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This thesis discusses the design and experimental evaluation of a novel seismic-

resistant reinforced concrete (RC) coupled shear wall system. In this system, the widely-used 

unbonded post-tensioned floor slab construction method is adapted to couple (i.e., link) two 

RC wall piers, providing significant performance and construction benefits over conventional 

RC coupling beams in high seismic regions. Previous experiments of post-tensioned coupled 

wall structures are limited to floor-level coupling beam subassemblies. The current study 

extends the available research to multi-story structures by construction and testing of a 15% 

scale eight story prototype specimen. This test is monitored by four digital image correlation 

systems simultaneously in order to gather data from all necessary areas of the specimen. The 

experimental specimen includes the foundation, the first three floors of the shear walls, and 

the associated coupling beams.  The upper stories of the building are simulated with 

hydraulic jacks that supply the appropriate bending moment, shear, and axial forces at the top 

of the laboratory structure. This thesis compares the measured displacements and derived 
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parameters of the laboratory structure measured by the digital image correlation systems with 

predictions from design models. Experimental and design predictions of several key behavior 

parameters are shown to match well.  Several design parameters that are unable to be 

measured from the specimen are able to be predicted using the validated models. 

Coordination of the four simultaneous digital image correlation systems presented some 

challenges – recommendations for future deployment are discussed. Future work involves the 

construction and testing of large scale (40%) specimens to validate the approach.  
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CHAPTER 1: INTRODUCTION 

1.1 Project Motivation 

Reinforced concrete coupled shear walls are a commonly used lateral load system 

in high-rise condominium, hotel, and office towers in the U.S. These structures are 

constructed by placing coupling (i.e., link) beams at the floor and roof levels to transfer 

forces between the wall piers and also dissipate energy during an earthquake. The 

resulting system is stronger than the sum of the wall piers, allowing for efficiency in 

design; however, the detailing and construction of the coupling beams pose significant 

challenges due to the presence of large reversed cyclic rotation demands under large 

shear forces. 

To achieve ductile behavior, the most common practice for RC coupling beams in 

seismic regions is the diagonally reinforced system (Barney et al. 1978; Tassios et al. 

1996; Bristowe 2000; Galano and Vignoli 2000; Canbolat et al. 2005).  As shown in Fig. 

1.1(a), the placement of two intersecting groups of diagonal reinforcing bars through the 

beam and into the wall piers is a major challenge in practice. More recently a new type of 

hybrid coupled wall system using steel beams that are not embedded in the walls has 

been investigated (Shen and Kurama 2000, 2022a, b; Kurama and Shen 2004; Kurama et 

al.2004, 2005; Shen et al. 2005a, b). Instead of traditional embedding, the beams and wall 

piers are post-tensioned together to create coupling in the system. Post-tensioned 

coupling beams offer significant advantages over the conventional coupling systems 

made with monolithic concrete and embedded steel beams: simpler and less costly 
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construction details, a reduction in the damage in the structure, and a self-centering 

capability of the structure. The research conducted by Shen and Kurama 2000 utilized 

steel coupling beams, while the research discussed here uses post-tensioned reinforced 

concrete beams for coupling (Fig. 1.1b). Concrete coupling beams are advantageous 

because of the consistency in materials used, less complex beam to wall joints, as well as 

an increase of fire and environmental protection for the post-tensioning tendons. The new 

system eliminates the diagonal reinforcement by using a combination of high-strength 

unbonded post-tensioning (PT) steel with top and bottom horizontal mild steel (U.S. 

Grade 60) reinforcing bars to develop the coupling forces. The PT force is provided by 

multi-strand tendons placed inside ungrouted ducts (to prevent bond between the steel 

and concrete) through the center of each coupling beam and the wall piers. The mild steel 

bars at the beam ends are designed to yield and dissipate energy while the PT tendon 

gives the system self-centering capability, thus creating an efficient structure. 
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1.2 Research Relationships 

The University of Texas at Tyler, the University of Notre Dame and Lehigh 

University have been funded by NEESR in a joint effort to conduct system-level 

experimental and analytical research on unbonded post-tensioned coupled shear wall 

systems. This research is conducted because of the potential of these structures to provide 

significant construction and performance benefits and the potential of the structures to 

survive severe earthquakes with little structural damage. As a part of the study, analytical 

and numerical work has been conducted, supported by large scale testing involving novel 

data collection methods. The culmination of the NEESR work will be design, 

construction and testing of 40% scale structures, with construction and testing taking 

place at the Lehigh NEES site. UT Tyler's main responsibility in the project is the 

deployment of multiple DIC systems to enhance understanding of coupled shear wall 

systems and to aid in validating the structural behavior of models. This thesis describes 

the testing of a 15% scale multi-story structure at UT Tyler.  Previous experiments on the 

use of unbonded post-tensioning to couple RC walls are limited to isolated floor level 

 
 

(a) (b) 

Figure 1.1: RC coupling beams: (a) diagonally reinforced beam (courtesy, Magnusson Klemencic 
Associates); (b) proposed post-tensioned beam 
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subassembly studies (Weldon and Kurama 2007, 2009, 2010).  The UT Tyler test is the 

first known test of a multi-story post-tensioned coupled wall system. 

1.3 Research Significance and Scope 

The project requires four 3D-DIC systems to be deployed simultaneously during 

testing; this is a new concept as simultaneous deployment has not been utilized in 

structural testing of buildings to date. This thesis covers the design, construction and 

analysis of a 15% scale prototype coupled wall system, and its testing under simulated 

earthquake loading while being monitored by multiple 3D-DIC systems. Some Specific 

Tasks to be achieved by this thesis are given below: 

 Design and Construct a 15% Scale prototype coupled wall system using post-

tensioning.  

 Test the prototype under earthquake simulation in order to determine the 

structural behavior of the specimen. 

 Monitor the specimen during testing with multiple DIC systems to collect the 

greatest data possible from every iteration of the test.  

 Analyze the data collected from DIC systems and traditional data collection 

systems, compare and validate the data sets.  

 Compare collected data with analytical analysis using finite element analysis to 

corroborate results and structural behavior.  

Some Specific Goals of this thesis are given below: 

 Perform the first ever physical model testing of a multi-story reinforced concrete 

coupled wall system.   

 Provide data to validate the novel deployment of multiple DIC systems 
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simultaneously. 

 Validate the analysis technique used here for testing coupled wall systems.   

 Establish actual structural behavior of reinforced concrete coupled wall systems.  

 Recommend improvements on data collection procedure using this technology, 

and conclude whether the coupled wall system is a valid system for actual 

construction.  

1.4 Summary of Findings 

A 15% scale prototype coupled wall system using post-tensioning was designed 

and constructed. The prototype was then tested to determine the structural behavior of the 

specimen. During testing, four DIC systems were simultaneously deployed to monitor the 

specimen, collecting the greatest amount of data possible from every iteration of the test. 

It is believed that this test represents the first instance of four DIC systems being 

deployed simultaneously as part of a building structure test. The data collected from the 

DIC systems and other traditional data collection systems (digital pressure gages, load 

cells and string potentiometers) were compared to validate the data. Furthermore, the data 

was further validated using finite element analysis, corroborating results and structural 

behavior. This thesis presents the first ever physical model testing of a multi-story 

reinforced concrete coupled wall system.  

The following major conclusions are made based on the results presented herein: 

 The 15% scaled model behaved as expected and showed some of the anticipated 

benefits of a coupled wall system.  

 It is possible to coordinate multiple digital image correlation systems 

simultaneously, and use data collected from multiple systems interactively.  
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 The relatively simple modeling tools that were employed appear to capture the 

system behavior well.  

 There are several limitations of the current experimental setup, the three major 

being:  

(1) Scaling the specimen meant that C-shaped walls became 

rectangular shaped, the slabs at the floor levels and energy dissipation steel in 

the coupling beams could not be included;  

(2) The forces in the beam post-tensioning cables were less than as 

designed, and  

(3) The tension reinforcement necessary to resist the base moment in 

each of the piers pulled out of the structural couplers in the foundation at 

lower than the design load. 

 A detailed data set characterizing the deformations of all the elements of a multi-

story coupled wall system has been presented and is available for use in 

calibrating more complex models.  

In each of these areas, the following additional conclusions are noted: 

SYSTEM BEHAVIOR 

 The design procedure for the post-tensioned coupled wall system yielded a 

structure that performed as expected, and the analytical models yielded 

predictions in good agreement with measured behavior.   

 As expected, the neutral axis depth decreased as the drift of the system increased. 

However, the measured results indicate that the tension pier does not necessarily 

have a smaller neutral axis depth for the duration of the test. This is believed to be 
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caused by the rebar pull-out at the foundation-pier joint which could have 

occurred unequally or at different loads in the two wall piers. 

 The curvature in the piers due to axial elongation in the beams is illustrated 

through the deflected shape profile. 

 The strain maps generated by the DIC showed that for phases I and II tension 

cracking occurred in the tension (West) pier while shear cracking was shown in 

the compression (East) pier. For phase III, the strain maps showed tension 

cracking in both piers due to existing cracks in the tension pier (West) from the 

previous testing phase.  

 The strain maps generated by the DIC were also able to validate the use of the 

2D-DIC systems at the bases of the piers by establishing small out-of-plane 

movements.  

 When considering drift, the results for gap openings correlate well with the 

numerical model generated by ABAQUS.  

 The deflected shape of the beams at all stories show little curvature; the system is 

dominated by rigid body movement. 

 In the experiments, the axial elongation of the beams was similar in phase I and 

phase II for all three stories. In phase III, the 3
rd

 story beam elongated 

significantly less than the other stories.  

 The foundation did not contribute to rotation, slip or uplift during the test. 

MULTIPLE DIGITAL IMAGE CORRELATION 

 The use of multiple DIC systems provides a much larger supply of information 

about the specimen and helps to better establish its overall behavior.  
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 Because the data was collected the same time for each system, the information 

from more than one system can be used to calculate a single parameter.  

 This data could not have been captured so easily or at all with traditional 

measurement techniques. A single DIC system could not have captured enough 

data to establish the behavior of the specimen. This test could only realistically 

have been conducted using multiple DIC systems.   

ANALYTICAL MODELING 

 The simple ABAQUS model created appears to provide reasonable results as it 

matches the experimental deformation data well; it also matches the more 

complex DRAIN-2DX model reasonably.  

 The amount of angular gap opening at the beam ends was consistent with the 

predicted angular openings produced by the ABAQUS model. 

 The deformations presented in Chapter 7 correlate well between the measured 

DIC data and the ABAQUS model results.  

 The ABAQUS  model and DRAIN-2DX model response quantities (pier base 

moment, base shear, and axial forces, beam end moment, end shear, and axial 

forces) match reasonably well, given the simplicity of the ABAQUS model, 

especially considering the elastic-plastic behavior of the concrete material 

properties.  

 The ABAQUS model appears to provide a reasonable alternative for preliminary 

design and behavior characterization, given its relative simplicity. This data set is 

now available for calibrating more complex coupled wall system models. 

 The ABAQUS deflected shape of the beams at all stories also show little 
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curvature; the center lines of the deflected shapes are essentially straight. As with 

the pier deflections, the values did not correlate well with the ABAQUS model at 

similar applied lateral loads, but when compared according to drift, the behaviors 

were comparable.  

SYSTEM LIMITATIONS 

 Because of the limitations, the specimen did not reach the expected design load of 

coupled wall system. Notwithstanding, the structure was scaled appropriately.   

 When considering the rotations of the pier bases during the test, it is clear that the 

expected rotations, even when comparing drift, are much smaller than the 

measured rotations. This is potentially due to the rebar in the base of the piers 

pulling out of the foundation during testing.  

 Error in the pretensioning of the gravity cables and the beam story cables likely 

had very little effect on the structure’s response.  

 The effectiveness of the moment steel crossing the foundation pier joint greatly 

affects the behavior of the coupled wall system. This is the greatest contributing 

factor to the difference between measured and expected results.  

 The issue of rebar pull-out can be avoided completely by casting the entire system 

at the same time rather than casting separately and grouting the wall piers into 

place.  

 While post-tensioning the cables in the system, the cables in the beams were post-

tensioned consecutively and therefore the force in the cables that were post-

tensioned first decreased as the others were put into tension. To address the first 

problem, depending on the type of machine used for post-tensioning, it is 
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recommended that a pressure measurement device be applied to the machine so 

that the tension applied can be monitored during application. 

1.5 Organization of the Thesis 

The remainder of this thesis is organized as follows: 

Chapter 2 – Background: This chapter provides a review of the technologies used 

in this research as well as a brief review of past research conducted on reinforced 

concrete coupled wall systems. The impact of previous research on the current project is 

also discussed.  

Chapter 3 – Apparatus and Instrumentation: This chapter provides general 

information for all apparatuses and instrumentation used for testing. A review is provided 

of the layout, design and capacity of the structure supporting the forces being applied to 

the specimen, hereafter to be called the load frame. Information regarding the 

implementation and use of digital image correlation systems as well as the specifications 

of the systems used is provided. Information pertaining to the iNET data collection 

system and associated parts and load cells is also given in this chapter.  

Chapter 4 – Specimen Design: A description of the target model, 15% UT Tyler 

model, and the decisions that created the final design are given in this chapter, as well as 

the strong floor anchorage system, also called tie-downs.  

Chapter 5 – Construction and Materials: This chapter describes the methods of 

construction for the 15% model used in this project, the materials used in construction, 

and their properties. 

Chapter 6 – Test Protocol: This chapter describes how the test was completed and 

how the multiple digital image correlation systems were coordinated during testing.  
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Chapter 7 – Experimental Results: This chapter covers the results interpreted from 

the data collected during experimental testing. These results are based on the measured 

data from the iNET system and the digital image correlation systems.  

Chapter 8 – Finite Element Analysis: This chapter provides the descriptions of 

both ABAQUS and DRAIN models. Additionally, a parametric study based on the 

ABAQUS model, and a comparison of the results from ABAQUS and DRAIN-2DX is 

presented.   

Chapter 9 – Conclusions and Recommendations: The last chapter of this thesis 

provides a verification that the purpose of the thesis has been fulfilled, a brief look into 

the future work of the NEES project, recommendations for the future experimental and 

analytical research, and conclusions made about this project.  
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CHAPTER 2: BACKGROUND 
 
 This chapter provides a brief review of past research conducted on coupling wall 

systems that have led to the current research conducted for this thesis, specifically the 

research of traditional coupling beam systems, embedded steel beam coupling systems, 

non-embedded steel beam systems, unbonded post-tensioned precast coupling beam 

systems, and multistory post-tensioned reinforced concrete coupled wall systems. The 

impact of previous research on the current project is discussed. The basic theory of digital 

image correlation systems is highlighted to include any weaknesses of the method and 

any previous applications of the system. This portion validates the ability of the digital 

image correlation systems to accurately and efficiently collect the pertinent data for this 

test.  

2.1 Previous Research 

Reinforced concrete coupled shear wall structures are commonly used in the 

United States as the primary lateral load resistance system in multistory buildings. The 

lateral stiffness and strength of concrete walls can be significantly increased by coupling 

the walls. The typical coupled wall system consists of two or more vertical shear wall 

piers connected by coupling beams which are placed at floor and roof levels to disperse 

shear and dissipate energy over the height of the structure. Traditionally, researchers 

focus on cast in place reinforced concrete coupling beams that are embedded into the wall 

structure (e.g., Harries et al. 2000; Harries 2001). To achieve ductile behavior, the most 
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common practice for RC coupling beams in seismic regions is the diagonally reinforced 

system (Barney et al. 1978; Tassios et al. 1996; Bristowe 2000; Galano and Vignoli 2000; 

Canbolat et al. 2005).  As shown in Fig. 1(a), the placement of two intersecting groups of 

diagonal reinforcing bars through the beam and into the wall piers is a major challenge in 

practice. For seismic conditions, ACI 318 (2011) entails extensive requirements for the 

design and detailing of coupling beams. The primary reinforcement in these types of 

beams is two groups of diagonal bars from one corner to the other diagonal corner of the 

beam. These diagonal bars are confined by transverse reinforcement across the span of 

the beam and anchored into the walls.  

Because of the difficulty in constructing this type of coupling beam, different 

types of coupling beams have been investigated. The first progression into coupling wall 

systems was the embedded steel coupling beam. Previous researchers (Shahrooz et al. 

1993; Harries et al. 1993, 2000; El-Tawil et al. 2002) have shown that the lateral stiffness 

and strength of concrete walls can be significantly increased by coupling the walls using 

these embedded steel beams. Because of the difficulty in properly embedding steel into 

concrete walls, whether a steel beam or diagonal rebar reinforcement, without causing 

damage to the walls, a new type of coupled wall system using steel beams that are not 

embedded in the walls has been investigated (Shen and Kurama 2002; Kurama and Shen 

2004), with the use of post-tensioning cables, previously used for post-tensioned mat 

foundations, to support non-embedded steel coupling beams. Post-tensioned coupling 

beams offer critical advantages over the conventional coupling systems made with 

monolithic concrete and embedded steel beams, such as simpler, and therefore less costly, 

construction details, a reduction in the damage in the structure, and a self-centering 
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capability of the structure.  

The research conducted by Shen and Kurama 2000 utilized steel coupling beams, 

while the research discussed here uses precast reinforced concrete beams for coupling. 

Concrete coupling beams are advantageous because of the consistency in materials used, 

less complex beam to wall joints, as well as an increase of fire and environmental 

protection for the post-tensioning tendons. Previous experiments on the use of unbonded 

post-tensioning to couple RC walls are limited to isolated floor level subassembly studies 

(Weldon and Kurama 2007, 2009, 2010). The research presented here is the first known 

physical experimental evaluation of a multi-story post-tensioned coupled wall system. 

This section represents an overview of previous research conducted on coupling wall 

systems. 

2.1.1 Traditional Coupling Beam Studies 

 Traditionally, researchers focus on coupling beams that are cast in place 

reinforced concrete coupling beams that are embedded into the wall structure (e.g., 

Harries et al. 2000; Harries 2001). To achieve ductile behavior, the most common 

practice for RC coupling beams in seismic regions is the diagonally reinforced system 

(Barney et al. 1980; Bristowe 2000; Galano and Vignoli 2000; Canbolat et al. 2005).   

2.1.1.1 Barney et al. 1980 

The current ACI 318 shear strength limit for RC coupling beams was adopted 

based on experimental testing presented in Barney et al. (1980). A total of 8 beam 

specimens were tested under reversed-cyclic loading to failure; two of these beams were 

diagonally-reinforced. The testing conducted was approximately one third scale and 

tested a coupled wall system consisting of two coupling beams embedded in abutment 
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walls. Figure 2.1 shows the layout use in Specimen C6 of Barney’s testing which 

included diagonal reinforcement. The results of the tests indicated relative influence of 

different reinforcement details on the hysteretic response of coupling beams, but they do 

not indicate a system that is better overall for all situations. For very short beams under 

severe earthquake loads, the diagonal reinforcement may be the best solution, but for 

other situations, conventionally reinforced beams might be adequate.  

  

2.1.1.2 Bristowe 2000  

 Bristowe explored the possibilities of different arrangements of reinforcement for 

reinforced concrete coupling beams using high-strength concrete. Six specimens were 

constructed using normal and high-strength concrete and contained varying amounts of 

transverse reinforcement consistent with both beam and column detailing requirements 

for different ductility levels. His tests examined the influence of several parameters, 

including the effect of confinement, bar buckling and concrete strength. Bristowe’s beam 

Figure 2.1: Barney et al. Specimen C6 (adopted from Barney et al. 1980) 



16 
 

(N1 and H1) reinforcement layout (Figure 2.2) did not use diagonal reinforcement. Beam 

N1 was constructed using normal strength concrete while beam H1 used high-strength 

concrete, their reinforcement was identical. Each beam was subjected to reverse cyclic 

loading in an isolated beam simulation of seismic activity. These beams experienced 

buckling in the lateral reinforcement which caused spalling and decreased performance. 

This is to be expected at such severe seismic loading. These tests concluded that the large 

side cover on the beams caused the spalling to be a major event in the performance of the 

beams, and that the specimens constructed with high-strength concrete performed as well 

or better that the normal strength concrete beams.  
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2.1.1.3 Galano and Vignoli 2000 

 Galano and Vignoli (2000) tested two diagonally-reinforced coupling beams with 

the same dimensions, but each beam had different reinforcement details (Figure 2.3), b1 

and b2 respectively, and material properties. The primary difference between the two 

beams was the transverse ties that confined the diagonal bar groups in layout b2. A 

different beam type was also constructed to evaluate the value of the new “rhombic”, 

Plan View 

Figure 2.2: Bristowe (2000) Specimen N1 and H1 
Reinforcing Details (adopted from Bristowe 2000) 
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layout c, reinforcement design (Figure 2.3). The three beams were tested as isolated beam 

structures under reversed cyclic loading. The beams constructed using layout c showed 

improved ductility and dissipated energy during testing. The authors concluded that the 

rhombic layout of the main reinforcements gave the highest ductility values, but 

produced lower values of strength with the same geometrical percentage of steel area as 

its diagonally-reinforced counterparts.  
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Figure 2.3: Galano and Vignoli (adopted from Galano and 
Vignoli): includes design layouts b1, b2 and c respectively 
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2.1.1.4 Canbolat et al. 2005 

 Canbolat et al. (2005) describes the testing of an isolated short diagonally-

reinforced coupling beam. Similar to Galano and Vagnoli (2000), the diagonal bars were 

confined by transverse hoops. The conclusion of the testing was that the coupling beam 

provided efficient energy dissipation even at larger drifts based on the lack of buckling 

and anchorage problems in the diagonal reinforcement. The reinforcement layout is 

provided below in Figure 2.4. 

 

 

2.1.2 Embedded Steel Coupling Beam Studies 

 Previous researchers (e.g., Shahrooz et al. 1993; Harries et al. 1993, 2000; El-

Tawil et al. 2002) have shown that the lateral stiffness and strength of concrete walls can 

be significantly increased by coupling the walls using embedded steel beams. These 

systems are often referred to as ‘‘hybrid’’ coupled wall systems. The term hybrid has 

come to have many meanings in engineering; in this case it refers to the use of steel 

instead of reinforced concrete for the coupling beam.  

Figure 2.4: Canbolat et al. (adopted from Canbolat et al. 
2005) Reinforcement Details for Coupling Beam 
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2.1.2.1 Shahrooz et al. 1993 

 To investigate the fundamental cyclic response of this hybrid structural system 

using embedded steel coupling beams, three half-scale subassemblies were designed, 

constructed, and tested by Shahrooz et al. 1993. Each specimen consisted of a wall pier 

and a stub beam embedded in the wall to represent one-half of a coupling beam. The steel 

coupling beams were found to perform satisfactorily for energy dissipation, but the level 

of coupling between the steel beams and reinforced concrete walls is limited. The 

reinforcement details for the wall and beam interface is given in Figure 2.5.  

 

2.1.2.2 Harries et al. 1993, 2000 

 Harries et al. 1993 conducted tests similar to those by Shahrooz et al. 1993 except 

Figure 2.5: Shahrooz et al. 1993 (adopted from Shahrooz et al. 1993): a) Elevation View, 
b) Beam Location (Global Perspective) and c) Side View (Wall and Beam Details) 
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that the steel coupling beams in Harries et al. 1993 were designed with stiffeners in order 

to increase the stiffness at the beam to wall interface. In these tests it was concluded that 

the stiffeners were useful in dissipating energy and feasible because although they 

experience severe damage, they can be easily replaced after seismic activity. 

 Harries et al. 2000 compares the common reinforced concrete reinforcement 

styles, longitudinally reinforced and diagonally reinforced. This paper reviewed the 

current state of the art for the design of conventional reinforced concrete, diagonally 

reinforced concrete, steel and composite steel-concrete coupling beams. The steel 

coupling beam concept presented here is slightly different than that of Harries et al. 1993 

because the steel beams are also presented in a composite form, encased in concrete for 

better wall to beam coupling. This is not an experimental program, but a review of other 

research and their differences.  

2.1.2.3 El-Tawil et al. 2002 

 El-Tawil et al. 2002 provided the testing of the hybrid steel coupling wall 12 story 

system with a static cyclic pushover loading of an analytical model. In the first portion of 

the publication, the setup, manner of loading, and experimental results for the tests are 

presented. In the second portion of the publication, the finite element analysis is provided 

and discussed. The conclusion of this project was that although steel coupling beams are 

well suited for moderately coupled hybrid wall systems, overcoupling of the system can 

lead to cracking due to higher shear and compressive axial loads. 
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2.1.3 Non-embedded Steel Coupling Beam Studies 

 Because of the difficulty in properly embedding steel into concrete walls, whether 

a steel beam or diagonal rebar reinforcement, a new type of hybrid coupled wall system 

using steel beams that are not embedded in the walls has been investigated (Shen and 

Kurama 2002; Kurama and Shen 2004). 

2.1.3.1 Shen and Kurama 2002 

 Shen and Kurama 2002 investigates a different method of coupling beams than 

previously discussed. This new method uses unbonded post-tensioning to couple steel 

beams into concrete walls to achieve coupling without embedding the steel beams into 

the concrete walls. Based on their analytical modeling, the possibilities of the 

Figure 2.6: El-Tawil et al. 2002 (adopted from El-Tawil et al. 2002) Plan 
View of U.S.-Japan Theme Structure (all dimensions in millimeters) 
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effectiveness of this type of hybrid coupling wall system are substantial. First, the steel 

coupling beam could be added to existing shear walls because this method does not 

require embedding into the concrete walls. Second, because the steel beam does not 

behave in a monolithic manner with the shear walls, most of the damage can be contained 

to the angles that support the steel beam at the wall to beam interface. Also, the post-

tensioning force provides a restoring force that pulls the walls and the beams back toward 

their undisplaced position, providing a large self-centering capability. This is all done 

without the loss of initial stiffness of the original system or performance during loading.  

2.1.3.2 Shen and Kurama 2004 

 Shen and Kurama 2004 discusses the same method of coupling concrete walls 

using unbounded post-tensioned steel beams without embedding the beams into the walls. 

In this publication the method is analytically evaluated both in the nonlinear behavior of a 

floor level coupled wall subassemblage as well as multi-story coupled wall structures 

under lateral loads. The experimental investigation of Shen and Kurama 2004 was 

conducted on half scale coupled wall subassemblies. The conclusion of the extensive 

research conducted there was that unbounded post-tensioned steel beams provide an 

effective and feasible system to couple reinforced concrete wall piers in seismic regions. 

It is important to note that Shen and Kurama 2004 established that the kinking of the 

post-tensioning strands at the beam to wall interfaces during loading does not have 

adverse effects on the performance of the post-tensioned cables.  

2.1.4 Unbonded Post-tensioned Precast Coupling Beam Studies 

 Although the research conducted by Shen and Kurama 2004 concluded that non-

embedded steel coupling beams were an effective tool for coupling wall systems, 
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research for post-tensioned coupling systems has been extended to precast concrete 

beams (Weldon and Kurama 2005, 2007, 2010). These tests are the most directly 

applicable to the current research.  

2.1.4.1 Weldon and Kurama 2005 

 Weldon and Kurama 2005 evaluated the behavior of unbounded post-tensioned 

precast coupling systems through analytical modeling. Unbonded post-tensioned 

coupling beams offer many advantages including reduced damage to the overall structure, 

significant self-centering capability, and simpler design and construction for the beams 

and the wall piers. These advantages are similar to those experienced through the use of 

their steel counterparts.  

2.1.4.2 Weldon and Kurama 2007 

 Weldon and Kurama 2007 provides a description of the nonlinear reversed cyclic 

behavior of precast concrete coupling beam subassemblies. This publication shows the 

results for experiments conducted on a half scale wall assembly including a coupling 

beam and the adjacent concrete wall regions at a floor level. Weldon and Kurama 2007 

concluded that although the strength, stiffness, and self-centering capability of the test 

beam were limited by the deterioration of the patched concrete at one end of the beam 

and the premature fracture of beam post-tensioning strand wires inside the performance 

in these categories of the precast concrete beam was better than any monolithic concrete 

coupling beam, including systems with diagonal reinforcement. The experimental 

findings here corroborated the conclusions based on analytical data from Weldon and 

Kurama 2005.  
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2.1.4.3 Weldon and Kurama 2010 

 This publication builds on the earlier work conducted by Weldon and Kurama 

(2005, 2007) by presenting the results from a subsequent experimental program which 

conducted experimental testing on four half scale precast concrete coupling beams. This 

is essentially an extension of the work conducted for Weldon and Kurama 2007, verifying 

the earlier conclusions with more testing.  

2.1.5 Multistory Post-Tensioned Reinforced Concrete Studies  

Previous experiments on the use of unbonded post-tensioning to couple RC walls 

are limited to isolated floor level subassembly studies (Weldon and Kurama 2007, 2009, 

2010).  Analytical models have been created to simulate a multi-story system, but the test 

represented in this thesis is the first known physical experimental evaluation of a multi-

story post-tensioned coupled wall system. 

Figure 2.7: Weldon and Kurama 2007 (adopted from Weldon and Kurama 2007) 

Test set-up: a) Elevation View; b) Beam End View; c) Beam-to-Wall Connection 
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2.2 Digital Image Correlation Systems 

 The section presents the important background information pertaining to digital 

image correlation systems which were used to record data during testing including the 

history of the method, basic theory, common sources of error, weaknesses of the method, 

and previous application of the method. 

2.2.1 History of Digital Image Correlation Systems 

 Digital image correlation refers to the type of non-contacting methods that acquire 

images of an object, store those images in digital form and perform image analysis to 

extract full field of measurements for patterned objects in the images. The image analysis 

that calculates the displacements from the digital images is based on the basic principle 

called photogrammetry.  

With the invention of photographic methods, photogrammetry has developed into 

four major phases (Sutton et al. 2009): (1) plane photogrammetry (1850-1900), (2) analog 

photogrammetry (1900-1950), (3) analytical photogrammetry (1950-1985) and (4) digital 

photogrammetry (1985-Present). Although only digital photogrammetry is directly used, 

the three prior phases contributed greatly in the mathematical developments they 

established. The most important of these being the relationship between projective 

geometry and perspective imaging (Sturms and Haick 1883), the fundamental geometry 

of photogrammetry (Finsterwald 1899), the projective equations and their differentials for 

stereo-imaging (Otto von Gruber 1924), simplified analytical solutions to the equations of 

photogrammetry (Church 1945) and the development of the principles of modern multi-

station analytical photogrammetry using matrix notation (Schmid 1953).    

As digitized images became available in the 1960s and 1970s, researchers began 



28 

 

to develop methods for digitally recording images containing measurement data, to 

generate algorithms to analyze the digital images and extract measurement data, and to 

create approaches for automating the entire process. 2D digital image correlation (2D-

DIC) was the first progression from photogrammetry principles to correlation systems. 

This system allows the displacements in plane to be measured from collected digital 

images. 2D-DIC was used extensively, and continues to be used today, for fracture 

mechanics: studying the propagation of cracks that cannot be seen on the surface by 

tracking the deformations and calculating the stresses and strains for measured areas. 2D-

DIC is not limited to this field; it is capable of measuring in plane displacements for most 

any material or object. Since 2D-DIC requires predominantly in-plane displacements and 

strains, relatively small out-of-plane motion will change the magnification and introduce 

errors in the measured in-plane displacements (further discussion can be seen in Section 

2.3.2).  

3D digital image correlation (3D-DIC) is similar to the 2D-DIC in that it also 

measures displacements; it is different in that 3D-DIC is capable of measuring the out-of-

plane displacements and also account for them in the in-plane displacements. Morimoto 

and Fuligaki were the first to discuss the use of multiple cameras with images of a 

deforming rectangular grid and Fast Fourier transform methods for image analysis and 

surface motion estimates in 1993. Chao et al. (1994) successfully developed, automated 

and applied a two-camera stereo vision system for the measurement of three dimensional 

crack tip deformations. Because of the nature of the data collections process, from 

recording images to extracting information, processing any full field of measured data 

efficiently could only be done with advent of the high-speed computer. These are various 
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examples of 3D-DIC research that encompass progress of the application and feasibility 

of the system. As a result of the developments which have occurred in recent years, 3D-

DIC is now being used for a wide range of applications on both large and small structures 

(further discussion can be seen in Section 2.3.5).  

2.2.2 Basic Theory 

 Digital Image correlation was first conceived for measuring deformations 

incurred by a nominally planar object that is subjected to loading resulting in 

predominantly in-plane motions. This method has been designated 2D digital image 

correlation (2D-DIC). This method is limited to monitoring the in-plane motions. Once 

the motions within the sensor’s plane are determined through subset matching, scale 

factors are used to convert the data into object measurements. The two dimensional (2D) 

surface strains on the object are extracted using continuum mechanics principles and 

estimated gradients in the surface displacement components. In order to measure the out-

of-plane displacements, another system was developed: three dimensional digital image 

correlation (3D-DIC).  

In 3D-DIC, the measured object is photographed with a pair of digital cameras 

(Figure 2.8) before, during and after a load event and a stochastic pattern marked on the 

object is tracked from one set of images to the next such that a full field of displacements 

is derived. The experimental set-up at UT Tyler is designed to develop a protocol for 

deploying multiple DIC sensors simultaneously during the same structural test.  For the 

locations and calibration details of the DIC systems used during testing see Chapter 3. 

The experiment is designed to allow four camera pairs to capture the deformations of key 

structural components of a coupled post-tensioned shear wall system. 
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3D-DIC (Tyson et al. 2002) combines techniques of image correlation with 

photogrammetric location principles. In photogrammetry, multiple photographs (from 

different orientations) of a series of targets are captured in order to determine the 3D 

coordinates of the targets.  Three major analytical functions that must be performed to 

analyze photogrammetric data are: (1) triangulation; (2) resection (the process of 

determining the camera’s position and orientation); and (3) self-calibration of the camera 

to eliminate errors such as those due to lens and camera imperfections, temperature and 

humidity effects, etc.  Accuracy and precision in industrial photogrammetry are related to 

the size of the measured object and numerous other factors, including the resolution of 

Figure 2.8: 3D-DIC Physical Setup 
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the captured images, camera calibration, angles between captured photos, redundancy in 

the appearance of targets appearing in multiple images, and the placement of the targets. 

For DIC, sample preparation consists of applying a regular or random pattern with 

good contrast to the surface of the measured object.  The pattern will then deform with 

the object under load.  For 3D-DIC, the object is captured in a stereo pair of high quality 

cameras while it is loaded.  Typically, these two cameras are mounted at either end of a 

base bar such that their relative position and orientation with respect to one another is 

fixed and known (Figure 2.8).   

Thousands of unique correlation areas known as facets are defined across the 

entire imaging area of the measured object.  The center of each facet is a measurement 

point that is tracked in each successive pair of images by employing a similarity measure 

such as the normalized cross correlation.  An image correlation algorithm, as for example, 

the iterative spatial domain cross correlation algorithm, tracks facets by maximizing this 

similarity measure.  Three-dimensional locations of these facets are calculated before and 

after each load step, yielding displacements.  Tracking the dense cloud of points within 

the applied pattern provides displacement information that is full field.   

2.2.3 Common Sources of Error 

The basic sources of error for this system are the error in calculated initial 

position of the cameras, error in triangulation, and the error in correlation of facets.  Most 

of these can be minimized based on other aspects of testing.  

One of the simplest ways to control noise in data collection is to make a pattern 

that is appropriate to the field of view (FOV). Although the only requirement for 

functionality of the pattern is that it is of high contrast, for best results, the pattern must 
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fit with the FOV.  As the FOV decreases, the size of each facet also decreases. Because of 

this, the pattern must also become smaller in order for each facet to contain both colors.  

Because this technology is camera based, two other seemingly obvious 

adjustments are necessary for the application of 3D-DIC: appropriate lighting and 

elimination of obstructions. The lighting is crucial to the clarity of this form of data 

acquisition. If the images that are captured are too dark, often the software is unable to 

track the facets for lack of clarity. It is similar to looking at a candid photo that was taken 

at night without a flash; sometimes it is difficult to see the object of the image. Also, 

when using an image based technology, the object must be seen clearly in order for the 

data to yield results. As with any camera, if the view of the object of interest is 

obstructed, then no information about the object can be gathered from the image.  

Most importantly, the quality of the calibration for the FOV is directly related to 

the quality of the data collected from the image series. After a calibration is completed, a 

chart of resulting parameters is given by the program. This chart lists important bounds 

such as the calibrated volume, deviation of facets and similar limits. If the FOV used is 

larger than the area that the system is calibrated for, the data outside that area is typically 

very noisy. Also, if the deviation found from the calibration is very large, then the error in 

the data calculated also is increased.  

A simple test can be conducted to ascertain the amount of noise or error that exists 

in the images before testing begins. Take two successive images, one immediately after 

the other, while the specimen is still unloaded. Then, by processing the two images, the 

first as a baseline and the second as a test, the amount of noise and its location in the 

FOV will be clear. Because the specimen is still not loaded, the displacements, and 
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FOV will be clear. Because the specimen is still not loaded, the displacements, and 

therefore the stresses, should be equal to zero. Any place within the FOV that has some 

displacement other than zero is where error has occurred. By conducting this test prior to 

collecting data with the system, errors can be recognized and addressed before wasting 

effort in the data collection.  

2.2.4 Weaknesses of the Method 

 In a 2D-DIC system designed for in-plane displacement measurement of an 

object, an out-of-plane displacement will cause a change of magnification of the imaging 

system, and thus introduce an apparent in-plane displacement. The apparent in-plane 

displacement causes measurement error in the collected data. Because of this, the object 

of interest must move a minimal amount in order for the 2D data collected to be accurate. 

 Some key limitations to the use of 3D-DIC systems are the relatively complicated 

optical system, mismatch in triangulation of corresponding points, a defocus problem 

when the magnification is high or the physical system is moved and a laborious 

calibration process.  

In addition both DIC systems require constant attention to prevent alteration to the 

position of the cameras, the full physical setup, and the constant sightline to the specimen 

during data collection, any of which would result in error in data collection. If these 

alterations are not prevented, not only does this result in data error, but can result in the 

decalibration of the system. After data collection is complete, the post-processing can be 

very laborious and requires specific training on the software.  

2.2.5 Examples of Application 

 Both 2D and 3D-DIC systems have been used for various purposes, from large to 
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small. The DIC systems are not limited to only simple static concrete or steel specimens, 

the following case studies show how the technology has enhanced understanding of 

structural behavior in applications as far ranging as fracture analysis, material 

characterization, geotechnical studies, infrastructure analysis, and even extensive studies 

in biomechanics.   

2.2.5.1 Fracture Analysis 

 A very common use for digital image correlation is that of fracture analysis. 

Because of the system’s ability to recognize tension in the surface of an object before a 

visible crack appears, the DIC is the optimal tool to predict and analyze cracking and 

fracture in materials.  

Lin and Labuz (2012) used DIC to monitor the locations of sandstone fracture 

during testing. The different Brazilian testing methods for sandstone were evaluated 

using DIC by Stirling et al. (2012). Perdomo et al (2012) used DIC to corroborate 

predictions about fracture behavior in reinforced concrete elements. Carloni and 

Subramaniam (2012) monitored fatigue crack growth at an interface using DIC. The 

damage within a fiber reinforced mortar wall was monitored by Rouchier et al. (2012) 

using DIC. Erdem and Blackson (2012) used DIC for fracture analysis of impact-

fractured surfaces. Hamad et al. (2013) monitored the flexural cracking behavior of 

concrete prisms using DIC.  

2.2.5.2 Material Characterization 

 Unlike traditional methods of data collection such as strain gages and linear 

variable differential transformers (LVDT), DIC camera system can be easily transported, 

adapted and reused. Because of the flexible nature of DIC, it is an efficient method for 
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defining the material characteristics of many types of materials. Giancane et al. (2010) 

used DIC to define the fatigue evolution of fiber reinforced composites, while Laurin et 

al. (2012) defined properties of composite materials using DIC.  

2.2.5.3 Geotechnical Studies 

 The behavior and properties of soil are difficult to gather because of its granular 

nature. Soil, although a solid material is often not considered a solid as an object. Its 

ability to separate and move easily makes collected data problematic. Because DIC does 

not need to be attached to an object of interest, it is able to track the deformations in the 

challenging material. Peth et al. (2012) used DIC to monitor the deformation of soil under 

mechanical and hydraulic stresses. McGinnis et al. (2012) explored the use of DIC in 

collecting the stresses from the compression testing of rammed earth. DIC was used by 

Helm and Suleiman (2012) to determine the surface soil structure interaction of laterally 

loaded piles.  

2.2.5.4 Infrastructure Analysis 

 The ability of the DIC to view an area, rather than collect data from many isolated 

points, makes it extremely useful for monitoring several parts of an infrastructure at one 

time. Its non-contact nature also allows it to be used in the testing of previously 

challenging practices such as dynamic and fire testing. McGinnis et al (2012) discusses 

several case studies of DIC application. Among these the dynamic testing of a multistory 

non-linear frame as well as monitoring the stresses of a fire tested load bearing wall. Kim 

and Kim (2011) monitored the displacement response of infrastructures using DIC.  

2.2.5.5 Biomechanics 

 Biomechanics is a field in which an enormous amount of testing is required in 
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order to establish a standard for design because of the extreme variance from person to 

person. Collecting data on tissues and bone has proven particularly problematic. The 

limited supply of materials for study produces a need to get the most data out of a test 

possible. Also, in order to collect accurate data, the material that is tested must be 

undamaged by the data collection system. DIC’s non-contact nature makes it the perfect 

candidate for biomechanic testing.  

 Lin et al. (2012) used DIC to monitor testing conducted on a bone-periodontal 

ligament-tooth fibrous joint. Similarly Yachouch et al. (2012) studies the biomechanics of 

a weakened mandible using DIC. Moermand et al. (2009) and Gao and Desai (2009) both 

studied the mechanical properties of human tissues using DIC. The mechanical properties 

of articular cartilage were studied by Wang et al. (2011) using DIC. A method to measure 

dynamic dorsal foot surface shape and deformation during linear running was created, 

using DIC, by Blenkinsopp et al. (2012).  

2.2.5.6 Deploying Multiple Sensors 

There have been a few successful deployments of multiple DIC sensors. 

McGinnis et al. (2012) deployed two DIC sensors simultaneously in several of the 

concrete shear wall tests described previously. The experiment presented in this thesis is 

the first known instance of deploying as many as four DIC systems simultaneously. 
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CHAPTER 3: APPARATUS AND INSTRUMENTATION 
  

3.1 Load Frame 

 The section will cover the basic information on the load frame that was used to 

support the actuators which applied load to the specimen during testing. This includes the 

basic layout of the load frame: the simple beam and column arrangement in which 

members were designed as beam columns, including moment connections which were 

designed to take moments and shear forces produced by the systems as well as to resist 

lateral forces and small struts located at the base of the columns to resist out of plane 

forces. This system was secured to the strong floor beneath using a floor anchor system 

through the small struts. This section also includes the Load and Resistance Factor 

Design (LRFD) methodology that was used for the load frame and the final capacity of 

the frame based on individual portions of the design, as well as the later addition of the 

strut to add lateral resistance because of large unexpected deformations that prevented 

progress during testing.  

3.1.1 Layout 

The layout of the load frame is a simple beam and column arrangement (Figure 

3.1) including moment connections to resist lateral forces and small struts at the base of 

the columns for out of plane resistance. The left column is a W24x117 and the right 

column is a W18x119. The beam used as the top cross bar was created from two HSS 

18x6x⅜ spaced 4 inches apart. The beam used as the bottom cross bar, considered in 
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some load case scenarios, was created from two HSS 14x6x⅜. The frame is connected to 

the strong floor beneath using anchors through the small struts located at the base on the 

columns. The connection details of the load frame can be seen in Figure 3.2.  
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(a) 

(b) 

Figure 3.1: Load Frame: (a) Schematic; (b) Photograph 
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3.1.1.1 Connection Details 

A basic bolt pattern was used to connect the cross beam to the columns and the 

columns to the small struts. The first connection plate in Figure 3.2 is from the 

connection between the cross beam and that columns. The second connection plate in 

Figure 3.2 is from the connection between the small floor struts and the base of the 

columns. The third portion of Figure 3.2 is a detailed view of the small struts that resist 

out of plane deformations. All bolt holes are 1 inch in diameter. Beam end plates (image 1 

in Figure 3.2a) are ⅜ inch thick and all other plates are ½ inch thick. The steel tubes used 

for the small struts are HSS 14x6x⅜.  

 
Figure 3.2: Connection Details: (a) Schematics; (b) Photographs 

(b) 

(a) 
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3.1.1.2 Strut Details 

 A later addition of a strut was necessary because of the large lateral deflections 

experienced during the first phase of testing. With the addition of the strut to the system, 

the geometry of the strut was determined, as well as the connection detail and anchorage 

system at the base connection of the strut. Figure 3.3 shows the strut attachment layout in 

association with the left column where it was connected.  The details of the base 

connection and the column connection can be seen in Figure 3.4. The strut is a W8x31 

and the base of the strut was constructed from a W12x65. All plates use 1 inch diameter 

holes and ½ inch thick steel.  

 

 

Figure 3.3: Strut Attachment to Left Column of Load Frame 
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3.1.2 Load Capacity and Design 

 The capacity of the load frame depends on its configuration because of its ability 

to use different arrangements. This section will discuss the different configurations, their 

resulting moments, shear forces and axial forces, their final capacities based on the 

arrangement, as well as the LRFD methodology used for design. The beams used in all 

designs are labeled as single HSS tubes, but the effective areas and other structural 

parameters were doubled for calculations.   

3.1.2.1 Design for Top Cross Member Only (without Strut Addition) 

 This load case employed one cross beam on the top at 10.25 feet from the ground 

(c) (d) 

Figure 3.4: Strut Attachment: (a) Side View of for Strut Base Support; (b) Plan View 

of Strut Base Support; (c) Base Connection Plate; (d) Column Connection Plate 

(b) (a) 
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(based on the center line of the cross beam shown in Figure 3.1) with a single lateral 

force of 120 kips located 8 feet from the ground. Figure 3.5 shows the member sections 

and the location of the laterally applied load. The base of the columns were assumed to be 

pinned.  

 

 

3.1.2.1.1 SAP2000 Analysis 

 SAP2000 was used to model the behavior of the load frame in this configuration. 

Figure 3.6 gives the resulting in plane bending moment, shear, and axial force diagrams. 

These demands were used to check the sufficiency of the design capacities. The resultant 

forces at the base of the columns (shown in Figure 3.7) provided the demand on the base 

connection and the anchor system.  

Figure 3.5: Load Frame Configuration (Top Cross 

Member Only) 
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3.1.2.1.2 Demand and Capacity 

 The demands were taken from the SAP2000 results to determine the adequacy of 

the design by comparing them with the capacities of the design. The demand and capacity 

for each member and connection is given in Table 3.1; the ratio of capacity to demand 

Figure 3.6: Resulting Diagrams for Top Cross Member Only (without 

Strut Addition) from SAP2000: (a) Moment; (b) Shear; (c) Axial 

 (a)  (b)  (c) 

Figure 3.7: Column Base Resultant Forces for Top Cross Member Only 

Table 3.1: Demand and Capacity of Load Case: Top Cross Member Only (without 
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(i.e. factor of safety) is given in parentheses below each capacity. The demand loads 

considered are unfactored (γi = 1.0 for LRFD) and standard resistance factors were used 

for capacity design. Because of this, the capacity-demand ratio shown in Table 3.1 is 

especially conservative. The anchorage system is clearly inadequate for the uplift 

experienced for this load case, but with the addition of the strut, the system is more than 

acceptable.  

 

  Demand Capacity  

Member 

Section 

Design 

Type 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Interaction 

(Moment 

and Axial) 

Double HSS 

18x6x3/8 
Beam 490 95 94 

596 

(1.216) 

588.16 

(6.191) 

640.51 

(6.814) 
0.8955 

Beam/Column 

Joint 

Moment 

Connection 
28.44 95 -- 

111 

(3.903) 

194.4 

(2.042) 
-- -- 

W24x117 Column 594 75 93 
1230 

(2.071) 

360.86 

(4.811) 

1482.3 

(15.939) 
0.4291 

W18x119 Column 470 46 96 
983 

(2.091) 

336.01 

(7.305) 

1471.4 

(15.327) 
0.5011 

Anchorage 

System 

Floor 

Connection 
-- 74.14 96.3 -- 

168.96 

(2.279) 

88 

(0.913) 
-- 

 

3.1.2.1.3 LRFD Design Methodology 

 Load and resistance factor design (LRFD) was used to calculate the capacities of 

the beams, columns and connections. Several tools from the American Institute of Steel 

Construction (AISC) steel construction manual such as tables and charts were utilized in 

order to simplify calculations. The capacities were computed by tracking the forces 

through the frame by following the load path from the applied loads, transferring the 

force to the top cross bar, which was treated as a beam, then to the moment connections 

at the beam to column interface, passed down into the columns, to the small struts and the 

anchor system in the strong floor beneath the system. For the beams, the limit states of 

Table 3.1: Demands and Capacities for Top Cross Member Only (without Strut Addition) 
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bending (moment), shear, axial and the interaction of axial and bending were considered.  

The moment capacity of the beams was calculated using Table 3-12 of AISC 

(2011). Shear capacity of the beams was calculated using Section G, Equation G2-1, of 

AISC (2011). Axial capacity was calculated assuming compression using Section E, 

Equation E3-1, of AISC (2011). The interaction capacity of axial and bending for the 

beam was calculated using Section H1, Equation H1-1b, of AISC (2011).  

The beam-column interface required a moment connection. The shear capacity 

was calculated by considering yield, fracture, and block shear for the plate and the 

column flanges using Section J4 of AISC (2011), Equations J4-1, J4-2, and J4-5, 

respectively. The shear capacity of the bolts was also considered using the values from 

Table J3.2 of AISC (2011). These capacities are in resistance of the shear force in the 

connection; the lowest shear capacity was used for the shear capacity of the connection. 

The moment capacity of the connection is governed by the capacity of the stiffener and 

the capacity of the bolts. The stiffener forms a T-shape with the connection plate shown 

in Figure 3.8. The moment capacity of the stiffener was calculated using plastic moment 

capacity. The moment capacity of the bolts was calculated using the tension capacities of 

the bolts, from Table J3.2 of AISC (2011), at distances based on the layout shown in 

Figure 3.9. The lowest moment capacity was used as the moment capacity of the 

connection. The capacity of the welds was checked using Section J3 of AISC (2011), 

Equation J3-2. Table 3.2 shows the capacities for each limit state of the moment 

connection at the beam-column interface. The yield, fracture, and block shear are not 

shown because the thickness of the I-beam is greater than the thickness of the plate, 

therefore the plate will govern. Furthermore, the shear and moment interaction was 
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investigated (Section J3, Equation J3-3a, of AISC 2011), but the shear load was such that 

it need not be considered.  

 

 

 

 

 

Figure 3.8: Moment Calculation T-Shape 

Figure 3.9: Moment Calculation Bolt Layout 

← 
← FORCE 

FORCE 
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Capacity 

 

  
Moment  

(k-ft) 
Shear  
(kips) 

Equation 
Used 

Connection Plate 

Yield -- 194.4 J4-1 

Fracture -- 234.9 J4-2 

Block Shear -- 315.9 J4-5 

Bolt 
Shear -- 328.6 J3-1 

Moment 111 -- Fig. 3.8 

Stiffener Plastic Moment 126 -- Fig.3.7 

 

The columns were then considered with capacities determined similarly to the 

beams using Table 3-12, Section G2, and Section E3 of AISC (2011) except for the 

interaction capacity which was calculated for the columns using Table 6-1 of AISC 

(2011); they were determined to not be slender and then the resulting bending, shear, 

axial and interaction capacities were considered.  

The small struts were attached to the base of the columns using a base plate 

attached to the end of the small struts. The base of the columns were connected to the 

strong floor directly using anchors attached to the strong floor beneath; these anchors are 

used for anchor capacity, they provide little out of plane moment resistance. The small 

struts were then connected to the strong floor by attaching long anchors through the struts 

– see Section 3.1.1.1. The purpose of the small struts was to provide lateral load 

resistance for out of plane forces. The moment capacity for out-of-plane forces for the 

load frame based on the anchorage system is calculated using distances shown in the 

layout shown in Figure 3.10.  The moment capacities of the bolts and stiffener were 

calculated in the same manner as the beam-column connection. The moment capacity 

based on the anchorage system is 290 k-ft, which will allow for up to a 24 kip out-of-

Table 3.2: Beam End Connection Limit State Capacities 
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plane force when the lateral load is applied to the highest point on the load frame (12 ft). 

The moment capacity based on the bolt pattern is 713.2 k-ft, which will allow for up to a 

59.4 kip out-of-plane force under the same loading position (12 ft). The moment capacity 

based on the plate stiffener is 156.64 k-ft, which will allow for up to a 13 kip out-of-plane 

force. The moment capacity of the stiffener governs the capacity of the out-of-plane 

moment capacity of the load frame.  

 

The lateral and vertical forces on the load frame cause a compression force in one 

column and uplift on the other. The lateral force also causes a shear force at both column 

bases. These forces must be resisted by the anchorage system. The shear force at the base 

of each column is resisted by the friction between the frame and the floor, based on the 

weight of the frame, and the shear strength of the anchors connecting to the floors based 

on ASTM A193. The compression force at one column base is easily resisted by the 

strong concrete floor beneath the load frame. The uplift force is resisted by the tension 

capacity (ASTM A193) of the anchors to the floor. The anchorage is found to be slightly 

Figure 3.10: Moment Calculation Anchorage Layout 
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inadequate for the load cases that do not include the strut addition (see Tables 3.1, 3.3, 

3.4, and 3.5). The strut addition will be necessary for all future testing.  

Analysis was only conducted for a lateral force applied at the left side of the load 

frame although the lateral force may also be applied to the right side of the load frame. 

An in depth analysis of the load reversal was not investigated as the only difference in the 

two scenarios are the columns shapes; both columns were found to have adequate 

capacities which meet the applied demand.  

3.1.2.2 Design for Two Cross Members (without Strut Addition) 

This load case employed one cross beam on the top at 10.25 feet from the ground 

and one cross beam with the center line located 21 inches from the ground with a single 

lateral force of 120 kips located 8 feet up from the ground. See Figure 3.11 for member 

sections.  

 

 

Figure 3.11: Load Frame Configuration (Two Cross 

Members) 
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3.1.2.2.1 SAP2000 Analysis 

 SAP2000 was used again to model the behavior of the load frame. Figure 3.12 

gives the resulting bending moment, shear, and axial force diagrams. These demands 

were used to check the sufficiency of the design capacities. The resultant forces at the 

base of the columns provided the demand to the base connection and the anchor system. 

Figure 3.13 shows the resultant forces at the base of the columns. 

 

 

 (c) 

Figure 3.12: Resulting Diagrams for Two Cross Members (without Strut Addition) 
from SAP2000: (a) Moment; (b) Shear; (c) Axial 

 

 (a)  (b) 

Figure 3.13: Column Base Resultant Forces for Two Cross Members  
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3.1.2.2.2 Demand and Capacity 

 The demands were taken from the SAP2000 results to determine the adequacy of 

the design by comparing them with the capacities of the design. The demand and capacity 

for each member and connection is given in Table 3.3; the ratio of capacity to demand is 

given below each capacity. The design capacities were determined similarly to Section 

3.1.2.1.3. The anchorage system is clearly inadequate for the uplift experienced for this 

load case, but with the addition of the strut, the system is more than acceptable. 

 

  Demand Capacity  

Member 

Section 

Design 

Type 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Interaction 

(Moment 

and Axial) 

Double HSS 

18x6x3/8 
Beam 259 51 44 

596 

(2.301) 

588.16 

(11.532) 

640.51 

(14.557) 
0.4689 

Beam/Column 

Joint 

Moment 

Connection 
27.1 51 -- 

111 

(4.096) 

194.4 

(3.812) 
-- -- 

W24x117 Column 350 77 93 
1230 

(3.514) 

360.86 

(4.686) 

1482.3 

(15.939) 
0.3258 

W18x119 Column 259 65 97 
983 

(3.795) 

336.01 

(5.169) 

1471.4 

(15.169) 
0.3087 

Double HSS 

14x6x5/16 
Beam 228 45 22 

335.4 

(1.471) 

379.4 

(8.431) 

777.87 

(35.358) 
0.6939 

Anchorage 

System 

Floor 

Connection 
-- 64.83 96.59 -- 

126 

(1.944) 

88 

(0.911) 
1.2122 

 

3.1.2.2.3 LRFD Design Methodology 

 The LRFD design methodology for this load case is the same as the first load 

case, shown in Section 3.1.2.1.3. 

3.1.2.3 Design for Phase I Testing (without Strut Addition) 

 This load case employed one cross beam on the top at 10.25 feet from the ground 

with a lateral force of 120 kips located 8 feet up from the ground and a downward 

vertical force of 50 kips located 2 feet in from the left side. See Figure 3.14 for member 

Table 3.3: Demand and Capacity of Load Case: Two Cross Members (without Strut) 

Addition) 
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sections and load case layout. 

 

3.1.2.3.1 SAP2000 Analysis 

 A simple SAP2000 model was used to model the behavior of the load frame in 

this configuration. Figure 3.15 gives the resulting diagrams for the moments, shear 

forces, and axial forces. These demands were used to check the sufficiency of the design 

capacities. The resultant forces at the base of the columns were used as the demand on the 

base connection and the anchor system. Figure 3.16 shows the resultant forces at the base 

of the columns. 

Figure 3.14: Load Frame Configuration (Phase I Testing) 
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3.1.2.3.2 Demand and Capacity 

 The demands were taken from the SAP2000 results to determine the adequacy of 

the design by comparing them with each capacity of the design. The demand and capacity 

for each member and connection is given in Table 3.4; the capacity-demand ratio is given 

Figure 3.15: Resulting Diagrams for Phase I Testing (without Strut Addition) 

from SAP2000: (a) Moment; (b) Shear; (c) Axial 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.16: Column Base Resultant Forces for Phase I Testing 
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below the capacities in the table. The design capacities were determined similarly to 

Section 3.1.2.1.3. The anchorage system is clearly inadequate for the uplift experienced 

for this load case, but with the addition of the strut, the system is more than acceptable. 

 

  Demand Capacity  

Member 

Section 

Design 

Type 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Interaction 

(Moment 

and Axial) 

Double HSS 

18x6x3/8 
Beam 506 108 50 

596 

(1.178) 

588.16 

(5.446) 

640.51 

(12.810) 
0.8880 

Beam/Column 

Joint 

Moment 

Connection 
52.95 108 -- 

111 

(2.096) 

194.4 

(1.800) 
-- -- 

W24x117 Column 566 73 56 
1230 

(2.173) 

360.86 

(4.943) 

1482.3 

(26.470) 
0.4564 

W18x119 Column 506 50 109 
983 

(1.943) 

336.01 

(6.720) 

1471.4 

(13.499) 
0.5437 

Anchorage 

System 

Floor 

Connection 
-- 70.95 107.18 -- 

126 

(1.776) 

88 

(0.821) 
1.342 

 

3.1.2.3.3 LRFD Design Methodology 

 The LRFD design methodology for this load case is the same as the first load 

case. The methodology used in the first load case can be seen in Section 3.1.2.1.3.  

3.1.2.4 Design for Phase II and III Testing (with Strut Addition) 

 For the tests that form the bulk of this thesis (see Chapter 6 and 7), the structural 

tests were completed in three Phases – I, II, and III. A full description of the loading in 

these phases is given in Section 6.1.   

A strut addition was necessary based on the large lateral deflections from the one 

cross beam load case of 0.967 in prior to the addition of the strut. The new load case 

employed one cross beam on the top at 10.25 feet from the ground as well as a diagonal 

strut on the right side that provided additional lateral load resistance in the plane of the 

lateral load. A lateral force of 120 kips is applied 8 feet up from the ground and a 

Table 3.4: Demand and Capacity of Load Case: Phase I Testing (without Strut Addition) 
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downward vertical force of 50 kips located 2 feet in from the left side. This load case 

with the strut addition allowed only 0.126 inches in lateral deflection. See Figure 3.17 for 

member sections and load case layout. 

 

3.1.2.4.1 SAP2000 Analysis 

 Again, SAP2000 was used to model the behavior of the load frame. Figure 3.18 

gives the resulting bending moment, shear, and axial force diagrams. These demands 

were used to check the sufficiency of the design capacities. The resultant forces at the 

base of the columns provided the demand on the base connection and the anchor system. 

Figure 3.19 shows the resultant forces at the base of the columns. 

Figure 3.17: Load Frame Configuration (Phase II and III Testing) 
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 (a) 

 (b) 

 (c) 

Figure 3.18: Resulting Diagrams for Phase II and III Testing (with Strut 

Addition) from SAP2000: (a) Moment; (b) Shear; (c) Axial 
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3.1.2.4.2 Demand and Capacity 

 The demands were taken from the SAP2000 results to determine the adequacy of 

the design by comparing them with the capacities of the design. The demand and capacity 

for each member and connection is given in Table 3.5. The design capacities were 

determined similarly to Section 3.1.2.1.3. Strut axial capacity is calculated for 

compression; the axial forces shown for the strut are in compression. The anchorage 

system is clearly adequate for the uplift experienced for this load case because of the 

addition of the strut. 

 

 

 

 

 

 

Figure 3.19: Column Base Resultant Forces Phase II and III Testing 
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  Demand Capacity  

Member 

Section 

Design 

Type 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Moment 

(k-ft) 

Shear 

(kips) 

Axial 

(kips) 

Interaction 

(Moment 

and Axial) 

Double HSS 

18x6x3/8 
Beam 75 34 96 

596 

(7.947) 

588.16 

(17.29) 

640.51 

(6.672) 
0.2008 

Beam/Column 

Joint 

Moment 

Connection 
7.85 96 -- 

111 

(14.140) 

194.4 

(2.025) 
-- -- 

W24x117 Column 192 96 34 
1230 

(6.406) 

360.86 

(3.759) 

1482.3 

(43.597) 
0.1676 

W18x119 Column 74 8 52 
983 

(13.466) 

336.01 

(42.00) 

1471.4 

(28.296) 
0.0929 

Anchorage 

System 

Floor 

Connection 
-- 23.97 50.47 -- 

126 

(5.257) 

88 

(1.744) 
0.6043 

Strut/Column 

Joint 

Shear 

Connection 
-- 19 -- -- 

194.40 

(10.23) 
-- -- 

W8x31 

Strut 

(Angled 

Column) 

-- 1 114 -- 
61.56 

(61.56) 

651.16 

(5.712) 
-- 

Strut/Base 

Joint 

Shear 

Connection 
-- 88.85 70.22 -- 

156.60 

(156.6) 

234.4 

(3.338) 
-- 

Strut 

Anchorage 

Floor 

Connection 
-- 88.85 70.22 -- 

157.5 

(1.773) 

98 

(1.282) 
0.9628 

 

3.1.2.4.3 LRFD Design Methodology 

 The LRFD design methodology for this load case is the same as the first load case 

except for the strut addition whose capacity was calculated with the LRFD as the 

columns in the first case. The methodology used in the first load case can be seen in 

Section 3.1.2.1.3.  

3.2 Data Acquisition Systems 

 This section describes the data acquisition systems used in the structural tests that 

form the bulk of this thesis (see Chapter 6 and 7). The tests involved the lateral loading of 

a coupled wall system that consists of wall piers and coupling beams supported by a 

foundation with reinforcement, and post-tensioning to connect the separate elements. 

Post-tensioning was also used to simulate gravity loading on the structure. Loading of the 

system was accomplished using hydraulic actuators. A full description of that testing is 

Table 3.5: Demand and Capacity of Load Case: Phase II and III Testing (with Strut 

Addition) 
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provided in Section 6.2.   

Twelve channels of data were collected during the test as follows: (1) load cells 

LC1-LC3 to measure the forces in the actuators as they applied load to the specimen, 

MH1-MH4 to monitor the gravity loads in the post-tensioning cables embedded in the 

foundation that run through top of the piers, and ND1-ND3 to monitor the stresses in the 

PT cables at the floor levels that coupled the wall system; (2) 2 string potentiometers 

were used to measure the displacements of the load frame and the specimen relative to 

the building housing the test; (3) 4 Digital Image Correlation systems were used to record 

the displacements of the specimen from 4 different fields of view simultaneously. The 

Digital Image Correlation (DIC) systems are monitored independent of the iNET 

acquisition system.  More information is available for the channels monitored by the 

iNET system in Table 3.6 and the locations of each instrument can be seen in Figure 3.20. 

The DIC systems each have a different field of view (FOV); some are located on the front 

of the specimen and some on the back. Note that since some systems are looking North 

and some looking South, interpretation of results can be complex. East/West and 

North/South notation is used consistently throughout this thesis for clarity. The DIC 

locations can be seen in Figure 3.16.  

 

 

 

 

 

 



61 

 

 

Data 

Channel 

Instrument 

Name 

Instrument 

Type 

Instrument 

Installation 

Instrument Location 

(Figure 3.5) 

1 LC1 
Large Donut Load 

Cell 
Placed in Line with 

Actuator 
Location 1 

2 LC2 
Large Donut Load 

Cell 

Placed in Line with 

Actuator 
Location 2 

3 LC3 
Large Donut Load 

Cell 

Placed in Line with 

Actuator 
Location 3 

4 ND1 
Small Barrel Nut 

Load Cell 

Post-Tensioned 

with Cable 
Location 4 

5 ND2 
Small Barrel Nut 

Load Cell 

Post-Tensioned 

with Cable 
Location 5 

6 ND3 
Small Barrel Nut 

Load Cell 
Post-Tensioned 

with Cable 
Location 6 

7 MH1 
Small Barrel Nut 

Load Cell 

Post-Tensioned 

with Cable 
Location 7 

8 MH2 
Small Barrel Nut 

Load Cell 
Post-Tensioned 

with Cable 
Location 8 

9 MH3 
Small Barrel Nut 

Load Cell 

Post-Tensioned 

with Cable 
Location 9 

10 MH4 
Small Barrel Nut 

Load Cell 

Post-Tensioned 

with Cable 
Location 10 

11 SP1 
String 

Potentiometer 

Attached to 

Stationary Wall 
Location 11 

12 SP2 
String 

Potentiometer 

Attached to 

Stationary Wall 
Location 12 

 

Table 3.6: Instrumentation Information 
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Figure 3.20: Instrumentation Placement (Looking North): Locations 

of Load Cells and String Potentiometers – See Table 3.6 

→ EAST 
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3.2.1 iNET Set Up 

The iNET system used to monitor the instrumentation described above was made 

up of the i-240 iNET connector, a power supply cord, extension cables, an i-100 data port 

and cables. The organizational schematic of the iNET system is shown in Figure 3.22. 

The iNET software used was InstruNet World Plus including digitize Direct to Excel. 

This software only works with iNET hardware; the i-240 connector and i-100 data port 

all of which were used during testing. The iNET physical setup of hardware is shown in 

Figure 3.23.  

 

Figure 3.21: DIC FOV Locations: (a) Front View (Looking North); (b) Back View 
(Looking South) 

 (a)   (b)  

→ EAST EAST ← 

Figure 3.22: iNET Organizational Schematic 
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 The instruments are plugged into the instrumentation cables and those cables are 

then plugged into the i-100 data port as shown in Figure 3.23. The connection between 

the end of the instrumentation cables and the i-100 data port is not a simple plug, it 

consists of four colored (green, white, red and blue) wires being tightened into four 

individual ports. The arrangement of the colored wires to their associated ports is shown 

in Figure 3.24.  

Figure 3.23: iNET System Physical Set Up 

Power Supply Cord 

Instrumentation Cables 

iNET Connector 

(i-240) Extension Cables 

i-100 (Data Port) 
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3.2.2 Load Cell Calibrations  

 In order to calibrate the output values from the iNET system, some variables 

needed to be adjusted. By applying a compression force using a compression machine, 

the value of the force actually being applied was known. Because of this, the accuracy of 

the readings from the iNET system could be evaluated. First, a load cell was put through 

a pre-programed compression test and the values from the iNET system were compared 

with the actual force being applied. The first adjustment made was to alter the initial 

input voltage value until the unloaded value produced by the iNET system was close to 

zero, and then the load cell would be tested again. After this iteration was completed, the 

GF value (Gage Factor) was adjusted and the load cell tested again. The GF value could 

then be adjusted again if necessary until the iNET output values matched those of the pre-

programed test. The settings for instruments used during testing are given in Table 3.7.  

 

Figure 3.24: Instrument Cable Connection Details 
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Instrument Resistance (Ω) Voltage Out Voltage In Gage Factor Multiplier 

LC1 350 4.46484375 -2.50E-05 2.54E-08 2.639 

LC2 350 -4.4648438 -8.50E-05 2.54E-08 2.606194 

LC3 350 4.46484375 0.00026 2.54E-08 2.631449 

ND1 120 -1.2979175 0.000675 1.00E-08 0.32 

ND2 120 1.2979175 -0.00107 1.00E-08 0.3107 

ND3 120 -1.2979175 0.00112 1.00E-08 0.3658 

MH1 120 -1.2979175 0.0005 1.30E-08 29.74 

MH2 120 1.2979175 0.00014 1.30E-08 68 

MH3 120 -1.2979175 0.00105 1.30E-08 30 

MH4 120 1.2979175 -0.00035 1.30E-08 32.73 

SP1 360 4 1.27255 1.58E-08 11 

SP2 360 -4 -2.51 1.58E-08 11 

 

 Three different types of load cells were used to monitor loads during testing; they 

can be seen in Figure 3.25. They are also denoted in Table 3.7. The LC load cells are 

large donut load cells with a lower variability than the other two types as they were 

purchased and not constructed. The ND load cells are small barrel nut load cells that were 

created and borrowed from Notre Dame’s lab. The MH load cells are also small barrel nut 

load cells, but they were constructed in the UT Tyler lab for this project. Although both 

the ND and the MH load cells were constructed, the MH load cells had less variability 

based on the graphs given in Figures 3.26 through 3.35. All load cells were able to be 

calibrated to an acceptable level of accuracy.   

Table 3.7: Calibration Data for Instruments 
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Figure 3.25: Load Cell Types: (a) LC; (b) ND; (c) MH 

 (a)  

 (b)   (c)  
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The calibration curves are shown in Figures 3.26 through 3.35 for the load cells 

used.  The scatter plot shows the values read during different iterations and the linear 

curve represents the values used for the iNET calibrations. 

Figure 3.26: LC1 iNET Calibration Curve 
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Figure 3.27: LC2 iNET Calibration Curve 
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y = 1.0084x + 84.791 
R² = 0.9998 
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Figure 3.28: LC3 iNET Calibration Curve 
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y = 1.05x - 1100.4 
R² = 0.8912 
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Figure 3.29: ND1 iNET Calibration Curve 
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y = 0.9592x - 495.54 
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Figure 3.30: ND2 iNET Calibration Curve 
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y = 1.0322x + 53.125 
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Figure 3.31: ND3 iNET Calibration Curve 
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y = 0.873x + 900 
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Figure 3.32: MH1 iNET Calibration Curve 
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y = 0.763x + 2280 
R² = 0.9558 
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Figure 3.33: MH2 iNET Calibration Curve 
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y = 0.83x + 2180 
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Figure 3.34: MH3 iNET Calibration Curve 
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3.3 Digital Image Correlation Systems 

 This section describes the actual DIC systems that were used during testing, the 

calibration procedure, actual calibrations used for each image series captured during 

testing, and the field of view for each system.  

3.3.1 Systems Used 

 The following systems were used to capture the images during testing. See Figure 

3.16 for FOV locations and Figures 3.31 through 3.34 for FOV images.  

3.3.1.1 System 1: 3D system, used for FOV Global, Aramis 2M system: 1624 pixels by 

1236 pixels, Measuring Area of 1000 mm by 750 mm, Utilized 12 mm lenses during 

testing.  
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Figure 3.35: MH4 iNET Calibration Curve 
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3.3.1.2 System 2: 2D system, used for FOV Tension Base, Hispec 1 system: 1280 pixels 

by 1024 pixels, Measuring Area of 650 mm by 650 mm, Utilized 25 mm lenses during 

testing. 

3.3.1.3 System 3: 2D system, used for FOV Compression Base, Hispec 1 system: 1280 

pixels by 1024 pixels, Measuring Area of 650 mm by 650 mm, Utilized 25 mm lenses 

during testing. 

3.3.1.4 System 4: 3D system, used for FOV Beams during Phase I, Aramis 5M system:  

2448 pixels by 2050 pixels, Measuring Area of 1200 mm by 900 mm, Utilized 12 mm 

lenses during testing.  

3.3.1.5 System 5: 2D system, used for FOV Beams during Phases II and III, Canon EOS 

Rebel T3i: 5184 pixels by 3456 pixels, Utilized 25 mm focal length during testing.  

3.3.2 Camera Calibrations and Set Up 

 This section of Chapter 3 reviews the basics for calibration and set up procedure 

as well as the calibrations and specific FOVs used during testing.  

3.3.2.1 Calibration and Set Up Procedure 

 In 3D-DIC, sample preparation consists of applying a regular or random pattern 

with good contrast to the surface of the measured object.  The pattern will then deform 

with the object under load.  The object is captured in a stereo pair of high quality cameras 

while it is loaded.  Typically, these two cameras are mounted at either end of a base bar 

such that their relative position and orientation with respect to one another is fixed and 

known.   

Before using the 3D-DIC system as described above, the system must be 

calibrated using NIST-traceable calibration panels for each field of view (FOV).  A 
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sequence of pictures of the panel at different distances and orientations is captured and a 

bundle adjustment is used to establish the precise relationship between the two cameras, 

and to compensate for any distortions in the individual camera lenses.  The fixed position 

of the two cameras with respect to one another greatly simplifies the photogrammetric 

calculations, but if the camera’s position with respect to one another is altered (even 

accidentally) during testing, a new calibration sequence is required. 

Once calibrated, thousands of unique correlation areas known as facets are 

defined across the entire imaging area of the measured object.  The center of each facet is 

a measurement point that is tracked in each successive pair of images by employing a 

similarity measure such as the normalized cross correlation.  Three-dimensional locations 

of these facets are calculated before and after each load step, yielding displacements.  

Tracking the dense cloud of points within the applied pattern provides displacement 

information that is ‘near’ full field.   

The optimum angle between the cameras is 25 degrees.  Lower angles reduce 

accuracy in triangulation, and thus reduce accuracy in the out-of-plane (z-axis) 

coordinates and displacements.  Wider angles increase accuracy of the z coordinates, but 

the increased perspective reduces the useful FOV.  Many researchers use 2D-DIC (which 

involves using only one camera and does not require triangulation) when the out-of-plane 

deformations of the problem are deemed unimportant. The 2D-DIC calibration procedure 

is similar to that of the 3D-DIC, but requires fewer photographs as it does not have to 

establish the relative position of another camera. In a 2D-DIC, the calibration produces 

an area instead of a volume that is calibrated and does not account for out of plane 

displacements. In order to use a distance calibration, two points must be clearly marked 
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in the FOV of the 2D system. After the image series is imported into the software, a line 

is created and the distance measured between the points is inputted and the system can be 

calibrated.   

3.3.2.2 Calibration Specifications Used during Testing 

After following the calibration procedure, the DIC software will produce 

calibration information including deviation, angle (for 3D systems), and calibrated 

volume (area for 2D systems). The calibration specifics used during testing are given in 

Table 3.8. System 5 used the distance calibration discussed above. 

 

 

System 
 

Phase I Phase II Phase III 

System 1 

(3D) 

Deviation (mm) 0.022 0.028 0.026 

Angle (⁰) 17.1 11.4 11.3 

Volume (mm/mm/mm) 2075/1630/1630 2200/1700/1700 2200/1700/1700 

System 2 

(2D) 

Deviation (mm) 0.058 0.055 0.055 

Area (mm/mm) 638.2/635.3 640.9/636.6 640.9/636.6 

System 3 

(2D) 

Deviation (mm) 0.061 0.068 0.068 

Area (mm/mm) 638.2/635.3 640.9/636.6 640.9/636.6 

System 4 

(3D) 

Deviation (mm) 0.059 
Was not used 

for this Phase 

Was not used 

for this Phase 
Angle (⁰) 17.3 

Volume (mm/mm/mm) 1240/1080/1080 

System 5 

(2D) 

Two points marked in 
FOV measured:  input to 

Distance Calibration 

Was not used for 

this Phase 

Used Distance 
Calibration 

After The Fact 

Used Distance 
Calibration 

After The Fact 

 

3.3.2.3 Fields of View 

 A global perspective of the FOV for each DIC system can be seen in Figure 3.20. 

The images provided in Figures 3.36 through 3.39 are visuals to aid in the clarity of the 

established FOV for each DIC system. The FOV provided are the same for all three 

phases. The colors that appear on the specimen show the area for which data was 

recorded during testing.  

Table 3.8: DIC Calibration Specifics Used During Testing 



81 

 

 

 

Figure 3.36: FOV Global (Looking North): System 1 (3D) 

EAST → 
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Figure 3.37: FOV Tension Pier Base (Looking South): System 2 (2D) 

EAST 

← 

Figure 3.38: FOV Compression Pier Base (Looking South): System 3 (2D) 

EAST ← 
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Figure 3.39: FOV Beams Local (Looking South): (a) System 4 (3D); (b) System 5 (2D) 

 (b)  (a) 

← 
EAST 
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CHAPTER 4: SPECIMEN DESIGN 

4.1 Prototype Specimen Design 

To form a basis for the experimental investigation of the 40% and 15%-scale PT 

coupled shear wall structures, a full-scale 8-story prototype building was designed for a 

site in Los Angeles, California with a calculated seismic response coefficient of 

Cs=0.136g. The plan and elevation views of this structure are shown in Figures 4.1(a) and 

4.1(b). The primary lateral load resistance is provided by the coupled core wall at the 

center of the building – two C-shaped shear walls connected by coupling beams at each 

floor level. This core includes two openings to simulate the location of elevator shafts and 

stairwells in a typical office building. These openings were centered inside the core in the 

north-south direction to help eliminate any asymmetric behavior under loading. The 

configuration, dimensions, and detailing of the prototype building were chosen with the 

assistance of Magnusson Klemencic Associates (MKA). 
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Figure 4.1(c) shows the wall pier reinforcement details at the base of the structure. 

The reinforcement plan was selected so that it was similar to the typical reinforcement 

used in a conventional coupled shear wall design. The post-tensioned coupling beam 

details are given in Figure 4.1(d). The post-tensioning force is provided by 16 - 0.5 in. 

Figure 4.1: Prototype structure: (a) building plan; (b) building elevation; (c) wall base 

details; (d) coupling beam details 

(d) (c) 

(b) (a) 
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diameter PT strands, placed inside two ungrouted ducts to prevent bonding to the 

concrete. Energy dissipation in the structure is provided by 3 – U.S. No. 6 bars at the top 

and bottom of the beams. These bars are wrapped in plastic at the beam ends to prevent 

bond between the steel and concrete. The length of this wrapped section is selected to 

limit the maximum strains in the steel during reversed-cyclic loading. 

To determine the design forces for the prototype structure, the Equivalent Lateral 

Force (ELF) procedure from ASCE 7 was used with an assigned R-factor of 6.0. The 

structure had a calculated period of T = 0.74 seconds. The period was estimated by 

Magnusson Klemencic Associates (MKA) based on computer simulations of the 100% 

prototype. This period is a more accurate estimation of the fundamental period than the 

equations found in ASCE 7. The ELF procedure resulted in a design total base moment 

and total base shear force, which were then distributed to the individual components of 

the coupled core wall structure by making a number of design selections. First, a coupling 

degree of 30% was chosen, meaning that 30% of the design base moment is to be carried 

by the coupling action between the two wall piers. The coupling moment is converted to 

an axial force at the bottom of each wall pier, using the distance between the centroids of 

the two wall piers to form a couple. The axial force is then distributed to the ends of each 

coupling beam as a shear force and the corresponding moments at the beam ends. Linear 

distribution of the moment is assumed along the beam length with zero moment at the 

centroid. The remaining base moment is distributed evenly between the two wall piers. 

The reinforcement details of the wall pier base and PT coupling beams were then selected 

to satisfy these design forces. 
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4.2 15% Scale Specimen Description 

Several key decisions were made to create the 15% scale model of the prototype 

building within the capabilities of the laboratory.  First, scaling the C-shaped wall piers 

directly would result in walls in the experimental specimen only 2.7 inches thick.  

Instead, the section modulus of the scaled C-shape was matched using a wall that was 

rectangular in shape, as shown in Figure 4.2 and Table 4.1.  Rather than scaling the actual 

reinforcement from the prototype structure, the base moment of the prototype structure 

was scaled, and then the flexural steel of the laboratory walls was designed using basic 

reinforced concrete principles, resulting in the selection of the #6 and #7 bars shown in 

Figure 4.2, and the moment capacities shown in Table 4.1.  Target base moments were 

derived from a DRAIN-2DX analytical model described in Chapter 7. Similarly, the base 

shear forces of the prototype structure wall piers were scaled, and design using traditional 

reinforced concrete principles resulted in the #4 hoops in the wall piers shown in Figure 

4.2(c). The reinforcement layout shown in Figure 4.2(c) is specifically for the West pier; 

the East pier uses a mirror image of the layout with #7 bars on the East edge and #6 bars 

on the West edge.  
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The prototype structure has two coupling beams per story – in the 15% structure 

these beams were combined, resulting in constructible beam geometry. The scaling of the 

beams was based on the directly scaled cross-section dimensions, and therefore the scaled 

cross-sectional area. Energy dissipation steel was not included in the beams. The moment 

and shear capacity design of the coupling beams followed a similar approach to the pier 

design – demands from the prototype structure were scaled, and basic prestressed and 

reinforced concrete design principles were used to select the steel for the 15% structure – 

see Figure 4.2 and Table 4.1. 

Figure 4.2: UT Tyler Specimen: (a) specimen plan; (b) specimen elevation (Looking 

North); (c) wall pier details; (d) coupling beam details 

(d) (c) 

(b) (a) 

→ EAST 
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Figure 4.3 shows the 15% laboratory structure.  Loading was accomplished using 

a lateral jack that supplied the story shears for all three stories constructed plus the 

resultant shear for the upper five stories.  In an actual structure, lateral load from an 

earthquake would be applied to both piers independently – in the UT Tyler structure this 

load was lumped and applied through one jack only.  The gravity load from the upper 

stories was applied using tensioned cables within ducts of the piers. The forces in the 

post-tensioned cables are shown in Table 4.2. The prototype and 15% target have two 

beams per story, while the UT Tyler Structure only has one per story. The scale of 15% 

caused this difference to be necessary as the beams would have been so small that the 

behavior of the system would not have matched that of the larger prototypes. In order to 

scale the design forces properly, the forces for a single scaled beam are multiplied by two 

to account for the combining of the beams made necessary by scaling. The PT forces in 

the beams are not equal in the 100% scale model, but for simplicity the target PT design 

forces for the UT Tyler Structure were made equal. However, this equality did not 

actually occur due to errors made in construction – see Section 5.2.4. 

  

Section 

Modulus 

(in
3
) 

Moment 

of 

Inertia          

(in
4
) 

Base 

Moment    

(k-ft) 

Base 

Shear 

(kips) 

Area of 

Coupling 

Beams               

(in
2
) 

Moment of 

Coupling 

Beams       

(k-in) 

Shear of 

Coupling 

Beams          

(kips) 

Prototype 

Structure 

(T) Pier 183231 
19092676 

46812 767 
864 9442 196.6 

(C) Pier 518819 46812 1424 

Target 

(15% Scale) 

(T) Pier 618.4 
9666 

158 17.3 
19.44 31.9 4.42 

(C) Pier 1751 158 32 

UT Tyler 

Structure 

(T) Pier 1152 
13824 

164.4 34.2 
20 37.2 13.12 

(C) Pier 1152 83.8 34.2 

Table 4.1: UT Tyler Scaling Details 
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Figure 4.3: UT Tyler Experimental Specimen (Looking North): 

(a) schematic; (b) laboratory test setup 

(a) 

(b) 

EAST → 
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Additional axial force (both tensile and compressive) in the piers caused by 

coupling was provided by jacks attached to cables at the top of the wall piers that allowed 

both tension and compression to be applied.  These cables were connected to steel beams 

attached to the tops of the walls.  By attaching these cables at a distance from the 

centerline of the wall piers, the associated jacks were also used to provide the overturning 

moment at the top of each pier caused by the upper stories.  Forces in all three hydraulic 

jacks were measured using calibrated load cells (see Section 3.2.2 for calibration details).  

The foundation, wall piers, and coupling beams were all cast separately.  The 

flexural reinforcement in the wall piers was cast with a 7 in. extension protruding from 

the base, and the base moment connection for each pier was created by grouting these 

bars into anchors embedded in the foundation.  

The applied loads (lateral, overturning moment, and axial) in the experiment were 

scaled directly from those of the prototype building. 

 

 

PT 1st Story 

Beam Force 

(kips) 

PT 2nd Story 

Beam Force 

(kips) 

PT 3rd Story 

Beam Force 

(kips) 

Gravity Pier 

Force 

(kips) 

Prototype 

Structure 
404.6x2=809.2 285.3x2=570.6 285.3x2=570.6 2644.4 

Target   

(15% Scale) 
9.10x2=18.2 6.42x2=12.84 6.42x2=12.84 59.5 

UT Tyler 

Structure 
17 17 17 56.6 

 

4.2.1 Foundation Design 

 The foundation was designed as three sections separated by sheet metal so that it 

could be dissembled simply – see Figure 4.4. In order for the system to function as a unit 

Table 4.2: Post-Tension Cable and Gravity Forces 



92 

 

during testing the three pieces were post-tensioned together. The capacity of each section 

was calculated assuming the system was singly reinforced. The area of steel provided in 

the middle block is 3.2 in
2
 (four - #7 bars and four - #4 bars). This yields a moment 

capacity of 171 k-ft using reinforced concrete design principles (ACI 318). Similarly, the 

identical edge sections provide an area of steel of 0.6 in
2
 (three - #4 bars) and a moment 

capacity of 38 k-ft each. This makes the total capacity of the foundation 297 k-ft.  

 

 The moment demand for the foundation was calculated using the worst case 

moment within the foundation from the As-Built ABAQUS model (see Section 8.1.1 for 

model description). The worst case moment demand was calculated based on examining 

the extreme fiber stresses and with the assumption of elastic behavior. These stresses 

were localized to a small area, but for design purposes were assumed to encompass the 

entire width of the foundation. This produces a severely conservative moment demand of 

142 k-ft for the foundation. In spite of the extremely conservative demand calculations, 

the middle portion of the foundation is capable of resisting the moment demand without 

the edge blocks.  

 

SIDE VIEW 

Figure 4.4: Schematic of Reinforcement Layout (Side View) 

[Four 
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4.3 Strong Floor Tie Down Design 

The basic anchor design of the existing floor was insufficient for the loads that 

were required for this test. Drop in anchors (Simpson StrongTie coil-threaded drop-in 

carbon steel anchors) were used to strengthen the connection between the foundation of 

the specimen and the strong floor beneath. They were arranged as shown in Figure 4.5.  

 

 

Based on this layout, the capacity of the strong floor anchor system was 

calculated. A force of 6 kips was assumed for the drop in anchors that were added to the 

larger existing anchors. For the larger existing anchors, a force of 26 kips was assumed. 

These forces were assumed based on the manufacturer’s recommendation for the small 

anchor capacities and the larger existing anchors were assumed based on the tensile 

strength of the B7 threaded rod used as a connector into the anchors. The moments of 

Large Anchors (26k) Small Anchors (6k) 

Figure 4.5: Strong Floor Anchor Layout 
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these forces were taken with respect to the center line of the foundation. The moment 

capacity of the anchor system was calculated to be 282 k-ft. The moment demand 

calculated in Section 4.2.1 is also the demand for the anchor system. The anchor system 

provides a moment capacity of 664 k-ft. The anchor system can withstand up to 92 kips 

at the applied lateral load height of 86.5 inches (pier height + foundation thickness).   
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CHAPTER 5: CONSTRUCTION AND MATERIALS 
 

5.1 Construction Methods 

 This section describes the methods used to construct the test specimen. The 

specimen was a reinforced concrete structure which required formwork construction, 

bending of various sizes of rebar for cages, and concrete placement. After the separate 

portions of the specimen were cast and cured, the piers had to be grouted into the 

foundation and the beams had to be grouted into place to remove placement gaps. After 

the grout finished curing, the foundation was post-tensioned together through ungrouted 

conduits shown in Figure 5.1a, and the beams and walls were post-tensioned together to 

form the coupling wall system.  

5.1.1 Formwork Construction 

The formwork was constructed with the foundation in place, and both piers side 

by side next to the foundation formwork, as shown in Figure 5.1, in order to use the least 

amount of lumber and provide the most stability. For the foundation, a layer of plastic 

was placed on the floor to prevent bonding between the foundation and the strong floor 

beneath. Additionally, sheet metal was placed to divide the foundation into three parts for 

easier removal after testing. The three separate pieces were later post-tensioned together 

in order for the foundation to behave as one unit. Underneath the piers two pieces of 

plywood were placed so that the formwork walls could be constructed at equal height 

throughout. For the ends of the piers, which had protruding rebar for later embedding into 

the foundation and threaded rod for attaching the steel I-Beam lever (Figure 5.2), holes 
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were drilled into the ends of the formwork to allow the rebar to be placed correctly 

without allowing concrete to leak out of the form. The side of the plywood that would be 

directly exposed to concrete had vegetable oil applied immediately before placement of 

concrete to increase ease of removability.  
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Figure 5.1: Formwork of Foundation and Piers: (a) Schematic 
Layout; (b) Photograph of Formwork 

(a) 

(b) 
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5.1.2 Rebar Construction 

The rebar was bent using the jig in Figure 5.2. The bent rebar was then arranged 

into cages using the longitudinal reinforcement in the foundation and the piers (Figure 

5.3). The smaller cages surrounding the anchors were created using the same rebar jig in 

Figure 5.2. The rebar for the beams had to be bent in a table mounted vice grip in order 

for the small dimensions to be achieved. Bend radii specified in ACI 318 were not 

satisfied due to small scale nature of the test. No adverse effects were observed. 

Longitudinal reinforcement in the piers protruded out of the base of the piers by 7 inches. 

The protruding rebar was later embedded into the foundation using grout sleeves 

described in Section 5.1.4. A lifting handle was added to the outward facing side of each 

pier to aid in the removal and later placement of the piers. 

 

 

Figure 5.2: Steel Jig Used to Bend Rebar 
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In addition, ¾ inch threaded rod protruded out of the top of the piers. Four rods, 

32 inches long, were embedded 20 inches into the top of the piers with 12 inches 

protruding. The details of the layout of threaded rods and how they attached to the steel I-

Beam lever is discussed later in Section 6.2 (Figure 6.2). The embedded end of each rod 

had a nut attached to insure greater embedment strength. The detailed view of the 

protruding rebar and threaded rod can be seen in Figure 5.4. 

 

5.1.3 Concrete Placement and Curing 

The placement of concrete was difficult as the distance from the truck to the 

farthest pier was 19 ft. The extensions provided by the concrete vendor allowed the center 

Figure 5.3: Foundation Rebar: Rebar Cages Arranged in Foundation 

Figure 5.4: Protruding Threaded Rod and Rebar Details of a Pier 
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of the closest pier to be easily reached. The remaining concrete had to be shoveled the 

extra 3 ft to the farthest pier. While placing the concrete, each section was vibrated to 

prevent air pockets in the concrete. The beams were placed separately by hand and were 

also vibrated to prevent air pockets. The concrete was then covered in 2 mm plastic and 

cured for 28 days, after which time the formwork was removed and the piers prepped for 

placement.  

5.1.4 Pier Grouting 

To connect the piers to the foundation as if they were cast as one object, grout 

sleeves (Figure 5.5) were used to grout in the 7 in of rebar that protruded from the bottom 

of the piers. The piers were lifted into place and held there by a two ton crane while small 

wooden blocks were placed at the corners to provide space between the top of the 

foundation and the bottom of the piers in which grout could be placed. The grout was 

then pushed into the grout sleeves and the space between the pier and foundation all 

while still supported by the two ton crane for safety. The piers remained on the blocks 

with the support of the crane for the recommended 28 days, after which time the blocks 

and crane support was removed.  
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5.1.5 Post-Tensioning Cables 

After the grout supporting the pier-foundation connection had cured for the 

recommended 28 days, the specimen could be post-tensioned. The foundation was post-

tensioned first to better understand the process because the post-tensioning force in the 

foundation was not critical. All of the other post-tension cables required a load cell on the 

Figure 5.5: Lenton Interlock (LK8) Grout Sleeve: (a) 

Grout Sleeve; (b) Schematic of Placement in Foundation 

(a) 

(b) 
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cable in order for the iNET system to monitor the forces within the cable throughout the 

tests. The ends that required load cells where arranged as shown below in Figure 5.6.  

 

 

5.2 Specimen Materials 

 This section describes the material properties and sizes of the materials that were 

used to construct the specimen.  

5.2.1 Concrete  

The concrete was designed to the strength specifications needed for this project by 

Transit Mix Concrete, and was delivered to the project site.  Pea gravel was elected as the 

Figure 5.6: Load Cell Details Schematic 
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primary large aggregate to better simulate scaled standard size large aggregate.  

5.2.1.1 Mix design 

 

Material 
Design 

Qty 

Adj. 

Total 
Required Batched %  Var 

%  

Moisture 

Actual 

Water 

Total 

Water 

3/8” Pea 

Gravel 
1894 lb 1919 11512 lb 11550 lb 0.0033 0.013%  18 gl 18 

Sand 1065 lb 1113 6678 lb 6680 lb 0.0004 0.045%  35 gl 35 

Cement 799 lb 799 4794 lb 4780 lb -0.003 
   

Water 267 lb 176 1056 lb 1060 lb 0.0035 
 

127 gl 127 

Pozz 80 32 oz 32 192 oz 192 oz 0 
   

PS1466 32 oz 32 192 oz 192 oz 0 
   

 
Sand was ASTM C33 concrete sand; cement was ASTM C150 Type I-II with 

ASTM C618 class F fly ash. PS1466 is a mid-range water reducer meeting ASTM C494 

Type F. Pozz 80 can be classified as a Type A, B, or D admixture under ASTM C494.  

5.2.1.2 Concrete Strength  

 The concrete used in construction of the specimen was tested using a compressive 

testing machine over time in order to generate a time history of the compressive strength. 

Initially the curve generated in Figure 5.7 is used to estimate the full strength of the 

concrete based on the 28 day strength. Based on the 28 day strength, f’c is estimated to be 

7540 psi. Later tests were conducted to find the actual strength at the time of testing and 

beyond. The strength of the concrete during Phase I was measured at 8230 psi while the 

strength during Phase II and III, which were conducted only two days apart, was found to 

be 8680 psi. The original design specifies a strength of 6000 psi; therefore the concrete 

used in the actual construction was significantly stronger than designed.  

Table 5.1: Mix Design (provided by Transit Mix Concrete of Tyler, TX) 
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5.2.2 Grout 

 Five Star® Grout was chosen to grout the piers into the foundation and the beams 

to the piers.  

5.2.2.1 Grout Thermal Specifications 

Five Star® Grout: When tested in accordance with ASTM C 827, Five Star® 

Grout exhibits positive thermal expansion and meets the performance requirements of 

ASTM C 1107-02 Grades A, B and C, ASTM C 1107-07, and CRD-C 621-93 

specifications for non-shrink grout over a wide temperature range, 40°F - 90°F (4°C - 

32°C). 

5.2.2.2 Grout Mechanical Strength Specifications 

 Five Star® Grout was used because of its non-shrink formula and rated 
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compressive strength of 8 ksi and pull-out strength of 2.4 ksi. In order to determine the 

strength of the grout used to connect the piers to the foundation via grout sleeves, the 

grout was tested several times using a compressive testing machine. These values were 

then recorded and averaged to determine the best estimate for the strength of the grout 

(Table 5.2). Test 1 and 2 were conducted at the first time of testing, Phase I. Tests 3 

through 7 were conducted 175 days later. Surprisingly, the values of the first two tests 

were higher than the values of the latter five. The reason for this loss of strength is 

unclear but may explain the unexpected pull out of the rebar from the embedded grout 

sleeves in the foundation.  

 

 Strength (psi) 

Test 1 5780 

Test 2 5900 

Test 3 3130 

Test 4 5390 

Test 5 4260 

Test 6 3780 

Test 7 6630 

Average 4981 

 

5.2.3 Rebar 

 The rebar used in the construction of the specimen are listed by size and 

application in Table 5.3. No physical testing was conducted on the rebar; standard Grade 

60 rebar was used. The general design for steel reinforcement for the foundation, piers 

and beams can be found in Section 4.2. 

 

 

 

Table 5.2: Grout Strength (psi) from Compression Testing 
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Application Size  

Pier Shear Stirrups #4 

Pier Tension #6 and #7 

Beam Shear Stirrups #3 

Beam Tension #3 

Foundation Stirrups #4 

Foundation Tension #7 and #8 

 

5.2.4 Post-Tension Cables 

All post-tensioning cables were ½ inch diameter, and grade 270. The post-tension 

cables were run through ungrouted conduit; the layout of which can be seen in Figure 

5.1a. An anchor was attached to one end and a tension machine (Figure 5.7) was used to 

tighten the cone and nut configuration similar to that seen in Figure 5.4. The post-tension 

cables that were not through the foundation required one end of the cable to have a load 

cell in the line to monitor forces during testing. The tension machine used a gage 

attachment to read the force that it applied to the cable in order to achieve a specific load. 

This gage, along with the load cells on each cable, was initially used to indicate when to 

stop applying pressure to the cables.  During the post-tensioning of the cables, the force 

applied dropped substantially as soon as the tension machine was removed from the line. 

Because of this, the maximum force of the tension machine was applied to each of the 

cables. In spite of this apparent excess loading, the forces in the cables were significantly 

lower than designed – see Table 5.4. In addition, because the cables located through the 

center of the beams were not re-tensioned after all beam cables were tensioned, the cables 

that were first tightened retained less force. 

Table 5.3: Size and Application of Rebar Used 
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 Target (lb) As-Built (lb) 

Tension Pier Gravity 56600 37700 

Compression Pier Gravity 56600 44600 

Beam Cable -- 1st Story  17000 454 

Beam Cable -- 2nd Story  17000 3284 

Beam Cable -- 3rd Story  17000 8338 

 

 

Figure 5.8: Post-Tension Machine 

Table 5.4: As-Built Loads vs. Target Loads 
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CHAPTER 6: TEST PROTOCOL 
 
6.1 Basic Structure Physical Set-up  

After the UT Tyler specimen construction was completed, the load cells were 

assembled and calibrated as denoted in chapter 3. Several of the load cells were placed on 

PT cable lines in order to monitor the PT forces throughout loading.  

Phase I of the project was set up as shown in Figure 6.1(a), with the lateral force 

being applied from the West side when looking North. Phase I ended because the lateral 

actuator ran out of stroke due to the large displacement in the load frame; the test had to 

be concluded until the issue with deformation of the load frame could be addressed. 

Several data points were taken during the unloading of the specimen. Phase II was 

conducted in the same manner as Phase I with an added support strut as indicated in 

Chapter 3. Phase II continued until the specimen failed in the direction of loading. Phase 

III was then conducted, as shown in Figure 6.1.1b, in the opposite direction, with the 

lateral force being applied to the East side when looking North. Phase III continued until 

the specimen began to fail in the second direction.  
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(a) 

(b) 

Figure 6.1: Actuator Set Up (Looking North): (a) Phase I and II; (b) Phase III 

EAST→

EAST→



110 

 

  

6.2 Loading Procedure 

Before the test began, the iNET system was turned on and all the connections 

were checked. Then, the load cell readings were monitored to ensure that all wiring and 

constants for the iNET system were still correct. After the load cells were considered 

accurate, the lateral actuator had to be blocked up in order for the actuator to have the 

most stroke possible to be applied perpendicular to the tension pier. This was achieved by 

adding steel spacers and slightly activating the lateral actuator, until the friction force was 

great enough to suspend the steel spacers between the actuator and the tension pier. In 

order to support the lateral load, an actuator was hung from a lateral support which was 

attached to the load frame column. 

 

Additional axial force (both tensile and compressive) in the piers caused by 

coupling was provided by jacks attached to cables at the top of the wall piers that allowed 

Figure 6.2: Load Application through I-Beam Attachments 
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both tension and compression to be applied.  These cables were connected to steel beams 

attached to the tops of the walls.  By attaching these cables at a distance from the 

centerline of the wall piers, the associated jacks were also used to provide the overturning 

moment at the top of each pier caused by the upper stories.  The PT strands that were 

anchored to the base of the foundation were used to pull down on the piers and another 

PT cable was run through the load frame’s upper support to pull up on the top of the piers 

as shown in Figure 6.2.  

The load curve that was used for testing was derived from the results of the UT 

Tyler DRAIN analysis conducted by Notre Dame. Based on this continuous curve, a 

series of discrete points were taken for our force application. The actuator system was 

controlled by a single line hydro pump (Enterpac ZU4 class pump). The single line was 

broken up into a four line attachment, with one line locked closed. The Schematic of the 

pump manifold, including valves, gages and pumps, is shown in Figure 6.3. Each of the 

remaining three lines was given a digital pressure gage to monitor the force applied to 

each line as shown in Figure 6.4.  

 
Figure 6.3: Schematic of the Pump Manifold 
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In order to best control the pressure in each line, a system for application was 

derived. The highest force applied would be the lateral force; therefore that line would be 

opened. The vertical loads were lower and therefore were brought up to the required 

force, as read by the iNET system, one at a time. After each actuator was found to be 

applying the necessary load it was locked off to retain its pressure while the other 

actuators could be brought to their appropriate forces. Once all three actuators were 

brought to the forces designated by the curve described above, an image was taken by the 

DIC systems.  

 The calibration and set up for the DIC systems are provided in Chapter 3. 

Typically multiple DIC systems can be easily coordinated by simply placing them all on 

the same time interval between images and starting them simultaneously. For this test, it 

Figure 6.4: Photograph of Hydraulic Manifold with Digital Gages 
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was important to know the forces being applied during each of the images in order for the 

results to be useful. Since the exact timing of the force application was not known, a 

different approach was needed. Instead of setting a timer and walking away, as each point 

on the target curve was reached, an image was taken manually on all of the systems.  

 Table 6.1 shows the loads actually applied to the specimen during testing. The 

table shows the values based on the DIC stage, or image captured, and the phase in which 

the stages were captured. Each phase has a different number of stages as a different 

number of images where captured from each phase.  
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Phase I  Phase II Phase III 

  Act. 1   Act. 2  Act. 3 Act. 1  Act. 2 Act. 3 Act. 1   Act. 2 Act. 3

Stage  LC1  LC2  LC3  Stage  LC1 LC2 LC3 Stage LC1  LC2  LC3

0  ‐0.4  0.076  ‐0.12 0 ‐0.5 0.3 ‐0.4 0 0.1  0.2 ‐0.2

1  2.6  1.3  1.2 1 10.4 5.1 5.1 1 2.1  0.2 ‐0.05

2  5.1  2.8  2.9 2 20.1 10.9 10.3 2 4.9  2.7 2.4

3  10.5  5.5  5.7 3 30.9 18 17.2 3 9.8  4.9 3.6

4  15.1  9.7  8.8 4 40.2 26 22.7 4 15.2  7.3 6.3

5  20.3  11.1  11.1 5 49.8 27.5 27.3 5 20.3  9.6 10.5

6  25.5  13.7  13.8 6 55.2 28.9 29.3 6 25.3  14.4 13.9

7  30.6  16.6  16.8 7 59.7 30.7 31.6 7 30.1  16.3 17.1

8  35.2  19.8  19.7 8 64.7 31.7 32.3 8 35.4  18.2 18.3

9  40.6  22.5  22.2 9 62.3 28.1 31.6 9 40.9  21.1 21.2

10  42.54  23.9  23.7 10 58 21.7 31.4 10 44.8  25.3 24.3

11  44.9  25.6  25.9 11 57.5 21.6 30.9 11 50.7  26.6 26.7

12  47.2  26.7  26.8 12 56.9 21.4 31.3 12 55.6  27.4 28.7

13  47.5  28.2  26.5 13 56.5 21.4 31.1 13 60.9  29.7 29.5

14  50.1  28  27.8 14 56.5 21.6 30.9 14 42.6  22.9 22.3

15  52.8  28.4  28.4 15 56.4 21.5 31 15 22.7  10.8 10.9

16  55.1  30.4  30.3 16 56.5 21.3 31.2 16 0.15  ‐0.05 ‐0.2

17  57.1  30.1  30.1 17 ‐0.08 0.15 ‐0.2 17 4.1  0.3 ‐0.1

18  60.1  30.8  31.4 18 0.2 32.3 34.9 18 30.4  13.8 15.6

19  62.7  31.5  31.6 19 42.1 22.9 32.6 19 51.2  24.9 26.7

20  65.2  32.5  32.3 20 49.3 18.5 31.6 20 55.9  29.7 29.5

21  60  33.2  33.2 21 50.4 13.9 30.7 21 60.9  30 32.5

22  50.1  27.3  27.7 22 45.5 10.9 29.2 22 65.6  31.5 32.6

23  39.4  22.6  22.4 23 0 0 0 23 70.8  31.9 33.9

24  28.3  15.8  16.1 24 72.6  35.8 38.3

25  19.5  11.1  11 25 75.3  35.4 37.9

26  10.1  5.6  5.7 26 0.1  0.2 ‐0.2

27  ‐0.13  0.344  0.145    

 

Table 6.1: Loads Applied During Testing Based on DIC Stage 
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CHAPTER 7: EXPERIMENTAL RESULTS 
 
 This section presents the results gathered from the experimental data collected 

during testing. First, the measurement and acquisition systems are validated using 

secondary measurement systems. The remainder of the chapter is spent establishing the 

behavior of the coupled wall system based on the behavior of critical areas and validating 

the developed ABAQUS model. The behaviors that are focused on include: the global 

behavior, foundation behavior, pier behavior and beam behavior. All four fields of view 

(FOV), as defined in Section 3.3.2.3, are used in order to define the system behavior. 

Strain maps generated by the DIC software are provided for each FOV for phases I, II, 

and III as visual aids. The post test condition of the test specimen and the conclusions 

made about the structural behavior is also presented.  

7.1 Instrumentation Validation   

 The load displacement response of the string potentiometer and the digital image 

correlation systems are compared for all phases in Figure 7.1-3 in order to validate the 

data collection processes. The load displacement response of the recorded pump values 

will be compared with the iNET system outputs for the load cells (Figures 7.4-6) for all 

phases to validate the accuracy of the monitoring systems.   

7.1.1 String Potentiometer vs. DIC 

 The string potentiometer measured the displacement of the specimen at one 

specific point: the handle located in the center of the tension pier. The precise location 
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and information on the string potentiometer can be found in Table 3.1 and Figure 3.5. In 

order to compare the displacements collected by the DIC System 1 to the string 

potentiometer results, a line at the height of the handle was generated and the 

displacement data from that line was averaged for each stage in each phase. Each stage 

had a load associated with it. Based on this data, the two methods of measuring 

displacement were compared. Figures 7.1, 7.2, and 7.3 show the graphical comparison for 

all phases. The initial displacement was removed from Phase II and III for simple 

comparison.   

 
 Figure 7.1: String Potentiometer vs. Digital Image Correlation System for Phase I 
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 Figure 7.2: String Potentiometer vs. Digital Image Correlation System for Phase II 
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7.1.2 Pressure vs. Load Cells 

 The pressure in each actuator was monitored during testing and recorded for 

comparison to verify that the iNET outputs were accurate. This was done using the digital 

gages (Figure 6.4) to read the pressure in each line and then convert it to a force based on 

the effective area of the actuator head. The digital gages have an accuracy of ±0.5 % 

according to the manufacturer. The actuators used were Enterpac Model RCH-603 with 

an effective area of 12.73 square inches. During testing the digital gage turned off during 

one of the readings, therefore the graph for Phase I is missing a data point. The 

comparison was only conducted for the lateral actuator because of its critical nature.  

Figures 7.4, 7.5, and 7.6 show the comparison of the values. The values were plotted with 

the stage number, the number assigned to the image by the DIC software starting at stage 
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Figure 7.3: String Potentiometer vs. Digital Image Correlation System for Phase III 
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0, instead of lateral load for simplicity. Stage numbers are not necessarily associated with 

linearly applied forces.  

 
Figure 7.4: Actuator Pressure Gage vs. iNET Outputs for Load Cell for Phase I 
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Figure 7.5: Actuator Pressure Gage vs. iNET Outputs for Load Cell for Phase II 
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7.1.3 Instrumentation Validity Conclusions 

 Based on the comparisons provided, it was determined that the measurement and 

acquisition system were functioning properly. For the remainder of this chapter, load is 

reported using LC1 which reflects the applied lateral load – see Section 3.2.2 for 

calibration information; displacements and drifts in all future plots are calculates using 

SP1 values – see Section 3.2.1 for information regarding string potentiometers used 

during testing.  

7.2 Global Behavior 

 The remainder of this chapter will include comparisons between the measured 

DIC data and the results from the generated ABAQUS model. For a full model 

description and future work conducted using finite element analysis, see Chapter 8.  

Figure 7.6: Actuator Pressure Gage vs. iNET Outputs for Load Cell for Phase III 
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The 15% scale post-tension coupled wall system was tested in three phases as 

described in Section 6.2. Figure 7.7 shows the lateral load versus displacement history 

from SP1 for the experimental test.  The difference in displacements between the end of 

each phase and the beginning of the next is attributed to the self-centering capability of 

the coupling wall system. One full load reversal was applied to the structure until failure 

in both directions.  To achieve the full load reversal, the lateral jack and the two vertical 

jacks were moved from their initial positions shown in Figure 6.1(a) after failure in the 

first loading direction as discussed in Section 6.1 herein. During both Phase II and III the 

specimen was unloaded and reloaded; this is seen in Figure 7.7 where the force goes to 

zero and is then reapplied. Because Phase III was conducted in the opposite direction, the 

displacements are recorded as negative values. Locations where unloading is evident in 

the plot occurred when the displacement capacity of the lateral loading jack was 

exceeded, so the jack was depressurized while spacers were added to increase the total 

structure lateral travel; the second hysteresis of the phase II is not considered for 

comparisons seen in this Chapter. The hysteresis of the structure exhibited a smaller 

amount of re-centering capability than was expected, which was due to the relatively 

small PT forces that were achieved in the coupling beam strands as shown in Table 5.4. In 

order to limit confusion for interpretation of the data, a coordinate system, shown in 

Figure 4.3, will be used to describe directional information. Drift is a measure of lateral 

displacement – it is the lateral displacement divided by the height of the measurement. 

Drifts used in the comparisons given in this thesis were calculated using the heights at 

which the displacements were collected; a height of 72 inches (the location at which the 

highest displacement is measured on the specimen) was used for all measured data (DIC) 
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and 78 inches (the top left corner of the models) was used for data collected from 

analytical modeling. Drift here is relative to the distance of the monitored point from the 

base of the foundation, therefore the variation in measurement height does not affect the 

measurement.  Also, the direction of East will be denoted and the direction of the view 

(i.e. North or South) will be identified on all pertinent figures.   

 

7.3 Foundation Behavior 

 It is necessary to establish that the foundation does not allow for any large amount 

of rotation, uplift, or slip.  The rotation of the foundation can be seen in Section 7.4.2.4. 

Figure 7.8 shows the displacement in the y direction of the foundation (uplift) versus the 

drift measured during testing. This information was calculated using the average 

movement of the foundation across the two local FOV at the base of each pier, defined in 
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Figure 3.14 as System 3 and 4. The maximum uplift measured during testing was less 

than 5 mm. Based on this graph, it can be concluded that uplift in the foundation will not 

greatly alter the results collected during testing; therefore it will be neglected in further 

calculations.  

 

 Figure 7.9 shows the displacement in the x direction of the foundation verses the 

drift measured during testing (slip). This information was calculated using the average 

movement of the foundation from the same FOV as above. The maximum slip measured 

during testing was less than 7 mm. Based on this graph, it can be concluded that slip of 

the foundation will not greatly alter the results collected during testing; therefore it will 

also be neglected in further calculations. 

Figure 7.8: Foundation Movement in the y Direction vs. Drift 
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7.4 Pier Behavior 

The behavior of the piers is a vital component in establishing the overall behavior 

and validity of the coupled wall system. This behavior will be established through the 

analysis of the center line deflections of the piers; cracking in the concrete and out of 

plane displacements will be presented in strain maps for visual aid and clarity. 

7.4.1 Full Pier Behavior 

 The global behavior of the specimen is defined through analysis of the entire pier. 

In order to analyze information from both of the entire piers, the global FOV, defined in 

Figure 3.21, is utilized.  

7.4.1.1 Deflected Shape 

 The center line deflections from the Aramis DIC system are shown in Figures 
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7.10, 7.11 and 7.12 for Phase I, II and III, respectively. These graphs show the deflections 

from the test at increments of 10k and the maximum load for each phase. The maximum 

deflections at each load are almost equal, while the deflections for the compression pier 

are greater through the rest of the height of the piers. This is due to the beams between 

the piers. As the load increases, the beams are pushed into an angle with the piers and a 

gap opens at each end of the beams; because of this, the distance between the piers is 

greater as the deformations of the piers increases. The beam gap opening is presented 

later in Section 7.5.1. Phase III was conducted in the opposite direction as Phase I and II 

(see Figure 6.1); therefore the DIC System 1, with FOV Global, recorded the 

displacements in the negative x direction. Because of this reversal, the pier that was the 

tension pier in Phase I and II is now called new compression and the previously named 

compression pier is called new tension.  
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Figure 7.10: Phase I Tension and Compression Pier (Looking North) Deflections 
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Figure 7.11: Phase II Tension and Compression Pier (Looking North) Deflections 
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 A direct comparison of the deflected center line shape from the DIC system and 

ABAQUS models based on applied loads is given in Figure 7.13. A full description of 

these ABAQUS models is given in Chapter 8. Because of the poor performance of the 

pier-foundation joint, greater deflections were experienced during the test at lower 

applied loads that in the models.  

Figure 7.12: Phase III (Reversal) Tension and Compression Pier (Looking North) 
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In order to compare the behavior more appropriately, the deflections are compared 

at different levels of drift, instead of applied loads. This drift based comparison is given 

in Figure 7.14. The behavior of the piers during testing is similar to those produced by the 

ABAQUS models when compared by levels of drift.  

Figure 7.13: Deflected Shape, Applied Load Based Comparison (Looking North)
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7.4.1.2 Global Strain Maps (εy)	 

 Figures 7.15, 7.16, and 7.17 show images of the strain maps that are generated in 

the DIC software for phases I, II, and III, respectively. The red areas show high tension 

area where cracks will begin to open. The dark blue areas show the compression zones; at 

the higher applied loads, the compression toes begin to develop.  

Figure 7.14: Deflected Shape, Drift Based Comparison (Looking North) 
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EAST →

Figure 7.16: Phase II Strain Maps (Looking North): (a) 10k; (b) 20k; 
(c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 
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EAST →

Figure 7.17: Phase III Strain Maps (Looking North): (a) 10k; (b) 
20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 70k; (h) 75k (max load) 
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 Figure 7.18 shows the comparison between the phase I 65k (max load) lateral 

applied load strain map and the strain map produced for 65k in ABAQUS (model 

discussed in Chapter 8). The comparison does not reflect an accurate representation of the 

actual stresses in that no cracking is shown, this is a result of the assumptions made 

relating to the elastic-perfectly plastic material property used for the ABAQUS model; 

see Section 8.1 for a detailed model description. If the ABAQUS model experienced a 

tension force greater than the 6000 psi strength it would show yielding in that material. 

Figure 7.19 shows maximum tension stress experienced in the ABAQUS model versus 

the drift (%) the system experienced. Even at large drifts, the system sees less than a 

maximum of 2500 psi; therefore the ABAQUS model should not show cracks based on 

our material property assumptions. Otherwise, the model is an appropriate representation.  
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 Figure 7.18: Strain Map Comparison: (a) ABAQUS; (b) DIC 

(a)

(b)
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7.4.1.3 Out of Plane Pier Movement (Δz) 

 The DIC system used for the global FOV is a 3D-DIC; therefore the out of plane 

displacements are captured during the test. Torque and twisting were not a part of the 

design or planned in the testing of the specimen. To verify that these did not occur during 

testing, the out of plane pier movements at the maximum applied load for each phase is 

reported in Figure 7.20. The maximum out of plane movement is approximately 5 mm. 

This is acceptable for the purposes of this test.  

Also, because the systems used to monitor the base pier behavior, Systems 2 and 

3, are 2D-DIC, large errors can occur if the specimen has large out of plane movement in 

the FOV – see Section 2.2.4. The out of plane displacements near the base are extremely 

low, therefore, the 2D-DIC systems will not experience magnification issues. 
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Figure 7.19: ABAQUS Maximum Tension Stress vs. Drift 
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7.4.1.4 Global Strain Maps (εx)  

 The εx strain maps provided in Figure 7.21 are for the maximum load in each 

phase. Although the beam toes should introduce compression in the piers in this direction 

at the beam heights, this behavior is not shown. In Figure 7.22(a), the ABAQUS model 

results for a load of 70k are shown. The model does not appear to depict the appropriate 

stresses. However, the model does show the induced compression in Figure 7.22(b). The 

pier face is simply too far away from the beam toes to have captured this beam data. 

EAST →

Figure 7.20: Δz Displacement Maps (Looking North): (a) Phase I; (b) Phase 
II; (c) Phase III 

(a) (b) 

(c) 
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EAST →

Figure 7.21: εx Strain Maps (Looking North): (a) Phase I; (b) Phase 
II; (c) Phase III 

(a) (b) 

(c) 
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Figure 7.22: ABAQUS Strain Maps: (a) Front 
Face; (b) Beam End View 

(a) 

(b) 
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7.4.2 Base Pier Behavior 

The base pier behavior defines the local behavior of the specimen through 

analysis of the base of the pier and its interaction with the foundation. In order to analyze 

information from both bases of the piers, the compression base and tension base FOV, 

defined in Figure 3.21, are utilized.  

7.4.2.1 Neutral Axis Depth 

 The neutral axis depth is the length of the pier base that is still in contact with the 

foundation, also referred to as the compression toe. To calculate the neutral axis depth 

from the measured data, a line was taken at the base of the pier (displacement in the y 

direction) and the equation of that line was found, and the value for the x-intercept was 

calculated by assuming y equals zero. The x-intercept in this case, because of the 

orientation of the line, is the value of the neutral axis depth. To calculate the neutral axis 

depth from the ABAQUS model, the displacements along the front of the bottom face 

were examined and a straight line was fitted to the data. The x-intercept is the value of the 

neutral axis again. This method provided a more precise neutral axis than only reviewing 

the node locations where contact occurred since this method allowed interpolation 

between nodes. Figure 7.23 shows the neutral axis depth for both measured data from 

testing and the ABAQUS models. The data was only compared for drift up to 0.015 in 

order to adequately establish basic behavior.  
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 It is expected that the neutral axis depth should reduce as the drift of the system 

increases, and this is shown in Figure 7.23. It is also expected that the tension pier will 

have a smaller neutral axis value for the duration of testing. Although this trend is noted 

in the ABAQUS models, the experimental data is more variable. This may be explained 

by rebar pull-out at the foundation if the rebar pull-out occurred unequally or at different 

loads in the two wall piers. The problem of bar pull-out is discussed in Section 7.4.2.4. 

7.4.2.2 Gap Opening 

 The gap opening at the base is the space that opens up between the base of the 

pier and the foundation beneath. To calculate the gap opening, a point on the corner of the 

pier where the gap is opening and its corresponding original contact position on the 

foundation (displacement in the y direction) were subtracted. That value reflects the 

Figure 7.23: Neutral Depth vs. Drift Comparison 
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greatest gap opening for that load. Figure 7.24 shows the gap opening for both measured 

data collected during testing and the ABAQUS models. There is good agreement between 

the ABAQUS models and the measured experimental data. 

 
 

7.4.2.3 Pier Slip 

Slip is the movement in the x direction at the base of the pier in relation to the 

foundation. In a perfect fixed connection, the slip is equal to zero. Because of the poor 

performance of the pier-foundation interface, the possibility of large slip was a concern. 

Figure 7.25 shows the slip of the pier bases verses drift. The maximum slip experienced 

during testing is less than half a millimeter. Slip at the base will not be an issue and will 

therefore be neglected in all further computations.  

Figure 7.24: Gap Opening between Pier Base and Foundation vs. Drift Comparison 
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7.4.2.4 Foundation and Pier Rotation 

 The rotation of the piers in relation to the foundation establishes an important 

parameter of base pier behavior. Figures 7.26 through 7.31 show the rotations of the 

tension and compression piers for phases I, II, and III. Figure 7.32 shows a comparison 

between measured rotations and rotations from the ABAQUS model based on drift, not 

applied lateral load (similar to Section 7.4.1.1).  These figures show larger rotations of 

the piers than was expected for the amount of drift experienced. This is because of the 

rebar pull-out experienced during testing. The global behavior of the system shown in 

Section 7.2 reflects a much lower stiffness of the system that was expected. A parametric 

study was conducted to determine the source of this difference. After the conclusion of 

testing and completion of dismantling, the foundation was inspected to confirm or 

Figure 7.25: Pier Slip in the x Direction Pier Base and Foundation vs. Drift Comparison 
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disprove the assumption of rebar pull-out. The inspection confirmed that the rebar that 

should have been embedded in the foundation was pulled loose during testing. 

Furthermore, Figure 7.26 and 7.27 show that the compression pier rebar pulled out more 

severely than the tension pier, lending weight to the discussion regarding neutral aixs 

depth in Section 7.4.2.1. Details of the inspection results and the study conducted can be 

found in Section 8.2.  

 
Figure 7.26: Phase I Tension (West) Pier Rotations (Looking South) 
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Figure 7.27: Phase I Compression (East) Pier Rotations (Looking South) 
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Figure 7.28: Phase II Tension (West) Pier Rotations (Looking South) 
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Figure 7.29: Phase II Compression (East) Pier Rotations (Looking South) 
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Figure 7.30: Phase III New Compression (West) Pier Rotations (Looking South) 
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Figure 7.31: Phase III New Tension (East) Pier Rotations (Looking South) 
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7.4.2.5 Pier Base Strain Maps  

Figures 7.33, 7.34, and 7.35 show images of the strain maps that are generated in 

the DIC software for the tension pier base. Figures 7.36, 7.37, and 7.38 show images of 

the strain maps that are generated for the compression pier base. The figures show phases 

I, II, and III, respectively. All figures are looking South; the direction of East is labeled in 

→EAST 

Figure 7.32: ABAQUS results and Measured Data Drift Based Comparison (Looking 
North) 
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each figure. The red areas show high tension area where cracks will begin to open. The 

dark blue areas show the compression zones; at the higher applied loads, the compression 

toes begin to develop. 
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EAST ←

(a) (b) 

(c) (d) 

(e) (f) 

(g) 

Figure 7.33: Phase I Tension (West) Pier Strain Maps (Looking South): (a) 
10k; (b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 
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←EAST 

(a) (b)

(c) (d)

(e) (f)

(g)
Figure 7.34: Phase II Tension (West) Pier Strain Maps (Looking South): 
(a) 10k; (b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 
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←EAST 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
Figure 7.35: Phase III New Compression (West) Pier Strain Maps (Looking South): 

(a) 10k; (b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 70k; (h) 75k (max load) 
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←EAST 
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(c) (d)

(e) (f)

(g) 

Figure 7.36: Phase I Compression (East) Pier Strain Maps (Looking South): 
(a) 10k; (b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 
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←EAST 

(g) 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.37: Phase II Compression (East) Pier Strain Maps (Looking South): (a) 
10k; (b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 
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←EAST 

Figure 7.38: Phase III New Tension (East) Pier Strain Maps (Looking South): 
(a) 10k; (b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 70k; (h) 75k (max load) 

(h) (g) 

(e) (f) 
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(c) (d) 
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7.5 Beam Behavior 

The behavior of the beams is a vital component in establishing the overall 

behavior and validity of the coupled wall system. This behavior will be established 

through the analysis of the elongation of the beams and the gap opening at the beam ends; 

cracking in the concrete will be presented in strain maps for visual aid and clarity.  

7.5.1 Deflected Shape 

 The center line deflections from the Aramis DIC system are shown in Figures 

7.39, 7.40, 7.41, 7.42, 7.43, 7.44, 7.45, 7.46, and 7.47 for Phase I, II and III at 1st story, 

2nd story, and 3rd story, respectively. These graphs show the deflections from the test at 

increments of 10k and the maximum load for each phase. The deflections are similar for 

each story in each phase. The beams show little evidence of curvature, the system 

deflections are dominated by rigid body movement.  
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Figure 7.39: Phase I 1st Story Deflections 
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Figure 7.40: Phase I 2nd Story Deflections 
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Figure 7.41: Phase I 3rd Story Deflections 
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Figure 7.42: Phase II 1st Story Deflections 
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Figure 7.43: Phase II 2nd Story Deflections 
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Figure 7.44: Phase II 3rd Story Deflections 
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Figure 7.45: Phase III 1st Story Deflections 
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Figure 7.46: Phase III 2nd Story Deflections 
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 As with the deflection of the full pier center lines, a comparison between the 

ABAQUS model results and the measured DIC data is conducted. Figure 7.48 shows the 

comparison between deflections for all three stories at the same load of 65 kips. Clearly 

the results show, as with the pier center line deflections, that the deflections are not 

similar based on the applied lateral loading. Instead they will be compared based on the 

drift produced as with the pier comparisons. Figures 7.49, 7.50, and 7.51 show the 

comparison of ABAQUS and measured results for the 1st, 2nd, and 3rd stories, 

respectively.  
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Figure 7.47: Phase III 3rd Story Deflections 
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Figure 7.48: ABAQUS and Measured Results for Story Deflections 
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Figure 7.49: ABAQUS and Measured Results for 1st Story Deflections for Drift 
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Figure 7.50: ABAQUS and Measured Results for 2nd Story Deflections for Drift 
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7.5.2 Axial Elongation of Beams 

 The axial elongation of each beam, the increase in space between the two piers, 

was measured in the DIC system by subtracting the displacements in the x direction on 

the center lines of the two piers, taken from the FOV global as defined in Figure 3.21, 

instead of subtracting the displacements in the x direction of the ends of the beams. The 

center line deflections are discussed and presented in Section 7.4.1.1. Points where data 

was taken and subtracted for each method can be seen in Figure 7.52.  
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Figure 7.51: ABAQUS and Measured Results for 3rd Story Deflections for Drift 
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 The elongation of the beams could not be measured from the DIC systems 

because of the data loss in the global FOV (no beam data). In order to validate measuring 

the beam elongation from the center lines of the piers, the ABAQUS model was used to 

compare the actual beam elongation with the values measured using the center line 

technique. The method comparison is given in Figure 7.53. Based on the measurement 

method comparison, the center line measurement method can be considered an accurate 

measurement technique.  

(a) 

Figure 7.52: Elongation Measurement Methods: (a) Beam 
End Method; (b) Center Line Method 

(b) 
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 The elongation of the beams is provided in Figure 7.54. The values given in 

Figure 7.54 were measured using the center line method validated above. The ABAQUS 

models show that the 1st story elongates less that the 2nd and 3rd stories. The experimental 

data shows that the values for the three stories are approximately equal. In phase III, the 

3rd story elongated significantly less than the 1st and 2nd stories; the 3rd story should 

therefore have a higher compression. This can be seen in the beam strain maps in Section 

7.5.3. Although the results are not identical, the comparison in results from the DIC 

system and the ABAQUS models shows that the ABAQUS models provide an accurate 

representation of the tested specimen.  
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7.5.3 Angular Opening of Beam Ends 

 The angular openings of the beam ends were found by calculating alpha (α) and 

beta (β) and summing them as described below. Alpha was found by plotting a vertical 

line on each beam close to the end (displacement in the x direction) and finding the slope 

of that line. The slope of the beam line produces angle alpha in radians. Beta was found 

by plotting a line on the pier close to the edge (displacement in the x direction) and 

finding the slope of that line. Again the slope of the pier is the angle, beta, in radians. 

These angles were added together to find the total angle of gap opening at the end of the 

beams. The information for the beam slopes was measured from local DIC data with a 

view of the back of the specimen; Figure 7.55 illustrates the locations and layout of the 

 Figure 7.54: Axial Elongation of Beams, Measured and ABAQUS Results 
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beam-pier interface and is of the same view. The information for the Pier slopes was 

measured from global DIC data.  

 

 The beam angular gap opening for phases I, II and III, as well as those from the 

ABAQUS models are given in Figure 7.56. The angular opening at the beam ends is 

similar at all three stories. Again, the behavior shown during testing is reflected in the 

ABAQUS models.  

Figure 7.55: Beam Angular Gap Opening Location and Layout for Calculation

← EAST 
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7.5.4 Beam Strain Maps 

 Figure 7.57, 7.58, and 7.59 show the images of the strain maps that are generated 

in the DIC software for the three stories of beams for phases I, II, and III, respectively. 

The red areas are the tension areas where gap opening occurs in the diagonal corners. The 

dark blue areas are the compression areas where the deflected and rotated beams have 

forced the diagonal corners into compression.  

 In Phase III, the 3rd story beam has significantly more compression than the other 

two stories. This is also supported by the beam elongation data – see Section 7.5.1.  

 Figure 7.56: Angular Opening of Beam Ends (Radians) 
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EAST ←

(a) (b) (c) 

(d) (e) (f) 

(g) 
Figure 7.57: Phase I Beam Strain Maps (Looking South): (a) 10k; 

(b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 



179 
 

 

←EAST 

(a) (b) (c) 

(d) (e) (f) 

(g) 
Figure 7.58: Phase II Beam Strain Maps (Looking South): (a) 10k; 

(b) 20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 65k (max load) 
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←EAST 

(h) 

(a) (b) (c) 

(d) (e) (f) 

(g) 
Figure 7.59: Phase III Beam Strain Maps (Looking South): (a) 10k; (b) 

20k; (c) 30k; (d) 40k; (e) 50k; (f) 60k; (g) 60k; (h) 75k (max load) 
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7.6 Post Test Condition 

The structure exhibited behavior consistent with some of the potential benefits of 

a post-tensioned coupled wall system, with some self-centering capability, and damage 

limited mostly to the toes of the coupling beams.  Figure 7.59 shows the specimen after 

loading in both directions. The damage is clearly confined to the compression toes of the 

beams and piers.  

 

7.7 Experimental Results Conclusions 

 This chapter validates the data measured by the digital image correlation system. 

The behavior of the system is established using the measured data from the four DIC 

systems, in some cases multiple systems were used to determine one parameter. The 

ABAQUS model is later validated by comparing the deformation information from both 

Figure 7.60: Specimen Damage After Testing (Looking North): (a) Global FOV; (b) Beam 

→EAST 

→ EAST 
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systems. There are several limitations of the current experimental setup, the three major 

being: (1) scaling the specimen meant that C-shaped walls became rectangular shaped, 

and energy dissipation steel in the coupling beams could not be included; (2) the forces in 

the beam post-tensioning cables were less than as designed, and (3) the tension 

reinforcement necessary to resist the base moment in each of the piers pulled out of the 

structural couplers in the foundation at lower than the design load.  Because of these 

limitations, the specimen did not reach the expected design load of the coupled wall 

system. In spite of these limitations, the simple ABAQUS model created appears to give 

reasonable results: it matches experimental deformation data well.  

The following conclusions can be made about the behavior of this system: 

 The reinforced concrete multi-story coupled wall system behaved in 

accordance to the predicted behavior with exceptions related to the post-

tensioning in the beam story cables and the rebar pull-out at the foundation 

pier joint.  

 The load verses displacement plot suggests some self-centering capabilities in 

the coupled wall system.  

 The foundation did not contribute to rotation, slip or uplift during the test. 

 The curvature in the piers due to axial elongation in the beams is illustrated 

through the deflected shape profile.  

 The strain maps generated by the DIC showed that for phase I and II tension 

cracking occurred in the tension (West) pier while shear cracking was shown 

in the compression (East) pier. For phase III, the strain maps showed tension 
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cracking in both piers due to existing cracks in the tension pier (West) from 

the previous testing phase.  

 The strain maps generated by the DIC were also able to validate the use of the 

2D-DIC systems at the bases of the piers by establishing small out-of-plane 

movements.  

 As expected, the neutral axis depth decreased as the drift of the system 

increased. However, the measured results indicate that the tension pier does 

not necessarily have a smaller neutral axis depth for the duration of the test. 

This is believed to be caused by the rebar pull-out at the foundation-pier joint 

which could have occurred unequally or at different loads in the two wall 

piers.  

 When considering drift, the results for gap openings correlate well with the 

numerical model generated by ABAQUS.  

 When considering the rotations of the pier bases during the test, it is clear that 

the expected rotations, even when comparing drift, are much smaller than the 

measured rotations. This is potentially due to the rebar in the base of the piers 

pulling out of the foundation during testing.  

 The deflected shape of the beams at all stories show little to no curvature as 

the center lines of the deflected shapes are essentially straight: the system is 

dominated by rigid body movement.  

 The center line method of measuring axial elongation of the beams is a valid 

technique. 
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 The experimental data shows that the three beams elongate approximately the 

same amount, while the ABAQUS model shows the 1st story elongating less. 

Phase II measured data shows the 3rd story beam elongated significantly less 

than the other two stories, which should result in a higher compression. This is 

visibly seen in the beam strain maps for phase III.  

 The amount of angular gap opening at the beam ends was consistent with the 

predicted angular openings produced by the ABAQUS model. 

The following conclusions regarding the DIC are made: 

 The use of multiple DIC systems provides a much larger supply of 

information about the specimen and helps to better establish its overall 

behavior.  

 Because the data was collected the same time for each system, the information 

from more than one system can be used to calculate a single parameter.  

 The DIC data reflects positively the data collected by other traditional 

measurement tools, and the expected behavior of the coupled wall system.  

 This data could not have been captured so easily or at all with traditional 

measurement techniques. A single DIC system could not have captured 

enough data to establish the behavior of the specimen. This test could only 

realistically have been conducted using multiple DIC systems.   
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CHAPTER 8 – FINITE ELEMENT ANALYSIS 

 This section presents a comparison of the two finite element analysis programs 

used to make initial design decisions and to predict the resultant forces within the 15% 

scale structure constructed and tested for this thesis. This section includes descriptions of 

the models used, as well as their predictions of structural behavior.  A parametric study 

was conducted using the ABAQUS software to resolve differences in stiffness between 

expected and experimental behavior.  

8.1 Model Descriptions 

 The model descriptions are provided for the ABAQUS and DRAIN-2DX models 

which were used for analytical modeling and comparison.  

8.1.1 ABAQUS 

The philosophy behind this model was to simulate a simplified design office 

approach to analysis of the post-tensioned coupled wall system.  The geometry matches 

Figure 4.1, including application of gravity loads through post-tensioning. The post-

tension cables were created in ABAQUS as a temperature truss element. The post-tension 

force was created by applying a negative temperature change to produce a predetermined 

stress. Table 8.1 provides information on the nodes and elements used in the model.  
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Part Instance # of Nodes # of Elements Type of Elements 

Piers 735 480 C3D8R 

Beams 540 340 C3D8R 

Foundation 2052 1404 C3D8R 

Cables 2 1 T3D2T 

Rebar 2 1 T3D2 

Total System 5284 3509 C3D8R, T3D2T, and T3D2 

 

 The elements used for the concrete portions of the model were C3D8R: 3 

dimensional, 8-node linear continuum brick elements, with reduced integration and 

hourglass control. The post-tension cables used T3D2T elements: 3 dimensional, 2-node 

coupled temperature displacement truss elements, with linear displacement and 

temperature. The elements used for rebar in the model are similar to those used for post-

tension cables except that they have no temperature input; these elements are called 

T3D2: 3 dimensional, 2-node linear displacement truss elements. 

 The interface used for all surfaces in direct contact was contact with hard friction. 

The rebar and post-tension cables were tied to their terminating nodes. The bottom 

surface of the foundation block was fixed: the surface was not allowed to rotate or 

deform in any direction. The ABAQUS model uses the mesh shown in Figure 8.1. The 

beams required a finer mesh than the piers and foundation parts. Although no mesh study 

was conducted, an earlier model (Figure 8.2) which used a much finer mesh and similar 

dimensions containing 30188 nodes and 26113 elements produced similar behavior. 

Because this simpler model required less computation and produced validated results, it 

was used for this project’s analysis.  

Table 8.1: Node and Element Information 
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 The material used for concrete in ABAQUS used some simplified properties. The 

ABAQUS model is elastic plastic. The density of the concrete material used was 150 pcf; 

Young’s modulus for the concrete material was 4,200,000 psi; Poisson’s ratio for the 

concrete material was 0.2; and the yield stress for the concrete material was 6000 psi with 

an elastic-perfectly plastic assumption. Because of this, the model will not predict 

cracking well.  

Figure 8.1: ABAQUS Model of Test Specimen 
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 The loads were applied to the model using pressures in the areas where the 

embedded threaded rod connected the steel I-beam lever to the top of the piers  and where 

the lateral actuator applied load– see Figure 8.3.  

 

When tensioning the cables in the experimental specimen, the relatively short 

length of the cables and poor construction control meant that the design initial gravity 

force in the gravity cables and post-tensioning force in the beam cables was not met – see 

Figure 8.2: Preliminary ABAQUS Model 

Figure 8.3: Applied Load Areas 
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Section 5.2.4. This resulted in an as-built structure that had approximately 75% of the 

intended gravity load based on the tributary areas of the prototype structure (discussed in 

Section 8.3). The ABAQUS As-Built model reflects the As-Built forces shown in Table 

8.2.   

 

 As-Built 

Applied Forces 

(lb) 

ABAQUS 

“As-Built” 

(lb) 

Tension Pier Gravity 37700 37700 

Compression Pier Gravity 44600 44600 

Beam Cable - 1st Story 454 454 

Beam Cable - 2nd Story 3284 3284 

Beam Cable - 3rd Story 8338 8338 

 

8.1.2 DRAIN-2DX 

 The DRAIN-2DX model consists of a series of nodes connected by nonlinear 

beam-column elements that are discretized into fibers with areas and material properties 

that accurately depict the concrete and steel present in the structure (Figure 8.4). The 

model used the ELF procedure to determine the lateral force distribution to be applied for 

a displacement-controlled pushover analysis of the full 8-story structure.  

Table 8.2: As-Built Loads vs. ABAQUS Loads 
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The model includes nodes (depicted using ○ markers in Figure 8.4) that are 

connected by nonlinear fiber beam-column elements to simulate the wall piers of the 

coupled wall system. The wall piers were assumed to be fixed at the base. Each fiber 

element cross-section was constructed by discretizing the RC wall pier cross-section into 

concrete and steel fibers. Each fiber was defined by its area, distance of its centroid from 

the element reference axis (assumed to be located at the geometrical center of the wall 

pier cross section), and a uniaxial material stress-strain relationship. Because of the two-

dimensional analysis, the rebar layers perpendicular to the direction of loading were 

lumped into a single steel fiber at the same distance from the element reference axis. To 

simulate the overturning moment, a rigid element was created that extends from the top 

of each wall pier to the location of the vertical jacks where the loads are applied. 

Figure 8.4: DRAIN-2DX Model 
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The validation of DRAIN-2DX fiber element models for RC walls can be found 

in Kurama and Shen (2004). The cross-sections near the base of each wall pier and the 

coupling beam ends included confinement reinforcement (provided by the evenly spaced 

hoops). A concrete confinement model developed by Mander et al. (1988) was used to 

simulate this effect. A reduced actual effective value of 67% was assumed for the 

effectiveness of the moment steel across the pier base-foundation joint based on analysis 

of the actual UT Tyler experimental data – see Section 8.3 for parametric study.  

8.2 DRAIN-2DX vs. ABAQUS 

 This section compares the two models that were created for the experimental 

model. This is necessary to validate the behavior of the models.   

8.2.1 Load Displacement Response 

 Figure 8.5 shows the lateral load versus displacement history for the experimental 

test. The ABAQUS model reflects the as-built forces.  The “DRAIN” line was created 

through analysis of the actual UT Tyler geometry and as-built initial cable forces with the 

assumed effectiveness of the moment steel crossing the base joint adjusted to the actual 

effective value of 67%. In contrast with the target model, this model used a force-

controlled analysis with the prescribed loading history that was applied during the Tyler 

experiment in the three jacks.  
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8.2.2 Resultant Forces 

 Chapter 7 clearly demonstrates that the displacement behavior of the specimen is 

well predicted by the ABAQUS models. This section will show design quantities such as 

shear, moment, and axial forces of the various components of the system based on the 

validated ABAQUS models and the targeted values generated by DRAIN-2DX. First, 

values for the pier will be reviewed, and then the beams will also be considered. Forces in 

ABAQUS were calculated using the appropriate stresses from ABAQUS and multiplying 

them by element areas. 

8.2.2.1 Piers 

 This section gives the moments generated by the applied lateral load as well as the 

shear and net axial forces at the tension and compression pier bases.  
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Figure 8.5: Load Displacement Response 
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8.2.2.1.1 Base Moments 

 Figure 8.6 shows the tension pier base moment and Figure 8.7 gives the 

Compression pier base moment. The ABAQUS models and the target models show 

similar behavior in the moments. The As Built ABAQUS model has already been 

described. The Experimental ABAQUS model is similar except: the gravity forces are 

applied as pressures, and the lateral forces are those actually applied during testing. The 

75% effective rebar model shows a closer performance to the DRAIN-2DX UT Tyler 

model because it only uses a 67% effective rebar. Details pertaining to the decision to use 

75% rebar can be seen in the parametric study located in Section 8.3. The reduction in 

effective rebar also reduced the moment carried by the compression pier. Overall the 

tension pier appears to have a lower base moment than the compression pier.  

 
Figure 8.6: Tension Pier Moment ABAQUS DRAIN-2DX Comparison 
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8.2.2.1.2 Base Shear Forces  

 Figure 8.8 shows the base shear of the tension pier base and Figure 8.9 gives the 

base shear of the compression pier base. There is good agreement between the different 

models. Overall the compression pier resists most of the overall shear in the system.  

Figure 8.7: Compression Pier Moment ABAQUS DRAIN-2DX Comparison 
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Figure 8.8: Tension Pier Shear ABAQUS DRAIN-2DX Comparison 
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8.2.2.1.3 Axial Forces 

 Figure 8.10 shows the axial forces in the tension pier base and Figure 8.11 gives 

the axial forces in the compression pier base. Trends in the results are similar for both 

pier bases. Overall the compression pier axial forces have much more significant 

compressive force.  

Figure 8.9: Compression Pier Shear ABAQUS DRAIN-2DX Comparison 
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198 

 

 

8.2.2.2 Beams 

 This section gives the moments generated by the deflection in the piers as well as 

the shear and net axial forces in the 1
st
, 2

nd
, and 3

rd
 story beams.  

8.2.2.2.1 Moments 

 Figures 8.12, 8.13, and 8.14 show the beam end moments for the 1
st
, 2

nd
, and 3

rd
, 

beam stories, respectively. The predicted behavior in the moments is similar. The 

DRAIN-2DX model predicts that the 3
rd

 story has the highest moment demand. The 

ABAQUS model shows that the three stories are very similar.  

Figure 8.11: Compression Pier Moment ABAQUS DRAIN-2DX Comparison 
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8.2.2.2.2 Shear Forces 

 Figures 8.15, 8.16, and 8.17 show the beam end shear forces for the 1
st
, 2

nd
, and 

3
rd

, beam stories, respectively. The predicted behavior in the shear forces is similar. The 

DRAIN-2DX model predicts that the 3
rd

 story resists the highest shear forces. The 

ABAQUS model shows that the three stories are very similar. 
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Figure 8.15: 1

st
 Story End Shear ABAQUS DRAIN-2DX Comparison 
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Figure 8.16: 2
nd

 Story End Shear ABAQUS DRAIN-2DX Comparison 
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8.2.2.2.3 Axial Forces 

 The ABAQUS models were used to consider the axial forces in the beams at all 

three stories. Figure 8.18 shows the axial forces in each of the beam stories. The 3
rd

 story 

has the greatest axial demand. This is consistent with the results reflected in Figure 7.59 

(strain maps) and Figure 7.54 (axial elongation). Figure 8.19 shows the forces in the post-

tensioned cables verses drift for each beam story according the ABAQUS As Built model.  
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8.3 Parametric Study (ABAQUS)  

 After a preliminary comparison of the deformation behavior of the 15% scale 

model to the target behavior, the initial stiffness of the test structure matches predictions, 

but the tested structure did not achieve the strength predicted in the target and ABAQUS 

lines. The disagreement in the values was greater than was realistic error. In order to 

determine if the behavior could be explained by some difference in the target building 

and what was actually constructed, a parametric study was conducted by altering one 

variable by different percentages. The parameters that were analyzed were: force in the 

post-tensioned cables that run through the center of each beam, force in the gravity cables 

that were anchored to the foundation, and the strength of the rebar cast in the piers and 

embedded in the grout sleeves which were cast in the foundation. Each parameter was 
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reduced to 75%, 50%, 10% and 1% in the ABAQUS model for comparison purposes. The 

comparison can be seen in the following sections.  

8.3.1 Post-Tension Beam Force Variation 

For this variation, the force in the prestress cables that support the coupling beams 

at the floor levels was varied to 75%, 50%, 10%, and 1% in the ABAQUS model. The 

graphical comparison can be seen in Figure 8.20. Based on the specimen’s displacement 

behavior in the varied ABAQUS models, the force that is applied in the prestress cables 

does not greatly affect the results. The maximum % difference in the force necessary to 

achieve 0.05% drift is 2%. Because of this, the difference in the as built and designed 

models’ applied forces cannot account for the disagreement in the strength predictions. 

 
Figure 8.20: Post-Tension Beam Force Variation 
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8.3.2 Gravity Force Variation 

 For this variation, the force in the prestress cables that simulate the gravity forces 

from the upper stories on the bottom three stories was varied to 75%, 50%, 10%, and 1% 

in the ABAQUS model. The graphical comparison can be seen below in Figure 8.21. 

Based on the specimen’s displacement behavior in the varied ABAQUS models, although 

the force that is applied in the gravity prestress cables has more significant affect that the 

variation of the prestress cables that support the coupling beams at the floor levels, it also 

does not affect the results to the degree that would account for the disagreement in the 

strength predictions. The maximum % difference in the force necessary to achieve 0.05% 

drift is 7%. 

 
Figure 8.21: Post-Tension Gravity Force Variation 
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8.3.3 Rebar Embedding Variation 

 Figure 8.22 shows ABAQUS results varying the assumed effectiveness of the 

moment steel crossing the base joint by 75%, 50%, 10%, and 1%.  The initial slopes and 

strengths of the 75% curve match portions of the measured results, indicating that this is 

the most likely explanation for the low strength of the test structure. The percent 

difference at 0.05 drift can be seen in Table 8.3.  

 

% Variation in Rebar 100% 75% 50% 10% 1% 

Force to achieve 0.05 drift 106222.5 96198.75 88572.50 76232.50 71001.25 

Difference (lbs) 0 10023.75 17650.00 29990.00 35221.25 

% Change 0 9% 17% 28% 33% 

 

It is believed that the bars grouted into the anchors in the foundation pulled out at 

a relatively low load, although these couplers were Type II seismically rated.  Detailed 

inspection of these joints shows that this conclusion is accurate, one of the #6 inside edge 

embedded rebar and one of the #7 outside edge embedded rebar were hand loose and two 

more #7 outside edge embedded rebar were able to be pulled out under stronger loading. 

The #6 bar was easily removed from the tension pier (Phase I and II) and the two loose 

#7 bars were also in the tension pier (Phase I and II). There was one loose #7 bar in the 

compression pier (Phase I and II).  

Table 8.3: % Change in Force Necessary to achieve 0.05 Drift 
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8.4 Finite Element Analysis Conclusions 

The design procedure for the post-tensioned coupled wall system yielded a 

structure that performed as expected, and the analytical models yielded predictions in 

good agreement with measured behavior.  Notwithstanding the limitations of the 

constructed specimen, the structure was scaled appropriately.   

The following conclusions about the ABAQUS model are made: 

 The deformations presented in Chapter 7 correlate well between the measured 

DIC data and the ABAQUS model results.  

 The ABAQUS  model and DRAIN-2DX model response quantities (pier base 

moment, base shear, and axial forces, beam end moment, end shear, and axial 

forces) match reasonably well, given the simplicity of the ABAQUS model, 

Figure 8.22: Rebar Embedding Variation 
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especially considering the elastic-plastic behavior of the concrete material 

properties.  

 The ABAQUS model appears to provide a reasonable alternative for 

preliminary design and behavior characterization, given its relative simplicity. 

This data set is now available for calibrating more complex coupled wall 

system models.  

 Error in the pretensioning of the gravity cables and the beam story cables 

likely had little effect on the structure’s response.  

 The effectiveness of the moment steel crossing the foundation pier joint 

greatly affects the behavior of the coupled wall system. This is the greatest 

contributing factor to the difference between measured and expected results.  

 



212 
 

CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 

9.1 Summary 

A 15% scale structure, based on a prototype coupled wall system using post-

tensioning was designed and constructed. The scale structure was then tested to determine 

the structural behavior of the specimen. During testing, four DIC systems were 

simultaneously deployed to monitor the specimen, collecting the greatest amount of data 

possible from every iteration of the test. It is believed that this test represents the first 

instance of four DIC systems being deployed simultaneously as part of a building 

structure test. The data collected from the DIC systems and other traditional data 

collection systems were compared to validate the data. Furthermore, the data was further 

validated using finite element analysis, corroborating results and structural behavior.  

This thesis presents the first ever physical model testing of a multi-story 

reinforced concrete coupled wall system that is coupled with post-tensioned beams. A 

significant advantage to this technology is the simpler detailing of the coupling beams 

used in this system. There are many positive consequences of the simplified detailing of 

the beams; the major four being: 

 An improved constructability when compared to the traditional reinforced 

concrete coupling wall system.  

 A decrease in overall cost to design and construct coupling beams for the 

system.  
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 Less material is required in the detailing of the coupling beams with adequate 

resistance and strength for resisting seismic loading. 

 An additional result of less material use is a decrease in the environmental 

impacts of the construction of the coupling beams.  

Some other advantages of the system discussed in this thesis are: the technology 

of post-tensioning cables is already used in construction and has previously been 

explored; this type of coupling is embedded in the shear walls and therefore can be used 

for retro fitting existing buildings; the damage can be contained to the toes of the beams 

which may allow for the preservation of buildings; and the system has self-centering 

capabilities that can be beneficial after a seismic event.  

 The structural behavior of the coupled wall system is documented in Chapter 7. 

Section 9.2 dictates some best practices for DIC learned from testing multiple DIC 

systems. Section 9.3 provides conclusions and recommendations. Section 9.4 describes 

future work to be conducted at Lehigh University.  

9.2 DIC Best Practices 

 Although DIC is a very useful measurement technique, many practical aspects 

and complications only arise through experience. Through the experimentation and data 

collection conducted during this test, three effective practices emerged. Along with these 

practices, a basic checklist was developed for consideration of deployment of multiple 

DIC systems.  

The DIC data from the test was not extremely clear for the beams from any FOV 

because of the size of the beams and the relative size of the FOVs that included the 

beams. In order to gather more detailed data for the beams, a FOV that only includes one 
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beam, or portions of one beam, depending on the size of the beam, is suggested for future 

monitoring of coupled wall systems.  

Though it was not a major issue during this test, manually commanding each DIC 

system to capture an image from each of the computer systems can be cumbersome in 

combination with monitoring other traditional methods of measurement. In order to 

simplify the collection of information in the DIC systems, it is suggested that a program 

be created to control all DIC systems in order to capture an image in one command.  

The 2D-DIC systems (Systems 2 and 3) were able to be verified as having little 

out-of-plane error based on the 3D-DIC system (System 1) out-of-plane movement at the 

base. It is strongly suggested that any area being considered for 2D-DIC systems have the 

out-of-plane movements be investigated prior to testing. If the predicted out-of-plane 

movements are large, then it is recommended that either a 3D-DIC system be used to 

monitor that area, or a different area with small out-of-plane movements be used to 

collect the data of interest. Since unintended out-of-plane movements may arise in testing 

of all but the simplest structures, a way to monitor these motions (with string 

potentiometer, LVDT, 3D-DIC system, etc.) should be included in the data acquisition 

plan if a 2D-DIC system is to be used.  

The DIC checklist can be broken into three basic categories: planning, metadata, 

and other considerations. The planning portion includes some of the aspects of the 

experiment that should be considered while planning the layout and set up of an 

experiment with multiple DICs. The metadata section includes the information that 

should be collected which describes or pertains to the measured data, its collection 

system, or organization of data. This type of metadata is more specifically defined as 



215 
 

structural metadata: information about the design and specification of data structures, 

sometimes called data about the containers of data. This information is imperative to the 

interpretation of the collected data. The post-processing section includes the 

considerations of organizing the data from testing for optimal use.  

PLANNING 

 Camera Locations should be considered. 

o Location of cameras must not allow for a walkable path between 

the camera system and the object of interest. This prevents a 

person from walking in front of a camera while an image is being 

taken. 

o System must remain stationary: no contact after calibration is 

optimal. 

 Attaching the camera system to a stationary object, such as 

a column in a lab, is recommended.  

 All cords attached to the camera system must be secure and 

away from any walkable path.  

 If using a sensor that has an image capture on the camera, 

do not touch the camera during testing, use a control cord 

instead.  

 Conduct calibration procedure after the camera system has been placed 

with the calibration tool located at the specimen.  

 Pattern sizes should be considered. 
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o Different sensors produce different precisions. This can cause an 

issue with the size of pattern used. Check a test pattern size using a 

temporary pattern on the object of interest or on a removable slip 

on the surface of the object.  

o The field of view being used can also cause problems with the size 

of pattern; again, a test pattern size should be checked before the 

final pattern is applied to the object.  

 Lighting is a crucial part of DIC data collection. If the images are too dark 

or bright, areas of data can be lost. Each camera system should be checked 

for lighting. After each system has lighting, they should all be checked 

again because of the possible interaction between lighting. Although 

natural light is the best for little glare with good light, its variability can 

cause loss of data during testing.  

 Camera control (computer) locations are particularly important if manual 

command of each system is used. They must be easy to access in order to 

collect data from all locations at approximately the same time.  

 If an area has been determined to be appropriate for a 2D system, a 

secondary verification system must be present in order to confirm that the 

data collected by the 2D system is not skewed by out-of-plane movements.  

METADATA 

 The field of view for each system, as well as the calibration outputs for 

each system needs to be recorded.  
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 A photograph of each camera set up in relation to the structure should be 

taken and retained for later review. 

 Detailed descriptions of each stage taken are essential. These descriptions 

should include any loads applied, any unpredicted behavior, and any other 

information that could help identify a specific stage.  

 Camera type and pixel density should be recorded in order to determine 

strain gage lengths used in strain calculations conducted by the software.  

 The type of system, 3D or 2D, is key to interpreting data.  

 If a 2D system is used, its calibration information should be recorded, or a 

gauge length must be defined in the calibrated area and the measured 

length recorded for later calibration.  

 File organization is crucial. A system should be created in a logical 

manner in which any project is easily accessed. The names of files should 

clearly describe the information contained within, and updated or copied 

files should be labeled as such.  

POST-PROCESSING 

 In order for the data collected to be clear in its presentation, all systems 

should be translated to the same coordinate system. By doing this, the data 

can be easily compared, irrelevant of its source.  

9.3 Conclusions and Recommendations 

The following major conclusions are made based on the results presented herein: 



218 
 

 The 15% scaled model behaved as expected and showed some of the 

anticipated benefits of a coupled wall system (in particular some self-

centering, and damage limited primarily to beam and pier toes).  

 It is possible to coordinate multiple digital image correlation systems 

simultaneously, and use data collected from multiple systems interactively.  

 The relatively simple modeling tools that were employed appear to capture 

the system behavior well.  

 There are several limitations of the current experimental setup, the three 

major being:  

(1) Scaling the specimen meant that C-shaped walls became 

rectangular shaped, the slabs at the floor levels and energy dissipation steel in 

the coupling beams could not be included;  

(2) The forces in the beam post-tensioning cables were less than as 

designed, and  

(3) The tension reinforcement necessary to resist the base moment in 

each of the piers pulled out of the structural couplers in the foundation at 

lower than the design load. 

 A detailed data set characterizing the deformations of all the elements of a 

multi-story coupled wall system has been presented and is available for 

use in calibrating more complex models.  

In each of these areas, the following additional conclusions are noted: 
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SYSTEM BEHAVIOR 

 The design procedure for the post-tensioned coupled wall system yielded a 

structure that performed as expected, and the analytical models yielded 

predictions in good agreement with measured behavior.   

 As expected, the neutral axis depth decreased as the drift of the system 

increased. However, the measured results indicate that the tension pier 

does not necessarily have a smaller neutral axis depth for the duration of 

the test. This is believed to be caused by the rebar pull-out at the 

foundation-pier joint which could have occurred unequally or at different 

loads in the two wall piers. 

 The curvature in the piers due to axial elongation in the beams is 

illustrated through the deflected shape profile. 

 The strain maps generated by the DIC showed that for phases I and II 

tension cracking occurred in the tension (West) pier while shear cracking 

was shown in the compression (East) pier. For phase III, the strain maps 

showed tension cracking in both piers due to existing cracks in the tension 

pier (West) from the previous testing phase.  

 The strain maps generated by the DIC were also able to validate the use of 

the 2D-DIC systems at the bases of the piers by establishing small out-of-

plane movements.  

 When considering drift, the results for gap openings correlate well with 

the numerical model generated by ABAQUS.  
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 The deflected shape of the beams at all stories show little to no curvature; 

the system is dominated by rigid body movement. 

 In the experiments, the axial elongation of the beams was similar in phase 

I and phase II for all three stories. In phase III, the 3rd story beam 

elongated significantly less than the other stories.  

 The foundation did not contribute to rotation, slip or uplift during the test. 

MULTIPLE DIGITAL IMAGE CORRELATION 

 The use of multiple DIC systems provides a much larger supply of 

information about the specimen and helps to better establish its overall 

behavior.  

 Because the data was collected the same time for each system, the 

information from more than one system can be used to calculate a single 

parameter.  

 This data could not have been captured so easily or at all with traditional 

measurement techniques. A single DIC system could not have captured 

enough data to establish the behavior of the specimen. This test could only 

realistically have been conducted using multiple DIC systems.   

ANALYTICAL MODELING 

 The simple ABAQUS model created appears to provide reasonable results 

as it matches the experimental deformation data well; matches the more 

complex DRAIN-2DX model reasonably.  

 The amount of angular gap opening at the beam ends was consistent with 

the predicted angular openings produced by the ABAQUS model. 
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 The deformations presented in Chapter 7 correlate well between the 

measured DIC data and the ABAQUS model results.  

 The ABAQUS  model and DRAIN-2DX model response quantities (pier 

base moment, base shear, and axial forces, beam end moment, end shear, 

and axial forces) match reasonably well, given the simplicity of the 

ABAQUS model, especially considering the elastic-plastic behavior of the 

concrete material properties.  

 The ABAQUS model appears to provide a reasonable alternative for 

preliminary design and behavior characterization, given its relative 

simplicity. This data set is now available for calibrating more complex 

coupled wall system models. 

 The ABAQUS deflected shape of the beams at all stories also show little 

curvature; the center lines of the deflected shapes are essentially straight. 

As with the pier deflections, the values did not correlate well with the 

ABAQUS model at similar applied lateral loads, but when compared 

according to drift, the behaviors were comparable.  

 Error in the pretensioning of the gravity cables and the beam story cables 

likely had little effect on the structure’s response.  

 The effectiveness of the moment steel crossing the foundation pier joint 

greatly affects the behavior of the coupled wall system. This is the greatest 

contributing factor to the difference between measured and expected 

results.  
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SYSTEM LIMITATIONS 

 Because of the limitations, the specimen did not reach expected design 

load of coupled wall system. Notwithstanding, the structure was scaled 

appropriately.   

 When considering the rotations of the pier bases during the test, it is clear 

that the expected rotations, even when comparing drift, are much smaller 

than the measured rotations. This is potentially due to the rebar in the base 

of the piers pulling out of the foundation during testing.  

 The issue of rebar pull-out can be avoided completely by casting the entire 

system at the same time rather than casting separately and grouting the 

wall piers into place.  

 While post-tensioning the cables in the system, the cables in the beams 

were post-tensioned consecutively and therefore the force in the cables 

that were post-tensioned first decreased as the others were put into tension. 

To address the first problem, depending on the type of machine used for 

post-tensioning, it is recommended that a pressure measurement device be 

applied to the machine so that the tension applied can be monitored during 

application. 

9.4 Future Work  

Construction of the first of two 40%-scale physical laboratory specimens is 

currently underway at Lehigh University. These laboratory specimens will include the 

first three floors, tributary slabs, and foundations of the prototype coupled core wall, 

representing the most critical regions of the structures. The other (less critical) regions of 
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the structures will be simulated in the computer, resulting in a hybrid physical-

computational research platform. The term hybrid has come to mean many things in 

engineering; in the case it refers to the combination of computer simulation and physical 

testing. The forces and displacements from the computer model will be applied to the 

physical structure using a total of 7 actuators and 4 gravity jacks, simulating the behavior 

of the upper 5 stories of the 8-story building. Figure 9.1(a) shows a three-dimensional 

rendering of the 40%-scale experimental setup in the laboratory, while Figure 9.1(b) 

illustrates the construction progress on the first specimen. 

The 40% scale specimen will be monitored at multiple locations with two- and 

three-dimensional digital image correlation (DIC) on selected faces of the walls, beams, 

and floors to gather full-field surface deformation data during the tests (McGinnis et al. 

2011).  Ultimately, the results of the 15% and 40% studies are expected to lead to the 

development of validated design procedures and modeling/prediction tools for the new 

system. 

 Figure 9.1: 40% Scale Experimental Setup: (a) 3D Rendering; (b) Construction 

(a) (b) 
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