computation speed, RAM is used for the

calculation of the log function in the entropy measure. In the second step, the angular

second moment, variance, and correlation are calculated. Further, he found that Virtex-

XCV2P30 has a better throughput than Virtex4 and Virtex5.

Harshavardhan et al implemented a novel FPGA-based architecture for real-time

extraction of four GLCM features by dividing the architecture in two stages, a pre-

processing stage, and the feature extraction block [6]. The first stage prepares input data

for processing by the feature extraction block while the second combines both software

and hardware to calculate GLCM features. The hardware module is implemented on a

Xilinx FPGA using Verilog. This module consists of the control unit which coordinates

the functionality of the FPGA, by generating the signals which synchronize the other

units, a memory controller and a feature calculation unit capable of reading GLCMs, for

extracting the required features and storing them into the on-card memory. Thus in this

paper image features have been extracted using different algorithms specified with

architectural models with internal modules represented.

Haralick texture feature extraction algorithms can be divided into two parts: calculation

of the co-occurrence matrices and calculation of texture features using the calculated co-

occurrence matrices which are computationally intensive. Akoushideh et al proposed a

parallel FPGA architecture to calculate co-occurrence matrices and thirteen texture

features [7]. In the proposed architecture, in order to improve performance, first, the co-

occurrence matrix is computed then all thirteen texture features are calculated in parallel

using computed co-occurrence matrix. The proposed architecture has been implemented

on Virtex 5 fx130T-3 FPGA device. Results show a speedup of 421 yields over a

software implementation on Intel Core i7 2.0 GHz processor. In order to improve the

performance, 3 texture features contrast, mean and sum of entropy are computed instead

of 13 using ranking of Haralick’s features based on their important role in texture

16

classification. Evaluation results showed a performance improvement of 4849 yields

compared to software implementation on Intel Core i7 2.0 GHz processor. In addition,

the clock divider technique was applied with parallel implementations on a cell

processor. Experimental results show that using 16 processing elements in parallel

provided speedups of up to 10 times the non-parallelized implementation.

Girisha et al, presented an FPGA architecture for Gray Level Co-occurrence Matrix

(GLCM) to increase the speed of computation [8]. The GLCM architecture was

implemented using Verilog hardware description language. The design was focused on

GLCM hardware realization. This paper does not include the Haralick feature extraction

of the image; it calculates the GLCM for four different angles 0°, 45°, 90° and 135°for a

given intensity of an image. Later, they proposed a novel system for texture feature

extraction of video frames using GLCM using hardware [9]. The properties or features

extracted from normalized symmetrical GLCM are Energy or Angular second moment,

correlation, homogeneity and contrast. The proposed architecture involves extracting

frames from video which are resized to 8 × 8 image and scaled down to 8 tone image

creating the GLCM. Then making the obtained matrix symmetric, then normalizing it,

and finally extracting the required features.

Wielgosz has proposed a FPGA Architecture for Kriging Image Interpolation in three

steps: finding a basis for interpolation, constructing a variogram matrix and computing

coefficients and interpolation [10]. Image interpolation is the basis for quality shaping of

the image. An effective interpolation mechanism is obtained by implementing it on

FPGA. The architecture aims to decrease the overall latency in FPGA. Constructing the

variogram matrix involves implementing it in a pipelined fashion but the architecture is

not optimal in terms of image data distribution.

Table 2.1 shows the various research studies in the literature arranged chronologically,

that were aimed at improving the speed of pixel-pair statistical computations. The current

study involves hardware implementation of the semivarioram texture analysis procedure,

to increase its computational speed compared to a purely software implementation.

17

Table 2.1 Summary of All Previous Studies

Author, year Significance of study

Denis Marcotte [4],
1996

FFT approach is shown to be
faster than the spatial approach
for calculating the variograms.

M. Roumi [5], 2009 GLCM calculation in parallel on
FPGA for four different distances
in four directions.

M. Harshavardhan
[6], 2014

Proposed a hardware based
FPGA architecture for real time
extraction of four GLCM
features.

Akoushideh [7],
2012

Implemented FPGA architecture
to calculate co-occurrence
matrices and thirteen texture
features.

A.B. Girisha [8],
2013

Proposed FPGA architecture for
GLCM to increase the speed of
computation.

M. Wielgosz [10],
2013

Proposed FPGA Architecture for
Kriging Image Interpolation

18

CHAPTER THREE

TECHNICAL BACKGROUND

The main goal of variogram analysis is to construct a statistical plot that best estimates

the autocorrelation structure of the underlying stochastic process. The variogram is

described through several parameters namely the nugget effect, sill and range. This

chapter describes the technical terms like range, sill and nugget that are used in this study

to describe the characteristics of semivariogram. A description of the FPGA hardware is

also provided. The techniques, which have been implemented in this study to obtain the

required parameters, are also described in following sections.

3.1 Semi-variogram

The theoretical variogram is a function describing the degree of spatial dependence of a

spatial random field. It is defined as the variance of the difference between field values at

two locations across realizations of the field. The physical distance between the two

locations is known as the lag distance or lag, and is denoted as h. The semivariogram,

denoted as 𝛾(ℎ), displays the average change of a property with changing lags locations

in the image and is usually related to the application domain under consideration. A

property such as the difference between the gray-level values of the two locations can

serve as a measure of textural parameters or second-order statistics of the random field.

The experimental variogram is calculated by averaging one half the differences squared

of the pixel values over all pairs of observations with the specified lag distance and

orientation. The relation between a pair of pixels that are lag distance h apart can be

given by the average variance of the difference between all such pairs and is expressed as

follows:

 𝛾(ℎ) = 1
2𝑚

∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]𝑚
𝑖=1

2
 (1)

19

where m is the total number of pixel pairs used in the computation of the sum. The value

of m is governed by the geometrical properties of the region of interest in the image used

for the statistical analysis and the value of h. Given the same region, larger values will

result in lower values of m since the dipole connecting the pixels in the pair may not lie

within the region of interest for certain pixels.

There are two types of semivariograms: isotropic and anisotropic. The semivariogram

value that depends only on the magnitude of the lag vector, not the direction, and the

empirical semivariogram can be computed by accumulating data pairs separated by the

appropriate distances, regardless of direction. Such a semivariogram is described as

omnidirectional or an isotropic semivariogram. The semivariogram where the property

shows different autocorrelation structures in different directions is anisotropic

semivariogram.

There are a few constraints for a semivariogram model to be able to represent. These

include:

(a) a monotonic increase with increasing lag distance from the ordinate

(b) an asymptotic maximum, or 'sill'

(c) a positive intercept on the ordinate, or 'nugget'

(d) periodic fluctuation, or a 'hole' and anisotropy.

The stochastic parameters range, sill and nugget variance are described below.

3.1.1 Range (L)

The distance where the model first flattens out is known as the range or correlation

length. Sample locations separated by distances closer than the range are spatially auto-

correlated. It also describes the degree of smoothness or roughness in an image. A

relatively large correlation length implies a smooth variation, whereas a small correlation

length corresponded to rapid variations over the spatial domain.

3.1.2 Sill Variance (C)

The value that the semivariogram model attains at the range (the value on the y-axis) is

called the sill. Usually the variogram value levels off at this semivariance value. It can be

used to refer to the "amplitude" of certain component of the semi-variogram.

20

3.1.2 Nugget Variance ()

According to theory, the semi-variogram value at the zero separation distance (lag = 0)

should be zero. However, at an infinitesimally small separation distance, the

semivariogram often exhibits a nugget effect, which is some value greater than 0. For

example, if the semivariogram model intercepts the y-axis at 2, then the nugget is 2. The

nugget represents variability at distances smaller than the typical sample spacing,

including measurement error. Variation at micro scales smaller than the sampling

distances will appear as part of the nugget effect.

Table 3.1 Stochastic Parameters of Experimental Variogram

Parameter Meaning

Range Lag distance at which model
flattens out

Sill variance The value attained at the range

Nugget variance Variability at distances and
measurement errors

The following diagram shows the plot of experimental semivariogram with the stochastic

parameters marked.

Figure 3.1 Characteristics of Semivariogram

0C

21

In order to understand the computation of the semivariogram for an image, it is helpful to

look at an example with some image data. Table 3.2 shows the pixel arrangement in a one

dimensional array, where 𝑥𝑖 denotes the position of the pixel values 𝑧(𝑥𝑖). The difference

of the pixel values is calculated in the third row and the obtained values are squared in

the fourth row for a lag distance h = 1. It should be noted that a two-dimensional image

can be arranged as a vector for computation of the isotropic variogram as long as the

position information is retained for each location.

Table 3.2 Calculation of Difference of Pixels in the 1-D Array to Compute Variogram for

Lag Distance h=1

The following steps have to be followed to calculate the isotropic semivariogram value,:

1. Calculate the Euclidean distance and sort the pixel pairs according to the lag

distances.

2. Calculate square of the difference between all pixel values with distance h as

computed in Table 3.2.

3. Determine the number of pixel pairs m, for the example shown in Table 3.2 the

number of pairs of pixels with distance 1 is m=14.

4. Add all the square of differences for a particular lag distance h. Summing all the

squares of differences computed in Table 3.2 we get, ∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)2]𝑚
𝑖=1

=459

5. Compute the final semivariogram value using the Equation 1.

𝑥𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑧(𝑥𝑖) 28 25 27 25 21 25 11 16 11 17 27 26 25 26 21
Pixel

Differenc
e

3 -2 2 4 -4 14 -5 5 -6 -10 1 1 -1 5

Square of
pixel

difference
9 4 4 16 16 196 25 25 36 100 1 1 1 25

22

For the given example variogram value can be computed to 𝛾(ℎ = 1) = 459/(2*14) =

32.8. Similarly, the values for different lag distances can be computed to be:

𝛾(ℎ = 2) = 44.3; 𝛾(ℎ = 3) = 76.5; 𝛾(ℎ = 4) = 110.8; 𝛾(ℎ = 5)=108.9; 𝛾(ℎ = 6) =

124.8; 𝛾(ℎ = 7) = 89.9

As can be noted from the example, the semivariogram values tend to rise rapidly and then

converge to a value known as the sill.

3.2 Different Types of Semivariogram Models

The semivariogram plot can be fitted with various models described by exponential or

hole-effect parametric equations to obtain a description of the texture in the region of

interest [17]. The appropriate model is chosen by matching the shape of the curve of the

experimental variogram to the shape of the curve of the mathematical function. The

function must therefore be mathematically defined for all real lag distances (h).

Geostatistical Analyst provides the following functions to model the empirical

semivariogram [17]:

• Circular

• Spherical

• Tetraspherical

• Pentaspherical

• Exponential

• Gaussian

• Rational Quadratic

• Hole Effect

• K-Bessel

• J-Bessel

• Stable

23

The selected model influences the prediction of the unknown values, particularly when

the shape of the curve near the origin differs significantly. The steeper the curve near the

origin, the more influence the closest neighbors will have on the prediction. As a result,

the output surface will be less smooth. Each model is designed to fit different types of

phenomena more accurately.

The nugget model represents the discontinuity at the origin due to small-scale variation.

The spherical model actually reaches the specified sill value, at the specified range. The

exponential and Gaussian approach the sill asymptotically; practical range is the distance

at which the semivariance reaches 95% of the sill value. These three models are shown

below:

Figure 3.2 Types of Semivariogram Models

The Gaussian model, with its parabolic behavior at the origin, represents very smoothly

varying properties. The spherical and exponential models exhibit linear behavior at the

origin, appropriate for representing properties with a higher level of short-range

variability.

It is a good idea to study the computational complexity of the semivariogram algorithm

for the isotropic computation case. For 𝑃 = 𝑀 × 𝑁 pixels in the image there are 𝑃(𝑃 −

24

1)/2 unique pixel pairs. Calculating the variogram value includes the computation of the

distance and difference between all the pixel pairs, and summation of squares of

differences. The distance calculation has 3 × (𝑃(𝑃 − 1)/2) additions and multiplications

each, whereas the difference calculation between the pixel pairs and the square of the

differences has 𝑃(𝑃 − 1) additions. Final variogram calculations have 𝑃(𝑃 − 1)/2

additions and nearly (𝑃 − 1)/4 multiplications. Hence, the variogram value can be

computed with 3 × 𝑃(𝑃 − 1) sums and nearly 3 × (𝑃(𝑃 − 1)/2) multiplications. The

computational complexity of the variogram calculation can be shown as 𝑂(𝑛2) where n is

the number of pixels in the image region [10].

Table 3.3 Number of Computations for Variogram Calculation for 𝑃 = 𝑀 × 𝑁 Image

Parameters Number of Computations for

𝑃 = 𝑀 × 𝑁 image

Unique pixel pairs 𝑃(𝑃 − 1)/2

Number of additions for the calculation

between the pixel values.

3 × (𝑃(𝑃 − 1)/2)

Multiplications for lag distance calculation

between the pixel values.

3 × (𝑃(𝑃 − 1)/2)

Additions for calculating the difference

between the pixel values.

𝑃(𝑃 − 1)

Additions for calculating variogram value

using the equation (1)

𝑃(𝑃 − 1)/2

Multiplications for calculating variogram

value using the equation (1)

(𝑃 − 1)/4

Total number of additions required for

variogram calculation.

3 × 𝑃(𝑃 − 1)

Total number of multiplications required for

variogram calculation.

3 × (𝑃(𝑃 − 1)/2)

25

For example, for 𝑃 = 𝑀 × 𝑁 (𝑀 = 10,𝑁 = 10), the total number of pixel pairs is 4950

assuming distinct pixels, and the total number of summations would be 29,700 and the

total number of multiplications would be 14,850. Similarly for 𝑃 = 𝑀 × 𝑁 (𝑀 =

20,𝑁 = 20), the total number of pixel pairs is 79800 and the total number of summations

478800 and multiplications are 239400. The value is particularly large even for a small

images of 10 × 10 and 20 × 20 pixels.

As seen by the computational breakdown, a large part of the burden exists due to the

comprehensive analysis of pixel pair data. Practical applications in the medical domain

involve regions of interest with around 50 × 50 pixels, resulting in an exponentially

larger number of computations: approximately 187 million sums and 95 million

multiplications. This large number of computations makes the semivariogram calculation

extremely time intensive. It is worthwhile investigating methods to speed up the

computation in order to make the semivariogram a practical technique for clinical usage.

For this reason, FPGA architectures have been proposed to reduce the computational time

for calculating the variogram values.

3.3 Field Programmable Gate Arrays:

A Field-Programmable Gate Array (FPGA) is a reconfigurable device with the ability of

being reprogrammed to satisfy particular requirements. It consists of basic elements

combined to form highly optimized and high performance systems. The two major

manufacturers are Xilinx and Altera, though their FPGAs have strong differences at the

architectural level, their basic operation and functionality is the same. Input/Output

Blocks (IOBs) usually serve as a way to interconnect the silicon package pins carrying

external signals to the internal Configurable Logic Blocks (CLBs). Another crucial

element Switch Matrix (SM) interconnects all elements inside the FPGA. The SM and

CLBs are programmable by the user and their configuration is stored in individual Static

Random Access Memory (SRAM) cells inside each element. The CLBs allow for

combinatorial or sequential logic to be generated inside the FPGA. A single CLB is

typically comprised of slices, each of them including several Look Up Tables (LUTs),

carry logic and storage units. An LUT unit can have multiple inputs; the most common is

26

a four input LUT. However, five and six input LUTs can also be found. With an N-input

LUT, any Boolean logic function with N-inputs can be implemented.

In order to program an FPGA with a desired logic design one has to follow three steps

which are escribed below:

1. The design is first created using a hardware description language such as Verilog

or VHSIC Hardware Description Language (VHDL).

2. This is then utilized in generating a low-level device specific bit stream file.

3. The final step is to download the bit stream onto the configuration memory of the

FPGA, which individually defines the behavior of the CLBs and corresponding

interconnects needed to implement the design.

FPGAs have gained popularity in recent years because the present line of commercial

FPGAs are capable of integrating powerful embedded processors and several common

intellectual property cores that provide a complete system-on-chip solution. FPGAs that

contain dedicated multiplier blocks are particularly suited as co-processors for

computation-intensive applications such as digital signal processing.

A good example is the Virtex 5 that is the latest in the Virtex series of FPGAs and is used

for the current experiment. The device shown in Figure 3.3 is built on a 65 nm process

and includes 288 dedicated DSP blocks, each block consisting of a 25 bit x 18 bit

multiplier and a 48 bit adder/subtractor/accumulator. Other features include 4 embedded

Ethernet MAC blocks capable of implementing 1000 Base-X (Gigabit Ethernet)

implementation. Figure shows the FPGA Kit used in this project is the Xilinx XUPV5-

LX110T Development Kit, which utilizes the Virtex5 FPGA.

27

Figure 3.3 Xilinx XUPV5-LX110T Development Kit with Virtex 5 FPGA

28

CHAPTER FOUR

METHODS AND EXPERIMENTAL PROCEDURES

 In this study, two architectures were designed and implemented in succession on

the FPGA. Architecture version 1 (non-pipelined) was initially implemented and tested.

Architecture version 2 (pipelined) was subsequently introduced to improve upon the

performance of the former. Both architectures were programmed in VHDL, and consist

of four different modules with each module performing different tasks as described

below:

1. Distance module: Calculates the lag distance between pixels.

2. Difference module: Calculates the difference between pixel values.

3. Sorting module: Sorts the pixel values based on distance and maintains a count of

the number of pixel pairs.

4. Semivariogram module: Calculates the final semivariogram value.

In addition to these two architectures, a third architecture was proposed, but Architecture

Version 3 (Pipelined and Hardware Reutilization) could not be fully incorporated because

of the huge complexity in the circuit and hardware limitations. Because for the complex

bigger circuits in FPGAs, the components and the wires connecting them are limited

moreover time-consuming also matters.

Two-dimensional medical image data of specimen from MRI scans are utilized for the

experiments. This image is obtained using Dual energy X-ray absorptiometry operating in

a fan beam mode. Figure 4(a) is used as the input which has been cropped from the

original scanned image of hip as shown in Figure 4(b).

29

Figure 4(a) Cropped Image of the Hip Used for Experiments

Figure 4(b) Original Scanned Image of the Hip Used for Experiments

The following sections describe the algorithm implementation and digital logic design

specification.

4.1 Architecture Version 1 (Not Pipelined):

The block diagram and description of the basic architecture is shown in the Figure 4.1(b).

Initially the image pixel values are loaded into the image buffer. Then the counters for the

two image buffers start incrementing and the image data is loaded into the difference

30

module. The difference module computes the absolute difference between two pixel

values. The corresponding counter values are loaded into the distance module

concurrently. The distance module calculates the Euclidean distance between the two

corresponding pixel values. The distance and difference data is then accumulated in the

sorting module which sorts the differences indexed by the lag distances and calculates the

number of pixel pairs for each distance. These sorted values are passed to the final

module which computes the semivariogram value for different lag distances. The final

module is the output multiplexer that displays the output values one at a time. Figure

4.1(a) shows the timing diagram for the architecture version 1.

Figure 4.1(a) Timing Diagram of Architecture Version 1 (Non Pipelined)

31

 Figure 4.1(b) Block Diagram of Architecture Version 1 (Non Pipelined)

32

4.2 Architecture Version 2 (Pipelined):

Figure 4.2(b) shows the block diagram for the architecture version 2 which is pipelined to

improve performance. This architecture has the distance and difference modules

replicated multiple times (99 times for 100 pixel values and 399 times for the 400 pixels)

for the tested implementation. Each of the replicated distance sub-modules computes the

Euclidean distances between pixels. The difference sub-modules calculate differences for

a fixed pixel with all the pixel values pair with. For example, the first distance and the

difference modules calculate distances and differences between pixel 1 and pixels 1 to N.

The sorting module has the same functionality as the sorting module in the first

architecture version, with the exception of that it has 33 sub modules in 10 × 10 image

version and 25 sorting sub modules for the 20 × 20 image versions that are pipelined.

Each sub-module in the 10 × 10 image handles 3 distance or difference values, whereas

16 distance and difference values are handled in each of the 25 sorting modules in the

20 × 20 image. The output number of pixel pairs (𝑚) and sum of the sub-modules are

then added to find the number of pixel values and sum values for each distance, which is

then passed to variogram module for final calculations. Figure 4.2(a) shows the timing

diagram for the architecture version 2.

Figure 4.2(a) Timing Diagram of Architecture Version 2 (Pipelined)

33

Figure 4.2(b) Block Diagram of Architecture Version 2 (Pipelined)

34

4.3 Architecture Version 3 (Pipelined and Hardware Reutilization):

The use of an FPGA provides a substantial amount of freedom for design. Yet, the

hardware designer must be much more aware of availability of resources and of

limitations than the software developer. In this thesis a new architecture for 25 × 25 and

10 × 10 image sizes was attempted for hardware reutilization. This architecture was

actualized using the loops for 100 distance and difference sub-modules. The architecture

is so designed that it erases the pixel data from the difference and distance sub-modules

once they have been utilized, and the new values are loaded into the counter and image

buffer. This method of implementation not only reduces the complexity of the

architecture by reducing the number of sub-modules but can also be used for bigger

image sizes. Due to the timing and memory size limitations inside the FPGA, the circuit

could not be synthesized and implemented on the FPGA. Timing is a concern that usually

does not occur in software, but pops up unavoidably in circuit design. A detailed

description of each block is provided in the following sections.

4.4 Image Buffer and Counter Module

4.4.1 Architecture Version 1

Image data loading is one of the challenging tasks for any architecture with

comprehensive pixel-based computations. One of the major bottlenecks is that data has to

be presented to the modules in pairs. Popular approaches like the crossbar switch and ring

buffers can be used to load the data into the processing modules. The crossbar switch has

a matrix with M × N cross-points or places where the "bars" cross [11]. At each cross

point is a switch, which when closed, connects one of M inputs to one of N outputs. It has

the disadvantage of large implementation size due to the number of connections. A ring

buffer is a data structure that uses a single and fixed buffer connected end-to-end [12].

Ring buffers can be used to present the serialized data in a tight sequence to the modules.

The linear ring buffer faces a disadvantage due to large memory size and access time.

Thus the architecture has been implemented with two single array image buffers to load

the data into all the sub-modules. Image data is preloaded into the buffers to allow for

testing access by an algorithm on hardware.

35

Image pixel data are first loaded into the two image buffers as data vectors. If the image

is of size N × N then the pixel vector is of size N2 (for the experiments N = 10 and 20

have been used). The counters are incremented when the data enable is high, similar to

nested “for loops” in order to load the pixel data pairs into the distance and difference

modules. Counter 1 starts from 1 and increments every time the second counter counts up

to the last pixel value N starting from 1. Registers are used to store the pixel values and

the two multiplexers present these values to the sub-modules in sequence. The first

multiplexer presents pixel data to output buffer 1 and the second one multiplexes pixel

data registers into output buffer 2, based on the current values of input buffer counter 1

and input buffer counter 2.

Figure 4.4.1 (a) Block Diagram of Counter Module (Not Pipelined)

36

Figure 4.4.1 (b) Block Diagram of Image Buffer Module (Not Pipelined)

4.4.2 Architecture Version 2

Since the pixel data loading process can be time-consuming, the second architecture

addresses this process in a brute force fashion. The counter and the image buffer for

architecture version 2 (pipelined) have just one multiplexer which presents the data from

second counter and image buffer 2 to all the distance and difference sub-modules. The

counter 1 data and the buffer 1 pixel data are replicated directly in all the sub-modules

whenever the counter increments. The replication of the data takes place simultaneously

whenever the image buffer 2 and the counter 2 data are loaded in the corresponding sub-

modules. For example, in the first difference sub-module replication of image buffer

values takes place during loading of the pixel 1 value from the second image buffer.

Figure 4.3.2 (a), 4.3.2 (b) shows the counter and image buffer for the architecture version

2 (pipelined).

37

Figure 4.4.2 (a) Block Diagram of Counter Module (Pipelined)

Figure 4.4.2 (b) Block Diagram of Image Buffer Module (Pipelined)

38

 4.5 Distance Module

4.5.1 Architecture Version 1

The distance module calculates the Euclidian distance between two pixels in a pixel pair.

The value from counter 2 is stored in the internal register of the distance module and the

distance is calculated between this value and the remaining values loaded by the first

counter. When the second counter increments the first counter is again loaded in the

distance module. Depending on the counter values, the corresponding x and y position for

the calculation of the distance are determined in the position 1 and position 2 decoder

modules. The counter values are taken as the y-coordinates for the pixel values, and

x-coordinate is taken as 1 for the first N values. Essentially for the next N values, the

x-coordinate is taken as 2 and y coordinate as 1 to N. The coordinate values are stored in

internal registers for data stability. These values are fetched and the values are multiplied

and then added to get the square of the distance.

 The final step is to calculate the square root of the obtained value using the square root

sub-module. The designed sub-module selects square root of the input value depending

on the logic designed in the module whenever it detects the input signal. The overall

circuit inputs an 8-bit integer and outputs a 4-bit integer square root. This circuit uses the

"entity" method. The output of the square root module is rounded up or down. This

rounded output value is given as the input to the sorting module.

Figure 4.5.1 Block Diagram of Distance Module (Not Pipelined)

39

4.5.2 Architecture Version 2

In the architecture version 2, the distance module is replicated 99 times for 10 × 10

image and 399 times for the 20 × 20 image, each module with the identical function of

parallel calculation of distance data. Each value of the counter 2 is loaded into its

particular modules whereas the first counter values are directly replicated in all the

modules. When the counter 2 increments, the first distance module calculates the distance

between the first pixel value and all the pixels till N, where N is the last pixel value. In

the meantime, module distance 2 starts calculating the distance for pixel 2 to pixel N once

the module gets the input from the counter, and so on. Hence all the sub-modules

calculate the distance between the two pixels in the parallel fashion by performing

calculations at the same time in the corresponding modules. As soon as the modules

complete the calculations they send the distance values to the sorting module without

waiting for all the calculations to be completed.

During the distance calculation, the module is designed such that once the two buffer

counter values are loaded in the distance module, the values are compared with the

previous position values and the pixel values with repetitive position values are skipped

to reduce computational time.

Figure 4.5.2 Block Diagram of Distance Module (Pipelined)

40

4.6 Difference Module

4.6.1 Architecture Version 1

The difference module handles computation of the absolute difference between two pixel

gray levels. The pixel value from image buffer 2 is stored in the pixel 1 register in the

difference module when the enable signal is high. The difference is calculated between

this value and the remaining pixel values loaded by the first image buffer into the pixel 2

register. Image buffer 2 increments to the next value only when all the values of the

second image buffer have been used for the difference calculation with the previous pixel

value of the second image buffer. Whenever the image buffer 2 increments, the first

image buffer starts loading all the values into the register. Once the two internal registers

are stacked with the image pixel values, the module then checks if pixel 2 is higher than

pixel 1. If it is higher, pixel 1 is subtracted from pixel 2, while if it is lower, pixel 2 is

subtracted from pixel 1.

Figure 4.6.1 Block Diagram of Difference Module (Not Pipelined)

4.6.2 Architecture Version 2

In the architecture version 2, 99 modules for 10 × 10 image and 399 modules for the

20 × 20 image are replicated with the same function for the parallel calculation of

differences between two pixel values. Each pixel value of the image buffer 2 is loaded

into its particular module whereas the first image buffer is directly replicated in all the

modules. When the image buffer 2 increments, the first module calculates the difference

41

between the first pixel value and all the pixels up to N, where N is the last pixel value. At

the same time, module 2 calculates differences for pixel 2 to pixel N once it gets the

second pixel value from the image buffer 2, and so on. All the modules hence start

calculating in a parallel fashion, that is though the previous modules are calculating the

difference between the pixel pairs, the image buffer 2 values are loaded and the

corresponding submodules starts calculating the differences. As soon as the single pixel

difference value has been computed in the sub-modules, it is given as the input to the

sorting module without waiting for all the calculations to be completed.

During the difference calculation the module is so designed that the corresponding

module starts calculating the differences between the fixed pixel value of image buffer 2,

and the values after the fixed pixel value in the image buffer 1. This design skips the

repetitive calculations between the pixel pairs to reduce the computational time. For

example in the inference module 3 the fixed pixel value from the image buffer 2 is 3 and

as discussed the image buffer 1 is replicated in this module. In this module the next value

to the fixed pixel value in the replicated buffer is the fourth pixel value. Hence the

module calculates the deference between 3 and all the pixel values from the fourth value

to avoid the repetitive calculations. Figure 4.6.2 (b) shows the block diagram for the

skipping algorithm.

Figure 4.6.2(a) Block Diagram of Difference Module (Pipelined)

42

Figure 4.6.2(b) Block Diagram for Skipping Algorithm

4.7 Sorting Module

4.7.1 Architecture Version 1

After calculating the lag distances and the differences between the pixel pairs, the outputs

from both the modules are connected to the sorting module. The sorting module sorts the

differences by keying off the lag distances and computes the summation of the square of

differences for each lag distance. The range starts from 1 to the maximum distance

between the pixel pairs. It also calculates the number of pixel pairs for each distance. The

block diagram below shows that the first part of the module is the change data detection

circuit which actually detects the increment in counter 2. This data detection circuit is

used to activate the corresponding sorting modules by the input signal which acts as an

enable signal to the registers, initially set to 0. The increment of the counter indicates that

the distance and the difference sub-modules have started the calculations and will be

inputted to the corresponding sorting module.

 The register which acts as the accumulator, checks the input distance value whenever the

first counter value changes, if the distance is 1, then the first register m1 is incremented,

if it is 2, second register m2 is incremented and so on. The registers calculating the sum

adds the square of the input difference value to the current register value using the

distance values as an offset. If the lag distance is 1 the square of the input difference gets

added to the accumulator 1, if it is 2 the value gets accumulated in the second

43

accumulator, whenever the modules detect the signal from the data detection circuit. The

counter register number corresponding to the offset is incremented and the square of the

input difference value is added to the corresponding sum register. These sorted values are

passed to the final module which computes the semivariogram value for different lag

distances.

Figure 4.7.1 Block Diagram of Sorting Module (Not Pipelined)

4.7.2 Architecture Version 2

Implementation 2 performs the same sorting and summation processes to find total sum

and number of pixel values for each lag distance as architecture 1. However in this

implementation, 33 sub-modules (for 10 × 10 image) and 25 (for 20 × 20 image) sorting

sub-modules have been replicated. Each sub-module in the smaller image handles 3

distance and difference values. The sorting module handles the output from three distance

sub-modules (distance_out1, distance_out2, distance_out3) and output from three

difference sub-modules (diff_out1, diff_out2, diff_out3). Similarly 25 sub-modules in the

20 × 20 image handles 16 difference and distance values. So the 33 sub-modules have

been designed to handle the 99 sub-modules from the distance and difference modules

whereas 25 sub-modules are designed to handle 400 values from distance and difference

sub-modules. The output from these sub-modules is then used to find the total pixel

44

values and sum values for each lag distance. These number of pixel values (m) and

summation values acts as the input to the final module for calculation

Figure 4.7.2 Block Diagram of Sorting Module (Pipelined)

4.8 Variogram Calculation Module

The final stage is the same for both the architectures. It calculates the semivariogram

value for all the lag distances, using the division function. The number of pixels

calculated in the sorting module and the square of the summation of difference of gray

values is given as input to the variogram module. First, all the m data from the sorting

module is multiplied by 2 by shifting bits to the left by one. The divider circuits for each

input, from lag distance 1 to the maximum lag distance between pixel pairs are used to

divide the sums with the number of pixel pairs for each lag distance. Each lag distance

has a specified register where the corresponding semivariances are calculated. After the

division process, the result is then rounded up or down to the nearest integer value. The

45

output multiplexer is used to display results on the LED display one at a time on the

Virtex 5 FPGA board. The semivariogram values obtained are in the binary format.

Figure 4.8 Block Diagram of Variogram Module

The aim of this thesis is to investigate the use of programmable logic devices (FPGAs) to

accelerate the computation of GLCM features. The target hardware for this work is

Xilinx XUPV5-LX110T based FPGA development hoard equipped with a Xilinx Virtex

5 FPGA. The bitstream generated for the whole architecture was dumped onto XUPV5-

LX110T development Kit device of Xilinx Virtex 5 pro family.

46

CHAPTER FIVE

RESULTS AND DESIGN IMPLEMENTATION

 Initially a MATLAB program was used to implement the algorithm and find the baseline

variogram values. The design was then implemented on the FPGA board for a 10 × 10

image and a 20 × 20 image, implementation results of each modules of the designed two

architecture are discussed in this chapter.

5.1 Image Buffer Implementation Results

The figures below are the simulation results showing internal signals of the image buffer

module. For architecture 1 it is observed that the output data of image buffer 1 is updated

in the buffer1_data_out signal for every change in counter 1. Similarly output data 2 is

updated in the buffer2_data_out signal for each increment of the counter 2. These signals

are given as the input to the difference module for difference computation. It can be

observed that the image buffer 2 increments to the next only value only when all the

values of the first buffer are passed to the difference module.

Figure 5.1 (a) Implementation Results for Image Buffer (Not Pipelined)

In architecture 2, there is only one image buffer whereas the other image buffer values

are replicated in all the sub-modules for difference computation. The Figure 5.1 (b) and

Figure 5.1 (c) shows the implementation results of the image buffer for the second

47

 architecture for two different images. Implementation results show only one output

signal buffer2_data_out which corresponds to image buffer 2. This data is loaded in the

corresponding submodules for the difference calculations whenever the second counter

(buffer_counter2) is incremented. Due to the replication of the image buffer 1 data in the

submodules architecture version 2 is 100 times faster than the architecture version 1 for a

10 × 10 image.

Figure 5.1 (b) Implementation Results of 10 × 10 Image Buffer (Pipelined)

Figure 5.1 (c) Implementation Results of 20 × 20 Image Buffer (Pipelined)

48

5.2 Distance Module Implementation Results

The pixel data is loaded in the difference module while the corresponding counter values

are inputted to the distance module. Figure 5.2(a) shows the Implementation results of

the distance module of the first architecture, where the two counter values are used for

calculating position. These position values are passed to the sub-modules through the

position1 and position2 signals. After calculating the Euclidean distance, the values are

outputted through only one distance_out signal as shown in the result. Sample

calculations are shown in the result.

Figure 5.2 (a) Implementation Results for Distance Module (Not Pipelined)

The following results shows the simultaneous or parallel computations performed in the

distance module since there are replicated sub-modules. It can be observed that as the

counter values are updated, the position values are calculated with one clock cycle delay.

After decoding the coordinate values, all the sub-modules start calculating the distance

values.

Implementation results shows the distance values outputted from the sub-modules. There

are 99 distance_out signals for a 10 × 10 image and 399 distance_out signals which are

continuously updated with the distance values calculated in the submodules for all the

pixel values as shown in the figure. Figure 5.2(b) and Figure 5.2(c) shows that all the

position decoder modules and distance calculating modules with the square root

49

calculation work in parallel fashion. Distance and sorting modules are connected to each

other though the distance_out signal. The distance values are given as the input to the

sorting module where it acts as an offset or the sorting values.

Figure 5.2 (b) Implementation Results of 10 × 10 Image Distance Module (Pipelined)

Figure 5.2 (c) Implementation Results of 20 × 20 Image Distance Module (Pipelined)

50

5.3 Difference Module Implementation Results

The figure below shows the internal signals inside the difference module. It is observed

that this module dynamically processes the data with 1 clock cycle delay. The image

buffer 2 value is first loaded in the second pixel register. The first pixel register is then

loaded sequentially with the first image buffer pixel values. For every pixel 1 register

value the absolute difference is calculated as shown in the implementation result. The

value in the pixel 2 register is updated when all the values of image buffer are loaded in

the pixel 1 register. These difference values are given as the input to the sorting module

through the diff_out signal, which is continuously updated with the difference values

calculated in the difference module.

Figure 5.3 (a) Implementation Results for Difference Module (Non-Pipelined)

The following results shows the simultaneous or parallel computations performed in the

difference module since there are replicated sub modules. It can be observed that the

image buffer 1 values are replicated in the sub-modules, whereas the image buffer 2

values are loaded to the corresponding modules through the buffer2_data_in signal when

the data enable is high. Once the sub-modules are loaded with the corresponding second

image buffer pixel values the sub-modules start calculating the absolute difference

between the pixels.

There are 99 diff_out signals for a 10 × 10 image and 399 diff_out signals for a 20 × 20

We can see in the following examples that the circuit correctly
computed the difference between 2 input pixels..: 109-97 = 12,
109-93= 16, 109-87= 22 , 109-88= 21 , 115-94=21, 115-100= 15,
115-9 = 6, 115-115= 0

51

image which are continuously updated with the difference values calculated in the

submodules for all the pixel values of image buffer 1 and image buffer 2 as shown in the

figure. Figure 5.3(b) and Figure 5.3(c) show that all the data loading, calculation of

differences between the pixels in the sub-modules work in a parallel fashion for two

different image sizes. Difference and sorting modules are connected to each other though

the diff_out signals. The difference values are given as the input to the sorting module

where these values are sorted and added in the accumulator depending on the distance

values.

Figure 5.3 (b) Implementation Results of 10 × 10 Image Difference Module (Pipelined)

52

Figure 5.3 (c) Implementation Results of 20 × 20 Image Difference Module (Pipelined)

5.4 Sorting module Implementation results

The data enable is high for the sorting module whenever the first counter increments. The

module is inputted with the distance data and difference data through one diff_in and

distance_in signal from the difference and the distance modules. The sorting module uses

distance as an offset and increments the corresponding registers calculating the number of

pixel values as shown in the Figure 5.4(a). It can be observed from the following figure

that the first register m_out1 is incremented when the module encounters the lag distance

to be 1. The difference values are squared, and these values are given as input to the

accumulators through sqrd_of_diff_in signal. Sum register sum_out1 is getting

accumulated with the square of difference values if the offset is 1 as shown in the

implementation result.

53

Figure 5.4 (a) Implementation Results for Sorting Module (Non-Pipelined)

In the second architecture, the sorting module contains 33 sub-modules for a 10 × 10

image and 25 sub-modules for a 20 × 20 image which are pipelined. Each sub-module of

smaller image handles 3 difference and 3 distance values, whereas each sub-module of

the bigger image handles 16 difference and 16 distance values. The functionality of all

the sub_modules is same as the architecture version 1. The number of pixel pairs is

calculated by incrementing the corresponding registers using lag distance as offset. These

values are given as the input to the variogram calculating module using m_out1, m_out2

signals. The difference values accumulated in the accumulators are given as input to the

final variogram calculation module using sum_out1, sum_out2, etc., signals.

54

Figure 5.4 (b) Implementation Results for Sorting Module (Pipelined)

5.5 Variogram Calculation Module Implementation Results

5.5.1 Implementation for Architecture Version 1

Figure 5.5.1 shows the Implementation results showing internal signals of the final

variogram module. It is observed that number of pixel values, summation values and

semivariogram outputs is being updated and finally completed after counter 1 and 2 reach

100. The results show that the architecture version 1 speed is measured to be 400

microseconds for calculating the semivariogram values, as seen in following figure.

55

Figure 5.5.1 .Implementation Results for Architecture Version 1

Each counter combination to introduce pixel pairs to the combinational modules lasts for

4 clock cycles, because data inputs for differences and the distance module will be

changed every 4 clock cycles. This clock period is used so that the large combinational

logic circuits will have stable inputs to perform the calculations. Each clock cycle is 10ns

for 100MHz hence a counter increment takes 4 x 10 ns = 40ns. There are two counters,

each counting up to 100, when counter 1 is 1, counter 2 goes from 1 to 100, hence there

are 100x100 counts. So approximately the total time of computation is 40ns x 100 x 100

= 400,000ns or 400uS. The results are shown in Figure 5.5.1 and are very close to these

theoretical model values.

5.5.2 Implementations for Architecture Version 2 for a 10 × 10 Image

The Architecture version 2 is 100 times faster in speed than the first one due to the

pipelining. Figure 5.5.2 shows the implementation time from data enable to completion.

As discussed before, each count of buffer lasts for 4 clock cycles (40ns), but there is only

one counter counting from 1 to 100, as the buffer 1 data is directly connected to inputs

from difference module for the parallel calculations so approximately the total time of

computation is 100x40ns = 4000ns or 4us, but due to the small logic delay the

computational time is 4.27us.

56

 Figure 5.5.2 Implementation Results for Architecture Version 2 for a 10 × 10 Image

5.5.3 Implementations for Architecture Version 2 for a 20 × 20 Image

Architecture version 2 for a 20 × 20 image has 399 distance and 399 difference modules

and 16 sorting modules for 400 pixel values. Due to the increase in the modules and

complexity in the circuit by 4 times the implementation time has increased 16 times the

implementation time of 10 × 10 image as shown in the following figure. Sorting

modules have to be reduced because of the increase in the distance and difference sub-

modules which is also one of the reasons for the increase in the computational time.

Figure 5.5.3 shows the implementation time from data enable to completion. Here, each

count of buffer lasts for 16 clock cycles. As discussed, each clock cycle is 10ns for

100MHz hence a counter increment takes 16 x 10 ns = 160ns, but there is only one

counter counting from 1 to 400, as the buffer 1 data is directly connected to inputs from

difference module for the parallel calculations so approximately the total time of

computation is 400x160ns = 64000ns or 64us, but due to the small logic delay the

computational time is 64.9us.

57

Figure 5.5.3 Implementation Results for Architecture Version 2 for a 20 × 20 Image

Table 5.1 below shows the computation times for the Matlab implementation,

architecture version 1 (non-pipelined) and architecture version 2 (pipelined) for a 10 × 10

image and 20 × 20 image. The head-to-head results indicate significant performance

improvement using the non-pipelined version, which is greatly improved by pipelining.

58

Table 5.1 Computational Time Comparison for Matlab Code, Non-Pipelined and

Pipelined Architecture Versions of Implementations.

Implementation Computational Time

Matlab code for 10 × 10 image 2 seconds

Matlab code for 20 × 20 image 7.13 seconds

Architecture version 1 (non-pipelined) for 10 × 10 image 400 microseconds

Architecture version 2 (pipelined) for 10 × 10 image 4.27 microseconds

Architecture version 2 (pipelined) 20 × 20 image 64.9 microseconds

The maximum Euclidian distance between pixels in a 10×10 image is 12.72 and for a

20×20 image is 26.43. Hence there will be 13 output semivariogram values for the

smaller image and for the bigger one there will be 26 output semivariogram values for the

algorithm being tested, corresponding to each value of ‘h’. Table 5.2 and Table 5.3

compares the semivariogram values obtained from the Matlab code to the implementation

results from the FPGA for the two image sizes.

Table 5.2 Verification of the Semivariogram Values Computed Using the Specified

Algorithm for a 10 × 10 Image.

Lag Distances Matlab Computational
Values

Observed Values

1 12.845 13
2 33.0179 33
3 54.6827 55
4 82.8918 83
5 120.7689 121
6 152.5643 153
7 184.4761 184
8 211.0484 211
9 233.216 233
10 254.9362 255
11 266.0833 266
12 248.4375 248
13 234 234

59

Table 5.3 Verification of the Semivariogram Values Computed Using the Specified

Algorithm for a 20 × 20 Image.

Lag Distances Matlab Computational
Values

Observed Values

1 11.09 9
2 23.46 25
3 42.24 41
4 58.45 57
5 73.62 81
6 105.93 104
7 134.52 131
8 159.03 160
9 194.02 192
10 227.95 226
11 267.79 262
12 303.84 297
13 345.67 342
14 386.22 388
15 434.69 432
16 477.09 477
17 507.25 502
18 524.72 533
19 531 535
20 504.35 505
21 472.55 482
22 422.67 423
23 382.68 384
24 306.77 312
25 218 218
26 92.5 136

A summary of the synthesis report, device requirement and utilization shown in Table

5.4. As indicated by a study of the architectures, a significant price in extra hardware is

required to improve the speed using pipelining. This can be attributed to the replicated

modules and data supply arrangements to these extra replicated modules in the pipelined

architecture. The maximum frequency and power consumption are also shown in the

60

table and indicate that both versions are utilizing the FPGA board at almost the maximum

frequency allowed by the timing constraints for the designs. Pixel pair data presentation

appears to be a significant factor in the speed of the algorithm.

Table 5.4 Device Utilization and Synthesis Report

Parameters Architecture
Version 1 for 10 ×

 10 image (Not
Pipelined)

Architecture
Version 2 for

10 × 10 image
(Pipelined)

Architecture
Version 2 for 20 ×

 20 image
(Pipelined)

Slice Registers 10,220 24,739 72,156
Slice LUT’s 5,653 35,755 2,36,497

LUT Flip Flop pairs 11,843 40,572 35,227
Unique control sets 23 439 640

Bonded IOB’s 21 21 19
LOCed IOB’s 21 21 21

BUFG/BUFGCTRLs 1 2 2
Number of
DSP48EIs

3 63 64

Percentage of
hardware utilized

11.22 35.8 78.2

Calculation time at
100Mhz

400 micro seconds 4.27 micro
seconds

64.9 micro seconds

Calculation time at
50Mhz

800 micro seconds 8.54 micro
seconds

129.8 micro seconds

Number of Clock
Cycles

40000 cycles 427 cycles 6490 cycles

Maximum
Frequency

100.392 MHz 100.251 MHz 100.251 MHz

Clock Frequency 100 MHz 100 MHz 100 MHz
Power Consumption 91 MW 331 MW 558 MW

Lines of Code 14,207 90,568 16,8000

61

CHAPTER SIX

DISCUSSION AND CONCLUSION

In this study we have demonstrated that the computational time of the semivariogram can

be improved through hardware implementation when compared to the software. This

chapter includes the conclusions from this thesis and the summary of the work. Future

works based on this thesis are also proposed in the following sections.

6.1 Conclusion

Digital images have several features, such as, texture, color, shape etc. Texture is one of

the important features and texture analysis has an important role in image processing,

computer vision and pattern recognition. Texture feature extraction is the first step of

texture analysis. There are many methods to extract texture features, and the

Semivariogram method has application to medical image processing. In this thesis, two

architectures Architecture version 1 (non-pipelined) and Architecture version 2

(pipelined) are proposed for the computation of the semivariogram using a custom FPGA

architecture to reduce the computational time required.

Experiments were performed on a 10 × 10 and 20 × 20 image. Our results showed that

hardware implementation with the implemented pipelined architecture can improve the

computation time of variogram. It can be observed in the first architecture that the

hardware implementations of semivariogram calculation reduce the time of computation

when compared to the software implementation. The second architecture implemented

massive parallelism in the form of replicated distance, difference and sorting modules

that are further pipelined. The basic difference between the two architectures is the

massively pipelined sub-modules in the second version with 99 sub modules for the 10

×10 image and 399 sub-modules for 20 × 20 which run in parallel fashion. The output of

these modules is connected to the sub-modules of the sorting module. Hence, for the

massively

62

parallel pipelined architecture implemented results in a speedup of 100 over the non-

pipelined architecture for a 10 × 10 image. It is envisaged that the speed is proportional

to the number of parallel sub-modules and further experiments for bigger images are

planned in the future.

To summarize, the following has been accomplished in this thesis:

• Implementation of semivariogram texture feature extraction with hardware

descriptive language with verification of values.

• Design of two FPGA-based hardware architectures for texture extraction and

implementation on Virtex 5 FPGA board.

• Comparing the performance of the designs with the software implementation in

Matlab.

The circuit description language used in this thesis is VHSIC Hardware Description

Language (VHDL) which appears almost the same as a programming language. But the

difference still exists, the software being the sequential processes, whereas in the

hardware descriptive language everything runs concurrently.

6.2 Future Work

The pipelined architecture can be utilized for small matrices, but the implementation for

larger matrices imposes a challenge due to the large design size and FPGA limitations.

The current design rounds off data to the nearest integer. Future work can involve a

design that can process floating point numbers and can provide precision up to two

decimal values. Due to the memory size and resources constraints operators generally do

not work on a bigger image size. Hence other challenges to be addressed in future work

also include increasing the image size, and further parallelization and pipelining to

mitigate the effects of massive ordered pixel pair data access. The loop architecture

proposed can also be improvised to meet the timing and memory constraints for the

bigger images in the future.

63

REFERENCES

[1] R.M. Haralick, M. Robert, K. Shanmugam, I.H. Dinstein, “Textural Features for

Image Classification,” IEEE Transactions on Systems, Man and Cybernetics, vol.

3, no. 6, pp. 610-621, Nov 1973.

[2] J. R. Carr and F.P. De Miranda, “The Semivariogram in Comparison to the Co-

Occurrence Matrix for Classification of Image Texture,” IEEE Transactions on

Geosciences and Remote Sensing, vol. 36, no. 6, pp. 1945–1952, Nov. 1998.

[3] X. Dong, M. Shirvaikar, X. Wang, “Biomechanical Properties and

Microarchitecture Parameters of Trabecular Bone are Correlated with Stochastic

Measures of 2D Projection Images,” Bone 56, vol. 2, pp. 327-336, October, 2013.

[4] D. Marcotte, “Fast Variogram Computation with FFT,” Computers and

Geosciences 22, vol. 22, issue 10, pp. 1175–1186, Dec. 1996.

[5] M. Roumi, “Implementing Texture Feature Extraction Algorithms on FPGA,”

M.Sc. Thesis, Delft University of Technology, 2009.

 [6] M. Harshavardhan, S. Visweswara Rao, “GLCM architecture of image

extraction,” International Journal of Advanced Research in Electronics and

Communication Engineering (IJARECE), vol. 3, issue 1, pp. 75-82, January 2014.

[7] A.R. Akoushideh, A. Shahbahrami, and B.M.N. Maybodi, “High performance

implementation of texture features extraction algorithms using FPGA

architecture,”Journal of Real-Time Image Processing, vol 9, Issue 1, pp 141-157,

2014.

[8] A.B. Girisha, M.C. Chandrashekhar, M.Z. Kurian, “FPGA implementation of

GLCM”, International Journal of Advanced Research in Electrical, Electronics,

and Instrumentation Engineering (IJARECE), vol. 2, issue 6, pp. 2618-2621, June

2013.

[9] A.B. Girisha, M.C. Chandrashekhar, M.Z. Kurian, “Texture Feature Extraction of

Video Frames Using GLCM”, International Journal of Engineering Trends and

Technology (IJETT), vol. 4 Issue 6, pp. 2718-2721, June 2013.

http://link.springer.com/journal/11554
http://link.springer.com/journal/11554/9/1/page/1

64

[10] M. Wielgosz, M. Panaggabean, L.A. Ronningen, “FPGA architecture for Kriging

Image Interpolation,” International Journal of Advanced Computer Science and

Applications (IJACSA). vol. 4, no. 12, pp. 193-201, 2013.

[11] K. Wada, (2013), Ring Buffer Basics, [Online]. Available:

http://www.embedded.com/electronics-blogs/embedded-roundtable/4419407/The-

ring-buffer.

[12] I. Daemon (2012), Crossbar Switch Architecture [Online], Available:

http://www.inetdaemon.com/tutorials/networking/lan/switching/architectures/cros

sbar.shtml.

[13] G. Akila, D. Peterson, G. Lee Warren, R.J. Hindle, and R.J. Harrison, “A

Pipelined and Parallel Architecture for Quantum Monte Carlo Implementations on

FPGA’s”, VLSI Design, vol. 2010, Article ID 946486, pp. 283–286, 2010.

[14] A. E. Nelson, “Implementation of Image processing algorithms on FPGA

hardware,” M.Sc. Thesis, Vanderbilt University, 2000.

[15] S. Rose, “Development of parallel Image Processing architecture in VHDL,”

M.Sc. Thesis, University of West Australia, 2012.

 [16] A. Baraldi and F. Panniggiani, "An Investigation of the Textural Characteristics

Associated with Gray Level Cooccurrence Matrix Statistical Parameters", IEEE

transactions on geosciences and remote sensing, vol. 33, no. 2, pp- 293 - 304,

March 1995.

[17] G. Bohling (2005), Introduction to Geostatic and Variogram analysis [Online],

Available:http://people.ku.edu/~gbohling/cpe940/Variograms.pdf.

[18] R. Pinninti, “Stochastic Assessment of Bone Fragility in Human Lumbar Spine,”

M.Sc. Thesis, University Of Texas, Tyler, 2015.

[19] K.C. Chang, Digital Design and Modeling with VHDL and Synthesis, IEEE

Computer Society Press - Wiley, 1997

[20] K. Heikkinen and P. Vuorimaa, Computation of Two Texture Features in

Hardware, Proceedings of the 10th International Conference on Image Analysis

and Processing, Venice, Italy, pages 125-129, pp. 27- 29, September1999.

http://www.inetdaemon.com/tutorials/networking/lan/switching/architectures/crossbar.shtml
http://www.inetdaemon.com/tutorials/networking/lan/switching/architectures/crossbar.shtml
http://people.ku.edu/~gbohling/cpe940/Variograms.pdf

65

APPENDIX A

VHDL CODE

--Semivariogram Top Module

 Library IEEE;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_unsigned.all;

 Library work;

 Entity semivariogram_top is

 port(

 clk : in std_logic;

 rst : in std_logic;

 SDATA : in std_logic;

 SCLK : in std_logic;

 R_BTN : in std_logic;

 L_BTN : in std_logic;

 START_CALC : in std_logic;

 SHOW_EXP : in std_logic;

 LED : out std_logic_vector(12 downto 0)

);

 end entity;

 architecture rtl of semivariogram_top is

 component counter is

 port (

 rst : in std_logic;

 clk : in std_logic;

 start_calc : in std_logic;

 data_ready : in std_logic;

66

 -- buffer_counter1_o : out std_logic_vector (6 downto 0);

 buffer_counter2_o : out std_logic_vector (6 downto 0);

 data_en : out std_logic

);

 end component counter;

 component image_buffer is

 port (

 rst : in std_logic;

 clk : in std_logic;

 serial_data_in : in std_logic;

 serial_clock_in : in std_logic;

 data_en : in std_logic;

 buffer_counter2 : in std_logic_vector (6 downto 0);

 buffer2_data_out : out std_logic_vector (7 downto 0);

 data_ready : out std_logic;

 buf1_pixel_data1_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data2_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data3_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data4_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data5_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data6_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data7_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data8_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data9_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data10_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data11_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data12_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data13_o : out std_logic_vector(7 downto 0);

67

 buf1_pixel_data14_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data15_o : out std_logic_vector(7 downto 0);

 buf1_pixel_data16_o : out std_logic_vector(7 downto 0);

);

end component image_buffer;

component distance_top is

 port(

 reset_i : in std_logic;

 clk_i : in std_logic;

 data_en : in std_logic;

 buffer_counter2 : in std_logic_vector (6 downto 0);

 distance_out1 : out std_logic_vector (3 downto 0);

 distance_out2 : out std_logic_vector (3 downto 0);

 distance_out3 : out std_logic_vector (3 downto 0);

 distance_out4 : out std_logic_vector (3 downto 0);

 distance_out5 : out std_logic_vector (3 downto 0);

 distance_out6 : out std_logic_vector (3 downto 0);

 distance_out7 : out std_logic_vector (3 downto 0);

 distance_out8 : out std_logic_vector (3 downto 0);

 distance_out9 : out std_logic_vector (3 downto 0);

 distance_out10 : out std_logic_vector (3 downto 0);

 distance_out11 : out std_logic_vector (3 downto 0);

 distance_out12 : out std_logic_vector (3 downto 0);

 distance_out13 : out std_logic_vector (3 downto 0);

 distance_out14 : out std_logic_vector (3 downto 0);

 distance_out15 : out std_logic_vector (3 downto 0));

68

);

 end component distance_top;

 component difference_top is

 port (

 reset_i : in std_logic;

 clk_i : in std_logic;

 data_en : in std_logic;

 buffer2_data_in : in std_logic_vector(7 downto 0);

 buf1_pixel_data1_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data2_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data3_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data4_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data5_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data6_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data7_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data8_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data9_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data10_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data11_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data12_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data13_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data14_i : in std_logic_vector(7 downto 0);

 buf1_pixel_data15_i : in std_logic_vector(7 downto 0);

 diff_out1 : out std_logic_vector (7 downto 0);

 diff_out2 : out std_logic_vector (7 downto 0);

69

 diff_out3 : out std_logic_vector (7 downto 0);

 diff_out4 : out std_logic_vector (7 downto 0);

 diff_out5 : out std_logic_vector (7 downto 0);

 diff_out6 : out std_logic_vector (7 downto 0);

 diff_out7 : out std_logic_vector (7 downto 0);

 diff_out8 : out std_logic_vector (7 downto 0);

 diff_out9 : out std_logic_vector (7 downto 0);

 diff_out10 : out std_logic_vector (7 downto 0);

 diff_out11 : out std_logic_vector (7 downto 0);

 diff_out12 : out std_logic_vector (7 downto 0);

 diff_out13 : out std_logic_vector (7 downto 0);

 diff_out14 : out std_logic_vector (7 downto 0);

 diff_out15 : out std_logic_vector (7 downto 0);

);

 end component difference_top;

 component sorting_top is

 port(

 reset_i : in std_logic;

 clk_i : in std_logic;

 data_en : in std_logic;

 -- buffer_counter1 : in std_logic_vector (6 downto 0);

 buffer_counter2 : in std_logic_vector (6 downto 0);

 distance_in1 : in std_logic_vector (3 downto 0);

 distance_in2 : in std_logic_vector (3 downto 0);

 distance_in3 : in std_logic_vector (3 downto 0);

70

 distance_in4 : in std_logic_vector (3 downto 0);

 distance_in5 : in std_logic_vector (3 downto 0);

 distance_in6 : in std_logic_vector (3 downto 0);

 distance_in7 : in std_logic_vector (3 downto 0);

 distance_in8 : in std_logic_vector (3 downto 0);

 distance_in9 : in std_logic_vector (3 downto 0);

 distance_in10 : in std_logic_vector (3 downto 0);

 distance_in11 : in std_logic_vector (3 downto 0);

 distance_in12 : in std_logic_vector (3 downto 0);

 distance_in13 : in std_logic_vector (3 downto 0);

 distance_in14 : in std_logic_vector (3 downto 0);

 distance_in15 : in std_logic_vector (3 downto 0);

 diff_in1 : in std_logic_vector (7 downto 0);

 diff_in2 : in std_logic_vector (7 downto 0);

 diff_in3 : in std_logic_vector (7 downto 0);

 diff_in4 : in std_logic_vector (7 downto 0);

 diff_in5 : in std_logic_vector (7 downto 0);

 diff_in6 : in std_logic_vector (7 downto 0);

 diff_in7 : in std_logic_vector (7 downto 0);

 diff_in8 : in std_logic_vector (7 downto 0);

 diff_in9 : in std_logic_vector (7 downto 0);

 diff_in10 : in std_logic_vector (7 downto 0);

 diff_in11 : in std_logic_vector (7 downto 0);

 diff_in12 : in std_logic_vector (7 downto 0);

 diff_in13 : in std_logic_vector (7 downto 0);

 diff_in14 : in std_logic_vector (7 downto 0);

 diff_in15 : in std_logic_vector (7 downto 0);

 diff_in16 : in std_logic_vector (7 downto 0);

71

 m_out1 : out std_logic_vector (10 downto 0);

 m_out2 : out std_logic_vector (10 downto 0);

 m_out3 : out std_logic_vector (10 downto 0);

 m_out4 : out std_logic_vector (10 downto 0);

 m_out5 : out std_logic_vector (10 downto 0);

 m_out6 : out std_logic_vector (10 downto 0);

 m_out7 : out std_logic_vector (10 downto 0);

 m_out8 : out std_logic_vector (10 downto 0);

 m_out9 : out std_logic_vector (10 downto 0);

 m_out10 : out std_logic_vector (10 downto 0);

 m_out11 : out std_logic_vector (10 downto 0);

 m_out12 : out std_logic_vector (10 downto 0);

 m_out13 : out std_logic_vector (10 downto 0);

 sum_out1 : out std_logic_vector (17 downto 0);

 sum_out2 : out std_logic_vector (17 downto 0);

 sum_out3 : out std_logic_vector (17 downto 0);

 sum_out4 : out std_logic_vector (17 downto 0);

 sum_out5 : out std_logic_vector (17 downto 0);

 sum_out6 : out std_logic_vector (17 downto 0);

 sum_out7 : out std_logic_vector (17 downto 0);

 sum_out8 : out std_logic_vector (17 downto 0);

 sum_out9 : out std_logic_vector (17 downto 0);

 sum_out10 : out std_logic_vector (17 downto 0);

 sum_out11 : out std_logic_vector (17 downto 0);

 sum_out12 : out std_logic_vector (17 downto 0);

 sum_out13 : out std_logic_vector (17 downto 0)

);

72

 end component sorting_top;

 component calc_variogram is

 port(

 reset_i : in std_logic;

 clk_i : in std_logic;

 data_en : in std_logic;

 m_out1 : in std_logic_vector (10 downto 0);

 m_out2 : in std_logic_vector (10 downto 0);

 m_out3 : in std_logic_vector (10 downto 0);

 m_out4 : in std_logic_vector (10 downto 0);

 m_out5 : in std_logic_vector (10 downto 0);

 m_out6 : in std_logic_vector (10 downto 0);

 m_out7 : in std_logic_vector (10 downto 0);

 m_out8 : in std_logic_vector (10 downto 0);

 m_out9 : in std_logic_vector (10 downto 0);

 m_out10 : in std_logic_vector (10 downto 0);

 m_out11 : in std_logic_vector (10 downto 0);

 m_out12 : in std_logic_vector (10 downto 0);

 m_out13 : in std_logic_vector (10 downto 0);

 sum_out1 : in std_logic_vector (17 downto 0);

 sum_out2 : in std_logic_vector (17 downto 0);

 sum_out3 : in std_logic_vector (17 downto 0);

 sum_out4 : in std_logic_vector (17 downto 0);

 sum_out5 : in std_logic_vector (17 downto 0);

 sum_out6 : in std_logic_vector (17 downto 0);

 sum_out7 : in std_logic_vector (17 downto 0);

 sum_out8 : in std_logic_vector (17 downto 0);

73

 sum_out9 : in std_logic_vector (17 downto 0);

 sum_out10 : in std_logic_vector (17 downto 0);

 sum_out11 : in std_logic_vector (17 downto 0);

 sum_out12 : in std_logic_vector (17 downto 0);

 sum_out13 : in std_logic_vector (17 downto 0);

 semivariogram_out1 : out std_logic_vector (15 downto 0);

 semivariogram_out2 : out std_logic_vector (15 downto 0);

 semivariogram_out3 : out std_logic_vector (15 downto 0);

 semivariogram_out4 : out std_logic_vector (15 downto 0);

 semivariogram_out5 : out std_logic_vector (15 downto 0);

 semivariogram_out6 : out std_logic_vector (15 downto 0);

 semivariogram_out7 : out std_logic_vector (15 downto 0);

 semivariogram_out8 : out std_logic_vector (15 downto 0);

 semivariogram_out9 : out std_logic_vector (15 downto 0);

 semivariogram_out10 : out std_logic_vector (15 downto 0);

 semivariogram_out11 : out std_logic_vector (15 downto 0);

 semivariogram_out12 : out std_logic_vector (15 downto 0);

 semivariogram_out13 : out std_logic_vector (15 downto 0)

);

 end component calc_variogram;

 component output_mux is

 port (

 rst : in std_logic;

 clk : in std_logic;

 show_expected : in std_logic;

 right_button : in std_logic;

74

 left_button : in std_logic;

 semivariogram_1 : in std_logic_vector (15 downto 0);

 semivariogram_2 : in std_logic_vector (15 downto 0);

 semivariogram_3 : in std_logic_vector (15 downto 0);

 semivariogram_4 : in std_logic_vector (15 downto 0);

 semivariogram_5 : in std_logic_vector (15 downto 0);

 semivariogram_6 : in std_logic_vector (15 downto 0);

 semivariogram_7 : in std_logic_vector (15 downto 0);

 semivariogram_8 : in std_logic_vector (15 downto 0);

 semivariogram_9 : in std_logic_vector (15 downto 0);

 semivariogram_10 : in std_logic_vector (15 downto 0);

 semivariogram_11 : in std_logic_vector (15 downto 0);

 semivariogram_12 : in std_logic_vector (15 downto 0);

 semivariogram_13 : in std_logic_vector (15 downto 0);

 semivariogram_out : out std_logic_vector (15 downto 0);

 current_data_num : out std_logic_vector (3 downto 0)

);

 end component output_mux;

 -- Signal Declaration

 signal buffer_counter1 : std_logic_vector (6 downto 0);

 signal buffer_counter2 : std_logic_vector (6 downto 0);

 signal data_en : std_logic;

 signal buffer1_data : std_logic_vector (7 downto 0);

 signal buffer2_data : std_logic_vector (7 downto 0);

 signal diff : std_logic_vector (7 downto 0);

 signal distance : std_logic_vector (3 downto 0);

75

 signal m_data1 : std_logic_vector (10 downto 0);

 signal m_data2 : std_logic_vector (10 downto 0);

 signal m_data3 : std_logic_vector (10 downto 0);

 signal m_data4 : std_logic_vector (10 downto 0);

 signal m_data5 : std_logic_vector (10 downto 0);

 signal m_data6 : std_logic_vector (10 downto 0);

 signal m_data7 : std_logic_vector (10 downto 0);

 signal m_data8 : std_logic_vector (10 downto 0);

 signal m_data9 : std_logic_vector (10 downto 0);

 signal m_data10 : std_logic_vector (10 downto 0);

 signal m_data11 : std_logic_vector (10 downto 0);

 signal m_data12 : std_logic_vector (10 downto 0);

 signal m_data13 : std_logic_vector (10 downto 0);

 signal sum_data1 : std_logic_vector (17 downto 0);

 signal sum_data2 : std_logic_vector (17 downto 0);

 signal sum_data3 : std_logic_vector (17 downto 0);

 signal sum_data4 : std_logic_vector (17 downto 0);

 signal sum_data5 : std_logic_vector (17 downto 0);

 signal sum_data6 : std_logic_vector (17 downto 0);

 signal sum_data7 : std_logic_vector (17 downto 0);

 signal sum_data8 : std_logic_vector (17 downto 0);

 signal sum_data9 : std_logic_vector (17 downto 0);

 signal sum_data10 : std_logic_vector (17 downto 0);

 signal sum_data11 : std_logic_vector (17 downto 0);

 signal sum_data12 : std_logic_vector (17 downto 0);

 signal sum_data13 : std_logic_vector (17 downto 0);

 signal semivariogram1 : std_logic_vector (15 downto 0);

 signal semivariogram2 : std_logic_vector (15 downto 0);

76

 signal semivariogram3 : std_logic_vector (15 downto 0);

 signal semivariogram4 : std_logic_vector (15 downto 0);

 signal semivariogram5 : std_logic_vector (15 downto 0);

 signal semivariogram6 : std_logic_vector (15 downto 0);

 signal semivariogram7 : std_logic_vector (15 downto 0);

 signal semivariogram8 : std_logic_vector (15 downto 0);

 signal semivariogram9 : std_logic_vector (15 downto 0);

 signal semivariogram10 : std_logic_vector (15 downto 0);

 signal semivariogram11 : std_logic_vector (15 downto 0);

 signal semivariogram12 : std_logic_vector (15 downto 0);

 signal semivariogram13 : std_logic_vector (15 downto 0);

 signal current_data_num : std_logic_vector (3 downto 0);

 signal data_ready : std_logic;

 signal semivariogram_out : std_logic_vector (15 downto 0);

 signal buf1_pixel_data1 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data2 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data3 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data4 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data5 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data6 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data7 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data8 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data9 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data10 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data11 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data12 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data13 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data14 : std_logic_vector(7 downto 0);

77

 signal buf1_pixel_data15 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data99 : std_logic_vector(7 downto 0);

 signal buf1_pixel_data100 : std_logic_vector(7 downto 0);

 signal distance_out1 : std_logic_vector (3 downto 0);

 signal distance_out2 : std_logic_vector (3 downto 0);

 signal distance_out3 : std_logic_vector (3 downto 0);

 signal distance_out4 : std_logic_vector (3 downto 0);

 signal distance_out5 : std_logic_vector (3 downto 0);

 signal distance_out6 : std_logic_vector (3 downto 0);

 signal distance_out7 : std_logic_vector (3 downto 0);

 signal distance_out8 : std_logic_vector (3 downto 0);

 signal distance_out9 : std_logic_vector (3 downto 0);

 signal distance_out10 : std_logic_vector (3 downto 0);

 signal distance_out11 : std_logic_vector (3 downto 0);

 signal distance_out12 : std_logic_vector (3 downto 0);

 signal distance_out13 : std_logic_vector (3 downto 0);

 signal distance_out14 : std_logic_vector (3 downto 0);

 signal distance_out15 : std_logic_vector (3 downto 0);

 signal diff_out1 : std_logic_vector (7 downto 0);

 signal diff_out2 : std_logic_vector (7 downto 0);

 signal diff_out3 : std_logic_vector (7 downto 0);

 signal diff_out4 : std_logic_vector (7 downto 0);

 signal diff_out5 : std_logic_vector (7 downto 0);

 signal diff_out6 : std_logic_vector (7 downto 0);

 signal diff_out7 : std_logic_vector (7 downto 0);

 signal diff_out8 : std_logic_vector (7 downto 0);

 signal diff_out9 : std_logic_vector (7 downto 0);

 signal diff_out10 : std_logic_vector (7 downto 0);

78

 signal diff_out11 : std_logic_vector (7 downto 0);

 signal diff_out12 : std_logic_vector (7 downto 0);

 signal diff_out13 : std_logic_vector (7 downto 0);

 signal diff_out14 : std_logic_vector (7 downto 0);

 signal diff_out15 : std_logic_vector (7 downto 0);

);

 begin

 u_counter : counter

 port map (

 rst => rst,

 clk => clk,

 start_calc => START_CALC,

 buffer_counter2_o => buffer_counter2,

 data_en => data_en,

 data_ready => data_ready

);

 u_image_buffer : image_buffer

 port map (

 rst => rst ,

 clk => clk ,

 serial_data_in => SDATA ,

 serial_clock_in => SCLK ,

 data_en => data_en ,

 buffer_counter2 => buffer_counter2 ,

 buffer2_data_out => buffer2_data ,

 data_ready => data_ready ,

 buf1_pixel_data1_o => buf1_pixel_data1 ,

79

 buf1_pixel_data2_o => buf1_pixel_data2 ,

 buf1_pixel_data3_o => buf1_pixel_data3 ,

 buf1_pixel_data4_o => buf1_pixel_data4 ,

 buf1_pixel_data5_o => buf1_pixel_data5 ,

 buf1_pixel_data6_o => buf1_pixel_data6 ,

 buf1_pixel_data7_o => buf1_pixel_data7 ,

 buf1_pixel_data8_o => buf1_pixel_data8 ,

 buf1_pixel_data9_o => buf1_pixel_data9 ,

 buf1_pixel_data10_o => buf1_pixel_data10 ,

 buf1_pixel_data11_o => buf1_pixel_data11 ,

 buf1_pixel_data12_o => buf1_pixel_data12 ,

 buf1_pixel_data13_o => buf1_pixel_data13 ,

 buf1_pixel_data14_o => buf1_pixel_data14 ,

 buf1_pixel_data15_o => buf1_pixel_data15 ,

);

 u_distance_top : distance_top

 port map (

 reset_i => rst,

 clk_i => clk,

 data_en => data_en,

 buffer_counter2 => buffer_counter2,

 distance_out1 => distance_out1 ,

 distance_out2 => distance_out2 ,

 distance_out3 => distance_out3 ,

 distance_out4 => distance_out4 ,

 distance_out5 => distance_out5 ,

 distance_out6 => distance_out6 ,

80

 distance_out7 => distance_out7 ,

 distance_out8 => distance_out8 ,

 distance_out9 => distance_out9 ,

 distance_out10 => distance_out10 ,

 distance_out11 => distance_out11 ,

 distance_out12 => distance_out12 ,

 distance_out13 => distance_out13 ,

 distance_out14 => distance_out14 ,

 distance_out15 => distance_out15 ,

);

u_difference_top : difference_top

 port map(

 reset_i => rst,

 clk_i => clk,

 data_en => data_en,

 buffer2_data_in => buffer2_data,

 buf1_pixel_data1_i => buf1_pixel_data1 ,

 buf1_pixel_data2_i => buf1_pixel_data2 ,

 buf1_pixel_data3_i => buf1_pixel_data3 ,

 buf1_pixel_data4_i => buf1_pixel_data4 ,

 buf1_pixel_data5_i => buf1_pixel_data5 ,

 buf1_pixel_data6_i => buf1_pixel_data6 ,

 buf1_pixel_data7_i => buf1_pixel_data7 ,

 buf1_pixel_data8_i => buf1_pixel_data8 ,

 buf1_pixel_data9_i => buf1_pixel_data9 ,

 buf1_pixel_data10_i => buf1_pixel_data10 ,

 buf1_pixel_data11_i => buf1_pixel_data11 ,

81

 buf1_pixel_data12_i => buf1_pixel_data12 ,

 buf1_pixel_data13_i => buf1_pixel_data13 ,

 buf1_pixel_data14_i => buf1_pixel_data14 ,

 buf1_pixel_data15_i => buf1_pixel_data15 ,

 diff_out1 => diff_out1,

 diff_out2 => diff_out2 ,

 diff_out3 => diff_out3 ,

 diff_out4 => diff_out4 ,

 diff_out5 => diff_out5 ,

 diff_out6 => diff_out6 ,

 diff_out7 => diff_out7 ,

 diff_out8 => diff_out8 ,

 diff_out9 => diff_out9 ,

 diff_out10 => diff_out10,

 diff_out11 => diff_out11,

 diff_out12 => diff_out12,

 diff_out13 => diff_out13,

 diff_out14 => diff_out14,

 diff_out15 => diff_out15,);

);

 u_sorting_top : sorting_top

 port map (

 reset_i => rst,

 clk_i => clk,

 data_en => data_en,

 buffer_counter2 => buffer_counter2,

82

 diff_in1 => diff_out1 ,

 diff_in2 => diff_out2 ,

 diff_in3 => diff_out3 ,

 diff_in4 => diff_out4 ,

 diff_in5 => diff_out5 ,

 diff_in6 => diff_out6 ,

 diff_in7 => diff_out7 ,

 diff_in8 => diff_out8 ,

 diff_in9 => diff_out9 ,

 diff_in10 => diff_out10,

 diff_in11 => diff_out11,

 diff_in12 => diff_out12,

 diff_in13 => diff_out13,

 diff_in14 => diff_out14,

 diff_in15 => diff_out15,

 distance_in1 => distance_out1 ,

 distance_in2 => distance_out2 ,

 distance_in3 => distance_out3 ,

 distance_in4 => distance_out4 ,

 distance_in5 => distance_out5 ,

 distance_in6 => distance_out6 ,

 distance_in7 => distance_out7 ,

 distance_in8 => distance_out8 ,

 distance_in9 => distance_out9 ,

 distance_in10 => distance_out10 ,

 distance_in11 => distance_out11 ,

 distance_in12 => distance_out12 ,

 distance_in13 => distance_out13 ,

83

 distance_in14 => distance_out14 ,

 distance_in15 => distance_out15 ,

 m_out1 => m_data1 ,

 m_out2 => m_data2 ,

 m_out3 => m_data3 ,

 m_out4 => m_data4 ,

 m_out5 => m_data5 ,

 m_out6 => m_data6 ,

 m_out7 => m_data7 ,

 m_out8 => m_data8 ,

 m_out9 => m_data9 ,

 m_out10 => m_data10 ,

 m_out11 => m_data11 ,

 m_out12 => m_data12 ,

 m_out13 => m_data13 ,

 sum_out1 => sum_data1 ,

 sum_out2 => sum_data2 ,

 sum_out3 => sum_data3 ,

 sum_out4 => sum_data4 ,

 sum_out5 => sum_data5 ,

 sum_out6 => sum_data6 ,

 sum_out7 => sum_data7 ,

 sum_out8 => sum_data8 ,

 sum_out9 => sum_data9 ,

 sum_out10 => sum_data10 ,

 sum_out11 => sum_data11 ,

 sum_out12 => sum_data12 ,

 sum_out13 => sum_data13

84

);

 u_calc_variogram : calc_variogram

 port map (

 reset_i => rst,

 clk_i => clk,

 data_en => data_en,

 m_out1 => m_data1 ,

 m_out2 => m_data2 ,

 m_out3 => m_data3 ,

 m_out4 => m_data4 ,

 m_out5 => m_data5 ,

 m_out6 => m_data6 ,

 m_out7 => m_data7 ,

 m_out8 => m_data8 ,

 m_out9 => m_data9 ,

 m_out10 => m_data10 ,

 m_out11 => m_data11 ,

 m_out12 => m_data12 ,

 m_out13 => m_data13 ,

 sum_out1 => sum_data1 ,

 sum_out2 => sum_data2 ,

 sum_out3 => sum_data3 ,

 sum_out4 => sum_data4 ,

 sum_out5 => sum_data5 ,

 sum_out6 => sum_data6 ,

 sum_out7 => sum_data7 ,

 sum_out8 => sum_data8 ,

 sum_out9 => sum_data9 ,

85

 sum_out10 => sum_data10 ,

 sum_out11 => sum_data11 ,

 sum_out12 => sum_data12 ,

 sum_out13 => sum_data13 ,

 semivariogram_out1 => semivariogram1 ,

 semivariogram_out2 => semivariogram2 ,

 semivariogram_out3 => semivariogram3 ,

 semivariogram_out4 => semivariogram4 ,

 semivariogram_out5 => semivariogram5 ,

 semivariogram_out6 => semivariogram6 ,

 semivariogram_out7 => semivariogram7 ,

 semivariogram_out8 => semivariogram8 ,

 semivariogram_out9 => semivariogram9 ,

 semivariogram_out10 => semivariogram10 ,

 semivariogram_out11 => semivariogram11 ,

 semivariogram_out12 => semivariogram12 ,

 semivariogram_out13 => semivariogram13

);

 u_output_mux : output_mux

 port map (

 rst => rst,

 clk => clk,

 show_expected => SHOW_EXP,

 right_button => R_BTN,

 left_button => L_BTN,

 semivariogram_1 => semivariogram1 ,

 semivariogram_2 => semivariogram2 ,

86

 semivariogram_3 => semivariogram3 ,

 semivariogram_4 => semivariogram4 ,

 semivariogram_5 => semivariogram5 ,

 semivariogram_6 => semivariogram6 ,

 semivariogram_7 => semivariogram7 ,

 semivariogram_8 => semivariogram8 ,

 semivariogram_9 => semivariogram9 ,

 semivariogram_10 => semivariogram10 ,

 semivariogram_11 => semivariogram11 ,

 semivariogram_12 => semivariogram12 ,

 semivariogram_13 => semivariogram13 ,

 semivariogram_out => semivariogram_out,

 current_data_num => current_data_num

);

 LED <= current_data_num & semivariogram_out(8 downto 0);

 end rtl;

	University of Texas at Tyler
	Scholar Works at UT Tyler
	Spring 5-28-2015

	Fast Semivariogram Computation Using FPGA Architectures
	Yamuna Sri Lagadapati
	Recommended Citation

	List of Tables
	List of Figures
	Abstract
	Chapter One Introduction
	1.1 Introduction to Texture
	1.2 Various Texture Analysis Techniques
	1.3 Objective and Framework
	1.4 Organization of Thesis

	Chapter Two Past Work
	Chapter Three Technical Background
	3.1 Semi-variogram
	3.1.1 Range (L)
	3.1.2 Sill Variance (C)
	3.1.2 Nugget Variance ()

	3.2 Different Types of Semivariogram Models
	3.3 Field Programmable Gate Arrays:

	Chapter Four Methods and Experimental Procedures
	4.1 Architecture Version 1 (Not Pipelined):
	4.2 Architecture Version 2 (Pipelined):
	4.3 Architecture Version 3 (Pipelined and Hardware Reutilization):
	4.4 Image Buffer and Counter Module
	4.4.1 Architecture Version 1
	4.4.2 Architecture Version 2

	4.5 Distance Module
	4.5.1 Architecture Version 1
	4.5.2 Architecture Version 2

	4.6 Difference Module
	4.6.1 Architecture Version 1
	4.6.2 Architecture Version 2

	4.7 Sorting Module
	4.7.1 Architecture Version 1
	4.7.2 Architecture Version 2

	4.8 Variogram Calculation Module

	Chapter Five Results and Design Implementation
	5.1 Image Buffer Implementation Results
	5.2 Distance Module Implementation Results
	5.3 Difference Module Implementation Results
	5.4 Sorting module Implementation results
	5.5 Variogram Calculation Module Implementation Results
	5.5.1 Implementation for Architecture Version 1
	5.5.2 Implementations for Architecture Version 2 for a 10 × 10 Image
	5.5.3 Implementations for Architecture Version 2 for a 20 × 20 Image

	Chapter Six Discussion and Conclusion
	6.1 Conclusion
	6.2 Future Work

	References
	Appendix A VHDL Code

