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ABSTRACT 

 

FAST SEMIVARIOGRAM COMPUTATION USING FPGA 

ARCHITECTURES 

 
 Yamuna Sri Lagadapati  

 

Thesis Chair: Mukul Shirvaikar, Ph. D. 

 

The University of Texas at Tyler                                                                                       
May 2015 

 

The semivariogram is a statistical measure of the spatial distribution of data, and is based 

on Markov Random Fields (MRFs). Semivariogram analysis is a computationally 

intensive algorithm that has typically seen applications in the geosciences and remote 

sensing areas. Recently, applications in the area of medical imaging have been 

investigated, resulting in the need for efficient real time implementation of the algorithm. 

A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel 

values between any two data locations with a lag distance of h. Due to the need to 

examine each pair of pixels in the image or sub-image being processed, the base 

algorithm complexity for an image window with n pixels is 𝑂(𝑛2).  

Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding 

applications due to their parallel processing capability. FPGAs also tend to operate at 
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relatively modest clock rates measured in a few hundreds of megahertz. This thesis 

presents a technique for the fast computation of the semivariogram using two custom 

FPGA architectures. A modular architecture approach is chosen to allow for replication 

of processing units. This allows for high throughput due to concurrent processing of pixel 

pairs. The current implementation is focused on isotropic semivariogram computations 

only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T 

development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans 

are utilized for the experiments. Implementation results of the first architecture shows 

that a significant advantage in computational speed is attained by the architectures with 

respect to Matlab implementation on a personal computer with an Intel i7 multi-core 

processor. It is also observed that the massively pipelined architecture is nearly 100 times 

faster than the non-pipelined architecture. 
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CHAPTER ONE 

INTRODUCTION 

 Medical image processing is a rapidly advancing area with many modalities like 

X-ray, Magnetic resonance imaging (MRI), and ultra-scanning etc.,. Automated 

processing of medical images can provide medical personnel invaluable assistance in the 

diagnostic process. Large amounts of data are used to represent a typical image, so the 

analysis of an image needs a large amount of memory and can take more time. In order to 

reduce the amount of data, an image is typically processed to generate a set of features. 

Feature extraction is a primitive type of pattern recognition, and it is very important to 

extract information from an image and may involve features such as color, shape, and 

texture. Features can be used to extract quantitative information about an image or for the 

tasks such as searching, retrieval, and storage. Features are divided into different classes 

based on the kind of properties they describe. Proper selection of features is critical to aid 

diagnosis using medical imaging. 

1.1 Introduction to Texture 

Texture is an important feature, which quantifies gray level differences (contrast), over a 

defined size of area where change occurs (window), and directionality. It plays an 

important role in human vision and in image classification. Pictures of flowers, walls, 

water, or patterns on a fabric or single objects are distinguished according to their texture. 

The observation of texture depends on certain conditions such as light, angle, distance, or 

other environmental effects. Texture features contain not only the visual characteristics 

information, but also the characteristics which cannot be visually differentiated. 

“Texture” as it is used in this context refers to the visual effect produced by the spatial 

distribution of pixel value variation over relatively small areas. 
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Texture is the pattern of information or arrangement of the structure found in a picture, 

which uses features in the analysis and interpretation of images. There are two types of 

texture based on spatial frequency, namely, fine and coarse. Fine textures have high 

spatial frequencies or a high number of edges per unit area. Coarse textures have low 

spatial frequencies or a small number of edges per unit area. Texture analysis on 

radiographs is a common way to investigate bone microarchitecture. Stochastic 

parameters range, nugget and sill are calculated from the semivariogram plot can be used 

to represent spatial variations in bone image. As the lag distance increases, it is suggested 

that the bone is more dissimilar on average. Correlation length describes the degree of 

smoothness or roughness in the map. A relatively larger correlation length implies a 

smooth variation, whereas a smaller correlation length corresponds to acute changes over 

the spatial domain. The semi-variance converges to the sum of the nugget variance and 

the sill variance when the separation distance (h) approaches infinity. 

1.2 Various Texture Analysis Techniques  

Texture analysis is generally a difficult problem due to the diversity and complexity of 

natural textures. Texture features should use a minimal amount of resources while being 

able to accurately describe the underlying phenomena of interest of the data. There 

are four different types of texture features: statistical, structural, model based, and 

transform based.  

Statistical texture features can be obtained using the higher order statistics of pixel gray 

levels. First order statistical features measure the probability of observing a gray value in 

the image at a randomly chosen location. First order statistics can be computed from the 

histogram of pixel intensities in the image. These depend only on individual pixel values, 

and not on the interaction or co-occurrence of neighboring pixel values. The average 

intensity in an image is an example of the first order statistic. Gray level co-occurrence 

matrix [GLCM] is the second statistical texture analysis introduced by Haralick, et al [1]. 

This technique is commonly used in texture analysis, because it provides a large set of 

features for each sample and it can be assumed that at least one of these features reflects 

the small variation of texture. Several statistical parameters can be extracted from the 
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GLCM, to quantify the spatial relationship between pixels within the area under 

investigation.  

Probability models have gained wide acceptance, because of their modelling power and 

expressiveness. These models pose the problem of texture analysis in a statistical setting, 

which allows a wide range of well-established theories and methodologies in 

mathematical statistics to be introduced into texture modelling. In particular, Markov 

random fields (MRFs), which describe a texture in terms of spatial geometry and 

quantitative strengths of inter-pixel statistical dependency. The semivariogram is a 

method that can be applied to two dimensional plain-projection images and is based on 

Markov random fields (MRF).  

Semivariogram analysis is a computationally intensive algorithm that has typically seen 

applications in the geosciences and remote sensing areas [2]. Recently, applications in the 

area of medical imaging have been investigated, resulting in the need for efficient real 

time implementation [3]. The semivariogram is a plot of semi variances for different lag 

distances between pixels. It is commonly represented as a graph that shows the variance 

in measure with distance between all pairs of sampled locations. Such a graph is helpful 

to build a mathematical model that describes the variability of the measure with location. 

It is a property used to express the degree of relationship between pixels of an image. The 

semivariance value typically increases with the lag distance converging to a constant 

limit called the “sill”. The sill of a model can be used to describe the variability as well. 

The variance gradually increases till a threshold is reached in the distance of separation. 

This threshold is called a “range”. Once the distance between two points is beyond range, 

the variance becomes independent of the distance and maintains a constant value. Thus, 

the inverse of the range can be used to measure variability. When the variogram is 

extrapolated to zero distance, the variance reaches a non-zero value called a nugget. The 

value increases rapidly at low lags, and then progresses linearly. Strictly speaking, this 

value should be zero when the distance between two points is zero. However, some 

factors such as sampling error may cause dissimilar values for samples at locations close 

to each other. 
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The semivariogram displays the average change of a property and relation between a pair 

of pixels with changing lags. It can be used as a descriptor of second-order statistics 

within the image and hence provide a quantitative measure of texture. The determination 

of the spatial variability of field parameters is usually based on the concept that sampled 

values at nearby locations are more similar than those from further apart. Measurements 

from the field are usually gathered as point data, such as an individual plant. Geostatitical 

analysis methods can be used to interpolate the measurements to create a continuous 

surface map or to describe its spatial pattern. As a powerful tool in geostatistics, 

variogram describes the spatial dependence of data and gives the range of spatial 

correlation, within which the values are correlated with each other, and beyond which 

they become independent. The effect of sampling on the accuracy of sample variogram 

was studied from independently generated random fields and from experimental data. 

Variogram has been estimated and investigated in a wide range of remote sensing 

applications. 

1.3 Objective and Framework 

This work intends to implement the semivariogram calculation with an FPGA module 

taking advantage of its re-configurability characteristics. The aim is to have faster 

calculation times using design techniques to implement parallelism and pipelining, which 

is not possible with dedicated DSP designs. The FPGA Kit used in this project is the 

Xilinx XUPV5-LX110T Development Kit, which utilizes the Virtex5 FPGA. A VHDL 

test bench was designed to verify the functionality followed by synthesizing the design, 

real hardware, and developing test applications to verify functionality and performance of 

the design.  

1.4 Organization of Thesis 

This thesis is divided into six chapters. Chapter 2 gives a brief study about the previous 

works, which are related to the current study. Chapter 3 explains the technical terms 

(variogram, parameters like range, sill, and nugget), and describes the FPGA board used 

in the current study. Chapter 4 describes the architectures implemented and experimental 

procedures to find the semivariogram values. Chapter 5 lists and analyzes the simulation 
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and implementation results for the architectures, computing the variogram values. 

Chapter 6 consists of the conclusion and future improvements. 
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CHAPTER TWO 

PAST WORK 

 A brief literature survey reveals past attempts at implementing algorithms such as 

the variogram on FPGA hardware to increase its speed. Marcotte, proposed two programs 

based on the Fast Fourier Transform (FFT) algorithm to compute direct, cross, and 

pseudo-cross variogram for the fast computation of variogram [4]. This paper shows how 

to compute an experimental variogram for data that are on a regular grid (like the pixels 

of an image). The grid does not need to be complete; any missing data on the grid is 

simply represented as NaN. The computation use the FFT which is orders of magnitude 

faster than the usual approach based on scanning each available pair of data in turn. The 

computation of variograms using the FFT is done by defining two indicator matrices 

which have ones at each data point and zeros elsewhere. These two indicator matrices are 

used in process of calculating the variogram. The computation is performed at lower cost 

by shifting the data matrix, and the data pairs are formed by overlapping the original 

matrix and shifted matrix. The FFT approach is shown to be faster than the spatial 

approach for calculating the variograms especially when repetitive variogram 

computations are required. 

Most other work appears to focus on the fast computation of gray-level co-occurrence 

matrices (GLCM). It is worth examining these approaches since the GLCM also involves 

comprehensive pixel-pair data extraction. GLCM is computed using the frequency of 

occurrence of pixel pair values in the image. Roumi proposed an FPGA-based 

architecture for parallel computation of symmetric co-occurrence matrices [5]. 

Symmetrical algorithms are faster than non-symmetrical, and also a hardware 

implementation consumes less area and less power compared to a software 

implementation. He proposed an FPGA architecture which is capable of calculating 

GLCMs in parallel for four different distances in four directions. The approach improves
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by a factor of 2 to 4 the processing time for simultaneous computation of sixteen co-

occurrence matrices. The feature calculation operation has two steps. In the first step, 

mean, contrast, entropy, and dissimilarity are calculated by four different Processing 

Elements (PEs). Processing elements contain multipliers and adders that execute in 

parallel. Furthermore, for increasing the computation speed, RAM is used for the 

calculation of the log function in the entropy measure. In the second step, the angular 

second moment, variance, and correlation are calculated. Further, he found that Virtex-

XCV2P30 has a better throughput than Virtex4 and Virtex5. 

Harshavardhan et al implemented a novel FPGA-based architecture for real-time 

extraction of four GLCM features by dividing the architecture in two stages, a pre-

processing stage, and the feature extraction block [6]. The first stage prepares input data 

for processing by the feature extraction block while the second combines both software 

and hardware to calculate GLCM features. The hardware module is implemented on a 

Xilinx FPGA using Verilog. This module consists of the control unit which coordinates 

the functionality of the FPGA, by generating the signals which synchronize the other 

units, a memory controller and a feature calculation unit capable of reading GLCMs, for 

extracting the required features and storing them into the on-card memory. Thus in this 

paper image features have been extracted using different algorithms specified with 

architectural models with internal modules represented.  

Haralick texture feature extraction algorithms can be divided into two parts: calculation 

of the co-occurrence matrices and calculation of texture features using the calculated co-

occurrence matrices which are computationally intensive. Akoushideh et al proposed a 

parallel FPGA architecture to calculate co-occurrence matrices and thirteen texture 

features [7]. In the proposed architecture, in order to improve performance, first, the co-

occurrence matrix is computed then all thirteen texture features are calculated in parallel 

using computed co-occurrence matrix. The proposed architecture has been implemented 

on Virtex 5 fx130T-3 FPGA device. Results show a speedup of 421 yields over a 

software implementation on Intel Core i7 2.0 GHz processor. In order to improve the 

performance, 3 texture features contrast, mean and sum of entropy are computed instead 

of 13 using ranking of Haralick’s features based on their important role in texture 
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classification. Evaluation results showed a performance improvement of 4849 yields 

compared to software implementation on Intel Core i7 2.0 GHz processor. In addition, 

the clock divider technique was applied with parallel implementations on a cell 

processor. Experimental results show that using 16 processing elements in parallel 

provided speedups of up to 10 times the non-parallelized implementation.  

Girisha et al, presented an FPGA architecture for Gray Level Co-occurrence Matrix 

(GLCM) to increase the speed of computation [8]. The GLCM architecture was 

implemented using Verilog hardware description language. The design was focused on 

GLCM hardware realization. This paper does not include the Haralick feature extraction 

of the image; it calculates the GLCM for four different angles 0°, 45°, 90° and 135°for a 

given intensity of an image. Later, they proposed a novel system for texture feature 

extraction of video frames using GLCM using hardware [9]. The properties or features 

extracted from normalized symmetrical GLCM are Energy or Angular second moment, 

correlation, homogeneity and contrast. The proposed architecture involves extracting 

frames from video which are resized to 8 × 8 image and scaled down to 8 tone image 

creating the GLCM. Then making the obtained matrix symmetric, then normalizing it, 

and finally extracting the required features. 

Wielgosz has proposed a FPGA Architecture for Kriging Image Interpolation in three 

steps: finding a basis for interpolation, constructing a variogram matrix and computing 

coefficients and interpolation [10]. Image interpolation is the basis for quality shaping of 

the image. An effective interpolation mechanism is obtained by implementing it on 

FPGA. The architecture aims to decrease the overall latency in FPGA. Constructing the 

variogram matrix involves implementing it in a pipelined fashion but the architecture is 

not optimal in terms of image data distribution. 

Table 2.1 shows the various research studies in the literature arranged chronologically, 

that were aimed at improving the speed of pixel-pair statistical computations. The current 

study involves hardware implementation of the semivarioram texture analysis procedure, 

to increase its computational speed compared to a purely software implementation. 
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Table 2.1 Summary of All Previous Studies 

Author, year Significance of study 

Denis Marcotte [4],   
1996 

FFT approach is shown to be 
faster than the spatial approach 
for calculating the variograms. 

M. Roumi [5], 2009 GLCM calculation in parallel on 
FPGA for four different distances 
in four directions. 

M. Harshavardhan 
[6], 2014 

Proposed a hardware based 
FPGA architecture for real time 
extraction of four GLCM 
features. 

Akoushideh [7], 
2012 

Implemented FPGA architecture 
to calculate co-occurrence 
matrices and thirteen texture 
features. 

A.B. Girisha [8], 
2013 

Proposed FPGA architecture for 
GLCM to increase the speed of 
computation. 

M. Wielgosz [10],           
2013 

Proposed FPGA Architecture for 
Kriging Image Interpolation 
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CHAPTER THREE 

TECHNICAL BACKGROUND 

The main goal of variogram analysis is to construct a statistical plot that best estimates 

the autocorrelation structure of the underlying stochastic process. The variogram is 

described through several parameters namely the nugget effect, sill and range. This 

chapter describes the technical terms like range, sill and nugget that are used in this study 

to describe the characteristics of semivariogram. A description of the FPGA hardware is 

also provided. The techniques, which have been implemented in this study to obtain the 

required parameters, are also described in following sections. 

3.1 Semi-variogram 

The theoretical variogram is a function describing the degree of spatial dependence of a 

spatial random field. It is defined as the variance of the difference between field values at 

two locations across realizations of the field. The physical distance between the two 

locations is known as the lag distance or lag, and is denoted as h. The semivariogram, 

denoted as 𝛾(ℎ), displays the average change of a property with changing lags locations 

in the image and is usually related to the application domain under consideration. A 

property such as the difference between the gray-level values of the two locations can 

serve as a measure of textural parameters or second-order statistics of the random field. 

The experimental variogram is calculated by averaging one half the differences squared 

of the pixel values over all pairs of observations with the specified lag distance and 

orientation. The relation between a pair of pixels that are lag distance h apart can be 

given by the average variance of the difference between all such pairs and is expressed as 

follows:  

                         𝛾(ℎ) =   1
2𝑚

∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]𝑚
𝑖=1

2
                                                 (1)
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where m is the total number of pixel pairs used in the computation of the sum. The value 

of m is governed by the geometrical properties of the region of interest in the image used 

for the statistical analysis and the value of h. Given the same region, larger values will 

result in lower values of m since the dipole connecting the pixels in the pair may not lie 

within the region of interest for certain pixels. 

There are two types of semivariograms: isotropic and anisotropic. The semivariogram 

value that depends only on the magnitude of the lag vector, not the direction, and the 

empirical semivariogram can be computed by accumulating data pairs separated by the 

appropriate distances, regardless of direction. Such a semivariogram is described as 

omnidirectional or an isotropic semivariogram. The semivariogram where the property 

shows different autocorrelation structures in different directions is anisotropic 

semivariogram.  

There are a few constraints for a semivariogram model to be able to represent. These 

include: 

(a) a monotonic increase with increasing lag distance from the ordinate 

(b) an asymptotic maximum, or 'sill' 

(c) a positive intercept on the ordinate, or 'nugget' 

(d) periodic fluctuation, or a 'hole' and anisotropy. 

The stochastic parameters range, sill and nugget variance are described below. 

3.1.1 Range (L) 

The distance where the model first flattens out is known as the range or correlation 

length. Sample locations separated by distances closer than the range are spatially auto-

correlated. It also describes the degree of smoothness or roughness in an image. A 

relatively large correlation length implies a smooth variation, whereas a small correlation 

length corresponded to rapid variations over the spatial domain. 

3.1.2 Sill Variance (C) 

The value that the semivariogram model attains at the range (the value on the y-axis) is 

called the sill. Usually the variogram value levels off at this semivariance value. It can be 

used to refer to the "amplitude" of certain component of the semi-variogram.  
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3.1.2 Nugget Variance ( ) 

According to theory, the semi-variogram value at the zero separation distance (lag = 0) 

should be zero. However, at an infinitesimally small separation distance, the 

semivariogram often exhibits a nugget effect, which is some value greater than 0. For 

example, if the semivariogram model intercepts the y-axis at 2, then the nugget is 2. The 

nugget represents variability at distances smaller than the typical sample spacing, 

including measurement error. Variation at micro scales smaller than the sampling 

distances will appear as part of the nugget effect. 

Table 3.1 Stochastic Parameters of Experimental Variogram 

Parameter Meaning 

Range Lag distance at which model 
flattens out 

Sill variance The value attained at the range 

Nugget variance Variability at distances and 
measurement errors 

 

The following diagram shows the plot of experimental semivariogram with the stochastic 

parameters marked. 

 

Figure 3.1 Characteristics of Semivariogram 

0C
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In order to understand the computation of the semivariogram for an image, it is helpful to 

look at an example with some image data. Table 3.2 shows the pixel arrangement in a one 

dimensional array, where 𝑥𝑖 denotes the position of the pixel values 𝑧(𝑥𝑖). The difference 

of the pixel values is calculated in the third row and the obtained values are squared in 

the fourth row for a lag distance h = 1. It should be noted that a two-dimensional image 

can be arranged as a vector for computation of the isotropic variogram as long as the 

position information is retained for each location. 

 

Table 3.2 Calculation of Difference of Pixels in the 1-D Array to Compute Variogram for 

Lag Distance h=1 

 

The following steps have to be followed to calculate the isotropic semivariogram value,: 

1. Calculate the Euclidean distance and sort the pixel pairs according to the lag 

distances. 

2. Calculate square of the difference between all pixel values with distance h as 

computed in Table 3.2. 

3. Determine the number of pixel pairs m, for the example shown in Table 3.2 the 

number of pairs of pixels with distance 1 is m=14. 

4. Add all the square of differences for a particular lag distance h. Summing all the 

squares of differences computed in Table 3.2 we get, ∑ [𝑧(𝑥𝑖 ) − 𝑧(𝑥𝑖 + ℎ)2]𝑚
𝑖=1  

=459 

5. Compute the final semivariogram value using the Equation 1.  

𝑥𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
𝑧(𝑥𝑖) 28 25 27 25 21 25 11 16 11 17 27 26 25 26 21 
Pixel 

Differenc
e 

3 -2 2 4 -4 14 -5 5 -6 -10 1 1 -1 5  

Square of 
pixel 

difference  
9 4 4 16 16 196 25 25 36 100 1 1 1 25  
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For the given example variogram value can be computed to 𝛾(ℎ = 1) = 459/(2*14) = 

32.8. Similarly, the values for different lag distances can be computed to be: 

𝛾(ℎ = 2) = 44.3; 𝛾(ℎ = 3) = 76.5; 𝛾(ℎ = 4) = 110.8; 𝛾(ℎ = 5)=108.9; 𝛾(ℎ = 6) =

124.8; 𝛾(ℎ = 7) = 89.9 

As can be noted from the example, the semivariogram values tend to rise rapidly and then 

converge to a value known as the sill.  

3.2 Different Types of Semivariogram Models 

The semivariogram plot can be fitted with various models described by exponential or 

hole-effect parametric equations to obtain a description of the texture in the region of 

interest [17]. The appropriate model is chosen by matching the shape of the curve of the 

experimental variogram to the shape of the curve of the mathematical function. The 

function must therefore be mathematically defined for all real lag distances (h).  

Geostatistical Analyst provides the following functions to model the empirical 

semivariogram [17]: 

• Circular 

• Spherical 

• Tetraspherical 

• Pentaspherical 

• Exponential 

• Gaussian 

• Rational Quadratic 

• Hole Effect 

• K-Bessel 

• J-Bessel 

• Stable 
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The selected model influences the prediction of the unknown values, particularly when 

the shape of the curve near the origin differs significantly. The steeper the curve near the 

origin, the more influence the closest neighbors will have on the prediction. As a result, 

the output surface will be less smooth. Each model is designed to fit different types of 

phenomena more accurately. 

The nugget model represents the discontinuity at the origin due to small-scale variation. 

The spherical model actually reaches the specified sill value, at the specified range. The 

exponential and Gaussian approach the sill asymptotically; practical range is the distance 

at which the semivariance reaches 95% of the sill value. These three models are shown 

below: 

 
Figure 3.2 Types of Semivariogram Models 

The Gaussian model, with its parabolic behavior at the origin, represents very smoothly 

varying properties. The spherical and exponential models exhibit linear behavior at the 

origin, appropriate for representing properties with a higher level of short-range 

variability. 

It is a good idea to study the computational complexity of the semivariogram algorithm 

for the isotropic computation case. For 𝑃 = 𝑀 × 𝑁 pixels in the image there are 𝑃(𝑃 −
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1)/2  unique pixel pairs. Calculating the variogram value includes the computation of the 

distance and difference between all the pixel pairs, and summation of squares of 

differences. The distance calculation has 3 × (𝑃(𝑃 − 1)/2) additions and multiplications 

each, whereas the difference calculation between the pixel pairs and the square of the 

differences has 𝑃(𝑃 − 1) additions. Final variogram calculations have 𝑃(𝑃 − 1)/2 

additions and nearly (𝑃 − 1)/4 multiplications. Hence, the variogram value can be 

computed with 3 × 𝑃(𝑃 − 1) sums and nearly 3 × (𝑃(𝑃 − 1)/2) multiplications. The 

computational complexity of the variogram calculation can be shown as 𝑂(𝑛2) where n is 

the number of pixels in the image region [10].  

Table 3.3 Number of Computations for Variogram Calculation for 𝑃 = 𝑀 × 𝑁 Image 

Parameters Number of Computations for 

𝑃 = 𝑀 × 𝑁 image 

Unique pixel pairs 𝑃(𝑃 − 1)/2 

Number of additions for the calculation 

between the pixel values. 

3 × (𝑃(𝑃 − 1)/2) 

Multiplications for lag distance calculation 

between the pixel values. 

3 × (𝑃(𝑃 − 1)/2) 

Additions for calculating the difference 

between the pixel values. 

𝑃(𝑃 − 1) 

Additions for calculating variogram value 

using the equation (1) 

𝑃(𝑃 − 1)/2 

Multiplications for calculating variogram 

value using the equation (1) 

(𝑃 − 1)/4 

Total number of additions required for 

variogram calculation. 

3 × 𝑃(𝑃 − 1) 

Total number of multiplications required for 

variogram calculation. 

3 × (𝑃(𝑃 − 1)/2) 
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For example, for 𝑃 = 𝑀 × 𝑁  (𝑀 = 10,𝑁 = 10), the total number of pixel pairs is 4950 

assuming distinct pixels, and the total number of summations would be 29,700 and the 

total number of multiplications would be 14,850. Similarly for 𝑃 = 𝑀 × 𝑁  (𝑀 =

20,𝑁 = 20), the total number of pixel pairs is 79800 and the total number of summations 

478800 and multiplications are 239400. The value is particularly large even for a small 

images of 10 × 10 and 20 × 20 pixels.  

As seen by the computational breakdown, a large part of the burden exists due to the 

comprehensive analysis of pixel pair data. Practical applications in the medical domain 

involve regions of interest with around 50 × 50 pixels, resulting in an exponentially 

larger number of computations: approximately 187 million sums and 95 million 

multiplications. This large number of computations makes the semivariogram calculation 

extremely time intensive. It is worthwhile investigating methods to speed up the 

computation in order to make the semivariogram a practical technique for clinical usage. 

For this reason, FPGA architectures have been proposed to reduce the computational time 

for calculating the variogram values. 

3.3 Field Programmable Gate Arrays: 

A Field-Programmable Gate Array (FPGA) is a reconfigurable device with the ability of 

being reprogrammed to satisfy particular requirements. It consists of basic elements 

combined to form highly optimized and high performance systems. The two major 

manufacturers are Xilinx and Altera, though their FPGAs have strong differences at the 

architectural level, their basic operation and functionality is the same. Input/Output 

Blocks (IOBs) usually serve as a way to interconnect the silicon package pins carrying 

external signals to the internal Configurable Logic Blocks (CLBs). Another crucial 

element Switch Matrix (SM) interconnects all elements inside the FPGA. The SM and 

CLBs are programmable by the user and their configuration is stored in individual Static 

Random Access Memory (SRAM) cells inside each element. The CLBs allow for 

combinatorial or sequential logic to be generated inside the FPGA. A single CLB is 

typically comprised of slices, each of them including several Look Up Tables (LUTs), 

carry logic and storage units. An LUT unit can have multiple inputs; the most common is 
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a four input LUT. However, five and six input LUTs can also be found. With an N-input 

LUT, any Boolean logic function with N-inputs can be implemented.  

In order to program an FPGA with a desired logic design one has to follow three steps 

which are escribed below: 

1. The design is first created using a hardware description language such as Verilog 

or VHSIC Hardware Description Language (VHDL).  

2. This is then utilized in generating a low-level device specific bit stream file. 

3. The final step is to download the bit stream onto the configuration memory of the 

FPGA, which individually defines the behavior of the CLBs and corresponding 

interconnects needed to implement the design.  

FPGAs have gained popularity in recent years because the present line of commercial 

FPGAs are capable of integrating powerful embedded processors and several common 

intellectual property cores that provide a complete system-on-chip solution. FPGAs that 

contain dedicated multiplier blocks are particularly suited as co-processors for 

computation-intensive applications such as digital signal processing.  

 

A good example is the Virtex 5 that is the latest in the Virtex series of FPGAs and is used 

for the current experiment. The device shown in Figure 3.3 is built on a 65 nm process 

and includes 288 dedicated DSP blocks, each block consisting of a 25 bit x 18 bit 

multiplier and a 48 bit adder/subtractor/accumulator. Other features include 4 embedded 

Ethernet MAC blocks capable of implementing 1000 Base-X (Gigabit Ethernet) 

implementation. Figure shows the FPGA Kit used in this project is the Xilinx XUPV5-

LX110T Development Kit, which utilizes the Virtex5 FPGA.  
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Figure 3.3 Xilinx XUPV5-LX110T Development Kit with Virtex 5 FPGA 
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CHAPTER FOUR 

METHODS AND EXPERIMENTAL PROCEDURES 

 

 In this study, two architectures were designed and implemented in succession on 

the FPGA. Architecture version 1 (non-pipelined) was initially implemented and tested. 

Architecture version 2 (pipelined) was subsequently introduced to improve upon the 

performance of the former. Both architectures were programmed in VHDL, and consist 

of four different modules with each module performing different tasks as described 

below: 

 

1. Distance module: Calculates the lag distance between pixels. 

2. Difference module: Calculates the difference between pixel values. 

3. Sorting module: Sorts the pixel values based on distance and maintains a count of 

the number of pixel pairs. 

4. Semivariogram module: Calculates the final semivariogram value. 

 

In addition to these two architectures, a third architecture was proposed, but Architecture 

Version 3 (Pipelined and Hardware Reutilization) could not be fully incorporated because 

of the huge complexity in the circuit and hardware limitations. Because for the complex 

bigger circuits in FPGAs, the components and the wires connecting them are limited 

moreover time-consuming also matters. 

 

Two-dimensional medical image data of specimen from MRI scans are utilized for the 

experiments. This image is obtained using Dual energy X-ray absorptiometry operating in 

a fan beam mode. Figure 4(a) is used as the input which has been cropped from the 

original scanned image of hip as shown in Figure 4(b).  
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Figure 4(a) Cropped Image of the Hip Used for Experiments 

 

 
Figure 4(b) Original Scanned Image of the Hip Used for Experiments 

The following sections describe the algorithm implementation and digital logic design 

specification. 

4.1 Architecture Version 1 (Not Pipelined): 

The block diagram and description of the basic architecture is shown in the Figure 4.1(b). 

Initially the image pixel values are loaded into the image buffer. Then the counters for the 

two image buffers start incrementing and the image data is loaded into the difference 
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module. The difference module computes the absolute difference between two pixel 

values. The corresponding counter values are loaded into the distance module 

concurrently. The distance module calculates the Euclidean distance between the two 

corresponding pixel values. The distance and difference data is then accumulated in the 

sorting module which sorts the differences indexed by the lag distances and calculates the 

number of pixel pairs for each distance. These sorted values are passed to the final 

module which computes the semivariogram value for different lag distances. The final 

module is the output multiplexer that displays the output values one at a time. Figure 

4.1(a) shows the timing diagram for the architecture version 1. 

Figure 4.1(a) Timing Diagram of Architecture Version 1 (Non Pipelined)
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 Figure 4.1(b) Block Diagram of Architecture Version 1 (Non Pipelined)
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4.2 Architecture Version 2 (Pipelined): 

Figure 4.2(b) shows the block diagram for the architecture version 2 which is pipelined to 

improve performance. This architecture has the distance and difference modules 

replicated multiple times (99 times for 100 pixel values and 399 times for the 400 pixels) 

for the tested implementation. Each of the replicated distance sub-modules computes the 

Euclidean distances between pixels. The difference sub-modules calculate differences for 

a fixed pixel with all the pixel values pair with. For example, the first distance and the 

difference modules calculate distances and differences between pixel 1 and pixels 1 to N.  

The sorting module has the same functionality as the sorting module in the first 

architecture version, with the exception of  that it has 33 sub modules in 10 × 10 image 

version and 25 sorting sub modules for the 20 × 20 image versions that are pipelined. 

Each sub-module in the 10 × 10 image handles 3 distance or difference values, whereas 

16 distance and difference values are handled in each of the 25 sorting modules in the 

20 × 20 image. The output number of pixel pairs (𝑚) and sum of the sub-modules are 

then added to find the number of pixel values and sum values for each distance, which is 

then passed to variogram module for final calculations. Figure 4.2(a) shows the timing 

diagram for the architecture version 2. 

 

Figure 4.2(a) Timing Diagram of Architecture Version 2 (Pipelined)
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Figure 4.2(b) Block Diagram of Architecture Version 2 (Pipelined) 
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4.3 Architecture Version 3 (Pipelined and Hardware Reutilization): 

The use of an FPGA provides a substantial amount of freedom for design. Yet, the 

hardware designer must be much more aware of availability of resources and of 

limitations than the software developer. In this thesis a new architecture for 25 × 25 and 

10 × 10 image sizes was attempted for hardware reutilization. This architecture was 

actualized using the loops for 100 distance and difference sub-modules. The architecture 

is so designed that it erases the pixel data from the difference and distance sub-modules 

once they have been utilized, and the new values are loaded into the counter and image 

buffer. This method of implementation not only reduces the complexity of the 

architecture by reducing the number of sub-modules but can also be used for bigger 

image sizes. Due to the timing and memory size limitations inside the FPGA, the circuit 

could not be synthesized and implemented on the FPGA. Timing is a concern that usually 

does not occur in software, but pops up unavoidably in circuit design. A detailed 

description of each block is provided in the following sections. 

4.4 Image Buffer and Counter Module 

4.4.1 Architecture Version 1  

Image data loading is one of the challenging tasks for any architecture with 

comprehensive pixel-based computations. One of the major bottlenecks is that data has to 

be presented to the modules in pairs. Popular approaches like the crossbar switch and ring 

buffers can be used to load the data into the processing modules. The crossbar switch has 

a matrix with M × N cross-points or places where the "bars" cross [11]. At each cross 

point is a switch, which when closed, connects one of M inputs to one of N outputs. It has 

the disadvantage of large implementation size due to the number of connections. A ring 

buffer is a data structure that uses a single and fixed buffer connected end-to-end [12]. 

Ring buffers can be used to present the serialized data in a tight sequence to the modules. 

The linear ring buffer faces a disadvantage due to large memory size and access time. 

Thus the architecture has been implemented with two single array image buffers to load 

the data into all the sub-modules. Image data is preloaded into the buffers to allow for 

testing access by an algorithm on hardware. 
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Image pixel data are first loaded into the two image buffers as data vectors. If the image 

is of size N × N then the pixel vector is of size N2 (for the experiments N = 10 and 20 

have been used). The counters are incremented when the data enable is high, similar to 

nested “for loops” in order to load the pixel data pairs into the distance and difference 

modules. Counter 1 starts from 1 and increments every time the second counter counts up 

to the last pixel value N starting from 1. Registers are used to store the pixel values and 

the two multiplexers present these values to the sub-modules in sequence. The first 

multiplexer presents pixel data to  output buffer 1 and the second one multiplexes pixel 

data registers into output buffer 2, based on the current values of input buffer counter 1 

and input buffer counter 2. 

 

 

Figure 4.4.1 (a) Block Diagram of Counter Module (Not Pipelined) 
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Figure 4.4.1 (b) Block Diagram of Image Buffer Module (Not Pipelined) 

4.4.2 Architecture Version 2 

Since the pixel data loading process can be time-consuming, the second architecture 

addresses this process in a brute force fashion. The counter and the image buffer for 

architecture version 2 (pipelined) have just one multiplexer which presents the data from 

second counter and image buffer 2 to all the distance and difference sub-modules. The 

counter 1 data and the buffer 1 pixel data are replicated directly in all the sub-modules 

whenever the counter increments. The replication of the data takes place simultaneously 

whenever the image buffer 2 and the counter 2 data are loaded in the corresponding sub-

modules. For example, in the first difference sub-module replication of image buffer 

values takes place during loading of the pixel 1 value from the second image buffer. 

Figure 4.3.2 (a), 4.3.2 (b) shows the counter and image buffer for the architecture version 

2 (pipelined). 
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Figure 4.4.2 (a) Block Diagram of Counter Module (Pipelined) 

 

 

 
Figure 4.4.2 (b) Block Diagram of Image Buffer Module (Pipelined) 
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 4.5 Distance Module 

4.5.1 Architecture Version 1 

The distance module calculates the Euclidian distance between two pixels in a pixel pair. 

The value from counter 2 is stored in the internal register of the distance module and the 

distance is calculated between this value and the remaining values loaded by the first 

counter. When the second counter increments the first counter is again loaded in the 

distance module. Depending on the counter values, the corresponding x and y position for 

the calculation of the distance are determined in the position 1 and position 2 decoder 

modules. The counter values are taken as the y-coordinates for the pixel values, and                 

x-coordinate is taken as 1 for the first N values. Essentially for the next N values, the                

x-coordinate is taken as 2 and y coordinate as 1 to N. The coordinate values are stored in 

internal registers for data stability. These values are fetched and the values are multiplied 

and then added to get the square of the distance. 

 The final step is to calculate the square root of the obtained value using the square root 

sub-module. The designed sub-module selects square root of the input value depending 

on the logic designed in the module whenever it detects the input signal. The overall 

circuit inputs an 8-bit integer and outputs a 4-bit integer square root. This circuit uses the 

"entity" method. The output of the square root module is rounded up or down. This 

rounded output value is given as the input to the sorting module. 

 

 
Figure 4.5.1 Block Diagram of Distance Module (Not Pipelined) 
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4.5.2 Architecture Version 2 

In the architecture version 2, the distance module is replicated 99 times for 10 × 10 

image and 399 times for the 20 × 20 image, each module with the identical function of 

parallel calculation of distance data. Each value of the counter 2 is loaded into its 

particular modules whereas the first counter values are directly replicated in all the 

modules. When the counter 2 increments, the first distance module calculates the distance 

between the first pixel value and all the pixels till N, where N is the last pixel value.  In 

the meantime, module distance 2 starts calculating the distance for pixel 2 to pixel N once 

the module gets the input from the counter, and so on. Hence all the sub-modules 

calculate the distance between the two pixels in the parallel fashion by performing 

calculations at the same time in the corresponding modules. As soon as the modules 

complete the calculations they send the distance values to the sorting module without 

waiting for all the calculations to be completed. 

During the distance calculation, the module is designed such that once the two buffer 

counter values are loaded in the distance module, the values are compared with the 

previous position values and the pixel values with repetitive position values are skipped 

to reduce computational time. 

 

Figure 4.5.2 Block Diagram of Distance Module (Pipelined) 



  

40 
 

4.6 Difference Module 

4.6.1 Architecture Version 1 

The difference module handles computation of the absolute difference between two pixel 

gray levels. The pixel value from image buffer 2 is stored in the pixel 1 register in the 

difference module when the enable signal is high. The difference is calculated between 

this value and the remaining pixel values loaded by the first image buffer into the pixel 2 

register. Image buffer 2 increments to the next value only when all the values of the 

second image buffer have been used for the difference calculation with the previous pixel 

value of the second image buffer. Whenever the image buffer 2 increments, the first 

image buffer starts loading all the values into the register. Once the two internal registers 

are stacked with the image pixel values, the module then checks if pixel 2 is higher than 

pixel 1.  If it is higher, pixel 1 is subtracted from pixel 2, while if it is lower, pixel 2 is 

subtracted from pixel 1. 

 

 
 

Figure 4.6.1 Block Diagram of Difference Module (Not Pipelined) 

4.6.2 Architecture Version 2 

In the architecture version 2, 99 modules for 10 × 10 image and 399 modules for the 

20 × 20 image are replicated with the same function for the parallel calculation of 

differences between two pixel values. Each pixel value of the image buffer 2 is loaded 

into its particular module whereas the first image buffer is directly replicated in all the 

modules. When the image buffer 2 increments, the first module calculates the difference 
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between the first pixel value and all the pixels up to N, where N is the last pixel value. At 

the same time, module 2 calculates differences for pixel 2 to pixel N once it gets the 

second pixel value from the image buffer 2, and so on. All the modules hence start 

calculating in a parallel fashion, that is though the previous modules are calculating the 

difference between the pixel pairs, the image buffer 2 values are loaded and the 

corresponding submodules starts calculating the differences. As soon as the single pixel 

difference value has been computed in the sub-modules, it is given as the input to the 

sorting module without waiting for all the calculations to be completed. 

During the difference calculation the module is so designed that the corresponding 

module starts calculating the differences between the fixed pixel value of image buffer 2, 

and the values after the fixed pixel value in the image buffer 1. This design skips the 

repetitive calculations between the pixel pairs to reduce the computational time. For 

example in the inference module 3 the fixed pixel value from the image buffer 2 is 3 and 

as discussed the image buffer 1 is replicated in this module. In this module the next value 

to the fixed pixel value in the replicated buffer is the fourth pixel value. Hence the 

module calculates the deference between 3 and all the pixel values from the fourth value 

to avoid the repetitive calculations. Figure 4.6.2 (b) shows the block diagram for the 

skipping algorithm. 

  

Figure 4.6.2(a) Block Diagram of Difference Module (Pipelined) 
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Figure 4.6.2(b) Block Diagram for Skipping Algorithm 

4.7 Sorting Module 

4.7.1 Architecture Version 1 

After calculating the lag distances and the differences between the pixel pairs, the outputs 

from both the modules are connected to the sorting module. The sorting module sorts the 

differences by keying off the lag distances and computes the summation of the square of 

differences for each lag distance. The range starts from 1 to the maximum distance 

between the pixel pairs. It also calculates the number of pixel pairs for each distance. The 

block diagram below shows that the first part of the module is the change data detection 

circuit which actually detects the increment in counter 2. This data detection circuit is 

used to activate the corresponding sorting modules by the input signal which acts as an 

enable signal to the registers, initially set to 0. The increment of the counter indicates that 

the distance and the difference sub-modules have started the calculations and will be 

inputted to the corresponding sorting module. 

 The register which acts as the accumulator, checks the input distance value whenever the 

first counter value changes, if the distance is 1, then the first register m1 is incremented, 

if it is 2, second register m2 is incremented and so on. The registers calculating the sum 

adds the square of the input difference value to the current register value using the 

distance values as an offset. If the lag distance is 1 the square of the input difference gets 

added to the accumulator 1, if it is 2 the value gets accumulated in the second 
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accumulator, whenever the modules detect the signal from the data detection circuit. The 

counter register number corresponding to the offset is incremented and the square of the 

input difference value is added to the corresponding sum register. These sorted values are 

passed to the final module which computes the semivariogram value for different lag 

distances.   

 

Figure 4.7.1 Block Diagram of Sorting Module (Not Pipelined) 

4.7.2 Architecture Version 2 

Implementation 2 performs the same sorting and summation processes to find total sum 

and number of pixel values for each lag distance as architecture 1. However in this 

implementation, 33 sub-modules (for 10 × 10 image) and 25 (for 20 × 20 image) sorting 

sub-modules have been replicated. Each sub-module in the smaller image handles 3 

distance and difference values. The sorting module handles the output from three distance 

sub-modules (distance_out1, distance_out2, distance_out3) and output from three 

difference sub-modules (diff_out1, diff_out2, diff_out3). Similarly 25 sub-modules in the 

20 × 20 image handles 16 difference and distance values. So the 33 sub-modules have 

been designed to handle the 99 sub-modules from the distance and difference modules 

whereas 25 sub-modules are designed to handle 400 values from distance and difference 

sub-modules. The output from these sub-modules is then used to find the total pixel 
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values and sum values for each lag distance. These number of pixel values (m) and 

summation values acts as the input to the final module for calculation 

 

Figure 4.7.2 Block Diagram of Sorting Module (Pipelined) 

4.8 Variogram Calculation Module 

The final stage is the same for both the architectures. It calculates the semivariogram 

value for all the lag distances, using the division function. The number of pixels 

calculated in the sorting module and the square of the summation of difference of gray 

values is given as input to the variogram module. First, all the m data from the sorting 

module is multiplied by 2 by shifting bits to the left by one. The divider circuits for each 

input, from lag distance 1 to the maximum lag distance between pixel pairs are used to 

divide the sums with the number of pixel pairs for each lag distance. Each lag distance 

has a specified register where the corresponding semivariances are calculated. After the 

division process, the result is then rounded up or down to the nearest integer value. The 
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output multiplexer is used to display results on the LED display one at a time on the 

Virtex 5 FPGA board. The semivariogram values obtained are in the binary format. 

 
 

Figure 4.8 Block Diagram of Variogram Module 

The aim of this thesis is to investigate the use of programmable logic devices (FPGAs) to 

accelerate the computation of GLCM features. The target hardware for this work is 

Xilinx XUPV5-LX110T based FPGA development hoard equipped with a Xilinx Virtex 

5 FPGA. The bitstream generated for the whole architecture was dumped onto XUPV5-

LX110T development Kit device of Xilinx Virtex 5 pro family. 
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CHAPTER FIVE 

RESULTS AND DESIGN IMPLEMENTATION  

 Initially a MATLAB program was used to implement the algorithm and find the baseline 

variogram values. The design was then implemented on the FPGA board for a 10 × 10 

image and a 20 × 20 image, implementation results of each modules of the designed two 

architecture are discussed in this chapter.  

5.1 Image Buffer Implementation Results 

The figures below are the simulation results showing internal signals of the image buffer 

module. For architecture 1 it is observed that the output data of image buffer 1 is updated 

in the buffer1_data_out signal for every change in counter 1. Similarly output data 2 is 

updated in the buffer2_data_out signal for each increment of the counter 2. These signals 

are given as the input to the difference module for difference computation. It can be 

observed that the image buffer 2 increments to the next only value only when all the 

values of the first buffer are passed to the difference module. 

 
Figure 5.1 (a) Implementation Results for Image Buffer (Not Pipelined)  

In architecture 2, there is only one image buffer whereas the other image buffer values 

are replicated in all the sub-modules for difference computation. The Figure 5.1 (b) and 

Figure 5.1 (c) shows the implementation results of the image buffer for the second
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 architecture for two different images. Implementation results show only one output 

signal buffer2_data_out which corresponds to image buffer 2. This data is loaded in the 

corresponding submodules for the difference calculations whenever the second counter 

(buffer_counter2) is incremented. Due to the replication of the image buffer 1 data in the 

submodules architecture version 2 is 100 times faster than the architecture version 1 for a 

10 × 10 image. 

 

 
Figure 5.1 (b) Implementation Results of 10 × 10 Image Buffer (Pipelined) 

 

Figure 5.1 (c) Implementation Results of 20 × 20 Image Buffer (Pipelined) 
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5.2 Distance Module Implementation Results 

The pixel data is loaded in the difference module while the corresponding counter values 

are inputted to the distance module.  Figure 5.2(a) shows the Implementation results of 

the distance module of the first architecture, where the two counter values are used for 

calculating position. These position values are passed to the sub-modules through the 

position1 and position2 signals. After calculating the Euclidean distance, the values are 

outputted through only one distance_out signal as shown in the result. Sample 

calculations are shown in the result.  

 
 

Figure 5.2 (a) Implementation Results for Distance Module (Not Pipelined) 

The following results shows the simultaneous or parallel computations performed in the 

distance module since there are replicated sub-modules. It can be observed that as the 

counter values are updated, the position values are calculated with one clock cycle delay. 

After decoding the coordinate values, all the sub-modules start calculating the distance 

values.  

Implementation results shows the distance values outputted from the sub-modules. There 

are 99 distance_out signals for a 10 × 10 image and 399 distance_out signals which are 

continuously updated with the distance values calculated in the submodules for all the 

pixel values as shown in the figure. Figure 5.2(b) and Figure 5.2(c) shows that all the 

position decoder modules and distance calculating modules with the square root 
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calculation work in parallel fashion. Distance and sorting modules are connected to each 

other though the distance_out signal. The distance values are given as the input to the 

sorting module where it acts as an offset or the sorting values. 
 

 
Figure 5.2 (b) Implementation Results of 10 × 10 Image Distance Module (Pipelined) 

 

Figure 5.2 (c) Implementation Results of 20 × 20 Image Distance Module (Pipelined) 
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5.3 Difference Module Implementation Results 

The figure below shows the internal signals inside the difference module. It is observed 

that this module dynamically processes the data with 1 clock cycle delay. The image 

buffer 2 value is first loaded in the second pixel register. The first pixel register is then 

loaded sequentially with the first image buffer pixel values. For every pixel 1 register 

value the absolute difference is calculated as shown in the implementation result. The 

value in the pixel 2 register is updated when all the values of image buffer are loaded in 

the pixel 1 register. These difference values are given as the input to the sorting module 

through the diff_out signal, which is continuously updated with the difference values 

calculated in the difference module. 

 
 
 
 
 
 
 
 
 

Figure 5.3 (a) Implementation Results for Difference Module (Non-Pipelined) 

The following results shows the simultaneous or parallel computations performed in the 

difference module since there are replicated sub modules. It can be observed that the 

image buffer 1 values are replicated in the sub-modules, whereas the image buffer 2 

values are loaded to the corresponding modules through the buffer2_data_in signal when 

the data enable is high. Once the sub-modules are loaded with the corresponding second 

image buffer pixel values the sub-modules start calculating the absolute difference 

between the pixels. 

There are 99 diff_out signals for a 10 × 10 image and 399 diff_out signals for a 20 × 20 

We can see in the following examples that the circuit correctly 
computed the difference between 2 input pixels..: 109-97 = 12,  
109-93= 16,  109-87= 22 ,  109-88= 21 , 115-94=21, 115-100= 15, 
115-9 = 6, 115-115= 0 
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image which are continuously updated with the difference values calculated in the 

submodules for all the pixel values of image buffer 1 and image buffer 2 as shown in the 

figure. Figure 5.3(b) and Figure 5.3(c) show that all the data loading, calculation of 

differences between the pixels in the sub-modules work in a parallel fashion for two 

different image sizes. Difference and sorting modules are connected to each other though 

the diff_out signals. The difference values are given as the input to the sorting module 

where these values are sorted and added in the accumulator depending on the distance 

values.  

 

Figure 5.3 (b) Implementation Results of 10 × 10 Image Difference Module (Pipelined) 
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Figure 5.3 (c) Implementation Results of 20 × 20 Image Difference Module (Pipelined) 

5.4 Sorting module Implementation results 

The data enable is high for the sorting module whenever the first counter increments. The 

module is inputted with the distance data and difference data through one diff_in and 

distance_in signal from the difference and the distance modules. The sorting module uses 

distance as an offset and increments the corresponding registers calculating the number of 

pixel values as shown in the Figure 5.4(a). It can be observed from the following figure 

that the first register m_out1 is incremented when the module encounters the lag distance 

to be 1. The difference values are squared, and these values are given as input to the 

accumulators through sqrd_of_diff_in signal. Sum register sum_out1 is getting 

accumulated with the square of difference values if the offset is 1 as shown in the 

implementation result. 
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Figure 5.4 (a) Implementation Results for Sorting Module (Non-Pipelined) 

In the second architecture, the sorting module contains 33 sub-modules for a 10 × 10 

image and 25 sub-modules for a 20 × 20 image which are pipelined. Each sub-module of 

smaller image handles 3 difference and 3 distance values, whereas each sub-module of 

the bigger image handles 16 difference and 16 distance values. The functionality of all 

the sub_modules is same as the architecture version 1. The number of pixel pairs is 

calculated by incrementing the corresponding registers using lag distance as offset. These 

values are given as the input to the variogram calculating module using m_out1, m_out2 

signals. The difference values accumulated in the accumulators are given as input to the 

final variogram calculation module using sum_out1, sum_out2, etc., signals. 
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Figure 5.4 (b) Implementation Results for Sorting Module (Pipelined) 

5.5 Variogram Calculation Module Implementation Results 
 

5.5.1 Implementation for Architecture Version 1 

Figure 5.5.1 shows the Implementation results showing internal signals of the final 

variogram module. It is observed that number of pixel values, summation values and 

semivariogram outputs is being updated and finally completed after counter 1 and 2 reach 

100. The results show that the architecture version 1 speed is measured to be 400 

microseconds for calculating the semivariogram values, as seen in following figure.  
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Figure 5.5.1 .Implementation Results for Architecture Version 1 

Each counter combination to introduce pixel pairs to the combinational modules lasts for 

4 clock cycles, because data inputs for differences and the distance module will be 

changed every 4 clock cycles. This clock period is used so that the large combinational 

logic circuits will have stable inputs to perform the calculations. Each clock cycle is 10ns 

for 100MHz hence a counter increment takes 4 x 10 ns = 40ns. There are two counters, 

each counting up to 100, when counter 1 is 1, counter 2 goes from 1 to 100, hence there 

are 100x100 counts. So approximately the total time of computation is 40ns x 100 x 100 

= 400,000ns or 400uS.  The results are shown in Figure 5.5.1 and are very close to these 

theoretical model values. 

5.5.2 Implementations for Architecture Version 2 for a 10 × 10 Image 

The Architecture version 2 is 100 times faster in speed than the first one due to the 

pipelining. Figure 5.5.2 shows the implementation time from data enable to completion. 

As discussed before, each count of buffer lasts for 4 clock cycles (40ns), but there is only 

one counter counting from 1 to 100, as the buffer 1 data is directly connected to inputs 

from difference module for the parallel calculations so approximately the total time of 

computation is 100x40ns = 4000ns or 4us, but due to the small logic delay the 

computational time is 4.27us. 
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 Figure 5.5.2 Implementation Results for Architecture Version 2 for a 10 × 10 Image 

5.5.3 Implementations for Architecture Version 2 for a 20 × 20 Image 

Architecture version 2 for a 20 × 20 image has 399 distance and 399 difference modules 

and 16 sorting modules for 400 pixel values. Due to the increase in the modules and 

complexity in the circuit by 4 times the implementation time has increased 16 times the 

implementation time of 10 × 10 image  as shown in the following figure. Sorting 

modules have to be reduced because of the increase in the distance and difference sub-

modules which is also one of the reasons for the increase in the computational time. 

Figure 5.5.3 shows the implementation time from data enable to completion. Here, each 

count of buffer lasts for 16 clock cycles. As discussed, each clock cycle is 10ns for 

100MHz hence a counter increment takes 16 x 10 ns = 160ns, but there is only one 

counter counting from 1 to 400, as the buffer 1 data is directly connected to inputs from 

difference module for the parallel calculations so approximately the total time of 

computation is 400x160ns = 64000ns or 64us, but due to the small logic delay the 

computational time is 64.9us. 
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Figure 5.5.3 Implementation Results for Architecture Version 2 for a 20 × 20 Image 

Table 5.1 below shows the computation times for the Matlab implementation, 

architecture version 1 (non-pipelined) and architecture version 2 (pipelined) for a 10 × 10 

image and 20 × 20 image. The head-to-head results indicate significant performance 

improvement using the non-pipelined version, which is greatly improved by pipelining.  
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Table 5.1 Computational Time Comparison for Matlab Code, Non-Pipelined and 

Pipelined Architecture Versions of Implementations. 

Implementation Computational Time 

Matlab code for 10 × 10 image 2 seconds 

Matlab code for 20 × 20 image 7.13 seconds 

Architecture version 1 (non-pipelined) for 10 × 10 image 400 microseconds 

Architecture version 2  (pipelined) for 10 × 10 image 4.27 microseconds 

Architecture version 2 (pipelined) 20 × 20 image 64.9 microseconds 

 

The maximum Euclidian distance between pixels in a 10×10 image is 12.72 and for a 

20×20 image is 26.43. Hence there will be 13 output semivariogram values for the 

smaller image and for the bigger one there will be 26 output semivariogram values for the 

algorithm being tested, corresponding to each value of ‘h’. Table 5.2 and Table 5.3 

compares the semivariogram values obtained from the Matlab code to the implementation 

results from the FPGA for the two image sizes.  

Table 5.2 Verification of the Semivariogram Values Computed Using the Specified 

Algorithm for a 10 × 10 Image. 

Lag Distances Matlab Computational 
Values 

Observed Values 

1 12.845 13 
2 33.0179 33 
3 54.6827 55 
4 82.8918 83 
5 120.7689 121 
6 152.5643 153 
7 184.4761 184 
8 211.0484 211 
9 233.216 233 
10 254.9362 255 
11 266.0833 266 
12 248.4375 248 
13 234 234 
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Table 5.3 Verification of the Semivariogram Values Computed Using the Specified 

Algorithm for a 20 × 20 Image. 

Lag Distances Matlab Computational 
Values 

Observed Values 

1 11.09 9 
2 23.46 25 
3 42.24 41 
4 58.45 57 
5 73.62 81 
6 105.93 104 
7 134.52 131 
8 159.03 160 
9 194.02 192 
10 227.95 226 
11 267.79 262 
12 303.84 297 
13 345.67 342 
14 386.22 388 
15 434.69 432 
16 477.09 477 
17 507.25 502 
18 524.72 533 
19 531 535 
20 504.35 505 
21 472.55 482 
22 422.67 423 
23 382.68 384 
24 306.77 312 
25 218 218 
26 92.5 136 

 

A summary of the synthesis report, device requirement and utilization shown in Table 

5.4. As indicated by a study of the architectures, a significant price in extra hardware is 

required to improve the speed using pipelining. This can be attributed to the replicated 

modules and data supply arrangements to these extra replicated modules in the pipelined 

architecture. The maximum frequency and power consumption are also shown in the 
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table and indicate that both versions are utilizing the FPGA board at almost the maximum 

frequency allowed by the timing constraints for the designs. Pixel pair data presentation 

appears to be a significant factor in the speed of the algorithm. 

Table 5.4 Device Utilization and Synthesis Report 

Parameters Architecture 
Version 1 for 10 ×

 10 image (Not 
Pipelined) 

Architecture 
Version 2 for 

10 × 10 image 
(Pipelined) 

Architecture 
Version 2 for 20 ×

 20 image 
(Pipelined) 

Slice Registers 10,220 24,739 72,156 
Slice LUT’s 5,653 35,755 2,36,497 

LUT Flip Flop pairs 11,843 40,572 35,227 
Unique control sets 23 439 640 

Bonded IOB’s 21 21 19 
LOCed IOB’s 21 21 21 

BUFG/BUFGCTRLs 1 2 2 
Number of 
DSP48EIs 

3 63 64 

Percentage of 
hardware utilized 

11.22 35.8 78.2 

Calculation time at 
100Mhz 

400 micro seconds 4.27 micro 
seconds 

64.9 micro seconds 

Calculation time at 
50Mhz 

800 micro seconds 8.54 micro 
seconds 

129.8 micro seconds 

Number of Clock 
Cycles 

40000 cycles 427 cycles 6490 cycles 

Maximum 
Frequency 

100.392 MHz 100.251 MHz 100.251 MHz 

Clock Frequency 100 MHz 100 MHz 100 MHz 
Power Consumption 91 MW 331 MW 558 MW 

Lines of Code 14,207 90,568 16,8000 
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CHAPTER SIX 

DISCUSSION AND CONCLUSION 

In this study we have demonstrated that the computational time of the semivariogram can 

be improved through hardware implementation when compared to the software. This 

chapter includes the conclusions from this thesis and the summary of the work. Future 

works based on this thesis are also proposed in the following sections. 

6.1 Conclusion 

Digital images have several features, such as, texture, color, shape etc. Texture is one of 

the important features and texture analysis has an important role in image processing, 

computer vision and pattern recognition. Texture feature extraction is the first step of 

texture analysis. There are many methods to extract texture features, and the 

Semivariogram method has application to medical image processing. In this thesis, two 

architectures Architecture version 1 (non-pipelined) and Architecture version 2 

(pipelined) are proposed for the computation of the semivariogram using a custom FPGA 

architecture to reduce the computational time required.  

 

Experiments were performed on a 10 × 10 and 20 × 20 image. Our results showed that 

hardware implementation with the implemented pipelined architecture can improve the 

computation time of variogram. It can be observed in the first architecture that the 

hardware implementations of semivariogram calculation reduce the time of computation 

when compared to the software implementation. The second architecture implemented 

massive parallelism in the form of replicated distance, difference and sorting modules 

that are further pipelined. The basic difference between the two architectures is the 

massively pipelined sub-modules in the second version with 99 sub modules for the 10 

×10 image and 399 sub-modules for 20 × 20 which run in parallel fashion. The output of 

these modules is connected to the sub-modules of the sorting module. Hence, for the 

massively 
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parallel pipelined architecture implemented results in a speedup of 100 over the non-

pipelined architecture for a 10 × 10 image. It is envisaged that the speed is proportional 

to the number of parallel sub-modules and further experiments for bigger images are 

planned in the future.   

To summarize, the following has been accomplished in this thesis: 

• Implementation of semivariogram texture feature extraction with hardware 

descriptive language with verification of values. 

• Design of two FPGA-based hardware architectures for texture extraction and 

implementation on Virtex 5 FPGA board. 

• Comparing the performance of the designs with the software implementation in 

Matlab. 

The circuit description language used in this thesis is VHSIC Hardware Description 

Language (VHDL) which appears almost the same as a programming language. But the 

difference still exists, the software being the sequential processes, whereas in the 

hardware descriptive language everything runs concurrently.  

6.2 Future Work 

The pipelined architecture can be utilized for small matrices, but the implementation for 

larger matrices imposes a challenge due to the large design size and FPGA limitations. 

The current design rounds off data to the nearest integer. Future work can involve a 

design that can process floating point numbers and can provide precision up to two 

decimal values. Due to the memory size and resources constraints operators generally do 

not work on a bigger image size.  Hence other challenges to be addressed in future work 

also include increasing the image size, and further parallelization and pipelining to 

mitigate the effects of massive ordered pixel pair data access. The loop architecture 

proposed can also be improvised to meet the timing and memory constraints for the 

bigger images in the future. 
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APPENDIX A 

VHDL CODE 

--Semivariogram Top Module 

 Library IEEE; 

  use ieee.std_logic_1164.all; 

  use ieee.std_logic_unsigned.all; 

   

  Library work; 

  Entity semivariogram_top is 

   port(  

   clk : in std_logic; 

   rst : in std_logic; 

   SDATA : in std_logic; 

   SCLK : in std_logic; 

   R_BTN : in std_logic; 

   L_BTN : in std_logic; 

   START_CALC : in std_logic; 

   SHOW_EXP : in std_logic; 

   LED : out std_logic_vector(12 downto 0) 

   ); 

   end entity; 

  architecture rtl of semivariogram_top is 

  component counter is 

    port ( 

   rst                 : in  std_logic; 

    clk                 : in  std_logic; 

   start_calc      : in  std_logic; 

   data_ready      : in  std_logic; 
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 -- buffer_counter1_o : out std_logic_vector (6 downto 0); 

   buffer_counter2_o : out std_logic_vector (6 downto 0); 

   data_en             : out std_logic 

  ); 

  end component counter; 

  component image_buffer is 

    port ( 

    rst                 : in  std_logic; 

    clk                 : in  std_logic; 

 serial_data_in  : in  std_logic; 

 serial_clock_in  : in  std_logic; 

 data_en    : in  std_logic; 

 buffer_counter2  : in std_logic_vector (6 downto 0); 

 buffer2_data_out    : out std_logic_vector (7 downto 0); 

 data_ready   : out std_logic;  

    buf1_pixel_data1_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data2_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data3_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data4_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data5_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data6_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data7_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data8_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data9_o   : out std_logic_vector(7 downto 0); 

    buf1_pixel_data10_o  : out std_logic_vector(7 downto 0); 

    buf1_pixel_data11_o  : out std_logic_vector(7 downto 0); 

    buf1_pixel_data12_o  : out std_logic_vector(7 downto 0); 

    buf1_pixel_data13_o  : out std_logic_vector(7 downto 0); 
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    buf1_pixel_data14_o  : out std_logic_vector(7 downto 0); 

    buf1_pixel_data15_o  : out std_logic_vector(7 downto 0); 

    buf1_pixel_data16_o  : out std_logic_vector(7 downto 0); 

     

  ); 

end component image_buffer; 

   

component distance_top is 

   port( 

    reset_i               : in  std_logic; 

    clk_i                 : in  std_logic; 

    data_en               : in  std_logic; 

 buffer_counter2    : in  std_logic_vector (6 downto 0);  

    distance_out1         : out  std_logic_vector (3 downto 0); 

    distance_out2         : out  std_logic_vector (3 downto 0); 

    distance_out3         : out  std_logic_vector (3 downto 0); 

    distance_out4         : out  std_logic_vector (3 downto 0); 

    distance_out5         : out  std_logic_vector (3 downto 0); 

    distance_out6         : out  std_logic_vector (3 downto 0); 

    distance_out7         : out  std_logic_vector (3 downto 0); 

    distance_out8         : out  std_logic_vector (3 downto 0); 

    distance_out9         : out  std_logic_vector (3 downto 0); 

    distance_out10        : out  std_logic_vector (3 downto 0); 

    distance_out11        : out  std_logic_vector (3 downto 0); 

    distance_out12        : out  std_logic_vector (3 downto 0); 

    distance_out13        : out  std_logic_vector (3 downto 0); 

    distance_out14        : out  std_logic_vector (3 downto 0); 

    distance_out15        : out  std_logic_vector (3 downto 0)); 
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  ); 

   

  end component distance_top; 

   

     

  component difference_top is 

    port ( 

     reset_i              : in  std_logic; 

     clk_i                : in  std_logic; 

     data_en              : in  std_logic; 

  buffer2_data_in      : in std_logic_vector(7 downto 0); 

     buf1_pixel_data1_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data2_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data3_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data4_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data5_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data6_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data7_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data8_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data9_i   : in std_logic_vector(7 downto 0); 

     buf1_pixel_data10_i  : in std_logic_vector(7 downto 0); 

     buf1_pixel_data11_i  : in std_logic_vector(7 downto 0); 

     buf1_pixel_data12_i  : in std_logic_vector(7 downto 0); 

     buf1_pixel_data13_i  : in std_logic_vector(7 downto 0); 

     buf1_pixel_data14_i  : in std_logic_vector(7 downto 0); 

     buf1_pixel_data15_i  : in std_logic_vector(7 downto 0); 

     diff_out1         : out std_logic_vector (7 downto 0); 

     diff_out2         : out std_logic_vector (7 downto 0); 
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     diff_out3         : out std_logic_vector (7 downto 0); 

     diff_out4         : out std_logic_vector (7 downto 0); 

     diff_out5         : out std_logic_vector (7 downto 0); 

     diff_out6         : out std_logic_vector (7 downto 0); 

     diff_out7         : out std_logic_vector (7 downto 0); 

     diff_out8         : out std_logic_vector (7 downto 0); 

     diff_out9         : out std_logic_vector (7 downto 0); 

     diff_out10        : out std_logic_vector (7 downto 0); 

     diff_out11        : out std_logic_vector (7 downto 0); 

     diff_out12        : out std_logic_vector (7 downto 0); 

     diff_out13        : out std_logic_vector (7 downto 0); 

     diff_out14        : out std_logic_vector (7 downto 0); 

     diff_out15        : out std_logic_vector (7 downto 0); 

      

  ); 

  end component difference_top;   

 

 

 component sorting_top is 

   port(  

    reset_i              : in  std_logic; 

    clk_i                : in  std_logic; 

    data_en              : in  std_logic; 

   -- buffer_counter1      : in  std_logic_vector (6 downto 0);  
   

    buffer_counter2      : in  std_logic_vector (6 downto 0);  

    distance_in1         : in  std_logic_vector (3 downto 0); 

    distance_in2         : in  std_logic_vector (3 downto 0); 

    distance_in3         : in  std_logic_vector (3 downto 0); 
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    distance_in4         : in  std_logic_vector (3 downto 0); 

    distance_in5         : in  std_logic_vector (3 downto 0); 

    distance_in6         : in  std_logic_vector (3 downto 0); 

    distance_in7         : in  std_logic_vector (3 downto 0); 

    distance_in8         : in  std_logic_vector (3 downto 0); 

    distance_in9         : in  std_logic_vector (3 downto 0); 

    distance_in10        : in  std_logic_vector (3 downto 0); 

    distance_in11        : in  std_logic_vector (3 downto 0); 

    distance_in12        : in  std_logic_vector (3 downto 0); 

    distance_in13        : in  std_logic_vector (3 downto 0); 

    distance_in14        : in  std_logic_vector (3 downto 0); 

    distance_in15        : in  std_logic_vector (3 downto 0); 

    diff_in1          : in std_logic_vector (7 downto 0); 

    diff_in2          : in std_logic_vector (7 downto 0); 

    diff_in3          : in std_logic_vector (7 downto 0); 

    diff_in4          : in std_logic_vector (7 downto 0); 

    diff_in5          : in std_logic_vector (7 downto 0); 

    diff_in6          : in std_logic_vector (7 downto 0); 

    diff_in7          : in std_logic_vector (7 downto 0); 

    diff_in8          : in std_logic_vector (7 downto 0); 

    diff_in9          : in std_logic_vector (7 downto 0); 

    diff_in10         : in std_logic_vector (7 downto 0); 

    diff_in11         : in std_logic_vector (7 downto 0); 

    diff_in12         : in std_logic_vector (7 downto 0); 

    diff_in13         : in std_logic_vector (7 downto 0); 

    diff_in14         : in std_logic_vector (7 downto 0); 

    diff_in15         : in std_logic_vector (7 downto 0); 

    diff_in16         : in std_logic_vector (7 downto 0); 
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     m_out1      : out std_logic_vector (10 downto 0);  

   m_out2      : out std_logic_vector (10 downto 0);  

   m_out3      : out std_logic_vector (10 downto 0);  

   m_out4      : out std_logic_vector (10 downto 0);  

   m_out5      : out std_logic_vector (10 downto 0);  

   m_out6      : out std_logic_vector (10 downto 0);  

   m_out7      : out std_logic_vector (10 downto 0);  

   m_out8      : out std_logic_vector (10 downto 0);  

   m_out9      : out std_logic_vector (10 downto 0);  

   m_out10     : out std_logic_vector (10 downto 0);  

   m_out11     : out std_logic_vector (10 downto 0);  

   m_out12     : out std_logic_vector (10 downto 0);  

   m_out13     : out std_logic_vector (10 downto 0);  

   sum_out1       : out std_logic_vector (17 downto 0);  

   sum_out2       : out std_logic_vector (17 downto 0);  

   sum_out3       : out std_logic_vector (17 downto 0);  

   sum_out4       : out std_logic_vector (17 downto 0); 

   sum_out5       : out std_logic_vector (17 downto 0); 

   sum_out6       : out std_logic_vector (17 downto 0); 

   sum_out7       : out std_logic_vector (17 downto 0); 

   sum_out8       : out std_logic_vector (17 downto 0); 

   sum_out9       : out std_logic_vector (17 downto 0); 

   sum_out10     : out std_logic_vector (17 downto 0); 

   sum_out11     : out std_logic_vector (17 downto 0); 

   sum_out12     : out std_logic_vector (17 downto 0); 

   sum_out13     : out std_logic_vector (17 downto 0) 

    ); 
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  end component sorting_top;  

    

  component calc_variogram is 

       port( 

      reset_i               : in    std_logic; 

      clk_i                 : in    std_logic; 

      data_en               : in    std_logic; 

     m_out1           : in   std_logic_vector (10 downto 0);  

     m_out2           : in   std_logic_vector (10 downto 0);  

     m_out3           : in   std_logic_vector (10 downto 0);  

     m_out4           : in   std_logic_vector (10 downto 0);  

     m_out5           : in   std_logic_vector (10 downto 0);  

     m_out6           : in   std_logic_vector (10 downto 0);  

     m_out7           : in   std_logic_vector (10 downto 0);  

     m_out8           : in   std_logic_vector (10 downto 0);  

     m_out9           : in   std_logic_vector (10 downto 0);  

     m_out10          : in   std_logic_vector (10 downto 0);  

     m_out11          : in   std_logic_vector (10 downto 0);  

     m_out12          : in   std_logic_vector (10 downto 0);  

     m_out13          : in   std_logic_vector (10 downto 0);  

     sum_out1              : in   std_logic_vector (17 downto 0);  

     sum_out2              : in   std_logic_vector (17 downto 0);  

     sum_out3              : in   std_logic_vector (17 downto 0);  

     sum_out4              : in   std_logic_vector (17 downto 0); 

     sum_out5              : in   std_logic_vector (17 downto 0); 

     sum_out6              : in   std_logic_vector (17 downto 0); 

     sum_out7              : in   std_logic_vector (17 downto 0); 

     sum_out8              : in   std_logic_vector (17 downto 0); 



  

73 
 

     sum_out9              : in   std_logic_vector (17 downto 0); 

     sum_out10          : in   std_logic_vector (17 downto 0); 

     sum_out11          : in   std_logic_vector (17 downto 0); 

     sum_out12          : in   std_logic_vector (17 downto 0); 

     sum_out13          : in   std_logic_vector (17 downto 0); 

     semivariogram_out1 : out std_logic_vector (15 downto 0);  

     semivariogram_out2 : out std_logic_vector (15 downto 0);  

     semivariogram_out3 : out std_logic_vector (15 downto 0);  

     semivariogram_out4 : out std_logic_vector (15 downto 0);  

     semivariogram_out5 : out std_logic_vector (15 downto 0);  

     semivariogram_out6 : out std_logic_vector (15 downto 0);  

     semivariogram_out7 : out std_logic_vector (15 downto 0);  

     semivariogram_out8 : out std_logic_vector (15 downto 0);  

     semivariogram_out9 : out std_logic_vector (15 downto 0);  

     semivariogram_out10 : out std_logic_vector (15 downto 0);  

     semivariogram_out11 : out std_logic_vector (15 downto 0);  

     semivariogram_out12 : out std_logic_vector (15 downto 0);  

     semivariogram_out13 : out std_logic_vector (15 downto 0)  

       );  

    end component calc_variogram;  

     

     

  component output_mux is 

    port ( 

      rst                 : in  std_logic; 

      clk                 : in  std_logic; 

     show_expected    : in  std_logic; 

     right_button    : in  std_logic; 
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     left_button    : in  std_logic; 

     semivariogram_1     : in std_logic_vector (15 downto 0); 

     semivariogram_2     : in std_logic_vector (15 downto 0); 

     semivariogram_3     : in std_logic_vector (15 downto 0); 

     semivariogram_4     : in std_logic_vector (15 downto 0); 

     semivariogram_5     : in std_logic_vector (15 downto 0); 

     semivariogram_6     : in std_logic_vector (15 downto 0); 

     semivariogram_7     : in std_logic_vector (15 downto 0); 

     semivariogram_8     : in std_logic_vector (15 downto 0); 

     semivariogram_9     : in std_logic_vector (15 downto 0); 

     semivariogram_10    : in std_logic_vector (15 downto 0); 

     semivariogram_11    : in std_logic_vector (15 downto 0); 

     semivariogram_12    : in std_logic_vector (15 downto 0); 

     semivariogram_13    : in std_logic_vector (15 downto 0); 

     semivariogram_out   : out std_logic_vector (15 downto 0); 

     current_data_num    : out std_logic_vector (3 downto 0) 

  ); 

  end component output_mux; 

   

    -- Signal Declaration 

    signal  buffer_counter1 :  std_logic_vector (6 downto 0); 

   signal  buffer_counter2 :  std_logic_vector (6 downto 0); 

   signal  data_en         :  std_logic; 

    signal  buffer1_data  :  std_logic_vector (7 downto 0); 

    signal  buffer2_data  :  std_logic_vector (7 downto 0); 

    signal    diff   :    std_logic_vector (7 downto 0); 

    signal   distance   :    std_logic_vector (3 downto 0); 
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      signal  m_data1    :  std_logic_vector (10 downto 0); 

      signal  m_data2    :  std_logic_vector (10 downto 0); 

      signal  m_data3    :  std_logic_vector (10 downto 0); 

      signal  m_data4    :  std_logic_vector (10 downto 0); 

      signal  m_data5    :  std_logic_vector (10 downto 0); 

      signal  m_data6    :  std_logic_vector (10 downto 0); 

      signal  m_data7    :  std_logic_vector (10 downto 0); 

      signal  m_data8    :  std_logic_vector (10 downto 0); 

      signal  m_data9    :  std_logic_vector (10 downto 0); 

      signal  m_data10    :  std_logic_vector (10 downto 0); 

      signal  m_data11    :  std_logic_vector (10 downto 0); 

      signal  m_data12    :  std_logic_vector (10 downto 0); 

      signal  m_data13    :  std_logic_vector (10 downto 0); 

      signal  sum_data1    :  std_logic_vector (17 downto 0); 

      signal  sum_data2    :  std_logic_vector (17 downto 0); 

      signal  sum_data3    :  std_logic_vector (17 downto 0); 

      signal  sum_data4    :  std_logic_vector (17 downto 0); 

      signal  sum_data5    :  std_logic_vector (17 downto 0); 

      signal  sum_data6    :  std_logic_vector (17 downto 0); 

      signal  sum_data7    :  std_logic_vector (17 downto 0); 

      signal  sum_data8    :  std_logic_vector (17 downto 0); 

      signal  sum_data9    :  std_logic_vector (17 downto 0); 

      signal  sum_data10    :  std_logic_vector (17 downto 0); 

      signal  sum_data11    :  std_logic_vector (17 downto 0); 

      signal  sum_data12    :  std_logic_vector (17 downto 0); 

      signal  sum_data13    :  std_logic_vector (17 downto 0); 

      signal  semivariogram1    :  std_logic_vector (15 downto 0); 

      signal  semivariogram2    :  std_logic_vector (15 downto 0); 
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      signal  semivariogram3    :  std_logic_vector (15 downto 0); 

     signal  semivariogram4    :  std_logic_vector (15 downto 0); 

     signal  semivariogram5    :  std_logic_vector (15 downto 0); 

     signal  semivariogram6    :  std_logic_vector (15 downto 0); 

     signal  semivariogram7    :  std_logic_vector (15 downto 0); 

     signal  semivariogram8    :  std_logic_vector (15 downto 0); 

     signal  semivariogram9    :  std_logic_vector (15 downto 0); 

     signal  semivariogram10    :  std_logic_vector (15 downto 0); 

     signal  semivariogram11    :  std_logic_vector (15 downto 0); 

     signal  semivariogram12    :  std_logic_vector (15 downto 0); 

     signal  semivariogram13    :  std_logic_vector (15 downto 0); 

     signal  current_data_num    :  std_logic_vector (3 downto 0); 

     signal  data_ready   :  std_logic; 

     signal semivariogram_out   :  std_logic_vector (15 downto 0); 

     signal  buf1_pixel_data1   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data2   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data3   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data4   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data5   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data6   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data7   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data8   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data9   :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data10  :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data11  :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data12  :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data13  :  std_logic_vector(7 downto 0); 

     signal  buf1_pixel_data14  :  std_logic_vector(7 downto 0); 
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    signal  buf1_pixel_data15  :  std_logic_vector(7 downto 0); 

    signal  buf1_pixel_data99  :  std_logic_vector(7 downto 0); 

    signal  buf1_pixel_data100 :  std_logic_vector(7 downto 0);  

    signal    distance_out1         :  std_logic_vector (3 downto 0); 

    signal    distance_out2         :  std_logic_vector (3 downto 0); 

    signal    distance_out3         :  std_logic_vector (3 downto 0); 

    signal    distance_out4         :  std_logic_vector (3 downto 0); 

    signal    distance_out5         :  std_logic_vector (3 downto 0); 

    signal    distance_out6         :  std_logic_vector (3 downto 0); 

    signal    distance_out7         :  std_logic_vector (3 downto 0); 

    signal    distance_out8         :  std_logic_vector (3 downto 0); 

    signal    distance_out9         :  std_logic_vector (3 downto 0); 

    signal    distance_out10        :  std_logic_vector (3 downto 0); 

    signal    distance_out11        :  std_logic_vector (3 downto 0); 

    signal    distance_out12        :  std_logic_vector (3 downto 0); 

    signal    distance_out13        :  std_logic_vector (3 downto 0); 

    signal    distance_out14        :  std_logic_vector (3 downto 0); 

    signal    distance_out15        :  std_logic_vector (3 downto 0); 

    signal    diff_out1         :  std_logic_vector (7 downto 0); 

    signal    diff_out2         :  std_logic_vector (7 downto 0); 

    signal    diff_out3         :  std_logic_vector (7 downto 0); 

    signal    diff_out4         :  std_logic_vector (7 downto 0); 

    signal    diff_out5         :  std_logic_vector (7 downto 0); 

    signal    diff_out6         :  std_logic_vector (7 downto 0); 

    signal    diff_out7         :  std_logic_vector (7 downto 0); 

    signal    diff_out8         :  std_logic_vector (7 downto 0); 

    signal    diff_out9         :  std_logic_vector (7 downto 0); 

    signal    diff_out10        :  std_logic_vector (7 downto 0); 
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    signal    diff_out11        :  std_logic_vector (7 downto 0); 

    signal    diff_out12        :  std_logic_vector (7 downto 0); 

    signal    diff_out13        :  std_logic_vector (7 downto 0); 

    signal    diff_out14        :  std_logic_vector (7 downto 0); 

    signal    diff_out15        :  std_logic_vector (7 downto 0); 

    ); 

  begin 

   

     u_counter : counter 

      port map ( 

    rst                => rst, 

     clk                => clk, 

    start_calc      => START_CALC, 

    buffer_counter2_o => buffer_counter2, 

    data_en   => data_en, 

    data_ready   => data_ready 

      ); 

     u_image_buffer : image_buffer 

      port map ( 

      rst                  => rst , 

      clk                  => clk ,    

      serial_data_in    => SDATA ,     

      serial_clock_in    => SCLK ,     

      data_en      => data_en ,     

      buffer_counter2    => buffer_counter2 ,     

      buffer2_data_out     => buffer2_data ,    

      data_ready     => data_ready ,     

      buf1_pixel_data1_o   => buf1_pixel_data1   ,    
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      buf1_pixel_data2_o   => buf1_pixel_data2   ,    

      buf1_pixel_data3_o   => buf1_pixel_data3   ,    

      buf1_pixel_data4_o   => buf1_pixel_data4   ,    

      buf1_pixel_data5_o   => buf1_pixel_data5   ,    

      buf1_pixel_data6_o   => buf1_pixel_data6   ,    

      buf1_pixel_data7_o   => buf1_pixel_data7   ,    

      buf1_pixel_data8_o   => buf1_pixel_data8   ,    

      buf1_pixel_data9_o   => buf1_pixel_data9   ,    

      buf1_pixel_data10_o  => buf1_pixel_data10  ,    

      buf1_pixel_data11_o  => buf1_pixel_data11  ,    

      buf1_pixel_data12_o  => buf1_pixel_data12  ,    

      buf1_pixel_data13_o  => buf1_pixel_data13  ,    

      buf1_pixel_data14_o  => buf1_pixel_data14  ,    

      buf1_pixel_data15_o  => buf1_pixel_data15  ,    

    ); 

    

     u_distance_top : distance_top 

      port map ( 

      reset_i             => rst, 

      clk_i               => clk, 

      data_en             => data_en, 

   buffer_counter2  => buffer_counter2,   

      distance_out1   => distance_out1  , 

      distance_out2   => distance_out2  , 

      distance_out3   => distance_out3  , 

      distance_out4   => distance_out4  , 

      distance_out5   => distance_out5  , 

      distance_out6   => distance_out6  , 
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      distance_out7   => distance_out7  , 

      distance_out8   => distance_out8  , 

      distance_out9   => distance_out9  , 

      distance_out10  => distance_out10 , 

      distance_out11  => distance_out11 , 

      distance_out12  => distance_out12 , 

      distance_out13  => distance_out13 , 

      distance_out14  => distance_out14 , 

      distance_out15  => distance_out15 , 

      ); 

   

u_difference_top : difference_top 

   port map(  

     reset_i         => rst, 

     clk_i           => clk, 

     data_en         => data_en, 

  buffer2_data_in => buffer2_data, 

      buf1_pixel_data1_i   => buf1_pixel_data1   , 

      buf1_pixel_data2_i   => buf1_pixel_data2  , 

      buf1_pixel_data3_i   => buf1_pixel_data3  , 

      buf1_pixel_data4_i   => buf1_pixel_data4  , 

      buf1_pixel_data5_i   => buf1_pixel_data5  , 

      buf1_pixel_data6_i   => buf1_pixel_data6  , 

      buf1_pixel_data7_i   => buf1_pixel_data7  , 

      buf1_pixel_data8_i   => buf1_pixel_data8  , 

      buf1_pixel_data9_i   => buf1_pixel_data9  , 

      buf1_pixel_data10_i  => buf1_pixel_data10 , 

      buf1_pixel_data11_i  => buf1_pixel_data11 , 
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      buf1_pixel_data12_i  => buf1_pixel_data12 , 

      buf1_pixel_data13_i  => buf1_pixel_data13 , 

      buf1_pixel_data14_i  => buf1_pixel_data14 , 

      buf1_pixel_data15_i  => buf1_pixel_data15 , 

      diff_out1          =>  diff_out1, 

      diff_out2          => diff_out2 , 

      diff_out3          => diff_out3 , 

      diff_out4          => diff_out4 , 

      diff_out5          => diff_out5 , 

      diff_out6          => diff_out6 , 

      diff_out7          => diff_out7 , 

      diff_out8          => diff_out8 , 

      diff_out9          => diff_out9 , 

      diff_out10         => diff_out10, 

      diff_out11         => diff_out11, 

      diff_out12         => diff_out12, 

      diff_out13         => diff_out13, 

      diff_out14         => diff_out14, 

      diff_out15         => diff_out15,); 

       

 

   );    

     u_sorting_top : sorting_top 

      port map ( 

      reset_i             => rst, 

      clk_i               => clk, 

      data_en             => data_en, 

   buffer_counter2     => buffer_counter2, 
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      diff_in1   => diff_out1 , 

      diff_in2   => diff_out2 , 

      diff_in3   => diff_out3 , 

      diff_in4   => diff_out4 , 

      diff_in5   => diff_out5 , 

      diff_in6   => diff_out6 , 

      diff_in7   => diff_out7 , 

      diff_in8   => diff_out8 , 

      diff_in9   => diff_out9 , 

      diff_in10  => diff_out10, 

      diff_in11  => diff_out11, 

      diff_in12  => diff_out12, 

      diff_in13  => diff_out13, 

      diff_in14  => diff_out14, 

      diff_in15  => diff_out15, 

    distance_in1    => distance_out1  , 

    distance_in2    => distance_out2  , 

    distance_in3    => distance_out3  , 

    distance_in4    => distance_out4  , 

    distance_in5    => distance_out5  , 

    distance_in6    => distance_out6  , 

    distance_in7    => distance_out7  , 

    distance_in8    => distance_out8  , 

    distance_in9    => distance_out9  , 

    distance_in10   => distance_out10 , 

    distance_in11   => distance_out11 , 

    distance_in12   => distance_out12 , 

    distance_in13   => distance_out13 , 
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    distance_in14   => distance_out14 , 

    distance_in15   => distance_out15 , 

    m_out1       =>    m_data1         , 

   m_out2       =>    m_data2         , 

   m_out3       =>    m_data3         , 

   m_out4       =>    m_data4         , 

   m_out5       =>    m_data5         , 

   m_out6       =>    m_data6         , 

   m_out7       =>    m_data7         , 

   m_out8       =>    m_data8         , 

   m_out9       =>    m_data9         , 

   m_out10      =>    m_data10        , 

   m_out11      =>    m_data11        , 

   m_out12      =>    m_data12        , 

   m_out13      =>    m_data13        , 

   sum_out1      =>    sum_data1         , 

   sum_out2      =>    sum_data2         , 

   sum_out3      =>    sum_data3         , 

   sum_out4      =>    sum_data4          , 

   sum_out5      =>    sum_data5          , 

   sum_out6      =>    sum_data6          , 

   sum_out7      =>    sum_data7          , 

   sum_out8      =>    sum_data8          , 

   sum_out9      =>    sum_data9          , 

   sum_out10      =>    sum_data10         , 

   sum_out11      =>    sum_data11         , 

   sum_out12      =>    sum_data12         , 

   sum_out13      =>    sum_data13          
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      ); 

      u_calc_variogram : calc_variogram 

      port map ( 

      reset_i             => rst, 

      clk_i               => clk, 

      data_en             => data_en, 

   m_out1     => m_data1  , 

   m_out2     => m_data2  , 

   m_out3     => m_data3  , 

   m_out4     => m_data4  , 

   m_out5     => m_data5  , 

   m_out6     => m_data6  , 

   m_out7     => m_data7  , 

   m_out8     => m_data8  , 

   m_out9     => m_data9  , 

   m_out10    => m_data10 , 

   m_out11    => m_data11 , 

   m_out12    => m_data12 , 

   m_out13    => m_data13 , 

   sum_out1      => sum_data1  , 

   sum_out2      => sum_data2  , 

   sum_out3      => sum_data3  , 

   sum_out4      => sum_data4  , 

   sum_out5      => sum_data5  , 

   sum_out6      => sum_data6  , 

   sum_out7      => sum_data7  , 

   sum_out8      => sum_data8  , 

   sum_out9      => sum_data9  , 
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   sum_out10     => sum_data10 , 

   sum_out11     => sum_data11 , 

   sum_out12     => sum_data12 , 

   sum_out13     => sum_data13 , 

   semivariogram_out1  => semivariogram1  , 

   semivariogram_out2  => semivariogram2  , 

   semivariogram_out3  => semivariogram3  , 

   semivariogram_out4  => semivariogram4  , 

   semivariogram_out5  => semivariogram5  , 

   semivariogram_out6  => semivariogram6  , 

   semivariogram_out7  => semivariogram7  , 

   semivariogram_out8  => semivariogram8  , 

   semivariogram_out9  => semivariogram9  , 

   semivariogram_out10 => semivariogram10 , 

   semivariogram_out11 => semivariogram11 , 

   semivariogram_out12 => semivariogram12 , 

   semivariogram_out13 => semivariogram13  

      );  

    

      u_output_mux : output_mux 

      port map ( 

      rst               => rst,   

      clk               => clk, 

      show_expected     => SHOW_EXP, 

   right_button   => R_BTN, 

   left_button    => L_BTN, 

   semivariogram_1    => semivariogram1  , 

   semivariogram_2    => semivariogram2  , 
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   semivariogram_3    => semivariogram3  , 

   semivariogram_4    => semivariogram4  , 

   semivariogram_5    => semivariogram5  , 

   semivariogram_6    => semivariogram6  , 

   semivariogram_7    => semivariogram7  , 

   semivariogram_8    => semivariogram8  , 

   semivariogram_9    => semivariogram9  , 

   semivariogram_10   => semivariogram10 , 

   semivariogram_11   => semivariogram11 , 

   semivariogram_12   => semivariogram12 , 

   semivariogram_13   => semivariogram13 , 

   semivariogram_out => semivariogram_out, 

   current_data_num => current_data_num 

      ); 

    LED <= current_data_num & semivariogram_out(8 downto 0); 

     

  end rtl; 
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