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Highway user-rail crashes have a significant effect on highway user safety rating. 

However, very little attention is garnished on the subject. An understanding of the factors 

contributing to the levels of injury severity is an important step toward making the 

transportation system safer and more reliable. Numerous studies have applied statistical 

models for crash injury severity. The main goal of this thesis is to explore the impact of 

various factors involved in highway user crashes on Highway-Rail at Grade Crossings 

(HRGCs) and provide appropriate mitigation measures. The logistic regression modeling 

approach (specifically ordered and unordered logit models) was applied to predict the 

three levels of highway user crash severity on HRGC as a function of various factors 

involved. A comparison was also performed between the two logit models. The 

explanatory variables were obtained from the USDOT crossing inventory 



 

vi 

 

and HRGCs crash data. The study revealed that some variables such as type of crash 

circumstance type, pedestrian gender, adverse weather condition, train speed, vehicle 

speed, HRGC surface type, traffic volume and number of traffic lanes were found to be 

statistically significant factors contributing to highway user crashes on HRGC. In 

addition, ordered logit model were identified to be better in estimating the highway user 

crash severity level on HRGCs. 
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Chapter One  

Introduction 

1.1 Background and problem definition 

Fatality resulting from motor vehicle crashes is the leading cause of death in the 

United States. Data from the national Highway Traffic Safety Administration indicates 

that since 1949 more than 30,000 (40,000 average) fatalities result from motor vehicle 

crashes every year. However, the current trend shows this number is declining. For 

example, a 1.9-percent decrease in fatality related crashes was observed in 2011 as 

compared to 2010. Nonetheless, injury related crashes are still large in number. In 2011, 

an estimated 2.22 million people were injured in motor vehicle traffic crashes and 2.24 

million in 2010 (1). Fatal crashes on HRGCs contributed to 261 deaths in 2010 and 251 

in 2011 (2).  

Highway-Rail at Grade Crossings (HRGCs) are conflict points between highway 

users and rail equipment (e.g locomotive, freight car, caboose or service equipment car 

operated by a railway company) which has contributed to a considerable amount of 

crashes in U.S. history. There are approximately 240,000 grade crossings in the United 

States. Over 39 percent (94,400) are private HRGCs. HRGC conflicts include any impact 

between a rail and highway user (both motor vehicles and other users of the crossing) at a 

designated crossing site (3). Though the trend of highway user crashes with rail 

equipment is showing a decrease in numbers, much has yet to be done to improve the 



 

2 

 

safety of HRGCs. 

Unlike highway traffic accidents, a significantly high percentage of vehicle-rail 

crashes lead to fatality and injury to vehicle users. For example, data in the past eight 

years (2005-2012) indicates that 8.55 percent of vehicle-rail crashes were fatal and 26.68 

percent resulted in injury (2). However, in the case of highway traffic accidents, the 

percentage of fatal crashes is no more than two percent. Similarly, a majority of rail- 

pedestrian crashes have lead to fatal and severe injury. As the Federal Railroad 

Administration statistics indicate, in the last eight years, a total of around 968 pedestrian 

crashes were reported on United States department of Transportation (USDOT) public 

HRGC sites, out of which 534 fatalities and 326 injuries, accounting for 55.2 percent and 

33.7 percent respectively. Only 108 (11.1 percent) crashes resulted in no injury (1). 

Despite the fact that highway user-rail crashes had a significant effect on highway 

user safety, the subject still receives little attention and is under-reported. An 

understanding of the factors contributing to the levels of injury severity is an important 

step toward making the transportation system safer and more attractive. Responsible 

jurisdictions may use the results of this research to derive road user safety measures and 

policies. 

One of the most important task in improving road safety is to uncover influential 

factors and then to develop countermeasures. The relationship between the injury severity 

of traffic crashes and factors such as driver and passenger characteristics, pedestrian age 

and gender, vehicle type, environmental conditions, and traffic and geometric conditions 

has attracted much attention. Better understanding of this relationship is necessary and 

very important for improving facility design so that accidents can be reduced. It is 
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important to note that reducing crash frequency and reducing crash-injury severity may 

necessitate different strategic approaches.  

The development of effective countermeasures requires a thorough understanding 

of the factors that affect the likelihood of a crash occurring or, given that a crash has 

occurred, the characteristics that may mitigate or exacerbate the degree of injury 

sustained by crash-involved road users. To gain such an understanding, safety researchers 

have applied a wide variety of methodological techniques over the years.  

Numerous studies have applied statistical models for crash injury severity study. 

Among them, the ordered probit, ordered logit and their variations are the most often 

used models. Savolainen et al. (4) briefly discussed and summarized the wide range of 

methodological tools applied to study the impact various factors on motor vehicle crash-

injury severities. As presented in the paper, ordered logit and probit, multinomial logit, 

binary logit and binary probit and nested logit are some of the frequently used statistical 

methodologies. However, most of these researches dealt with crashes occurring among 

various types of road users. There are only few studies conducted that considers crashes 

involving rail equipment. Khattak (5) recently investigated the impact of different factors 

on crash severity levels of pedestrian crashes on HRGCs in the U.S. 

Logistic regression has been widely applied to model crash severity levels. 

Variables such as elements of geometric design, traffic operational measures, and 

environmental conditions are considered as independent variables to estimate the 

severity. This study also applied the logistic regression modeling approach (specifically 

ordered and unordered logit models) to estimate the three levels of highway user crash 

severity on HRGC as a function of various factors involved. Comparison was performed 
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between the two logit models. The explanatory variables were obtained from the USDOT 

crossing inventory and crash data. 

Before considering methods for ordinal outcomes, it is important to note that 

simply because the values of a variable can be ordered does not imply that the variable 

should be analyzed as ordinal. A variable might be ordered when considered for one 

purpose, but be unordered or ordered differently when used for another purpose. When 

the proper ordering of a variable is ambiguous, the models for nominal variable should be 

considered in addition to the models for ordinal variables (6). 

Modeling ordinal outcome dependent variable using nominal variable will lead to 

loss of efficiency as a result of ignoring information. In the reverse, modeling nominal 

variable using ordinal variable will give biased or sometimes irrational estimates. The 

loss of information in the ordinal data can be outweighed by avoiding the bias. The 

primary advantage of the nominal outcome multinomial logit model is its ability to avoid 

the parallel effect regression assumption unlike the ordered outcome regression model. 

Uncertainty from considering the dependent variable as ordered outcome can also be 

avoided by using the nominal outcome multinomial logit model (MNLM) (6). 

As discussed, crashes occurring at HRGCs had significant effect on highway user 

safety and the importance of conducting research in such areas is evident. However, this 

subject receives less attention and little research efforts have been made in this particular 

area. As such, the objective of this research is to explore the impacts of various factors 

contributing to different levels of crash severity to vehicle users as a result of vehicle-rail 

crashes on HRGCs.  
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1.2 Objectives of the study 

The main goal of this thesis is to explore the impact of various factors involved in 

highway user crashes on HRGCs. The tasks of this thesis can be stated as: 

 To apply statistical approaches and identify major contributing factors of 

highway users crashes on HRGCs. 

 To develop statistical models that relate crash severity levels and significant 

contributing factors involved in highway user crashes on HRGCs. 

 To identify and provide mitigation solutions based on the results of the study. 

The following specific objectives are required to achieve these aims: 

1) A literature review on highway user accident statistics, HRGC accident 

statistics/rate, existing studies regarding crash severity modeling. 

2) Identify appropriate data, select variable to be considered in the analysis and 

perform descriptive statistics.  

3) Produce statistical models that relate crash severity levels and various factors 

involved. 

4) Determine the marginal effect and/or elasticity of variables included in the 

models. 

5) Statistical interpretation of the models developed. 

6) Perform comparison between different models and suggest the best one. 

7) Identify counter measures to mitigate the problem.  

1.3 Thesis outline 

This thesis is divided into six chapters. A brief outline of this thesis is given 

below. Following the introductory chapter, Chapter 2 contains a literature review 

consisting of two parts: HRGC crash statistics and existing studies on crash severity 

modeling. Part one briefly describe the historical and current statistics of highway user 

crashes on HRGCs. Part two presents the review of  various past studies conducted on 

crash severity modeling. 
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Chapter 3 describes the material used and the analysis method applied in this 

research. In the first part of this chapter, data description and descriptive statistics of the 

data is presented. The second part of this chapter describes the various models applied in 

this research. The results obtained from the research are described in Chapter 4. The 

results of analysis using various models, together with model statistics are presented in 

this chapter. 

Chapter 5 presents the discussion of the results obtained in this research. The 

outputs of each model are discussed, together with a discussion of model comparison. 

The implications of this research for HRGC safety improvement are discussed in Chapter 

6.  Finally, Chapter 7 presents the conclusions of this research and gives suggestions for 

future work.
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Chapter Two  

Literature Review 

2.1 Introduction 

This chapter is divided in to three sections: section 2.2 presents a general review 

of highway user crash statistics on HRGCs in the US, section 2.3 presents a review of 

past studies conducted on pedestrian crash severity modeling and in section 2.4 looks at 

past studies conducted on vehicle crash severity modeling will be discussed.  

2.2 HRGC inventory and crash review 

According to the Federal Railroad Administration (FRA), train related accidents 

are generally divided into three major groups as follows: 

1. Train accidents: They are safety-related events involving on-track rail equipment 

(both standing and moving), causing monetary damage to the rail equipment and 

track above a prescribed amount. 

2. Highway-rail grade crossing incidents: These include any impact between a rail 

and highway user (both motor vehicle and other users of the crossing) at a 

designated crossing site, including walkways, sidewalks, etc., associated with the 

crossing. 

3. Other incidents: These include any death, injury or occupational illness of a 

railroad employee that is not the result of a “train accident” or “highway-rail 

incident.” 

Highway-Rail at Grade Crossings (HRGCs) are conflict points between highway 

users and rail equipments which has a considerable amount of crashes in the U.S. history. 
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Currently, 240,000 at-grade highway-rail crossings exist in the United States of which 

over 60 percent are public highway-rail grade crossings.  

Public grade crossings are those under the jurisdiction of a public authority 

whereas private grade crossings are located on privately roadways such as farm or 

industrial area. Figure 1 shows the distribution of public at-grade crossings by warning 

device type. As can be seen from the figure, most public HRGCs are equipped with cross 

bucks, gates and flashing lights. 

 

Figure 1. At-grade HRGC by Warning Device Type, 2012  

Highway-rail grade crossing conflicts include any impact between a rail and 

highway user (both motor vehicles and other users of the crossing) at a designated 

crossing site (3). These conflicts have been decreasing in number over years as depicted 

in Figure 2. 
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Figure 2. All Highway-Rail Incidents at Public, 2000-2012  

Though the trend of highway user crashes with rail equipment is declining, there 

is still much to do to improve the safety of HRGCs and minimize the consequences of a 

crash. Unlike highway traffic accidents, a significantly high percentage of vehicle-rail 

crashes lead to fatality and injury to vehicle occupants. For example, data from 2005-

2012 indicates that 8.55 percent of vehicle-rail crashes were fatal and 26.68 percent were 

resulting injury (2). However, in the case of highway traffic accidents, the percentage of 

fatal crashes is roughly two percent. Similarly, in rail- pedestrian crashes, the majority of 

pedestrian-rail crashes tend to lead to fatal or severe injury. The Federal Railroad 

Administration indicate, in this  eight year period, a total of 968 pedestrian crashes were 

reported on USDOT public HRGC sites, of which, 534 (55.2 percent) resulted in fatality, 

326 (33.7 percent) in injury and 108(11.1 percent) no injury.(1). 

2.3 Pedestrian crash severity modeling 

Several studies exist regarding pedestrian crash severity level modeling, the 

majority of which apply a statistical approach (6). Explanatory variables such as roadway 
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characteristics and driver characteristics are factors considered for modeling crash 

severity. The relation between the dependent variable and the explanatory variables can 

be modeled and tested using disaggregate models such as logistic regression. However, 

there are limited numbers of studies available which investigate the pedestrian crash 

severity models for pedestrian-rail crashes occurring on HRGCs. Some of the studies on 

pedestrian crash severity modeling are reviewed and presented in this section. 

Using the ordered probit model, Khattak (5) investigated the impact of various 

factors on the three severity levels of pedestrian injuries at highway-rail grade crossings 

using an ordered probit modeling (OPM) technique. The three severity levels considered 

were no injury, injury and fatality. Crash and crossing inventory data of the USDOT at 

grade road-rail crossings were used in the study. The results indicate that a majority of 

severe injuries were related to factors such as higher train speed, rail equipment that 

struck pedestrians and regions which are commercially developed. Greater number of 

traffic lanes, HRGCs equipped with standard flash light signals and clear weather were 

related with lower severity levels. Lobb (7) conducted a review on railway pedestrian 

safety research regarding train-pedestrian collisions. The review indicated the need for 

more research to understand factors contributing to railway trespassing accidents.  

Davis (8) developed a statistical model incorporating actual data to relate the 

stuck pedestrian to the speed of the striking vehicle. The model enabled the prediction of 

the probability distribution across categories of pedestrian injury severity for a given 

vehicle impact speed. The injury severity model developed for children (0-14 years) and 

adult groups (15-59 years) shows similar injury severity distributions while that for the 

elderly group (60+ years) differed. It was also reported that older pedestrians have a 
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higher chance of suffering from severe injuries at lower speed than children and adult 

groups. Kwigizile et al. (9) conducted a study to identify factors contributing to the level 

of pedestrian injury severity and assess the consistency of the ordered probit and 

multinomial logit models. The two models were applied to the same data set and a 

comparison was made by calculating the marginal effects and elasticity. As indicated in 

the results, the two models are consistent for the lowest and highest levels of injury 

severity but are inconsistent in describing the impact individual factors have on 

intermediate injury levels. Hence, pedestrian safety measure can be derived and will be 

consistent by avoiding the use of intermediate outcome results. The lowest and highest 

injury levels are no injury or possible injury and fatal injury respectively whereas the 

intermediate levels of injury are non-capacitating and incapacitating injuries. 

Zahabi at al. (10) developed an injury severity model as a function of such factors 

as various environment characteristics, road geometry, weather conditions, type of 

vehicle involved and vehicle movement to determine the impact of these variables have 

on pedestrian-vehicle and cyclist-vehicle crash severity. The effects of the variables were 

estimated using an ordered logit model. As reported in the study, motor vehicle drivers 

are significantly influenced by the geometry of the road while posted speed limit is not a 

significant factor. Collisions that occur at an intersection have a lower chance of injury or 

death for pedestrians as compared to collisions outside of intersections. Rosen and Sander 

(11) developed a logistic regression model to describe adult (15 years or older) pedestrian 

fatality risk as a function of impact speed. Effects of other variables such as pedestrian 

age, gender, height and weight on fatality risk were also investigated. The result of the 

study indicated fatality risk is strongly associated with impact speed. According to the 
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study, the risk at 50 km/h is more than twice as high as the risk at 40 km/h and more than 

five times higher than the risk at 30 km/h, indicating the necessity of lowering impact 

speeds within city areas. 

Sze and Wong (12) developed a binary logistic regression model and explored 

contributing factors to fatality and severe injury. As the study indicated, male pedestrians 

below age 15 in crashes that occurred in overcrowded or obstructed foot paths, in the day 

time and on congested road sections showed lower risk of fatality and severe injury. On 

the other hand, a higher risk of fatality or severe injury was noticed pedestrians above the 

age of 65 who were involved in a crash on the crossing and where within 15m of a 

crosswalk. This was particularly the case in locations where the speed limit was above 50 

km/h, at signalized intersections, or where there were two or more traffic lanes. Zajac and 

Ivan (13) explored the effects of roadway and area type features on the severity of injury 

to pedestrian involved in crashes in a rural part of Connecticut by using an ordered probit 

model. The study indicated that several variables, including the clear width of the 

roadway, vehicle type, driver and pedestrian sobriety, and pedestrians’ age of 65 and 

above, significantly influenced the severity of the pedestrian injury. It is also found that 

roads passing through villages, downtown fringe and low-density residential areas 

generally resulted in a more severe injury to the pedestrian. 

Applying data mining techniques such as classification trees and association rules 

Montella et al. (14) conducted exploratory analysis on 56,014 pedestrian crashes that 

occurred in Italy from 2006-2008 to investigate interdependence and differences among 

crash patterns. As reported in the study, crash severity is a more sensitive response 

variable to crash patterns than the vehicles involved and road alignments. Road type, 
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pedestrian age, lighting conditions, vehicle type and several interactions of these factors 

were reported as the most influential crash patterns.  

By using a mixed logit model for pedestrian-injury severity in pedestrian-vehicle 

crashes, Kim et al. (15) tested the possibility of unobserved heterogeneity of random 

parameters on variables. According to the paper, variables such as darkness in locations 

without street lights, vehicle type, freeway versus highway, and speed with driver 

sobriety increased the probability of a fatal pedestrian injury by 400%, 370%, 330% and 

360% respectively.  

Ulfarsson et al. (16) used a multinomial logit model to assign a fault in 

pedestrian-motor vehicle crashes. As indicated in the report, pedestrians were found at 

fault 59% of the crashes, drivers 32% and the remaining 9% both were at fault. Driver 

turning or merging, vehicle speed, driver blood-alchol level, driver backing up and 

number of pedestrians in the area were the largest factors associated with driver being 

found solely at fault. On the other hand, pedestrians crossing the street, pedestrian 

dart/dash, pedestrians 12 years or younger, freeway, and pedestrian intoxication level 

were the largest factors associated in pedestrian being found solely at fault. Speed, driver 

backing up, driver turning/merging, both driver and pedestrian intoxication level and 

pedestrian walking along road were largest effects associated with both the driver and 

pedestrian being found jointly at fault. 

By applying a multinomial logit model, Tay (17) studied the impact of different 

factors in determining the severity of pedestrian crashes in South Korea. According to the 

paper, male drivers are more likely to be involved in severe and fatal crashes than female 

drivers. Drivers with age older than 65 years are less likely to be involved in either severe 
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or fatal crashes as compared to middle age drivers. Intoxicated drivers were reported with 

a higher chance of being involved in a fatal crash.  

The objective of this study is to develop a pedestrian-rail crash severity model and 

explore the impacts of various factors involved in the crash. A nominal response 

multinomial logit model with three levels of severity (fatal injury, serious injury and no 

injury) were used to model the impact of various factors including, but not limited to, 

pedestrian characteristics, environmental factors, highway-rail crossing characteristics, 

highway characteristics and land use type. The SAS PROC LOGISTICS procedure was 

used to develop the model. 

2.4 Vehicle crash severity modeling 

Several studies have been conducted to model crash severity and investigate the 

impacts of various factors involved in the crashes. As briefly discussed and summarized 

by Savolainen et al. (4), a wide range of methodological tools have been applied to study 

the impact of various factors on motor vehicle crash-injury severities. As presented in the 

paper, ordered logit and probit, multinomial logit, binary logit and binary probit and 

nested logit are some of most frequently used statistical methodologies. 

Mercier et al. (18) conducted a study and tested the hypothesis that older drivers 

and passengers would suffer more severe injuries than younger adults in presence of 

broadside and angle collisions of automobiles on rural highways. Logistic modeling, 

Hierarchical Regression Analysis and Principal Components Regression, were analysis 

tools applied. Injury severity levels, fatal, major and minor were considered as dependent 

categorical variable. Some of the independent variables considered were occupant age, 

occupant position relative to point of impact and protection. According to the study, age 
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is reported as a significant predictor of injury severity and is slightly higher for females 

than males. It was also identified that use of lap and shoulder restrains reduces injury 

severity and is less certain for females. For females only, air bags deployed were reported 

as significant injury severity predictors. 

By using sequential binary logistic regression, Dissanayake and Lu (19) modeled 

crash severity for single-vehicle fixed object crashes involving young drivers. The five 

crash severity categories considered were no injury, possible injury, non capacitating 

injury, incapacitating injury and fatal. As reported in the study, factors such as alcohol or 

drug influence, ejection in the crash, point of impact, rural crash locations, existence of 

curve or grade at the crash location and speed of vehicle significantly increased the 

probability of more severe crashes. On the other hand, restraint device usage and drivers 

being of male gender were reported to reduce the chance of high severity crashes. It was 

also indicated that factors such as weather condition, residence location and physical 

condition have no significant relation in the model. 

Duncan et al. (20) conducted a study to investigate car occupant injury severity in 

two-vehicle passenger car-truck rear-end collisions by using an ordered probit model. As 

reported in the study, factors such as darkness, high speed differentials, high speed limits, 

grades, being in a car struck to the rear, driving while drunk and being female increased 

the passenger vehicle occupant injury severity. On the other hand, factors such as snowy 

or icy roads, being in a child restraint, congested roads decreased the severity level. It 

was also indicated that interaction effects of cars being struck to the rear with high speed 

differentials and car rollovers were significant.  
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Donnell and Mason (21) conducted a study and developed median-related crash 

severity models. Three crash severity classes, fatal, injury and property damage only 

(PDO) were considered as independent variable outcome. Both ordinal and nominal 

response logistic regression models were developed in the study. As indicated in the 

report, ordinal response model gave more attractive results for cross-median crashes. On 

the other hand, nominal response model gave better result for median-barrier crashes. 

Furthermore, variables such as highway surface conditions, use of drugs or alcohol, 

presence of an interchange entrance ramp, horizontal alignment, crash type and average 

daily traffic volume were reported to have effect on crash severity. 

By using paired comparison analysis and ordered probit model, Renski at al. (22) 

conducted a study to test the hypothesis that speed a limit increase will result in an 

increase in driving speed and produce higher crash severity. The study was focused on 

single-vehicle crashes on interstate roadways in North Carolina. As reported in the study, 

increasing speed limits from 55 to 60 mph and from 55 to 65 mph increased the 

probability of sustaining minor and non-capacitating injuries. However, the study 

indicated that increasing speed limits from 65 to 70 mph did not showed significant effect 

on crash severity.  

Huang et al. (23) investigated effects of road diets in which four-lane undivided 

roads were converted into three lanes. A road diet, is also called a lane reduction or road 

rechannelization, is a technique in transportation planning whereby a road is reduced in 

number of travel lanes and/or effective width in order to achieve systemic improvement.   

Twelve road diets and 25 comparison sites were considered in the study. A “yoked 

comparison” study was applied in a “before” and “after” analysis and it was reported that 
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road-diet crashes occurred during the “after” period was observed to be lower by 6 

percent than that of the comparison sites. Khattak (24) conducted a study that 

investigated the effect of vehicle technologies on crash injury severity. Three separate 

ordered probit models were developed for the three drivers, Driver 1 (leading), Driver 2 

(striking) and Driver 3 (striking in a three-vehicle crash). As indicated in the study, in a 

two-vehicle rear-end collision the leading driver is more likely to be injured whereas in a 

three-vehicle collision the driver in the middle is more likely to be injured. It was also 

stated that being in a newer vehicle protects the driver in rear-end collisions. Moreover, 

the study showed the benefit of technological improvements on driver’s safety. 

Mercier at al. (25) performed a study and tested the hypothesis that older drivers 

and passengers would suffer more severe injuries than younger adults in presence of 

head-on collisions of automobiles on rural highways. Logistic modeling, Hierarchical 

Regression Analysis and Principal Components Regression were applied. Injury severity 

levels fatal, major and minor were considered as dependent categorical variable. The 

independent variables considered included, among others, occupant age, occupant 

position relative to point of impact and level of protection. As stated in the study, age was 

an important factor in predicting injury severity for both men and women. The study 

concluded that older drivers and passengers experienced more severity injury than any of 

other age groups. Use of lap and shoulder devices was reported to be more important for 

men than women while the reverse is true for deployed air bags. 

Chira-Chavala et al. (26) investigated the characteristics and probable causes of 

light rail transit system accidents and developed a crash severity model for the Santa 

Clara County Transit Agency. A binary logit model was applied to predict the probability 
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of injury accident as a function of explanatory variables such as speeds before collision of 

light rail vehicles and motor vehicles, movement of the motor vehicle before collision, 

etc. As reported in the study, left-turn vehicle movements, higher speeds of the motor 

vehicle or the LRV and accident occurring during peak hours increased the probability of 

injury accidents.  

Chen and Jovanis (27) developed and tested the variable-selection procedure that 

avoids problems occurring due to the presence of large number of potential factors, 

complex nature of crash etiology and outcomes and large number of categories in crash-

severity modeling. The procedure consisted of the chi-squared automated interaction 

detection (CHAID) method to collapse categories, Person chi-square test to assess 

relationship between dependent and independent variables, and log-linear modeling 

techniques. As indicated in the study, the log-linear model showed that late-night or 

early-morning driving increased the risk of severe injury crashes for bus drivers. It was 

also stated that bus accidents involving large truck or tractor-trailers increased the risk of 

severe injury crashes. 

By using ordered probit model, Khattak at al. (28), explored factors contributing 

to more severe older driver (age of 65 and above) crash injury severity. According to the 

study, older male drivers are more prone to injury as compared to older female drives. It 

was stated that older drivers under the influence of alcohol experienced more severe 

injuries. It was also indicated that older driver injuries in farm vehicles are more severe as 

compared to other vehicle types. Xie et al. (29) conducted a study that demonstrated 

application of Bayesian ordered probit model in drivers’ injury severity analysis. In the 

Bayesian probit model, prior distributions such means and variances were included 
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reflecting the analysts’ prior knowledge about the data. Comparison was made between 

Bayesian ordered probit and conventional ordered probit models. As reported in the 

study, for large data size, model fitting results obtained from the Bayesian and the 

conventional probit model have no significant differences. It was also reported that for 

small sample size, Bayesian probit model produced parameter estimates with better 

prediction performance than the conventional ordered probit model.  

This purpose of this study is to analyze severity of vehicle crashes at HRGCs and 

to investigate the impact of various factors involved in the crashes. A nominal response 

multinomial logit model with three levels of severity was used to model the impact of 

various factors that includes vehicle driver characteristics, environmental factors, rail-

road crossing characteristics, highway characteristics, land use type and more. The three 

levels of responses considered were fatality, injury and no injury. The SAS PROC 

LOGISTICS procedure was used to develop the model. 
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Chapter Three  

Methodology 

3.1 Highway-Rail At-Grade Crossing incident statistics 

The Federal Rail Road maintains the Highway-Rail Grade Crossing (HRGC) 

Incident Report (GXIR) Database that contains data describing impacts between railway 

equipment and highway users. All highway-rail grade crossing incidents are submitted by 

the railroads. The GXIR data are also available in the annual FRA-RRR publication, 

Railroad Safety Statistics Annual Report, and online at the FRA’s Web Site. Below are 

some of the HRGC incident statistics from 2005 to 2012 as obtained from the FRA data 

base.  

3.1.1 Highway user type 

As can be seen in Figure 3, between 2005 and 2012, automobiles were the major 

highway user involved in public crossing incidents, sharing almost one-third of the total 

public crossing incidents. Truck-trailers in combination with pick-up truck were the 

second largest highway user groups involved in crashes representing 29 percent of the 

total incidents.  In terms of fatalities, automobiles contribute nearly 38 percent and trucks 

in combination share nearly 25 percent of the total. In the case of pedestrians, despite 

representing less than 6 percent of the total incidents they contributed close to 25% of 

total fatalities (2). 
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Figure 3. Number of Incidents, Fatalities and Injuries by Highway User Types, 2005-

2012 (2) 

3.1.2 Warning device type 

As seen in Figure 4, highest number of incidents as well as fatalities occurred at 

public crossings equipped with gates and crossings with cross bucks and flashing lights 

were the second and third highest respectively (2). 
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Figure 4. Number of Incidents, Fatalities and Injuries by Warning Device, 2005-2012 (2) 

3.1.3 Weather type 

HRGC incidents occur in good as well as bad weather conditions. As can be seen 

from Figure 5, the highest number of incidents occurred under clear weather and cloudy 

conditions. Cloudy weather condition is most common among the bad weather conditions 

that crossing incidents are dominantly occurring (2). 

 

Figure 5. Number of Incidents, Fatalities and Injuries by Weather Type, 2005-2012 (2) 
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3.1.4 Train speed 

Grade crossing crashes occur at different train speed levels ranging from slow to 

high. As shown in Figure 6, the highest number of incidents on public crossings involved 

trains traveling between 40 and 49 mph and those with less than 9 mph (2). 

 

Figure 6. Number of Incidents, Fatalities and Injuries by Train Speed, 2005-2012 (2) 

3.1.5 Vehicle speed 

As shown in Figure 7, between 2005 and 2012, most crossing incidents involved 

slow speed (less than 9 mph) vehicles (2). 

3% 

19% 

13% 

16% 17% 

19% 

8% 
5% 

Incident by train speed 

Unknown 

<9 mph 

10.0-20 mph 

20-29 mph 

30-39 mph 

40-49 mph 

50-59 mph 

>=60 mph 



 

24 

 

 

Figure 7. Number of Incidents, Fatalities and Injuries by Vehicle Speed, 2005-2012 (2) 

3.2 Data assembly  

Vehicle-rail and pedestrian-rail crash data on USDOT public crossing sites from 

2005 to 2012 were used in this study. In order to acquire more explanatory variables, the 

USDOT highway-rail crossing inventory was also included. The crash data and the 

crossing inventory data were merged based on the USDOT identification number. The 

SAS PROC SQL was used to merge and clean the data. After the data merging and 

cleaning process, a total of 7,391 records were obtained and used in the modeling stage. 

The data used to create the data set were obtained from the Federal Railroad 

Administration (2).  

Table 1 presents the descriptive statistics of some of the variables from such 

HRGC crash and inventory data. As shown, the distribution of vehicle-rail crash severity 

is 8.55%, 26.86% and 64.77% for fatal, injury and no injury respectively. This 

distribution of crash severity indicates around 35.41% of vehicle crashes at HRGC sites 

lead to fatality or injury, in which the figures are much higher as compared to those of 
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multi-vehicle crashes in highway traffic. The majority (78.61%) of vehicle-rail crashes at 

HRGC sites occurred when the train equipment struck the vehicle while the remaining 

(21.39%) were when vehicle struck the rail equipment. It is shown in the table that a 

majority (53.02%) of vehicles involved in the vehicle-rail crashes are cars. It is also 

shown that the majority (71.02%) of vehicle crashes had occurred in clear weather 

conditions. 

Table 1. Descriptive Statistics of Variables from HRGC Crash and Inventory Data 

(Pedestrian-rail Crash) 

Variable Category Frequency Percent 

Crash Characteristics 

INJURY 

(crash severity level) 

3=Fatal crashes 631 8.55 

2=Injury crashes 1969 26.68 

1=No Injury crashes 4780 64.77 

TYPACC 

(Type of accident) 

1=Train struck vehicle 5810 78.61 

2=Vehicle struck train 1581 21.39 

Vehicle characteristics 

TYPVEH 

(Type of vehicle) 

  

  

  

  

  

1=Auto 3919 53.02 

2=Truck 540 7.31 

3=Truck trailer 1296 17.53 

4=Pickup truck 1315 17.79 

5=Van 306 4.14 

6=Bus 10 0.14 

7=School Bus 5 0.07 

VEHSPD 

(Vehicle speed) 

 

1=<25mph 6292 85.13 

2=25-45mph 827 11.19 

3=>45mph 272 3.68 

(AADT) 

(Average annual daily traffic) 

 

 

1=<10,000 6505 88.0 

2=10-20,000 599 8.1 

3=20,000-30,000 177 2.39 

4=>30,000 110 1.49 

Train Characteristics 

TRNSPD 

(Train speed) 

 

1=<25mph 2984 40.37 

2=25-45mph 2541 34.38 

3=>45mph 1866 25.25 
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Table 1. (Cont’d) Descriptive Statistics of Variables from HRGC Crash and Inventory 

Data (Pedestrian-rail Crash) 

Variable Category Frequency Percent 

Vehicle Driver Characteristics 

DRVAGE 

 

                             

1=<25 Years 1127 18.41 

2=25-60 Years 3965 64.77 

3=>60 Years 1030 16.82 

DRIVGEN 

(Vehicle driver gender) 

1=Male 5605 75.84 

2=Female 1786 24.16 

Highway Characteristics 

HWYPVED 

(Highway surface type) 

1=Paved 6021 81.46 

2=Unpaved 1370 18.54 

HWYSGNL 

(Highway signal) 

1=Not present 7192 97.31 

2=Present 199 2.69 

TRAFICLN 

(No. of traffic lane) 

 

1=1 Lane 644 8.71 

2=2 Lanes 5540 74.96 

3=3 Lanes 87 1.18 

4=4 Lanes 869 11.76 

5=≥5 Lanes 251 3.4 

Environmental Characteristics 

DEVELTYP 

(Development area type)  

  

  

1=Open space 2396 32.42 

2=Residential 1590 21.51 

3=Commercial 2074 28.06 

4=Industrial 1221 16.52 

5=Institutional 110 1.49 

WEATHER 

(Weather condition)  

  

  

  

1=Clear 5249 71.02 

2=Cloudy 1401 18.96 

3=Rain 445 6.02 

4=Fog 106 1.43 

5=Sleet 15 0.02 

6=Snow 165 2.37 

TEMP 

(Temperature) 

 

1=<50
o
F 2010 27.61 

2=50-80
o
F 3611 49.12 

3=>80
o
F 1711 23.27 

NEAREST  

(Intersecting IN or Near city) 

1=In city 4226 57.18 

2=Near city 3165 42.82 
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Table 1. (Cont’d) Descriptive Statistics of Variables from HRGC Crash and Inventory 

Data (Pedestrian-rail Crash) 

Variable Category Frequency Percent 

Crossing characteristics 

XSURFACE 

(Crossing surface type) 

  

  

  

  

  

  

  

1=Timber 2046 27.68 

2=Asphalt 2999 40.58 

3=Asphalt & Flange 441 5.97 

4=Concrete 920 12.45 

5=Concrete & Rubber 266 3.6 

6=Rubber 413 5.59 

7=Metal 3 0.04 

8=Unconsolidated 256 3.46 

9=Other 47 0.64 

XBUCK  

(Cross bucks) 

1=Not Present 2342 31.69 

2=Present 5049 68.31 

FLASH 

(Flashlight) 

1=Not present 3543 48.01 

2=Present 3836 51.99 

GATES 

(Gates) 

1=Not Present 4661 63.06 

2=Present 2730 36.94 

 

The HRGC sites where crashes occur are located in different development areas. 

As one can see from Table 1, 32.42% of the crossings are located in open space areas, 

21.51% in residential areas, and 28.06% in commercial areas. The rest are found in 

industrial and institutional development areas. The majority (74.96%) of the HRGCs 

where accidents occur cross two lane highways. Descriptive statistics of other variables 

are also shown in the table. As many variables as possible are considered in this study. 

Some of the continuous variables are converted in to categorical variable and the MNLM 

is applied to estimate the model parameters. 

As shown in Table 2, the distribution of pedestrian crash severity is 53.37%, 

30.91% and 15.72% for fatal, severe injury and no injury respectively. This distribution 

of severity indicates around 85% of crashes at HRGC sites lead to fatality or injury. The 

majority of pedestrian crashes (95%) at HRGC sites occur when the train equipment 
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struck the pedestrian rather than when the pedestrian struck the rail equipment (5%).  It is 

shown in the table that there are more male pedestrians (64.34%) than female (19.55%) in 

the crash data. Nearly 75% of the pedestrian crashes occurred in a clear weather 

condition as compared to others. 

Table 2. Descriptive Statistics of Variables from HRGC Crash and Inventory Data 

(Vehicle -Rail Crash) 

Variable Category Frequency Percentage 

Crash Characteristics 

SEVERITY 

(crash severity level) 
3=Fatal crashes 404 53.37 

2=Injury crashes 234 30.91 

1=No Injury crashes 119 15.72 

TYPACC 

(Type of accident) 

 

1=Rail equipment struck pedestrian 719 94.98 

2=Pedestrian struck rail equipment 38 5.02 

Train Characteristics 

TRNSPD 

( Train speed) 

 

1=Less than 25 mph 184 24.31 

2=Between 25 and 45 mph 297 39.23 

3=Between 45 and 60 mph 164 21.66 

4=Greater than 60 mph 112 14.80 

Pedestrian Characteristics 

PEDESTRNGEN  

(Pedestrian gender) 
1=Male 487 64.34 

2=Female 148 19.55 

1=Missing 122 16.11 

Crossing Characteristics 

XANGLE 

(Smallest crossing angle) 

1=0-29 degree 

 
25 3.30 

2=30-59 degree 

 

 

86 11.36 

3=60-90 degree 

 

 

646 85.34 

STDFLASH 

(Standard flash light) 
1=Not present 157 20.74 

2=Present 600 79.26 

GATES 

(Gates) 
1=Not Present 209 27.61 

2=Present 548 72.38 

XBUCK 

(Crossbucks) 
1=Not present 518 68.43 

2=Present 239 31.58 
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Table 2. (Cont’d) Descriptive Statistics of Variables from HRGC Crash and Inventory 

Data (Vehicle-Rail Crash) 

Variable Category Frequency Percentage 

XSURFACE 

(crossing surface type) 

 

 

 

 

 

 

1=Timber 267 35.27 

2=Asphalt 323 42.67 

3=Asphalt and flange 25 3.30 

4=Concrete 42 5.55 

5=Concrete and rubber 1 0.13 

6=Rubber 89 11.76 

7= Metal 0 0 

8=Unconsolidated 5 0.66 

9=Others 5 0.66 

ADVWARN 

(RR advanced warning 

signs) 

 

1=Not present  526 69.48 

2=Present 231 30.52 

Highway Characteristics 

TRUCKLN 

(Truck pullout lanes) 

 

1=Not Present  38 5.02 

2=Present 719 94.98 

HIWYSGNL 

(Traffic signal) 
1=Not present 735 97.09 

2=Present 

resent 
22 2.91 

TRAFICLAN 

(Number of traffic lane) 

 

1=1 lane 23 3.04 

2=2 lanes 477 63.01 

3=3 lanes 28 3.70 

4=4 lanes 183 24.17 

5=≥5 lanes 46 6.08 

HWYPVED 

(Highway pavement type) 
1=Unpaved 730 96.43 

2=Paved 27 3.57 

Environmental Characteristics 

DEVELTYP 

(Type of development) 

 

 

1=Open space 61 8.06 

2=Residential 162 21.40 

3=Commercial 405 53.50 

4=Industrial 114 15.06 

5=Institutional 15 1.98 

NEAREST 

(Intersecting In or Near City) 
0=In city 656 86.66 

1=Near city 101 13.34 

TEMP 

(Temperature) 
1=<50 degree Fahrenheit 191 25.30 

2=50-80 degree Fahrenheit  466 61.72 

3=>80 degree Fahrenheit 98 12.98 

WEATHER 

(Weather condition)  

 

 

 

 

1=Clear 566 74.77 

2=Cloudy 143 18.89 

3=Rain 32 4.23 

4=Fog 8 1.06 

5=Snow 8 1.06 
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The HRGC sites where crashes occurred are located in different development 

areas. As the data indicates 53.5% of the crossings are located in commercial areas and 

21.4% in residential areas. The rest are found in open space, industrial and institutional 

development areas. The majority of the HRGCs where accidents occurred cross two lane 

highways (about 63%). Descriptive statistics of the other variables, mainly of HRGC 

characteristics, are also shown in the table. These include the number of highway traffic 

lanes, highway signal, crossing surface types, presence of flash lights, advanced warning 

signs, gates, crossbucks, etc. As many variables as possible are considered in this study.  

3.3 Mathematical model formulation 

In general, crash severity level is ordinal data and as a result of this most 

researchers applied ordered logistic regression models in their study. Before considering 

methods for ordinal outcomes, it is important to note that simply because the values of a 

variable can be ordered does not imply that the variable should be analyzed as ordinal. A 

variable might be ordered when considered for one purpose, but be unordered or ordered 

differently when used for another purpose. When the proper ordering of a variable is 

ambiguous, the models for nominal variable should be considered in addition to the 

models for ordinal variables (6). 

Modeling ordinal outcome dependent variable using nominal variable will lead to 

loss of efficiency as a result of ignoring information. In the reverse, modeling nominal 

variable using ordinal variable will give biased or sometimes irrational estimates. The 

loss of information in the ordinal data can be outweighed by avoiding the bias. The 

primary advantage of nominal outcome multinomial logit model is its ability to avoid the 

parallel effect regression assumption unlike the ordered outcome regression model. 
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Uncertainty to as to what to make the dependent variable to consider as ordered outcome 

can also be avoided by using the nominal outcome multinomial logit model (6). The 

mathematical formulation of the multinomial ordered and unordered logit models are 

briefly described in the following section. 

3.3.1 Multinomial Logit Model (MNLM) 

The MNLM formulation is well discussed by Long (6). MNLM can be modeled 

using various approaches such as probability model, odds ratio model and discrete choice 

model. Regardless of which approach is used to derive the model, the equation for the 

probability of an outcome is the same. The probability model is described in the 

following paragraphs. 

If y is the response variable with J nominal outcomes, then the assumption of the 

multinomial logit model is that category 1 through J are not ordered. Also, let Pr(y=m|x) 

be the probability of observing outcome m given the independent variable x. The model 

for y is constructed as follows: 

 Assume that Pr(y=m|x) is a linear combination xβm. The vector βm = (β0m…. βkm….. 

βKm) contains the intercept β0m and coefficients of βkm for the effects of xk   on 

outcome m.  

 To ensure non negativity for the probabilities, the exponential of xβm is taken. 

 For the probabilities to sum to 1, divide exp (xβm)   by            
 
   . 

            
          

           
 
   

                           (1) 

 

Though the probability sum gives 1, the set of parameters that generates the 

probabilities is not identified since more than one set of parameters can generate the same 

probabilities. In order to identify the set of parameters that generate the probabilities, a 



 

32 

 

constant must be imposed. By imposing one of the parameter estimates equals 0 (assume 

β1=0), the model can be written as follows: 

            
 

             
 
   

                                                                                        (2)                                               

            
          

             
 
    

                                                                             (3) 

 

The parameter estimates are determined using maximum likelihood estimation. If 

the observations are independent, the likelihood equation is given by: 

                  
 
                                                                                                 (4) 

 

where Pi is the probability of observing whether values of y was actually observed for the 

i
th

 observation. Combining the equation 1 with this equation in place of Pi the likelihood 

equation can be written as: 

                
          

           
 
   

    
 
                                                                    (5) 

 

where       
is the product over all cases for which yi is equal to m. Taking logs, we may 

obtain the log likelihood equation which can be maximized with numerical methods to 

estimate the β’s. 

The overall model fitness can be compared by using the model’s log-likelihood at 

convergence with the log-likelihood of a naive model ( model with all coefficients set to 

zero which is equivalent to assigning equal probability for all outcomes). It is also 

possible to compare a model with only alternative constants (assigning probability to 

outcomes equal to the observed share of the outcomes in the dataset): 

     
     

     
                          (6) 

where LL (β) represents the log-likelihood at model convergence, LL (0) represents the 

log-likelihood of a naïve model (without information). The ρ
2 

goes from 0 (for no 
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improvement in the log-likelihood) to 1 for a perfect fit. A value for ρ
2
 larger than 0.1 

indicates meaningful improvement (6). 

The MNLM can be interpreted by applying various kinds of approaches. One 

method is to determine the predicted probability. Probabilities can be computed at a 

variety of values and can be presented in different ways such as mean, minimum, and 

maximum. 

The other method is to compute the marginal effect or partial change which can 

be determined by taking derivative of Equation 1 with respect to xk as described in the 

following equation. Marginal effect is the slope of the curve relating xk to Pr(y=m|x), 

holding other variables constant. Variables are held at their means, possibly with dummy 

variables at 0 or 1 (6). The value of the marginal effect depends on the value of all 

independent variables and on the coefficients for each outcome.  

           

   
                              

    ]                         (7) 

Discrete change in probabilities is also an effective method of interpretation that 

can be applied for continuous and dummy independent variables. The change in the 

predicted probability when a variable xk changes from the starting value (xs) to the ending 

value (xϵ) can be computed as follows: 

 
           

   
                                                                      (8) 

 Odds ratio can also be used in the interpretation of the developed model. The 

odds ratio is defined as the ratio of the odds of those with the risk factor to the odds for 

those without the risk factor. Generally, the odds ratio can be computed by 

exponentiating the difference of the logits between any two population profiles (30). 



 

34 

 

The following three equations can be used to predict the probabilities of the three 

severity crashes (Fatality, Injury and No injury). 

 

       
             

                               
                      (9) 

        
             

                               
                    (10) 

                                                 (11) 

 

3.3.2 Ordered Logit Model (OLM) 

When the absolute distance between categories of a variable is unknown, yet there 

is a clear ordering of the categories, the variable is considered ordinal. The ordered 

response logistic regression formulation is presented as discussed by Long (6). An 

ordinal logistic regression model is derived from a measurement model in which a latent 

variable y* is mapped to an observed variable y. These variables are related according to 

the following equation: 

                    
                                       (12) 

The τ’s are cutpoints on the measurement scale that are used to distinguish the 

ordinal categories. In the case of crash severity models, the ordinal response categories 

are fatality, injury, and no injury crashes. As shown in Figure 8, Category 1 (fatal) is 

defined by the open-ended interval on the lower end of the measurement scale; Category 

3 (no injury) is defined as the portion of the scale above cut point    and Category 2 

(injury) is the portion between the two cutpoints. 
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               y*  

         

       1 (Fatal) 2(Injury) 3(No injury)    y 

Figure 8. Ordinal Response Categories  

The observed y is related to y* according to the measurement model: 

    

                          
                               

                     
                                             

                    
                                   

                                        (13) 

The regression equation used for an ordinal response is   
  = xiβ+ϵi. Where xi is a 

row vector (with 1 in the first column for the intercept), β is a column vector of structural 

coefficients (with the first element being the intercept βo), and ϵi is an error term.  

Maximum likelihood (ML) estimation can be used to estimate the regression of y* 

on x. In order to use ML, assumption of a specific type of error (ϵ) distribution is 

required. For the ordered logit model, the error term has a logistic distribution with mean 

zero and a variance of π
2
/3. The probability density function (pdf) of the logistic 

distribution is given as shown in Equation (14). 

     
       

           
                       (14) 

And the cumulative distribution function (cdf) of the logistic distribution is given 

as shown in equation (15): 

      
       

         
                                            (15) 

After specification of the error term, the probabilities of observing values of y 

given x can be computed. The probability of any observed outcome y = m given x is the 

difference between the cdf evaluated at these values: 
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                                                         (16) 

 

To estimate the model, let β be the vector with parameters from the structural 

model, with the intercept βo in the first row and let τ be the vector containing the 

threshold parameters. Either βo or τ1 is constrained to 0 to identify the model. Program 

such as SAS’s LOGISTIC procedure assumes βo and estimates τ1.  From Equation 5, the 

following can be obtained: 

                                                        (17) 

The probability of observing whatever value of y was actually observed for the i
th

 

observation is: 

   

 
 
 
 
 

 
 
 
 
                             

 
 
 

                           
 
 
 

                             

                    (18) 

 

If the observations are independent, the likelihood equation over the population of 

N observations is: 

              
 
                       (19) 

Combining equations 16, 17, and 18: 

                       
 
                          

 
                

                              (20) 

 

Here,       
indicates multiplying over all cases where y is observed to equal j.  Taking 

logs, the loglikelihood can be written as follows: 
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                  (21) 

Model estimation involves maximizing Equation 10 using numerical methods to 

estimate the τ’s and the β’s. 

A measure of the model goodness of fit (ρ
2
) can be calculated as: 

 

      
    

    
                        (22) 

where      is the log likelihood at convergence and      is the restricted log likelihood. 

The ρ
2
 measure is bound by zero and one. Values of ρ

2 
closer to one indicate better fit of 

the model.  

Similarly, the MNLM can be interpreted by applying various kinds of approaches. 

One method is to determine the predicted probability. Probabilities can be computed at a 

variety of values and can be presented in different ways such as mean, minimum, and 

maximum. 

Interpretation of ordinal response variables can be performed according to odds 

ratios. In this paper, the proportional odds model is used to interpret odds ratios for 

cumulative probabilities. The cumulative probability that the outcome is less than or 

equal to m is: 

                      
                                        (23) 

The odds that an outcome is m or less versus greater than m given a set of 

explanatory variables x are: 

 

      
          

           
 

          

          
                                                      (24) 

Taking the log result in the logit equation: 

                                  (25) 
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The marginal effects of variables x on the underlying crash severity propensity 

can be evaluated by taking the partial derivative of equation 25 with respect to xk, 

resulting in: 

           

   
 

         

   
 

           

   
                    (26) 

or 

           

   
                                            (27) 

The marginal effect is the slope of the curve relating xk to Pr(y = m|x), holding all 

other variables constant and is usually computed at the mean values of all variables. For a 

dummy independent variable, the derivative while treating it as a continuous variable 

provides an approximation. 

Similar to the MNLM, the change in the predicted probability when a variable xk 

changes from the starting value (xs) to the ending value (xϵ) can be computed as follows: 

           

   
                                                                     (28) 

The following three equations can be used to predict the probabilities of the three 

severity crashes: 

       
             

                 
                                                                   (29) 

                
             

                 
                    (30) 

                                                 (31) 
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Chapter Four  

Results and Discussion 

4.1 Introduction 

One of the most important tasks in improving road safety is to uncover influential 

factors and then to develop countermeasures to improve road safety. The relationship 

between the injury severity of traffic crashes and factors such as driver and passenger 

characteristics, pedestrian age and gender, vehicle type, environmental conditions, and 

traffic and geometric conditions has attracted much attention. Better understanding of this 

relationship is necessary and very important for improving facility design so that 

accidents can be reduced. It is important to note that reducing crash frequency and 

reducing crash-injury severity may necessitate different strategic approaches. The Federal 

Railroad Administration has comprehensive data available for HRGC incidents, injuries 

and fatalities. However, the impact of various contributing factors on HRGC crash 

severity levels are not explored adequately. 

The development of effective countermeasures requires a thorough understanding 

of the factors that affect the likelihood of a crash occurring or, given that a crash has 

occurred, the characteristics that may mitigate or exacerbate the degree of injury 

sustained by crash-involved road users. To gain such an understanding, safety researchers 

have applied a wide variety of methodological techniques over the years. 
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Logistic regression has been widely applied to model crash severity levels. This 

study also applied the logistic regression modeling approach (specifically ordered and 

multinomial logit models) to estimate the three levels of highway user crash severity on 

HRGC as a function of various factors involved. The modeling was performed separately 

for pedestrians and vehicle user crashes. Variables such as elements of geometric design, 

traffic operational measures, and environmental conditions were considered as 

explanatory variables in predicting crash severity levels. The explanatory variables are 

obtained by merging the USDOT crossing inventory and the HRGC crash data. In both of 

the pedestrian and vehicle user crash models, data from 2005 to 2012 was considered. In 

addition, comparison was performed between the ordered and multinomial logistic 

regression modeling approaches. 

Many variables obtained from the crossing inventory and crash data were 

considered in developing the logistic regression models. During the final preferred model 

development process, some of the variables were found to be statistically insignificant 

and hence removed in a stepwise manner. PROC LOGISTIC procedure were applied 

with significance level being 0.1 to retain some of the variables. The results obtained 

from this study are presented in the following section of this paper. 

4.2 Multinomial Logit Modeling results for pedestrian-rail crash on HRGC 

Table 3 shows the coefficient estimates of the multinomial logit model for 

pedestrian crash severity levels on HRGCs. Among the three crash severity levels, no 

injury crashes were considered as the base case. A positive coefficient indicates that, 

given that an accident has occurred, the probability that a specific level of injury severity 

will occur is higher than the probability that the base level of injury severity (no injuries) 
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will occur. A negative coefficient indicates that the probability that a specific level of 

injury severity will occur is less than the probability that the base level of injury severity 

(no injuries) will occur. For example, given that an accident has occurred, the higher that 

the train speed is, the chance that fatality will result is higher than the probability that no 

injury will result. 

As illustrated in Table 3, some of the variables are not statistically significant. 

However, for the sake of facilitating interpretation of the results, such variables were still 

retained in the model if at least one of the variables in that category were significant in at 

least one of the models (injury and/or fatality). This actually induces reduction in 

efficiency of the model. In order to compensate for the reduction in efficiency, a 90 

percent confidence level was considered instead of 95 percent.  

Based on the parameter estimates obtained in Table 3, the MNL model can be 

written as follows: 

    
          

              
                                             

                                                                                      (32) 

  

    
           

              
                                             

                                                                                      (33) 

 

where: 

 X1= Train speed indicator (1 if speed train speed is 45-60mph, 0 otherwise) 

 X2= Weather indicator (1 if cloud, 0 otherwise) 

 X3= Type of accident indicator (1 if rail equipment struck pedestrian, 0 

otherwise) 

 X4= Pedestrian gender indicator (1 if male/missing, 0 otherwise) 
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 X5= Location of HRGC indicator (1 if located in city, 0 otherwise) 

 X6= Highway pavement type indicator (1 if pavement is unpaved, 0 otherwise) 

 X7= HRGC surface type (1 if surface is rubber, 0 otherwise) 

 X8= Temperature indicator (1 if temperature is greater than 80
o
F, 0 otherwise) 

 X9= Highway traffic lane (1 if traffic lane is 3, 0 otherwise) 

Based on the above MNL model equations, the marginal effect/value is also 

determined as presented in Table 4 for the explanation convenience. As can be seen in the 

Table 4, the sum of marginal effect gives zero which satisfies the requirement that the 

sum of probability is 1. The marginal effect for the remaining variables provides a great 

deal of valuable information for results interpretation.   

Table 3. Multinomial Logistic Model Regression Results (Pedestrian-rail Crash) 

Parameter 

Injury Fatality 

Estimate P-value Estimate P-value 

Intercept 1.1972 0.2943 -0.7175 0.5012 

TRNSPD (Ref: <25mph)     

25-45 -1.0734 0.0004 0.4302 0.1595 

45-60 -0.9424 0.381 1.015 0.0054 

>60 -1.8403 <.0001 0.3561 0.323 

WEATHER (Ref: Clear)     

Cloudy 0.4101 0.2583 0.7851 0.0187 

Rain -0.6893 0.1862 -0.6553 0.1614 

Fog 12.6421 0.9837 13.7341 0.9823 

Snow -1.8393 0.1796 -0.5642 0.5389 

TYPACC (Ref: Pedestrian struck rail equipment)     

Rail equipment struck pedestrian -0.8978 0.1222 0.8188 0.211 

PEDESTRNGEN (Ref: Female)     

Male+Missing -0.1331 0.6894 -0.6152 0.037 

NEAREST (Ref: Near City)     

In City 0.5414 0.3489 0.8684 0.0041 

HWYPVED (Ref: Paved)     

Unpaved 1.1033 0.5564 1.1033 0.0474 
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Table 3. (Cont’d) Multinomial Logistic Model Regression Results (Pedestrian-rail 

Crash) 

Parameter 

Injury Fatality 

Estimate P-value Estimate P-value 

XSURFACE (Ref :Timber)     

Asphalt -0.0821 0.7657 0.1486 0.5535 

Asphalt and flange 0.3216 0.6167 -0.401 0.5351 

Concrete 1.0306 0.0912 0.388 0.5172 

Concrete and rubber 0.7194 0.9998 13.4682 0.9949 

Rubber -0.9009 0.0338 0.1012 0.7747 

Unconsolidated 0.5329 0.6795 -0.8596 0.5351 

Others -0.8173 0.4547 -2.1333 0.0987 

TEMP (Ref: <50F)     

50-80F -0.0666 0.8226 0.1906 0.4885 

>80F -0.8188 0.0488 -0.2294 0.5298 

TRAFICLAN (Ref: 1 lane)     

2 Lanes -0.0669 0.9309 -0.7934 0.2596 

3 Lanes -0.4892 0.6105 -1.4631 0.0937 

4 Lanes -0.0186 0.9869 -0.9677 0.1924 

≥5 Lanes 0.215 0.8137 -0.9998 0.234 

Number of observation= 757, ρ
2 
=0.121, χ

2
 for likelihood ratio =180.589, P-value for chi square = 

0.000 

 

As one can see from Table 3, train speed was grouped into four categories. As 

compared to low speed train (less than 25mph), crashes with higher train speed (45-60 

mph) had higher probability of resulting in fatal injury. On the other hand, train speed 

categories 25-45 mph and greater than 60 mph were less likely to result serious injury. 

Also, as shown in Table 4, the marginal effect of this variable is 0.428 on probability of 

fatal crash, -0.413 on probability of injury crashes and -0.015 on injury crashes. 

Therefore, the probability of fatal crash is 0.428 higher when the speed category is 45-

60mph. Similarly, the probabilities of injury crashes and no injury crashes are 0.413 and 

0.015 less when train speed category is 45-60 mph. The marginal effect for the rest of the 

variables can be interpreted in similar fashion. 
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Table 4. Marginal Effects Results for MNLM (Pedestrian-rail Crash) 

Variable P(Fatal) P(Injury) P(No injury) 

Train speed category 2 (25-45mph) 0.200 -0.231 0.031 

Train speed category 3 45-60 mph) 0.312 -0.253 -0.059 

Train speed category 4 (>60 mph) 0.233 -0.287 0.054 

Cloudy weather 0.119 -0.021 -0.098 

Rainy weather -0.071 -0.057 0.128 

Foggy weather 0.325 -0.091 -0.233 

Snow weather 0.018 -0.209 0.191 

Crush circumstance(rail equipment struck vehicle) 0.258 -0.281 0.023 

Pedestrian gender male -0.116 0.048 0.068 

HRGC In city 0.118 -0.011 -0.108 

Highway Paved 0.130 0.092 -0.221 

HRGC asphalt surface  0.041 -0.032 -0.009 

HRGC asphalt and flange surface  -0.119 0.109 0.010 

HRGC concrete surface  -0.054 0.151 -0.097 

HRGC concrete and rubber surface 0.553 -0.321 -0.232 

HRGC rubber surface   0.111 -0.154 0.043 

HRGC unconsolidated surface  -0.222 0.202 0.019 

HRGC other surface  -0.070 0.019 0.051 

Traffic Lane (1 lane) -0.094 0.023 0.071 

Traffic Lane (2 lane) -0.101 -0.052 0.153 

Traffic Lane (3 lane) -0.098 0.033 0.065 

Traffic Lane (>=4 lane) -0.095 0.077 0.018 

Temperature category 2 (50-80F) 0.025 -0.021 -0.004 

Temperature category 2 (>80Fmph) 0.003 -0.135 0.132 

 

Among the five weather categories, cloudy weather was found to be statically 

significant at 90 percent confidence level and had increased the probability of fatal injury 

as compared to clear weather. As shown in Table 4, the marginal effect of the variable is 

positive on probability of fatal crashes and negative on probability of injury and no injury 

crashes.  

Two crash circumstances (rail equipment struck pedestrian and pedestrian struck 

train equipment) were considered. The result showed that crash severity was more likely 
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to be fatal when rail equipment struck a pedestrian as compared to the other crash 

circumstance under which pedestrian struck the rail equipment although the variable is 

not statistically significant. It is shown in Table 4 that the marginal effect of this variable 

on probability of fatal crashes is positive and it is negative on probability of injury and no 

injury crashes. With respect to pedestrian gender, the result indicated that male 

pedestrians were less likely to be involved in fatal injury crashes as compared to female 

pedestrians. The result study revealed that HRGC located in the city increased probability 

of fatal crashes as compared to those located near the city and it is statistically significant. 

In addition, HRGC located in the city were more likely to result serious injury though the 

variable is not statistically significant. The marginal effect of the variable, as shown in 

Table 4, is negative on the probability of fatal crashes and it is positive on probability of 

injury and no injury crashes.  

Compared to paved highways crossing the rail line, crashes occurring on unpaved 

highways had higher probability of being fatal. In addition, crashes occurring on unpaved 

highways crossing rail line were more likely to result in serious injury though this 

variable is not statistically significant. As shown in Table 4, the marginal effect of this 

variable is positive on probability of fatal and injury crashes and it is negative on 

probability of no injury crashes. 

Different types of crossing were considered in this study. As showed in Table 3, 

comparing with timber crossing surfaces, concrete surface type crossings are more likely 

to be associated with injury crashes and the variable is statistically significant (at 90% 

confidence level) whereas rubber crossing surfaces are less likely to result in injury 

crashes. As presented in Table 4, the marginal effect of this variable is negative on 
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probability of injury crashes and it is positive on probability of fatal and no injury 

crashes. 

With regards to temperature, when compared to low temperatures (less than 

50
o
F), high temperatures (greater than 80

o
F) were less likely to result severe injury and 

the variable is statistically significant. The marginal effect of this variable is negative on 

the probability of injury crashes and it is positive on probability of fatal and no injury 

crashes.  Finally, compared to one lane road crossing rail line, three lane highway 

crossing rail lines were less likely to result in fatal injury and the variable is statistically 

significant. The marginal effect of this variable on the probability of a fatal crash is 

negative and it is positive on injury and no injury crashes.   

While the model gives results of intercepts and slope coefficients for serious 

injury and fatality, it can also be interpreted by using the odds ratio which is exponential 

of parameter estimate obtained from the analysis. For example, the estimated coefficient 

for train speed category three (45-60 mph) is 1.015 and hence the relative effect of this 

speed category versus the base train speed category one (<25 mph) is exp (1.015) =2.76. 

This indicates that the odds of pedestrian crash severity being fatal is 2.76 times higher if 

the speed of the train is category three compared to train speed category one. Similarly, 

the parameter estimate of cloudy weather, considering clear weather as a reference, is 

found to be 0.7851. So, the  relative effect of weather inclement cloud compared to clear 

weather for crash severity fatal is determined as exp(0.7851) =2.193. This indicates that 

the odds of fatal crash severity versus no injury crashes are 2.193 times higher on cloudy 

weather compared to the clear weather. The other odds ratio results can also be 

interpreted in a similar fashion. 
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The probability of the three different severity levels of pedestrian crashes are 

determined based on the parameter estimated for the indicator variables and the 

probability computation equations (9), (10) and (11). Accordingly, the predicted average 

probability of fatal, injury and no injury severity levels are 0.476, 0.390 and 0.134 

respectively. And the observed crash severity from the original data was 0.534, 0.310 and 

0.157 for fatality, injury and no injury respectively. Also as shown in Table 3, the ρ
2
 

determined for the model is 0.121 which indicates the model has improvement over the 

naive model (model without covariates). 

4.3 Multinomial Logit Modeling results for vehicle-rail crash on HRGC 

The modeling procedure and the interpretation the MNLM vehicle-rail crash 

severity modeling is the same as the pedestrian crash severity model. However, some of 

the variables used in the pedestrian-rail crash severity model are not relevant in the 

vehicle-rail model and the reverse is true. Table 5 presents the result obtained from this 

study. In this modeling also, the three vehicle-rail crash severity levels (Fatal crashes, 

Injury crashes and No Injury crashes) were considered as the dependent variable. Among 

the three crash severity levels, No injury crashes were considered the base case. 

Therefore, coefficients estimated for the explanatory variables are values representing the 

relative effect of contributing factors on fatal or injury crashes compared to no injury 

crashes. Positive estimates in the model indicate that the chance of injury or fatal crash 

increase as the value of the independent variables increase.  

As shown in Table 5, like the pedestrian-rail crash severity model, some of the 

variables are not statistically significant. However, for the sake of facilitating 

interpretation of the results, those variables were retained in the model if at least one of 
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variables/factors in the same parameter category were significant in at least one of the 

models (injury and/or fatality). This actually induces reduction in efficiency of the model. 

In order to compensate the reduction in efficiency, a 90 percent confidence level was 

considered instead of 95 percent.  

Table 5. Multinomial Logistic Model Regression Results (Vehicle-rail Crash) 

 

Parameter 

Injury Fatal 

Estimate P- value Estimate P-value 

Intercept -1.1431 <.0001 -3.9746 <.0001 

VEHSPD (Ref:<25mph)         

25-45 0.6998 <.0001 0.8189 <.0001 

>45 1.0047 <.0001 1.8483 <.0001 

TYPVEH (Ref: Auto)         

Truck 0.0699 0.5684 0.0738 0.6792 

Truck-trailer -0.2492 0.0074 -1.9045 <.0001 

Pick-up truck 0.1508 0.0775 0.0288 0.8217 

Van 0.0966 0.5273 -0.0279 0.9075 

Bus 0.7142 0.4572 -10.9806 0.9838 

School bus 
1.0413 0.3016 -10.8854 0.9869 

TYPACC (Ref: vehicle struck Rail equipment)         

Rail equipment struck vehicle -0.0869 0.2649 0.7327 <.0001 

TEMP(Ref: <50
o
F)         

50
o
-80

o
F 0.0934 0.2174 -0.00505 0.9669 

>80
o
F 0.278 0.0016 0.2295 0.0987 
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Table 5. (Cont’d) Multinomial Logistic Model Regression Results (Vehicle-rail Crash) 

 

Parameter 

Injury Fatal 

Estimate P-value Estimate P-value 

WEATHER (Ref: Clear)         

Cloudy 
-0.0586 0.4557 -0.1198 0.3455 

Rain -0.1843 0.1691 -0.4356 0.0773 

Fog -0.00811 0.9736 -1.0758 0.0798 

Sleet 0.4497 0.4496 -11.843 0.9681 

Snow -0.647 0.0066 -0.7963 0.0601 

TRNSPD (Ref: <25mph)         

25-45 0.6762 <.0001 1.7992 <.0001 

>45 0.7771 <.0001 2.9039 <.0001 

DRIVGEN (Ref: Female)         

Male+Missing 0.3931 <.0001 0.2286 0.0474 

DEVELTYP(Ref: Open space area)         

Residential  -0.1968 0.0214 -0.2374 0.0756 

Commercial -0.3298 <.0001 -0.3529 0.0092 

Industrial -0.3918 <.0001 -0.1066 0.5259 

Institutional -0.4723 0.0648 -0.4806 0.2659 

XSURFACE(Ref: Timber)         

Asphalt -0.2359 0.0016 -0.4962 <.0001 

Asphalt & Flange -0.1417 0.3007 -0.4396 0.0588 

Concrete 0.0785 0.455 -0.00019 0.9991 

Concrete & Rubber 0.0908 0.6262 0.5839 0.0259 

Rubber 0.0718 0.6305 -0.0533 0.8331 

Metal -0.5291 0.6725 -11.2314 0.9873 

Unconsolidated -0.3764 0.0241 -0.4246 0.0917 

Other -0.4434 0.2714 -0.6581 0.3933 

AADT(Ref:<10,000)         

10,000-20,000 -0.0934 0.4353 -0.6274 0.0061 

20,000-30,000 -0.596 0.0114 -0.4924 0.1693 

>30,0000 -0.298 0.2415 -0.8557 0.0739 
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Table 5. (Cont’d) Multinomial Logistic Model Regression Results (Vehicle-rail Crash) 

 

Parameter 

Injury Fatal 

Estimate P-value Estimate P-value 

DRIVAGE(Ref:<25 Years)         

25-60 Years 0.0389 0.6326 -0.00502 0.9694 

>60 Years 0.2715 0.0083 0.9462 <.0001 

Number of observation= 7,391, ρ
2 
=0.106, χ2 for likelihood ratio =1143.663, P-value for chi 

square= 0.000 

 

Based on the parameter estimates obtained in Table 5, the MNL model can be 

written as follows: 

    
          

              
                                              

                                                                                      

                                                                                 

                                                                                           (34) 

    

    
           

              
                                              

                                                                                      

                                                                                 

                                                                                 (35) 

where: 

 X1 = Vehicle speed category (1 if speed train speed is 25-45mph, 0 otherwise) 

 X2 = Vehicle speed category (1 if speed train speed is >45mph, 0 otherwise) 

 X3 = Vehicle type indicator (1 if vehicle is truck-trailer, 0 otherwise) 

 X4 = Type of accident indicator (1 if rail equipment struck vehicle, 0 otherwise) 

 X5 = Temperature indicator (1 if temperature is greater than 80
o
F, 0 otherwise) 

 X6 = Weather indicator (1 if snow weather, 0 otherwise) 

 X7 = Train speed category (1 if vehicle speed is 25-45mph, 0 otherwise) 
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 X8 = Train speed category (1 if vehicle speed is >45mph, 0 otherwise) 

 X9 = Vehicle driver gender indicator (1 if male or missing, 0 otherwise) 

 X10 =Development area type indicator (1 if residential, 0 otherwise) 

 X11= Development area type indicator (1 if commercial, 0 otherwise) 

 X12= HRGC surface type (1 if surface is asphalt, 0 otherwise) 

 X13= HRGC surface type (1 if surface is unconsolidated, 0 otherwise) 

 X14= Traffic volume indicator (1 if AADT is 20,000-30,000, 0 otherwise) 

 X15= Vehicle driver age indicator (1 if age is >60 years, 0 otherwise) 

Based on the above MNL model equations, the marginal effect/value is also 

determined as presented in Table 6 for the explanation convenience. As can be seen in the 

Table 6, the sum of marginal effect gives zero which satisfies the requirement that the 

sum of probability is 1. The marginal effect for the remaining variables provides a great 

deal of valuable information for interpreting results.   

As shown in Table 5, vehicle speed was one among several explanatory variables 

that are considered and used to estimate the vehicle-rail crash severity model. Vehicle 

speed was categorized in to three levels (<25mph, 25-45mph, and >45 mph). According 

to the result, two speed categories (25-45 mph and >45 mph) are statistically significant 

and they had higher probability of resulting in injury and fatal crashes. It was also shown 

that the parameter estimate for vehicle speed category three (>45 mph) is higher than 

vehicle speed category two (25-45 mph). This indicates that higher vehicle speed has a 

detrimental effect of increasing the chance of fatal and injury crashes.  

Likewise, train speed was categorized into three levels and also found to be 

statistically significant. Compared to train speed category one (<25mph), both higher 

train speed categories (25-45mph and >45 mph) had increased probabilities of injury and 

fatal crashes. Like vehicle speed, higher train speed has also detrimental effects in 
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increasing the chance of fatal and injury crashes. As shown in Table 6, the marginal 

effect result indicates that both probabilities of injury and fatal crashes increase as speed 

of vehicle and train increases. On the other hand, the probability of no injury crashes 

decreases as speed increases. 

Table 6. Marginal Effects Results for MNLM (Vehicle-rail Crash) 

Variable P(Fatal) P(Injury) P(No injury) 

Vehicle speed category 2 (25-45mph) 0.200 -0.231 0.031 

Vehicle speed category 3 (45-60 mph) 0.312 -0.253 -0.059 

Vehicle speed category 4 (>60 mph) 0.233 -0.287 0.054 

Rainy weather 0.119 -0.021 -0.098 

Foggy weather -0.071 -0.057 0.128 

Sleet weather 0.325 -0.091 -0.233 

Snow weather 0.018 -0.209 0.191 

Crush circumstance (rail equipment struck vehicle) 0.258 -0.281 0.023 

Vehicle driver gender male -0.116 0.048 0.068 

Nearest 0.118 -0.011 -0.108 

Highway Paved 0.130 0.092 -0.221 

HRGC asphalt surface  0.041 -0.032 -0.009 

HRGC asphalt & flange surface  -0.119 0.109 0.010 

HRGC concrete surface  -0.054 0.151 -0.097 

HRGC concrete & rubber surface 0.553 -0.321 -0.232 

HRGC rubber surface   0.111 -0.154 0.043 

HRGC metal surface  -0.222 0.202 0.019 

HRGC unconsolidated surface  -0.070 0.019 0.051 

HRGC others -0.094 0.023 0.071 

Traffic volume (AADT of 10,000-20,000) -0.101 -0.052 0.153 

Traffic volume (AADT of 20,000-30,000) -0.098 0.033 0.065 

Traffic volume (AADT of >30,000) -0.095 0.077 0.018 

Temperature category 2 (50-80F) 0.025 -0.021 -0.004 

Temperature category 2 (>80Fmph) 0.003 -0.135 0.132 

 

Seven vehicle categories (ranging from automobile to truck-trailer to school bus 

types) were considered in this study. Among these seven categories, truck-trailer was 

found to be statistically significant. As shown in Table 5, truck-trailer vehicles were less 
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likely to result in injury and fatal crashes as compared to automobiles. The marginal 

effect result as shown in Table 6 indicates that truck-trailer vehicles increase injury and 

no injury crashes while they decrease fatal crashes.  

Two crash circumstances (rail equipment struck vehicle and vehicle struck rail 

equipment) were considered. The crash circumstance under which vehicle struck rail 

equipment was considered a reference (i.e., base) for comparison. As shown in Table 5, 

when rail equipment struck vehicle, crash severity were more likely to be fatal. On the 

other hand, this crash circumstance is less likely to result in injury crashes. As shown in 

Table 6, the marginal effect results of crash circumstance (i.e., when rail equipment 

struck vehicle) indicate an increase in the probability of fatal crashes and a decrease in 

the probability of injury and no injury crashes.  

Compared to low temperature (less than 50
o
F), vehicle-rail crashes occurring at 

higher temperature (greater than 80
o
F) had increased the probability of injury and fatal 

crashes. As presented in Table 6, the marginal effect results clearly indicate that higher 

temperature increases injury and fatal crashes while decreasing no injury crashes. 

Regarding weather condition, snow weather was found to be statistically significant. As 

presented in Table 5, snowy weather conditions were less likely to result in injury and 

fatal crashes as compared to clear weather condition. The marginal effect results of snow 

weather also show decreases in the probability of injury and fatal crashes and an increase 

in no injury crashes. In addition, rainy and foggy weather conditions, as compared to a 

clear weather, were less likely to result in fatal crashes and they were statistically 

significant. 
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Five different types of development area types were considered in this study. As 

compared to open space development areas, HRGCs located in commercial areas and 

residential areas were less likely to result in injury and fatal crashes and they were found 

to be statistically significant. The marginal effect results show that HRGCs located in 

both industrial and commercial areas decrease the probability of injury and fatal crashes 

while the probability of no injury crashes increases. 

Various types of HRGC surfaces were investigated in this study. A timber 

crossing surface was considered a reference to which other crossing surface types were 

compared. As shown in Table 5, vehicle-rail crashes occurring on asphalt crossing 

surface were found to be less likely to result in injury and fatal crashes and the variable 

was found statistically significant. In addition, unconsolidated crossing surface types 

were also found to be statistically significant and crashes occurring on such surfaces are 

less likely to result in injury or fatality. Asphalt and flange crossing surface types were 

also found to be statistically significant and less likely to result in fatal crashes. As shown 

in Table 6, the marginal effects of both asphalt and unconsolidated crossing surface types 

show decrease in the probability of injury and fatal crashes whereas the probability of no 

injury crashes increases. 

The Average Annual Daily Traffic (AADT) was also considered in order to 

investigate the effect of traffic volume on the crash severity. The AADT was categorized 

in to four categories. Among the four categories, category three (AADT of 20,000-

30,000) was found to be statistically significant and it is less likely to result in injury and 

fatal crashes compared to category one (AADT less than 10,000). The marginal effect 



 

55 

 

result shows this AADT category decreases the probability of injury and fatal crashes and 

increases that of no injury crashes. 

Vehicle driver characteristics such as age and gender were considered in the study 

as explanatory variables. With respect to driver gender, as the result revealed, male driver 

are more likely to be involved in injury and fatal crashes as compared to female drivers 

and the variable is found to be statistically significant. The age of vehicle drivers was 

grouped in to three categories. Vehicle driver age below 25 was considered a reference 

for comparison purpose. As shown in Table 5, drivers with the age of above 60 years had 

higher probability of being involved in injury and fatal crashes. As shown in Table 6, the 

marginal effects of male vehicle drivers and age above 60 years clearly increase the 

probability of injury and fatal crashes while decreasing that of no injury crashes. 

In addition to the model results of intercepts and slope coefficients for serious 

injury and fatality, the model can be interpreted by using the odds ratio which is 

exponential of parameter estimates obtained from the analysis. For example, the 

estimated coefficient for train speed category three (>45 mph) is 1.0047 and hence the 

relative effect of this speed category versus train speed category one (< 25mph) is exp 

(1.015)=2.76. This indicates that the odds of pedestrian crash severity being injury is 2.76 

times higher if the speed of the train is category three compared to train speed category 

one. Similarly, the parameter estimate of vehicle driver age above 60 years, considering 

diver age below 25 years as a reference, is found to be 0.2715. So, the  relative effect of 

drivers age of above 60 years to age of below 25 years on injury crashes is determined as 

exp(0.2715) =1.31. This indicates that the odds of injury crash severity versus no injury 

crashes are 1.31 times higher for drivers with the age of above 60 years compared to 
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driver age below 25 years. The odds ratio results of the rest of variable can also be 

interpreted in a similar fashion. 

The probability of the three different severity levels of vehicle-rail crashes are 

determined based on the parameter estimated for the indicator variables and the 

probability equations shown above. Accordingly, the predicted average probability of 

fatal, injury and no injury severity levels are 0.131, 0.190 and 0.679 respectively. And the 

observed crash severity from the original data was 0.085, 0.267 and 0.648 for fatality, 

injury and no injury respectively. Also as shown in Table 5, the ρ
2
 determined for the 

model is 0.106 which indicates the model has improvement over the naïve model (model 

without covariates). 

4.4 Ordered Logit Modeling results for pedestrian-rail crash on HRGC 

Table 7 and 8 present the result obtained from OLM for pedestrian-rail crash 

severity on HRGC. The three vehicle-rail crash severity levels (Fatal crashes, Injury 

crashes and No Injury crashes) were considered as the dependent variable. The 

interpretation of the coefficient is different from the MNL model. A positive coefficient 

indicates that increase in the value of a variable will increase the probability of highest 

severity level (i.e. fatal) and decrease the lowest severity level (no injury). On the other 

hand, a negative coefficient indicates that a decrease in the value of a variable will 

increase the probability of the highest severity level and decrease probability of lowest 

severity level. For the intermediate severity level (i.e. injury), an increase in the value of 

a variable may decrease or increase the probability of occurring. As shown in Table 7, 

some of the variables are not statistically significant. However, for the sake facilitating 
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interpretation of the results, those variables were retained in the model if at least one of 

the categories in the same factor was significant.  

Based on the parameter estimates obtained in Table 7, the ordered logit model can 

be written as follows: 
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                                                                                                            (37)    

     

where: 

 X1 = Train speed category (1 if speed train speed is 25-45mph, 0 otherwise) 

 X2 = Train speed category (1 if speed train speed is >45mph, 0 otherwise) 

 X3 = Train speed category (1 if speed train speed is >60mph, 0 otherwise) 

X4 = Weather indicator (1 if cloudy weather, 0 otherwise) 

 X5 = Weather indicator (1 if foggy weather, 0 otherwise) 

 X6 = Type of accident indicator (1 if rail equipment struck pedestrian, 0        

otherwise) 

 X7 = Pedestrian gender indicator (1 if male, 0 otherwise) 

 X8 = HRGC location indicator (1 if located in city, 0 otherwise) 

 X9 = Highway surface type indicator (1 if unpaved, 0 otherwise) 

X10= HRGC surface type (1 if surface is other, 0 otherwise) 
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X11 =No. of Highway traffic lane indicator (1 if 3 lane highway, 0 otherwise) 

X12   = Highway surface type indicator (1 if 4 lane highway, 0 otherwise) 

Based on the above ordered logit model equations, the marginal effects/values are 

also determined as presented in Table 8. As seen, the sum of the marginal effect gives 

zero which satisfies the requirement that the sum of probability is 1. The marginal effect 

for the remaining variables provides a great deal of valuable information for results 

interpretation.   

As depicted in Table 7, Train speed was among several explanatory variables that 

are considered and used to estimate the vehicle-rail ordered logit crash severity model. 

Train speed was categorized in to four levels, <25 mph, 25-45 mph, 45 mph-60 mph and 

>60 mph. According to the result, the three higher train speed categories are statistically 

significant as they are positive coefficients indicating that increase in the train speed 

would result in an increase in the probability of higher level severity crashes and decrease 

in the lower severity level crashes. In addition, as can be seen in Table 8, the marginal 

effect of these higher train speed categories showed that they had increased the 

probability fatal crashes and had decreasing effect on the probability of injury and no 

injury severity levels. This indicates that higher vehicle speed has a detrimental effect of 

increasing the chance of fatal and injury crashes. 
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Table 7. Ordered Responses Logistic Model Regression Results (Pedestrian-rail Crash) 

Parameter Estimate P-value 

Intercept (1) -1.5465 0.0192 

Intercept (2) 0.1298 0.8435 

TRNSPD (Ref: <25mph)   

25-45 0.6905 0.0002 

45-60 1.2315 <.0001 

>60 0.8999 0.0002 

WEATHER (Ref: Clear)   

Cloudy 0.5204 0.008 

Rain -0.403 0.2496 

Fog 1.8357 0.0953 

Snow 0.2683 0.711 

TYPACC (Ref: Pedestrian struck rail equipment)   

Rail equipment struck pedestrian 0.1593 0.0277 

PEDESTRNGEN (Ref: Female) 

  Male+Missing gender -0.4919 0.0108 

NEAREST (Ref: Near City)   

In City 0.6462 0.0036 

HWYPVED (Ref: Paved)   

Unpaved 0.7651 0.0799 

XSURFACE (Ref: Timber)   

Asphalt 0.1691 0.3107 

Asphalt & Flange -0.4619 0.2487 

Concrete -0.1336 0.6801 

Concrete & Rubber 11.2459 0.9786 

Rubber 0.3306 0.1906 

Unconsolidated -0.757 0.422 

Other -1.5517 0.0708 

TRAFICLAN (Ref: 1 lane)   

2 Lanes -0.6243 0.1797 

3 Lanes -1.0547 0.0748 

4 Lanes -0.794 0.1054 

≥5 Lanes -0.8469 0.1235 

Likelihood Ratio Test :                     p-value is <0.0001 

Score Test for Proportional Odds Assumption                    ; p-value is <0.0001 

Akaike Information Criterion (AIC) =1462.04 
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Two crash circumstances (when the rail equipment struck a vehicle and when a 

vehicle struck the train equipment) were considered. The crash circumstance under which 

the vehicle struck the rail equipment was considered as a reference for comparison. As 

shown in Table 7, the variable is statistically significant and the coefficient is positive 

indicating that the crash circumstance had increased the probability fatal severity crashes. 

As shown in Table 8, the marginal effect results of the crash circumstance (i.e., when the 

rail equipment struck vehicle) indicates an increase in the probability of fatal crashes and 

a decrease in the probability of injury and no injury crashes. 

Regarding weather condition, cloudy and foggy weather conditions were found to 

be statistically significant. As presented in Table 7, cloudy and foggy weather was 

observed to have an increasing effect on the fatal crashes as compared to clear weather 

condition. In addition, as shown in table 8, the marginal effect results of both cloudy and 

foggy weather showed an increase in the probability of fatal crashes and an decrease in 

injury and no injury crashes. 

Various types of HRGC surfaces were investigated in this study. A timber 

crossing surface was considered as a reference to which other surface types were 

compared. As shown in Table 7, pedestrian-rail crashes occurring on other crossing 

surface types, such as metallic, were found to be statistically significant. As shown in 

Table 8, the marginal effects of other crossing surface types show a decrease in the 

probability of fatal and injury crashes whereas the probability of no injury crashes 

increased. This indicates that crossing surface type is associated with lower level severity 

pedestrian crash on HRGCs. 
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Table 8. Marginal Effects Results for OLM (Pedestrian-rail Crash) 

Variable P(Fatal) P(Injury) P(No injury) 

Train speed category 2 (25-45mph) 0.148 -0.041 -0.107 

Train speed category 3 (>45mph) 0.275 -0.112 -0.163 

Train speed category 4 (>45mph) 0.198 -0.075 -0.123 

Cloudy weather 0.117 -0.041 -0.076 

Rainy weather -0.086 0.016 0.070 

Foggy weather 0.371 -0.195 -0.176 

Snow weather 0.060 -0.020 -0.040 

Crush circumstance(rail equipment struck vehicle) 0.145 -0.018 -0.127 

Pedestrian gender male -0.111 0.038 0.073 

HRGC In city 0.147 -0.056 -0.092 

Highway Paved 0.158 -0.015 -0.142 

HRGC asphalt surface  0.038 -0.011 -0.027 

HRGC asphalt and flange surface  -0.099 0.017 0.082 

HRGC concrete surface  -0.029 0.007 0.022 

HRGC concrete and rubber surface 0.570 -0.346 -0.223 

HRGC rubber surface   0.074 -0.024 -0.050 

HRGC unconsolidated surface  -0.156 0.014 0.142 

HRGC other surface  -0.278 -0.041 0.319 

2 Lanes -0.136 0.040 0.096 

3 Lanes -0.209 0.005 0.203 

4 Lanes -0.167 0.029 0.138 

≥5 Lanes 
-0.173 0.015 0.158 

 

The effect of number of highway traffic lanes crossing the railway on the various 

crash severity levels was also considered. The numbers of highway traffic lanes were 

itemized in to five categories. Among the five categories, a one lane road is considered as 

a reference for comparison. As shown in Table 7, three lane and four lane highways were 

found to be statistically significant and the coefficient is negative indicating that they 

increase the probability of no injury crashes and decrease the probability of fatal crashes. 
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The marginal effect result in Table 8 indicate the two categories decreases the probability 

of fatal crashes and increases that of injury and no injury crashes. 

The variable corresponding to pedestrian gender was found to be statistically 

significant and the coefficient for the male pedestrian is negative implying that it 

increases the probability of no injury crashes and decreases the probability of fatal 

crashes as compared to female pedestrians.  The marginal effect for this variable, as 

shown in Table 8, being a male pedestrian increases the probability of injury and no 

injury crashes and decreases the probability of a fatal crash. 

The result of the study revealed that HRGC located in the city increased the 

probability of fatal crashes as compared to those located near the city and it is statistically 

significant. The marginal effect of the variable, as shown in Table 8, is positive on the 

probability of fatal crashes and it is negative on the probability of injury and no injury 

crashes. Compared to paved highways crossing the rail line, crashes occurring on 

unpaved highways had higher probability of being fatal. As shown in Table 8, the 

marginal effect of this variable is positive on probability of fatal and injury crashes and it 

is negative on probability of no injury crashes. 

In addition to the model results of intercepts and slope coefficients for injury and 

fatality, the model can be interpreted by using the odds ratio which is the exponential of 

the parameter estimate obtained from the analysis. For example, the estimated coefficient 

for train speed category three ( >45 mph) is 1.4234 and hence the relative effect of this 

speed category versus train speed category one (<25 mph) is exp (1.4234) = 4.151. This 

indicates that the odds of pedestrian crash severity being injury is 4.151times higher if the 

speed of the train is category three compared to train speed category one. Similarly, the 
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parameter estimate of a vehicle driver above age 60 years, considering diver age below 

25 years as a reference, is found to be 0.2715. So the relative effect of drivers over 60 

years to age of below 25 years on injury crashes is determined as exp(0.5519) =1.737. 

This indicates that the odds of no injury crash severity versus injury and fatal crashes are 

1.737 times higher on drivers with the age not above 60 years compared to driver below 

25 years of age. The other odds ratio results can also be interpreted in similar fashion. 

The probability of the three different severity levels of rail-vehicle crashes are 

determined based on the parameter estimated for the indicator variables and the 

probability equation shown above. Accordingly, the predicted average probability of 

fatal, injury and no injury severity levels are 0.431, 0.346 and 0.223 respectively. And the 

observed crash severity from the original data was 0.534, 0.310 and 0.157 for fatality, 

injury and no injury respectively. 

Also as shown in Table 7, the ρ
2
 determined for the model is 0.078 which 

indicates the model has some improvement over the naïve model (model without 

covariates). Moreover, the test score for the proportional odds assumption has a p-value 

of 0.0001 (22 degrees of freedom), which indicates that the proportional odds model 

adequately fits the data because the hypothesis that the regression lines for cumulative 

logits are parallel is not rejected. The likelihood ratio test p-value of <0.0001 (22 degrees 

of freedom) indicates that the null hypothesis is rejected, and the conclusion is that the 

predictor variables given in the model affect the severity of vehicle-rail crashes, or the 

model with independent variables is statistically better than the model with only the 

intercept. 
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4.5 Ordered Logit Modeling results for vehicle-rail crash on HRGC 

Table 9 and 10 present the result obtained from this study. The three vehicle-rail 

crash severity levels (Fatal crashes, Injury crashes and No Injury crashes) were 

considered as the dependent variable. The interpretation of the coefficient is different 

from the MNL model. A positive coefficient indicates that an increase in the value of a 

variable will increase the probability of highest severity level (fatal) and decrease the 

lowest level severity level (no injury). On the other hand, a negative coefficient indicates 

that a decrease in the variable will increase the probability of the highest severity level 

and decrease the probability of the lowest severity level. For the intermediate severity 

level (injury), an increase in the value of a variable may decrease or increase the 

probability of it occurring. As shown in Table 9, some of the variables are not statistically 

significant. However, for the sake of facilitating the interpretation of the results, those 

variables were retained in the model if at least one of the categories in the same factor 

was significant.  

Based on the parameter estimates obtained in Table 9, the ordered logit model can 

be written as follows: 
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                                                                                      (39)    

           

where: 

 X1 = Vehicle speed category (1 if speed train speed is 25-45mph, 0 otherwise) 

 X2 = Vehicle speed category (1 if speed train speed is >45mph, 0 otherwise) 

 X3 = Vehicle type indicator (1 if vehicle is truck-trailer, 0 otherwise) 

 X4 = Type of accident indicator (1 if rail equipment struck vehicle, 0 otherwise) 

 X5 = Temperature indicator (1 if temperature is greater than 80
o
F, 0 otherwise) 

 X6 = Weather indicator (1 if rainy weather, 0 otherwise) 

 X7 = Weather indicator (1 if snow weather, 0 otherwise) 

 X8 = Train speed category (1 if vehicle speed is 25-45mph, 0 otherwise) 

 X9 = Train speed category (1 if vehicle speed is >45mph, 0 otherwise) 

 X1 0=Vehicle driver age indicator (1 if age is >60 years, 0 otherwise) 

 X11 =Vehicle driver gender indicator (1 if male, 0 otherwise) 

 X12 =Development area type indicator (1 if residential, 0 otherwise) 

 X13= Development area type indicator (1 if commercial, 0 otherwise) 

 X14= Development area type indicator (1 if industrial, 0 otherwise) 

 X15= Development area type indicator (1 if institutional, 0 otherwise) 

 X16= HRGC surface type (1 if surface is concrete and rubber, 0 otherwise) 

 X17= HRGC surface type (1 if surface is unconsolidated, 0 otherwise) 

 X18= Traffic volume indicator (1 if AADT is 10,000-20,000, 0 otherwise) 

 X19= Traffic volume indicator (1 if AADT is 20,000-30,000, 0 otherwise) 

 X20= Traffic volume indicator (1 if AADT is >30,000, 0 otherwise) 
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Based on the above ordered logit model equations, the marginal effect/value is 

also determined as presented in Table 10 for the explanation convenience. As can be seen 

in the Table 9, the sum of marginal effect gives zero which satisfies the requirement that 

the sum of probability is 1. The marginal effect for the remaining variables provides a 

great deal of valuable information for results interpretation.   

Vehicle speed and train speed, shown in Table 9, were among several explanatory 

variables that are considered and used to estimate the vehicle-rail crash severity model. 

Vehicle speed was categorized into three levels (<25mph, 25-45 mph, and >45 mph). 

According to the results, two speed categories (25-45mph and >45mph) are statistically 

significant and they had higher probability of resulting in injury and fatal crashes. It was 

also shown that the parameter estimate for vehicle speed category three (>45mph) is 

higher than vehicle speed category two (25-45 mph). This indicates that higher vehicle 

speed has detrimental effects of increasing the chance of fatal and injury crashes.  

Likewise, train speed was categorized into three categories and found to be statistically 

significant. Compared to train speed category one (<25 mph), both higher train speed 

categories (25-45 mph and >45 mph) had increased probabilities of injury and fatal 

crashes. Like vehicle speed, higher train speed has also detrimental effects in increasing 

the chance of fatal and injury crashes. As shown in Table 10, the marginal effect result 

indicates that both probabilities of injury and fatal crashes increase as speed of vehicle 

and train increases. On the other hand, the probability of no injury crashes decreases as 

speed increases. 

Seven vehicle categories (ranging from automobile to truck-trailer) were 

considered in this study. Among these seven, truck-trailer was found to be statistically 
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significant. As shown in Table 9, truck-trailer vehicles were less likely to result injury 

and fatal crashes as compared to automobiles. The marginal effect result as shown in 

Table 10 indicates that truck-trailer vehicles increase no injury crashes while they 

decrease injury related and fatal crashes.  

Table 9. Ordered Responses Logistic Model Regression Results (Vehicle-rail Crash) 

Parameter Estimate P-value 

Intercept (1) -3.121 <.0001 

Intercept (2) -1.158 <.0001 

VEHSPD (Ref:<25mph)   

25-45 0.6797 <.0001 

>45 1.1451 <.0001 

TYPVEH (Ref: Auto)   

Truck 0.0666 0.5338 

Truck-trailer -0.6734 <.0001 

Pick-up truck 0.0984 0.1911 

Van 0.0522 0.7023 

Bus 0.423 0.659 

School bus 0.5357 0.586 

TYPACC (Ref: vehicle struck Rail equipment)   

Rail equipment struck vehicle 0.1593 0.0277 

TEMP(Ref: <50oF)   

50-80 0.0493 0.468 

>80 0.2375 0.0025 

WEATHER (Ref: Clear)   

Cloudy -0.0898 0.2047 

Rain -0.2602 0.0358 

Fog -0.25 0.2892 

Sleet -0.0975 0.8719 

Snow -0.7047 0.0012 
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Table 9. (Cont’d) Ordered Responses Logistic Model Regression Results (Vehicle-rail 

Crash) 

Parameter Estimate P-value 

TRNSPD(Ref: <25mph)     

25-45 0.846 <.0001 

>45 1.4234 <.0001 

DRIVAGE(Ref:<25ZYears)     

25-60Yeras 0.0229 0.754 

>60Years 0.5519 <.0001 

DRIVGEN (Ref: Female)     

Male+Missing 0.3033 <.0001 

DEVELTYP(Ref: Open space area)     

Residential  -0.2013 0.0085 

Commercial -0.3161 <.0001 

Industrial -0.271 0.0025 

Institutional (schools, hospital etc.) -0.4916 0.0351 

XSURFACE(Ref: Timber)     

Asphalt -0.3054 <.0001 

Asphalt & Flange -0.2412 0.0532 

Concrete 0.0554 0.5502 

Concrete & Rubber 0.2976 0.0619 

Rubber 0.0247 0.8555 

Metal -0.6736 0.5949 

Unconsolidated -0.359 0.0149 

Other -0.4474 0.2265 

AADT(Ref:<10,000)     

10,000-20,000 -0.2381 0.0325 

20,000-30,000 -0.5291 0.0103 

>30,0000 -0.4453 0.0575 

Likelihood Ratio Test :                       p-value is <0.0001 

Score Test for Proportional Odds Assumption                     ; p-value is 

<0.0001 

Akaike Information Criterion (AIC) =9988.045 

-2LogL=9912.045 

 

Two crash circumstances (rail equipment struck by vehicle and vehicle struck by 

train equipment) were considered. The crash circumstance under which vehicle struck the 

rail equipment was considered a reference (base) for comparison. As shown in Table 9, 
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when rail equipment struck the vehicle, the severity of the crash was more likely to result 

in injury and fatality. On the other hand, this crash circumstance is less likely to result in 

injury crashes. As shown in Table 10, the marginal effect results of the crash 

circumstance (i.e., when the rail equipment struck the vehicle) indicate an increase in the 

probability of injury and fatal crashes and a decrease in the probability of no injury 

crashes. 

Five different types of development area types were considered in this study. As 

compared to open space development areas, HRGCs located in commercial areas, 

residential areas, industrial areas and institutional areas were less likely to result in injury 

and fatal crashes and they were found to be statistically significant. The marginal effect 

results show that HRGCs located in those developed areas decrease the probability of 

injury and fatal crashes while the probability of no injury crashes increases. 

As compared to low temperatures (less than 50
o
F), vehicle-rail crashes occurring 

at higher temperatures (greater than 80
o
F) had increased probability of injury and fatal 

crashes. As presented in Table 10, the marginal effect results clearly indicate that higher 

temperature increases injury and fatal crashes while decreasing no injury crashes.  

Regarding weather condition, rainy weather and snow weather were found to be 

statistically significant. As presented in Table 9, both rain and snow were less likely to 

result in injury and fatal crashes as compared to clear weather condition.  The marginal 

effect results of snow also show decreases in the probability of injury and fatal crashes 

and an increase in no injury crashes. 

Various types of HRGC surfaces were investigated in this study. Timber crossing 

surface was considered as a reference to which other surface types were compared. As 



 

70 

 

shown in Table 9, vehicle-rail crashes occurring on asphalt crossing surface were found 

to be less likely to result in injury and fatality and the variable was found to be 

statistically significant. In addition, unconsolidated crossing surface types were also 

found to statistically significant and crashes occurring on such surfaces are less likely to 

result in injury or fatal. As shown in Table 10, the marginal effects of both asphalt and 

unconsolidated crossing surface types show a decrease in the probability of injury and 

fatal crashes whereas the probability of no injury crashes increased. 

Table 10. Marginal Effects Results for OLM (Vehicle-rail Crash) 

Variable P(Fatal) P(Injury) P(No injury) 

Indicator for vehicle speed is category 2 (25-45mph) 0.003 0.011 -0.013 

Indicator for vehicle speed is category 3 (>45mph) 0.004 0.018 -0.023 

Indicator for vehicle type truck-trailer -0.003 -0.011 0.013 

Indicator for rail equipment struck vehicle 0.001 0.003 -0.003 

Indicator for higher temperature (>80
o
F ) 0.001 0.004 -0.005 

Indicator for rainy weather -0.001 -0.004 0.005 

Indicator for snow weather -0.003 -0.011 0.014 

Indicator for train speed is category 2 (25-45mph) 0.003 0.014 -0.017 

Indicator for train speed is category 3 (>45mph) 0.005 0.023 -0.028 

Indicator for vehicle driver age >60 years 0.002 0.009 -0.011 

Indicator for vehicle driver gender male 0.001 0.005 -0.006 

Indicator for residential development area type  -0.001 -0.003 0.004 

Indicator for commercial development area type  -0.001 -0.005 0.006 

Indicator for industrial development area type  -0.001 -0.004 0.005 

Indicator for institutional development area type  -0.002 -0.008 0.010 

Indicator for HRGC concrete and rubber surface type  -0.001 -0.005 0.006 

Indicator for HRGC unconsolidated surface type  -0.001 -0.006 0.007 

Indicator for traffic volume (AADT of 10,000-20,000) -0.001 -0.004 0.005 

Indicator for traffic volume  ( AADT of 20,000-30,000) -0.002 -0.008 0.010 

Indicator for traffic volume (AADT of >30,000) -0.002 -0.007 0.009 
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The Average Annual Daily Traffic (AADT) was also considered in order to 

investigate the effect of traffic volume on the crash severity. The AADT was categorized 

into four categories. Among the four categories, the three categories (AADT of 10,000-

20,000, 20,000-30,000 and greater than 30,000) were found to be statistically significant 

and less likely to result injury and fatal crashes compared to category one (AADT less 

than 10,000). The marginal effect result shows this AADT category decreases the 

probability of injury and fatal crashes and increases that of no injury crashes. 

Vehicle driver characteristics such as age and gender were considered in the study 

as explanatory variables. With respect to driver gender, as the result revealed, male 

drivers are more likely to be involved in injury and fatal crashes as compared to female 

drivers and the variable is found to be statistically significant. The age of vehicle drivers 

was grouped into three categories and age below 25 was considered as a reference for 

comparison purpose. As shown in Table 9, drivers with an age above 60 years had higher 

probability to being involved in injury and fatal crashes. As shown in Table 10, the 

marginal effects of male vehicle drivers and people above age 60 clearly increase the 

probability of injury and fatal crashes while decreasing that of no injury crashes. 

In addition to the model results of intercepts and slope coefficients for injury and 

fatality, the model can be interpreted by using the odds ratio which is the exponential of 

the parameter estimate obtained from the analysis. For example, the estimated coefficient 

for train speed category three (>45mph) is 1.4234 and hence the relative effect of this 

speed category versus train speed category one (<25mph) is exp (1.4234) = 4.151. This 

indicates that the odds of pedestrian crash severity being injury is 4.151 times higher if 

the speed of the train is category three compared to train speed category one. Similarly, 



 

72 

 

the parameter estimate of vehicle driver age above 60 years, considering diver age below 

25 years as a reference, is found to be 0.2715. So, the  relative effect of drivers above 60 

years to that of drivers below 25 for injury related crashes is determined as exp(0.5519) 

=1.737. This indicates that the odds of no injury crash severity versus injury and fatal 

crashes are 1.737 times higher on drivers with the age of not above 60 years compared to 

driver age below 25 years. The other odds ratio results can also be interpreted in a similar 

fashion. 

The probability of the three different severity levels of rail-vehicle crashes are 

determined based on the parameter estimated for the indicator variables and the 

probability equation shown above. Accordingly, the predicted average probability of 

fatal, injury and no injury severity levels are 0.090, 0.375 and 0.625 respectively. And the 

observed crash severity from the original data was 0.085, 0.267 and 0.648 for fatality, 

injury and no injury respectively. Also as shown in Table 9, the ρ
2
 determined for the 

model is 0.083 which indicates the model has some improvement over the naïve model 

(model without covariates). Moreover, the test score for the proportional odds assumption 

has a p-value of 0.0001 (37 degrees of freedom), indicating that the proportional odds 

model adequately fits the data because the hypothesis that the regression lines for 

cumulative logits are parallel is not rejected. The likelihood ratio test p-value of <0.0001 

(37 degrees of freedom) indicates that the null hypothesis is rejected, and the conclusion 

is that the predictor variables given in the model affect the severity of vehicle-rail 

crashes, or the model with independent variables is statistically better than the model with 

only the intercept. 
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4.6 Pedestrian-rail crash severity model comparison  

For the MNLM, the lowest injury severity level (no injury) was considered as a 

comparison group. Therefore, the estimated coefficient of injury and fatal severity 

models is compared to the case of no injury severity level. A positive estimated 

coefficient indicates that the probability of injury or a fatal crash increased as compared 

to the no injury severity level. Furthermore, a negative estimated coefficient indicated 

that the probability of injury and fatal crash decreased as compared to the base case. 

The coefficient estimated for the ordered logistic model is as presented Table 7. 

The interpretation of the coefficient is different from the MNL model. A positive 

coefficient indicates that an increase in the value of a variable will increase the 

probability of the highest level severity level (fatal) and decrease the lowest level severity 

level (no injury). On the other hand, a negative coefficient indicates that a decrease in the 

variable will increase the probability of the highest severity level and decrease probability 

of lowest severity level. For the intermediate severity level (injury), an increase in the 

value of a variable may decrease or increase the probability of occurring. 

Assessment and comparison of the two models cannot be performed simply based 

on the estimated coefficients of the models. Marginal effect of the variables on the 

probability of severity levels is  computed for the two models in Table 4 and Table 6 and 

used for comparison purpose. The positive sign in estimated marginal effect indicates that 

the probability of a given crash severity level increases when the variable changes and the 

converse is true for negative sign. And the value of the number indicates the magnitude 

of shift in the probability. 
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The shifting direction of the probability in the two models was used for 

comparison of the impacts of each variable on the probability of injury severity outcomes 

as shown in Table 11. As the results indicate, all the variables are consistent except the 

variable crash circumstance for the case of intermediate severity level (injury). 

Table 11. Comparison of Marginal Effect on Variables for OLM and MNLM 

(Pedestrian-rail Crash) 

Variable 

Fatal Injury No injury 

OLM MNLM OLM MNLM OLM MNLM 

Train speed category 2 (25-45mph) + + - - - + 

Train speed category 3 (>45mph) + + - - - - 

Train speed category 4 (>45mph) + + - - - + 

Cloudy weather + + - - - - 

Rainy weather - - - - + + 

Foggy weather + + - - - - 

Snow weather + + - - - - 

Crush circumstance(rail equipment 

struck vehicle) + + - - - + 

Pedestrian gender male - - + + + + 

HRGC In city + + - - - - 

Highway Paved + + - + - - 

HRGC asphalt surface  + + - - - - 

HRGC asphalt and flange surface  - - + + + + 

HRGC concrete surface  - - + + + + 

HRGC concrete and rubber surface + + - - - - 

HRGC rubber surface   + + - - - + 

HRGC unconsolidated surface  - - + + + + 

HRGC other surface  - - - + + + 

Traffic Lane (1 lane) - - + + + + 

Traffic Lane (2 lane) - - + - + + 

Traffic Lane (3 lane) - - + + + + 

Traffic Lane (>=4 lane) - - + + + + 

Temperature category 2 (50-80
o
F) 

 

+ 

 

- 

 

- 

Temperature category 3 (>80
o
F) 

 

 (>80Fmph) 
 

+ 

 

- 

 

+ 
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 Empty cells indicate that the variable is not significant even at the 90 percent confidence 

level. 

Both temperature category 2 and 3 found to be not statistically significant in the 

OLM case where as they are statistically significant in the MNLM case. The other 

variables have the same effect on the probability of severity levels except variable 

representing crash circumstance. This indicates that the variables in two models have 

almost similar effect on the probability of crash severity levels. Another method to 

compare the two models is application of the Akaike Information Criteria (AIC). The 

AIC value of the two models is 9,810 and 9,988 for the MNLM and OLM respectively. 

The larger the AIC value the stronger the model is in estimating the coefficients. Thus, 

our result indicates that the OLM is better than the MNLM. 

4.7 Vehicle crash severity model comparison  

Variables obtained from the crossing inventory and crash data were used in 

developing the nominal response MNLM and ordered logistic regression model. During 

the final preferred model development process, some of the variables were found to be 

statistically insignificant and hence removed in a stepwise manner. PROC LOGISTIC 

procedures were applied with significance level being 0.1 to retain some of the variables. 

Table 7 and 9 present the result obtained from this study. The three vehicle-rail crash 

severity levels (Fatal crashes, Injury crashes and No Injury crashes) were considered as 

the dependent variable. Among the three crash severity levels, no injury crashes were 

considered the base case. Therefore, coefficients estimated for the explanatory variables 

are values representing the relative effect of contributing factors on fatal or injury crashes 

compared to no injury crashes. Positive estimates in the model indicate that the chance of 
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injury or fatal crash increase as the value of the independent variables increases. As 

shown in Table 7, some of the variables are not statistically significant. However, for the 

sake of facilitating interpretation of the results, those variables were retained in the model 

if at least one of variables/factors in the same parameter category were significant in at 

least one of the models (injury and/or fatality). This actually induces reduction in 

efficiency of the model.  

For the MNLM, the lowest injury severity level (no injury) was considered as a 

comparison group. Therefore, the estimated coefficient of injury and fatal severity 

models is as compared to no injury severity level. A positive estimated coefficient 

indicates that the probability of injury or fatal crash increased as compared to the no 

injury severity level. Furthermore, a negative estimated coefficient indicated that the 

probability of a injury or fatal crash decreased as compared to the base case. 

The coefficient estimated for the ordered logistic model is as presented Table 9. 

The interpretation of the coefficient is different from the MNL model. A positive 

coefficient indicates that increase in the value of a variable will increase the probability 

of highest level severity level (fatal) and decrease the lowest level severity level (no 

injury). On the other hand, a negative coefficient indicates that a decrease in the value a 

variable will increase the probability of the highest severity level and decrease probability 

of lowest severity level. For the intermediate severity level (injury), an increase in the 

value of a variable may decrease or increase the probability of occurrence. 

Assessment and comparison of the two models cannot be performed simply based 

on the estimated coefficients of the models. Instead, marginal effect of the variables on 

the probability of severity levels is computed for the two models as shown in Table 8 and 
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Table 10. The positive sign in the estimated marginal effect indicates that the probability 

of a given crash severity level increases when the variable changes and the converse is 

true for negative sign. And the value of the number indicates the magnitude of shift in the 

probability.  

Table 12. Comparison of Marginal Effect on Variables for OLM and MNLM (Vehicle-

rail Crash) 

Variable 

Fatal Injury No injury 

OLM MNLM OLM MNLM OLM MNLM 

Vehicle speed category 2 (25-45mph) + + + + - - 

Vehicle speed is category 3 (>45mph) + + + + - - 

Vehicle type truck-trailer - - - + + + 

Circumstance rail equipment struck 

vehicle 

+ + + - - - 

 Temperature (>80oF ) + + + + - - 

Rainy weather -   -   +   

snow weather - - - - + + 

Train speed category 2 (25-45mph) + + + + - - 

Train speed category 3 (>45mph) + + + + - - 

Vehicle driver age >60 years + + + + - - 

Vehicle driver gender male + + + + - - 

Residential development area type  -   -   +   

Commercial development area type  - - - - + + 

Industrial development area type  - - - - + + 

Institutional development area type  -   -   +   

 HRGC asphalt surface type  - - - - + + 

HRGC unconsolidated surface type  - - - - + + 

Traffic volume (AADT of 10,000-20,000) -   -   +   

Traffic volume (AADT of 20,000-30,000) - - - - + + 

Traffic volume (AADT of >30,000) -   -   +   

 

The shifting direction of the probability in the two models was used for 

comparison of the impacts of each variable on the probability of injury severity outcomes 

as shown in Table 12. The result indicates, that all the variables are consistent except 
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crash circumstance for the case of intermediate severity level (injury). Empty cell 

indicate that the variable is not significant for 90 percent confidence level. 

Some of the variables in the MNLM namely rainy weather, residential 

development area type, institutional development type, AADT of 10,000-20,000 and 

AADT of >30,000 are found not to be statically significant where as they are statistically 

significant in the case OLM. The other variables have the same effect on the probability 

of severity levels except variable representing a crash. This indicates that the variables in 

two models have almost similar effect on the probability of crash severity levels. 

However, the AIC of the two models is 9,810 and 9,988 for the MNLM and OLM 

respectively. This indicates that the OLM is better than the MNLM. 
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Chapter Five  

Conclusion 

5.1 Research summary 

Highway user crash severity levels of at-grade highway-rail crossing were 

modeled using logistic regression techniques. In addition, comparison was conducted 

between the MNLM and OLM crash severity level models that are developed using the 

same data set. As described in the methodology, only vehicle and pedestrian crashes on 

HRGC were considered in this research. The three crash severity levels, fatality, injury 

and no injury were considered as dependent variables. Pedestrian characteristics, vehicle 

and vehicle user characteristics, environmental factors, type of development area, 

highway-rail crossing characteristics, highway traffic characteristics, vehicle speed and 

train speed were the explanatory variables used in predicting the crash severity levels. 

The analysis was conducted using SAS PROC LOGISTICS procedure. In order to retain 

some of the variables, those within 90 percent confidence level were considered 

statistically significant. Some of the variables were found to be statistically significant 

even at 95 percent confidence level. 

The main goals of this research were to model the crash severity levels and to 

identify the various factors contributing to different highway user crashes on HRGCs. 

The result obtained from the pedestrian crash severity modeling indicated that higher 

train speed as compared to lower train speeds are associated with fatal pedestrian crashes.
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Reducing the train speed near the HRGC sites would minimize the chance of a 

pedestrian crash to be fatal. As the study showed, HRGCs located in the city have 

increased the chance of fatal crashes as compared to those located near the city. Hence 

considerable train speed reduction in the cities would help in reducing fatal crashes. It 

was also observed that female pedestrians are more likely to involve in a crash as 

compared to male pedestrians. Educating pedestrians through various communication 

means would help in reducing the number of female victims in pedestrian-rail crashes. 

The majority of crashes occurred are when the rail equipment struck a pedestrian which 

indicates that train speed reduction would give pedestrians sufficient time to leave the 

crossing and possibly avoid the crash. Crossing surface types and outdoor temperature 

result in more severe injury type crashes. Improving the crossing surface types and 

educating pedestrians would help to minimize the impact of such factors. 

The result obtained from the vehicle crash severity model indicated that both 

higher vehicle and train speed increased the chance of injury and fatal crashes. The 

majority of crashes occurred are when the rail equipment struck a vehicle. In particular, 

these types of crash circumstances increased the chance of fatal crashes. Hence, reducing 

train and vehicle speed on HRGC would minimize the chance of more severe crashes. 

Among the various vehicle types, a pick-up truck is observed to increase the chance of 

injury related crash. It was also observed that male drivers with the age of above 60 years 

are more likely to be involved in an injury related or fatal crash compared to female 

vehicle drivers. Moreover, crashes that occurred at higher outside temperature increased 

the probability of fatal and injury crashes as compared to crashes occurred at low 

temperature. Therefore, educating vehicle drivers to increase their awareness towards the 
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problem would help in reducing chances of severe vehicle-rail crashes. Concrete and 

rubber crossing surface type is related with fatal crashes. Improving the crossing surface 

type would minimize the number of fatal crashes. 

The other goal of this thesis was to perform model comparison between 

multinomial and ordered logit models. As discussed, in the ordered logit pedestrian-rail 

crash severity level model, some variables which are statistically significant in the 

MNLM were found to be statistically not significant. In addition, there are some 

inconsistencies observed in some other variables. The multinomial logit model has an 

increasing effect on the probability of lower severity level where as the ordered logit 

model has a decreasing effect. On the other hand, the ordered logit model has an 

increasing effect on the probability of intermediate severity level and the reverse is true in 

the case of multinomial logit model. Furthermore, based on the AIC, it was found that the 

OLM is better in estimating the vehicle crash severity levels on HRGCs. Therefore, the 

researcher recommends the OLM to be applied rather than the MNLM in modeling 

pedestrian crash severity levels on HRGCs.  

In the ordered logit vehicle-crash severity level model also, some variables that 

are not statistically significant in the MNLM were found to be statistically significant. 

Apart from this, almost all variables were found to have the same effect on the 

probability of crash severity levels except one variable (crash circumstance). Based on 

the AIC, it was found that the OLM is better in predicting vehicle crash severity levels on 

HRGCs. Similarly to the pedestrian crash severity model, the researcher recommends the 

OLM be applied rather than the MNLM in predicting severity levels of vehicle-rail 

crashes on highway-rail at-grade crossings.  
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5.2 Future research 

There are various alternative modeling techniques in addition to the models used 

in this research. Savolainen et al. (4) briefly discussed and summarized the wide range of 

methodological tools applied to study the impact of various factors on motor vehicle 

crash-injury severities. As presented in the thesis, ordered logit and prohibit, multinomial 

logit, binary logit and binary probit and nested logit are some of frequently used 

statistical methodologies. In addition to models adopted in this research, those various 

models should be applied in modeling crash severity levels as a function of different 

factors involved in the highway-rail crashes on at-grade crossings. In general, there is 

little research conducted on highway-rail at –grade crossing crash severity level 

modeling. Therefore, the researcher recommends intensive studies to be conducted in 

modeling highway user crashes on HRGCs.   

In this research, the crash severity modeling was conducted only for crashes on 

public HRGCs. The modeling should also be extended for crashes on private crossings. 

In addition, this research focused on vehicle users and pedestrian crash with rail on 

highway-rail at-grade crossings. The study should also be extended for other highway 

user categories such as bicycle and motorcycle users.  
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