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 As society becomes more reliant on the resources extracted in petroleum 

refinement the production demand for petrochemical plants increases. A key element is 

producing efficiently while maintaining safety through constant monitoring of equipment 

feedback. Currently, temperature and flow sensors are deployed at various points of 

production and 10/100 Ethernet cable is installed to connect them to a master control 

unit. This comes at a great monetary cost, not only at the time of implementation but 

also when repairs are required. The capability to provide plant wide wireless networks 
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would both decrease investment cost and downtime needed for repairs. However, the 

current state of wireless networks does not provide any guarantee of reliability, which is 

critical to the industry. When factoring in the need for real-time information, network 

reliability further decreases. 

 This work presents the design and development of a series of transport layer 

protocols (coined ENSURE) to provide time-sensitive reliability. ENSURE 1.0 has a pure 

focus on reliability and time was not considered. The first objective was to meet 100% 

reliability in information delivery by using proactive redundant data transmissions and 

allowing retransmissions to send duplicate data based on the current packet loss ratio 

(PLR). The next step was to enforce a time limit for data to be correctly received at the 

central controller. ENSURE 2.0 was developed by integration of standard network delay 

formulations, which was effective in providing rapid data delivery within a time frame. 

However, a small amount of packet losses was detected. To overcome the loss and 

provide 100% reliability, ENSURE 3.0 was developed to incorporate a forward error 

correction mechanism. Extensive simulation results are presented to verify the efficacy 

of the proposed protocols in providing 100% reliability under the given time restraints. 
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Chapter I 

Introduction 

Over the last century society has become increasingly dependent on the 

petrochemical industry. The plants have streamlined the process of cracking petroleum 

and natural gas to extract and refine ethylene and propylene. Although the majority of 

society cannot single out the uses of these chemicals, they are sure to use one of the 

thousands of products they are essential to producing, which range from fuel for our cars 

to the base compounds of medicine to keep people healthy. While the plants produce 

essential products, they also endure great risk because the machines that perform the 

chemical breakdown induce an extremely high explosive risk while surrounded by highly 

flammable chemicals. 

In order to provide a safe environment, sensors are placed throughout the plants 

to measure the temperature and flow through the pipelines. These readings are then 

passed through 10/100 Ethernet cables to a programmable logic controller and then on 

to a distributed control system. Typically, the acreage occupied by a refinery is large 

making the initial installation of cable very costly. In addition, heavy equipment such as 

cranes frequently run over the lines leading to damage and requiring additional repair 

cost. While installing wireless networks would eliminate the high investments in 

technology, dangers presented by inconsistent transmissions are much higher.  
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The typical industrial environment contains a high density of metal structures in a 

geographic area that leads to a high rate for diminishing signal quality. The metallic 

quality of the material leads to: 

1. Reflections, caused by surfaces with dimensions that exceed the 

wavelength (2.4 GHz is around 3 cm). 

2. Diffraction, the creation of secondary waves produced by structures that 

are impenetrable by wireless transmissions.  

3. Scattering occurs when surfaces are of equal or smaller dimensions than 

the wavelength. The result is that the waves radiate in endless directions.  

The cumulative impact of the above events in one environment results in a significant 

presence of noise in the system which naturally leads to distorted wireless signals and 

unreadable packets. The standard estimate of signal fading in a petrochemical 

environment is 20 dB faster than a non-disrupted environment.  

The goal of the present protocol ENSURE is to eliminate the need to run 

obsessive wiring by developing a protocol to overcome the aforementioned challenges 

to provide 100% reliability for sensor readings through a wireless network. The two 

factors one must focus on are:  

1. Making sure the master node receives and is able to decode each 

reading. 

2. Completion of the task in a timely manner. 

ENSURE was developed in three stages, each one aimed at eliminating one 

negating factor of wireless usage. When developing the first version (i.e. ENSURE 1.0), 

the most important need was targeted: reliability. From the first transmission, 

duplications of packets are built-in to combat any possible noise in the environment. 
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ENSURE 1.0 is a proactive approach toward guaranteed reliability. In the retransmission 

stage, a scalable window is established, allowing for a real-time adjustments based on 

current packet loss ratios. With ENSURE 2.0, the focus shifted to time deadlines. 

Developing more accurate calculations for overall delay means the engineers can 

determine if a network can provide data within a given time frame (error-free packets 

should be delivered to the controller station within a certain time window). By enforcing a 

time restraint, a small number of losses will most likely occur.   To correct this ENSURE 

3.0 was formulated. More specifically, ENSURE 3.0 deploys forward error correction to 

increase the likelihood of packet loss recovery at the receiver (e.g., controller base 

station) to eliminate or reduce the number of retransmissions. This approach suggests 

that by adding a controlled cyclic error correcting code both reliability and deadlines can 

be met. 

Once all the simulations were completed and the results were graphed, all 

versions of ENSURE proved to out-perform the widely accepted Reliable Data Transfer 

2.0. When comparing the iterations of the new protocol, the findings were consistent with 

the expected performance. Specifically, ENSURE 1.0 outperformed 2.0 and 3.0 in 

channel utilization but used a large amount of time. When comparing just ENSURE 2.0 

and 3.0, the third version produced the best resource usage and did so in a reasonable 

amount of time. A detailed analysis is found in Chapter 5 with a comprehensive 

conclusion detailed in Chapter 6. 

 The remaining material will be presented in the following format. A detailed look 

at other research that is being performed in the networking of a petrochemical plant will 

be seen in Chapter 2. Many recent publications have focused using different types of 

Hybrid ARQ channels. Each type will be clearly defined and explored. Another concept 

that will be addressed is the use of forward error correcting to minimized errors. 
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 Chapter 3 will establish the current typology of a typical petrochemical plant as 

well as the new setup ENSURE aims to make possible. Once this is clear, a walk-though 

of the development of the new protocol will be presented. Each hurdle to wireless 

technology in a plant will be addressed step-by-step, and a solution for each will be 

presented.   

 Chapter 4 will outline the approach to simulating each version of the protocol. 

Each design decision that was made will be supported through networking principles. 

For example, a detailed explanation will be given for using a distributed protocol. In 

addition, the implantation of the protocol into existing networks will be examined. 

 Experimental results analyzing the performance of all of the models of ENSURE 

will be presented in Chapter 5. The results of simulations of versions 1.0, 2.0 and 3.0 

running one, two and three sensors will be presented. Also, provided will be a side-by-

side comparison of all three protocols along with results that are produced when running 

the RDT 2.0 protocol.  

 The final Chapter will be dedicated to forming a decisive conclusion of the 

effectiveness of the work. Possible adaptations that could be explored in the future will 

be addressed as well as real world implementation plans. 
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Chapter II 

Related Work 

 Every day brings the next big invention and with each new product the demand 

for petroleum based components increases. While consumers push for more production, 

plants seize the opportunity, often causing oversights in networking maintenance. 

Unfortunately, by neglecting the sensors and network communications, automated 

systems are making poor decisions which compromise the safety of workers and the 

civilians located around the plant. BP’s Deepwater Horizon explosion in April 2010 left 

11 people dead; this is one of dozens of cases worldwide where implementing reliable 

sensors would have saved lives and long-term costs. In light of the increase in the 

number of accidents, researchers have been vigorously working to find improvements 

that would be accepted as the new sensor standards. 

 There is a wide range of focus and approaches being explored by researchers. It 

is important to highlight a few of the main topics receiving wide-spread interest to give 

proper perspective on the research completed to develop the series of ENSURE 

protocols.  

 The most applicable topics of study are the benefits [1]. Sanja Šain provides a 

detailed analyses of the effects of the main sources of interference ENSURE faces. The 

effects of reflection, diffraction and scattering are examined and allow protocol designers 

a clear understanding of the signal deprecation they are working to overcome.  
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Turning to publications that have the goal of overcoming obstacles, there is great 

interest in Hybrid-ARQ protocols. When referring to a these protocols there are four 

types that have received interest: 

1. Hybrid-ARQ Type I focuses on discarding any packets with errors and 

future packets are transmitted with error correction information added to 

the data. 

2. Hybrid-ARQ Type II combines new information bits with a limited amount 

of redundant bits in each packet. The packets that are actual 

retransmissions contain additional redundant bits that are added to the 

initial ones. The goal is to give the receiver enough bits to patch all errors 

in a packet. 

3. Hybrid-ARQ Type III aims to provide parity bits within a packet so that 

even if an error occurs the packet is self-healing.  

4. Another approach, called chase, is combining Type III with one of the 

redundancy measures. 

 There is an area of research that focuses on lowering redundancy in Hybrid-

ARQ Type I. Other researchers focus on enhancing the Hybrid-ARQ Type II by using an 

iterative bit flip with the use of a turbo coder [2]. While the previous papers worked to 

improve the Hybrid schemes, many others simply wish to form selection criteria when 

using the protocols [3], [4]. Different approaches to improving a hybrid scheme are to 

modify the modulation code [5], [6], [5]. 

 Though first introduced by Richard Hamming in the 1940s, forward error 

correction (FEC), which attempts to correct errors through pure redundancy, continues 

to receive a great deal of attention. This method is often used when no feedback 
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channel is available. In a paper published by Purdue University, a research team 

presents a way to reduce feedback traffic through the use of coding individual flows and 

inter-flows of a single hop network [6]. In fact, many approaches to optimizing error 

correction code are being explored and although the initial test-beds are not wireless 

sensor networks, when proven effective, they could be tested in this area [7], [8]. 

Another topic being explored is the best time to detect an error on the network and the 

most efficient way to correct errors with FEC [9], [10].  

 The range of interest in FEC varies not only as it relates to analog data sensors, 

but labs are also using its robust powers for video monitoring as well. In an effort to 

lower latency with an isolated real time video network, THALES Communications in 

France studied the effects of Reed Solomon codes [11], [12]. Similar papers have been 

published in relation to cloud computing and FEC [13] [14]. Also being investigated is the 

optimal placement of code, i.e. in what layer to incorporate it [15,16], [17], [18], [19]. 

 When working with wireless sensors, many labs have recognized the need to 

provide reliable networks. Most of the proposed solutions place the majority of their 

concentration on meeting time restraints while making reliability secondary [20], 

[21,22,22], [23], [24], [25,26], [27]. Within this field, studies have been done to determine 

the performance effects of using retransmissions over networks utilizing current IEEE 

standards [26], [28]. 

 Gaining a clear understanding of wireless channel prediction methods was 

critical to the development of the ENSURE protocols. Perhaps the most important was to 

examine loss probability. Since different forms of signal modulation exist, it is important 

to understand the channel estimation for each. Several papers have been published that 

outline this factor with the different types of fading channels [29], [30], [31], [32,32], 
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[33,34], [34]. Working hand-in-hand with these analyses are researchers producing 

codes to automatically output error-estimation [35], [36], [37], [38]. Often after a new 

code is developed, researchers begin to use them to analyze other types of codes. As 

an example, one may ask: Given these new set of criteria, how effective are LDPC 

codes at increasing performance [39], [40,30]? Tying in to these concepts is finding the 

ideal way to partially cancel interference sources without disrupting the data source’s 

signal [41], [42], [43]. 

 When deploying a new wireless setup, noise can be avoided by carefully plotting 

the network typology, therefore studying the effects of sensor placement on channel 

utilization is in high demand. Interesting connections are being found between angle of 

arrival, path amplitude and delay [44], [45], [46]. Another application of modeling is 

finding the maximum channel capacity [47], [48], [49], [50].   

 Though the work of ENSURE focuses on the use of wireless sensors in 

petrochemical plants, many other places deploy this technology such as border patrols, 

geological services, military surveillance, and home health [51], [52], [53]. There are 

many issues that arise from the use of wireless sensor networks (WSN). Many of the 

sensors that are in place also have limited access to power; therefore, it becomes 

essential to find ways to conserve power consumption.  One-way to accomplish this is to 

add on-board intelligence to every unit [54], [55], [56]. Another method of control is to 

facilitate the savings through scheduling [57,58], [58], [59]. A vast majority of sensor 

networks are responsible for communicating sensitive information. When they are 

wirelessly connected, the signals are open to the public unless the transmitted packets 

are protected. However the topic of security is complex and with each improvement 

threats become more sophisticated. Constant research has to be done to continue to 
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protect data. In 2012 alone, a great number of approaches have been presented, each 

of which is far too complex to minimize to a single sentence [22], [60], [61], [62], [63].  

 Another major issue in WSNs is providing a tolerable quality of service. With 

mobile sensors an approach often used is use of object tracking and efficient ways to 

rendezvous two master nodes [64], [65], [16], [66], [67]. 
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Chapter III 

Timely and Guaranteed Packet Transmission 

3.1 Introduction 

 The core problem in placement of wireless technologies in a petrochemical plant 

is the inability to produce 100% reliability in the presence of a time restraint. In order to 

clarify the need for this, one must understand the ramifications of the absence of a 

consistent channel by relating the network to a universal example. Much like 

communication to and from a war zone, if a message or command is unable to be 

relayed to either the decision-making unit or to the mechanisms carrying out the orders, 

the results can be deadly. Society has seen this repeatedly in terms of petrochemical 

environments over the last decade, with the most memorable example being BP’s 

Deepwater Horizon. However, the general public does not completely understand the 

way readings are sent back to the computer that controls equipment processes. In this 

Chapter we will clarify the processes and proceed to examine a method of improvement. 

 In a war zone, frontline soldiers are responsible for assessing the conditions of 

the area they are assigned. In an industrial situation, this is the job of the temperature 

gauges and flow sensors that are placed on the equipment.  Each of these taken 

measurements is sent as packets, let them be called ms, to an intermediate node, called 

a program logic controller. The wireless subnetwork used in this phase will be referred to 

as C.   While readings equate to the observations of a soldier, the packets can 
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be seen as the verbal passing of the message from one level of command to the next.  

The commanding officer is the equivalent of the base station in this example, while all 

the people who relay the messages are the PLC units. In the networking world, the 

medium used to transfer the message is the channel, which can be thought of as 

person’s voice. When there are a lot of other people talking around the person delivering 

a message, their voices can overpower the speaker’s voice. This would be referred to as 

noise in a network (N). Noise stems from interference, reflection, multipath fading and 

other environmental factors, which cause the signal energy to drop below a certain level. 

Consequently, the receiver considers the message as lost (e.g., too distorted to be 

decoded). Let the likelihood of packet loss can be denoted by p (e.g., p = 0.5 suggests 

that 50% of packets will be lost).  

 Often the higher ranks of the military have several subordinates reporting to them 

and expect updates every eight hours.  Again, relating this to a wireless network, the 

number of subordinates the officer has will represent the number of sensors present for 

the PCL, Ns, and the eight hour reporting cycle would be out delay, D.  

 Suppose that a message was not received by the commanding officer, he would 

make efforts to locate his troops, and might even send multiple sources in order to 

ensure success. By requesting the message be communicated again, he has set up a 

retransmission window, rwnd.  In order to determine how many lines of communication 

the officer tries reach out through, he has to look at all factors in his campaign. For 

example, did more than one subordinate fail to respond? How long has it been since the 

last communication? What is the frequency of communication being lost throughout the 

post?  
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In a combat situation, the answers to this situation can be intuitive, based on 

logic or a combination of both. However, in a network there must be clearly devised 

formulas to find an ideal response. The next few sections will be spent reviewing basic 

equations and advancing them to develop a real-time solution that guarantees reliability 

in a timely manner. In the end, an outline of the ENSURE protocols will be clear. 

3.2 Defining Basic Equations 

 All networks, regardless of the medium they use, can be adequately defined in a 

set of equations that are universally accepted. The challenge presented by 

petrochemical plants is to provide a wireless transmission protocol that guarantees that 

all messages are received and properly decoded at the base station. To formulate this 

protocol there are two key factors that must be considered:  

1. Deadline – Referring back to the military example, this is the eight-hour cycle that 

soldiers have to report back to their commanding officer. In a plant situation, the 

time frame (DTOTAL) is typically much smaller and is dictated by the equipment the 

sensors are monitoring.  

2. Real-time packet loss ratio – As mentioned in the example, it is possible that 

more than one subordinate fails to report to the commanding officer, and the 

count of those failures is calculated into the number of ways the he attempts to 

establish communication. In the networking sense, the number of readings lost 

over the lifetime of a channel connection can be calculated to determine the 

appropriate reaction to a packet loss. 

Having established the parameters that are of particular concern to ENSURE, the 

focus will shift to defining them in mathematically terms. When considering the deadline, 

one must determine the series of events required to transmit a packet from a sender to 
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its intended target. First the packet must be pushed from the sender into the network 

channel; the amount of time this process takes is referred to as DTRANS. This change in 

time is determined packet size (L), number of packets initially sent (cwnd) and the rate of 

a wireless channel (R) and is written as: 

𝐷!"#$% =   
!∗!"#$

!
   (1) 

The next step is propagating the packet across the communication channel and relies on 

the medium of the transmission channel as well as the distance the sender is from the 

receiver (d). Since a wireless transmission is mainly sent through the air, the speed it 

travels is: 

𝑆 = 𝑐 − 90 !"
!

   (2) 

Which leads to: 

𝐷!"#! =   
!
!
   (3) 

When acknowledgement is expected, the values of DTRANS and DPROP are doubled, thus 

the total time required for a transmission is: 

 
𝐷!"!#$ =   2  (𝐷!"#$% +   𝐷!"#!) (4) 

The other widely accepted formula that ENSURE will use helps to determine the packet 

loss ratio (PLR) of the link. By definition a ratio is a comparison of two numbers, in this 

case those are the number of losses experienced in the network and the total number of 

packets sent (TX).  

𝑃𝐿𝑅 =    !
!"

    (5) 
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Since both the denominator and numerator are based on packets coming from the same 

source, you can never lose more than you transmit, therefore, PLR <= 1. 

𝑃𝐿𝑅 ≤ 1    (6) 

3.3 Addressing Reliability 

 The foundation of ENSURE is based on a binary erasure channel (BEC), 

meaning that the channel can only receive the packet or a loss. The probability a loss 

occurs is independent of the transmissions received before or after it. 

Consequently, the likelihood of packet loss is equivalent to the observed packet 

loss ratio (PLR).Therefore, the capacity of a binary erasure wireless channel C is: 

𝐶 = 1 −   PLR    (7) 

This equation suggests that the optimal throughput that can be achieved over such 

channel is determined by cost PLR. As a result, the ideal performance for any reliable 

transfer protocol (including ENSURE) cannot exceed  𝐶. 

Let 𝛽 denote the operation cost coefficient, which is defined as follows: The percentage 

of the channel used to send a unique packet during retransmission 

𝐶 = 𝛽×𝐶    (8) 

For convenience, the following table provides a visual of what 𝛽 would be under a variety 

of circumstances and also indicates the number of packets that ENSURE would send. 
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Figure 1. Operation cost coefficient compared to number of required retransmissions 

 

 Having established the probability of a correctly received packet, the goals of 

ENSURE need to be revisited; namely that of 100% reliability. For a channel to be 

completely reliable, every unique packet, or sensor reading in this case, will reach the 

base station irrelevant of any retransmissions needed. In fact a wireless network will lose 

packets; it is impossible to have a perfect channel. This leads to a critical question that 

ENSURE must answer: how will it recover a loss packet? 

 In an ideal situation, readings would be decodable after the first round of 

transmissions. In an average industrial environment noise levels routinely reach 50%, 

meaning that initially sending just one packet per reading will result in a high loss level. 

An adjustment to the size of the first transmission round will allow ENSURE to combat 

the known PLR right away. When no working ratio has been established the protocol 



 

16 
 

assumes PLR = .5. Each sensor will be sending one unique reading per frame; this 

reading will be duplicated k times. The variable will be determined by the following 

equation: 

𝑘 =   𝑐𝑒𝑖𝑙 !
!"#

   (9) 

Establishing the 

𝑐𝑤𝑛𝑑   =   𝑘   ∗   𝑁!  (10) 

where 𝑁! is the number of sensors. 

 Determining the number of packets lost in transmission is as simple as 

subtracting the number of correctly decoded unique packets from the expected number. 

By dividing the number of losses by the probability that a packet was correctly received, 

one can calculate the size of the retransmission window that will overcome the noise of 

the environment. 

𝑟𝑤𝑛𝑑 = 𝑐𝑒𝑖𝑙 !
!!!"#

  (11) 

The process of calculating a rwnd can be repeated until the base station correctly 

decodes a packet for every reading taken by the sensors, forming the enter inner 

workings of ENSURE 1.0.   
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Figure 4. Algorithm for ENSURE 1.0 
 

3.4 Meeting a Deadline 

 Now a way to provide reliability has been formulated, a re-examination of the 

needs of the petrochemical industry provides a second hurdle that ENSURE needs to 

overcome: a restricted time frame. Version 1.0 was allowed to run until a reading was 

correctly received and could result in extremely high values of DTOTAL. To enforce a 

protocol time limit one must set DTOTAL equal to our maximum allowable value. However, 

the equation provided to this point, Equation 4, is written in generic terms and must now 

be adapted to meet the specifications of ENSURE. 

 Since the size of the transmission window adjusts with each round of 

retransmissions, the value of DTRANS is no longer static. Therefore, Equation 1 will have 

to be modified each time a new request for retransmissions is sent. Here the maximum 

number of transmissions will be set to two, the initial transmission and one 

retransmission round, so a clear explanation of the equations can be presented. In this 
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spirit new variables can be defined for delays, one for the initial transmission, DITRANS, 

and one for the retransmission round, DRTRANS.  

𝐷!"#$%& =   
!∗!"#$

!
   (12) 

𝐷!"!#$% =   
!∗!"#$

!
   (13) 

Now that these two values are established, a new equation for DTOTAL can be formulated. 

Going back to the first equation for this variable, Equation 4, the total delay of the 

network simply doubled the amount of time a one-way transmission took. However, 

since there are now different values for transmission delays, this has to be reformulated 

to: 

𝐷!"!!" =   𝐷!"#$%& +   𝐷!"!#$% + 2(𝐷!"#!) (14) 

Depending on the parameters given to an engineer, he can now solve this equation for 

two things: maximum amount of tolerable delay or the number of sensors a given set-up 

can handle. Having incorporated these two things, ENSURE 2.0 was born. The 

predicate outcome of the new protocol greatly reduces values of DTOTAL, but with a small 

number of losses or erasures.  
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Figure 7. Algorithm for ENSURE 2.0 

 

3.5 The Best of Both Worlds 

ENSURE 1.0 accomplished reliability, while 2.0 overcame a time restraint, but 

given only these options one must choose either complete reliability or time utilization. 

The natural next step is to devise a way to combine the two.  Given the predicted 

number of complete losses from ENSURE 2.0 are relatively low; a natural progression is 

to a cyclic error-correcting code that will give the network the ability to recover some of 

the erasures. 

Reed Solomon, often used in coding theory [68], finds the most popular subset of 

binomial data in a packet and periodically sends a packet dedicated to this subset (a 

parity packet). The downside to this is by transmitting a parity packet you lose the 

opportunity to send actual data, but this one packet has the potential of containing patch 

data for multiple packets. When a network is sure to encounter losses the net gain 

makes the use of the resources well justified.  
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Placing an encoder before the packet transmission and a decoder after the 

channel in ENSURE 2.0 forms ENSURE 3.0. The expect outcome is that the network will 

be able completely recover any losses, thus providing guaranteed reliability even when 

implementing a time restraint. 
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Figure 10. Algorithm for ENSURE 3.0 
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Chapter IV 

Approach 

4.1 Refining Typology 

 When designing a network, different factors including the type of information that 

will be transmitted and the kinds of equipment must be considered. Industrial 

environments make use of Supervisory Control and Data Acquisition (SCADA) 

management systems. The way this type of environment works is that the sensors take 

readings on the pipeline level and pass them through a PLC on up to a distributed 

control system. 

 Some plants currently have short-range wireless networks that connect the 

sensors to the PLC. The length from the sensor’s wireless transmitter to the receiver is 

kept to a minimum and is only utilized when running a wire to the sensor would be 

almost impossible. One example is a sensor that measures the temperature at the top of 

a smoke stack, which is very tall. Two key areas in a refinery are the pipeline and the 

distillation unit. Figure 8 shows how a petrochemical plant that uses wireless technology 

would be configured if deployed with currently accepted standards. On the sample 

pipeline, two temperature gauges are connected to a PLC dedicated to ensure the 

readings get back to the control unit. Similarly, a sample distillation unit has four pipes 

whose temperature must be monitored. While the sensors are connected wirelessly to 

their respective PLC, 10/100 cables are installed from each PLC to the distributed 

control unit. Each cable can be hundreds of yards long and extremely costly to deploy 

and maintain. However, with current standards, moving toward a completely wireless 
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system is virtually impossible due to the types of equipment that is monitored (a detailed 

explanation can be found in Chapter 1). 

 

Figure 11. Sample of network typology currently used 
 

 A primary goal of all forms of business is to minimize operating costs; deploying 

a completely wireless sensor network will be cost beneficial for petrochemical plants 

from the following aspects. (1) The initial setup cost will be lower, (2) the cost of paying 

for repair materials and getting a qualified technician to perform them will be less, and 

(3) downtime of the plant will be reduced leading to an increase in production. 

Developing a new typology is a key step in lowering operating cost. When ENSURE is 

implemented the goal is to refine the wired connection from all the PLCs to the control 

system to be wireless (shown in Figure 9). 
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Figure 12. Sensor typology with ENSURE implemented 
   

4.2 Determining Network Connections 

 The next factor that has to be considered is signal management, i.e. would the 

wireless sensors still make use of the intermediate nodes? In short, yes, after 

investigating the options the use of PLCs were found to be beneficial to the network. To 

further explain, there are two types of networks: isolated and non-isolated. An isolated 

network exists when one-way communication is established, commonly referred to as a 

broadcast channel. A non-isolated channel allows for both the sender and the receiver to 

communicate with each other, a classic example is an Internet connection.  

 The majority of available SCADA sensors on the market are dummy sensors; 

they are comprised of a reading mechanism, a transmitter and a wireless antenna. 
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There is not an onboard processor that would allow it to receive any signals. By 

definition any wireless transmissions from the sensor will be isolated. Going back to the 

goal of creating a 100% reliable wireless network, without a method to explicitly request 

a reading to be resent the reliability requirement cannot be guaranteed.  

 On the other hand, programmable logic controls have the capabilities to both 

send and receive. Therefore, a non-isolated network can be configured between each 

PLC and the control system. Combining the two networks opens up an opportunity to 

have met the stated needs. 

4.3 Protocol Placement 

 All new technologies have to conquer initial resistance by the consumer to use 

them. If there is a high cost to enter the market then the consumer is less likely to 

consider the technology as an alternative. By modifying existing technologies to 

accommodate changes, the adoption rate would be higher. 

 A computer network consists of five layers: (1) application, (2) transport, (3) 

network, (4) data link and (5) physical layers. Carefully positioning the logic of ENSURE 

within the five layers (presented in Chapter 3) will allow deployment using existing 

hardware. The application layer is responsible for establishing a client to server 

connection while the transport layer handles all the communicating factors in the 

connection. Examples of services provided in the transport level are data modulation, 

multiplexing, flow control and reliability. Adding ENSURE as an adapter between the 

application and transport layers will allow the protocol to strictly focus on accomplishing 

reliability. 
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4.4 Simulation Models 

 Three software packages were considered: NS2, OMNet++, and MATLAB with 

Simulink. After weighing the pros and cons of each package, MATLAB with Simulink was 

chosen. A main consideration was the availability of the software to The University of 

Texas at Tyler making it easier for future researchers to expand from ENSURE. For 

each version of ENSURE a simulation model was developed. 

4.4.1 ENSURE 1.0 

 Before a model of ENSURE 1.0 could be built, a basic wireless simulation had to 

be in place. Simulink gives engineers the ability to use blocks to map out the path of the 

network. The network that was built used an AWGN channel to simulate the errors.  

 From this point, a replica of the proposed typology was developed. One sensor 

was added and connected to the PLC through an isolated channel, creating one 

subnetwork. Once the PLC received the readings they were passed to a second 

subnetwork. Before a packet left the PLC through the second subnetwork, it was 

processed using the PLC ENSURE logic. Following processing, all packets were sent 

through a separate channel to the control unit. There, the controller simulated its given 

logic and accordingly a NACK was sent back to the PLC. Once the NACK was received, 

retransmissions for missing packets were sent. 

 In ENSURE 1.0, the network allowed a unique packet to go through the process 

as many times as needed until it was received error free.  Each simulation represented a 

50,000 second run, and at the end channel conditions were recorded. Changing the 

probability of an error in the AWGN channel induced noise levels, and final channel 

conditions were recorded for a noise range of 0 to 50% in 5% increments. This set of 

simulations were run when subnetwork one contained one, two and three sensors. 



 

33 
 

4.4.2 ENSURE 2.0 

 To test ENSURE 2.0, a way to place a delay limit on the model had to be found. 

The chosen method was to only allow a unique reading to go through the retransmission 

process for a predetermined number of times. Similar to the way the equations for this 

process were explained, the PLC was only allowed to cycle through the retransmission 

logic once. 

 The goal of this change was to simulate a deadline for the base station to receive 

the readings (before the deadline) and make adjustments to the plant processes. Also, 

the results would provide another variable for engineers to consider when implementing 

the networks in the field. The same simulation parameters were used to measure the 

effects on channel conditions using this logic. 

4.4.3 ENSURE 3.0 

 While the previous two protocol simulations address the individual goals of the 

protocol, complete reliability (ENSURE 1.0) and meeting time restraints (ENSURE 2.0), 

they do not satisfy the overall purpose.  

 To further investigate the feasibility in ensuring 100% reliability within a given 

end-to-end deadline, ENSURE 3.0 is proposed to plug in the channel conditions found 

for each of the simulations of ENSURE 2.0 and allow Reed Solomon to attempt to 

correct erasures (MATLAB has Reed Solomon functions as a part of the communication 

tool box, to simulate ENSURE 3.0 these functions were used). Since parity packets are 

used, the adjustments to packet loss, unique packets sent and channel utilization were 

noted. 
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Chapter V 

Experimental Results 

5.1 Introduction 

 The Transmission Control Protocol (TCP) places emphasis on congestion control 

and maximum bandwidth utilization while making a good faith effort to provide reliability. 

The petrochemical industry requires 100% reliability from sensors in metallic 

environments, which results in highly diminished signal quality. ENSURE 1.0 guarantees 

that the readings taken at the sensor level make it to the base station of the plant, 

regardless of how much time lapses.  

 A model of the proposed protocol was made in Simulink and combined with 

MATLAB to produce a simulation for multiple environments. Simulations of noise levels 

from 0% to 50% in steps of 5% were run, and the model recorded the corresponding 

delay, channel utilization, reliability and total losses. When setting up the sensor 

typology of a plant all pros and cons of potential layouts must be considered. In that 

spirit there are several key measures which should be analyzed to obtain a complete 

picture of each protocol. 

5.2 ENSURE 1.0 

ENSURE 1.0 guarantees that the readings taken at the sensor level make it to 

the base station of the plant, regardless of how much time lapses. This is accomplished
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through use of a retransmission window that adjusts to the current reliability of the 

channel. 

5.2.1 Delay versus Channel Utilization 

When determining the amount of tolerable delay in a network, the amount of 

channel utilization gained through the delay needs to be considered. Another important 

aspect of the measure is determining if more sources of information can be added to 

fully capitalize on the available bandwidth in a network. 

When implementing one sensor the amount of channel utilization ranges from 

30% to 40%, as noted in Figure 10. The usage remains fairly steady throughout the 

simulation. With two sensors, utilization levels range from 45% to 75% but the bulk of the 

samples achieved is 60% to 70%, as seen in Figure 11. At 1100 seconds and beyond of 

delay ENSURE 1.0 steadily approaches an optimal channel utilization of 70%. Three 

sensors take full advantage of the channel, ranging from 90% to 100% no matter what 

the delay (Figure 12).  This can be attributed to the burst retransmission format of the 

protocol. By using a cumulative distribution function graph, a clear comparison of the 

network performance of this protocol can be made (Figure 13). The results show that the 

greater the number of sensors connected to the PLC the more networking resources are 

used to their maximum potential. 
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Figure 13. Delay versus channel utilization for one sensor using ENSURE 1.0 
 
 

 
 

Figure 14. Delay versus channel utilization for two sensors using ENSURE 1.0 
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Figure 15. Delay versus channel utilization for three sensors using ENSURE 1.0 
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5.2.2 Noise versus Channel Utilization 

 In a perfect world, wireless networks could be isolated from interference during 

transmissions. Unfortunately, this is impossible because every environment experiences 

some level of noise. Typically, the higher the noise level the lower the channel utilization 

level. ENSURE 1.0 was designed to react to the packet losses by adjusting the number 

of burst transmissions for each packet loss. However, sending these retransmissions 

also decreases the channel utilization because each duplicate transmission costs the 

network in resources. By examining the noise versus channel utilization graphs, further 

understanding of the protocol is gained. Figure 14 shows some interesting effects that 

the adjustments can have on a network with one source of readings. The network starts 

at a maximum channel utilization of 50% with no noise then steadily decreases until you 

have 20% noise, at 30% it recovers to around 40%. This can be explained by the nature 

of the simulation. The formulas used to determine the number of retransmissions per 

packets lost is based on the current packet loss ratio of the network and are always 

rounded up when a fraction is calculated. Intuitively, the noise in the environment causes 

more losses, leading to a higher PLR and this leads to sending more packets per loss. 

The reason there is a dramatic increase between noise levels of 20% and 30% is at the 

20% mark the formulas instruct the network to send less packets per loss but this 

process must be repeated. At the 30% mark, it sends more packets per loss and the 

base station is able to correctly receive the readings in fewer rounds of transmissions. 

The same is true when an additional sensor is added (as shown in figures 15 and 16), 

but at the points the extra transmissions occur differ because the window size increases 

placing more packets into the network at all times. More packets in a transmission result 

in the PLR being adjusted in an exponential format. In this measure it is again noted that 

the more sensors added to the PLC’s responsibility the greater the channel utilization 

(Figure 17). 
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Figure 17. Noise versus channel utilization for one sensor using ENSURE 1.0 

 
 

 
Figure 18. Noise versus channel utilization for two sensors using ENSURE 1.0 
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Figure 19. Noise versus channel utilization for three sensors using ENSURE 1.0 
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5.2.3 Channel Utilization versus Reliability  

 ENSURE 1.0 was designed in an effort to provide guaranteed reliability no matter 

what the noise level. Tables 1, 2, and 3 serve to prove the protocol meets this 

expectation. Let it be noted that a reliability of one indicates that absolutely no packets 

were lost over the course of the simulation. This measure proves that the protocol works 

and 100% reliability can be provided when there are no time restraints on the delay. 

Table 1. Channel utilization versus reliability for one sensor using ENSURE 1.0 

One	  Sensor	  

Channel	  
Utilization	  

Noise	   Reliability	  

0.25	   0.20	   1	  
0.30	   0.15	   1	  
0.31	   0.25	   1	  
0.31	   0.50	   1	  
0.32	   0.45	   1	  
0.33	   0.40	   1	  
0.35	   0.35	   1	  
0.37	   0.10	   1	  
0.37	   0.30	   1	  
0.43	   0.05	   1	  
0.50	   0.00	   1	  
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Table 2. Channel utilization versus reliability for two sensors using ENSURE 1.0 

Two	  Sensor	  

Channel	  
Utilization	  

Noise	   Reliability	  

0.45	   0.10	   1	  
0.45	   0.15	   1	  
0.48	   0.05	   1	  
0.50	   0.20	   1	  

0.50	   0.00	   1	  
0.62	   0.25	   1	  
0.62	   0.50	   1	  
0.64	   0.45	   1	  
0.66	   0.40	   1	  
0.70	   0.35	   1	  
0.73	   0.30	   1	  

 

Table 3. Channel utilization versus reliability for three sensors using ENSURE 1.0 

Three	  Sensor	  

Channel	  
Utilization	  

Noise	   Reliability	  

0.50	   0.00	   1	  
0.51	   0.05	   1	  
0.54	   0.10	   1	  

0.61	   0.15	   1	  
0.69	   0.20	   1	  
0.91	   0.25	   1	  
0.92	   0.50	   1	  
0.94	   0.45	   1	  

0.98	   0.40	   1	  
1.00	   0.30	   1	  
1.00	   0.35	   1	  

 

5.2.4 Noise versus Retransmissions 

 The number of retransmissions the network requires to successfully decode a 

reading is dependent on the amount of noise in the environment. This is due to the 
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increased number of losses and that protocol calls for more duplications at higher packet 

loss levels. In all the ENSURE 1.0 simulations, it was found that between 0% and 20% 

the amount of retransmissions required was relatively low, between 35% and 50% that 

number became drastically high. Again, this is consistent when running one, two or three 

sensors, but the amount of increase at each noise level varies. For example, one sensor 

has a steady increase (Figure 18), while the simulation for three sensors increased more 

between 25% and 30% (Figure 20), and then slowed at 30% to 35%. These results tie in 

to the total network delay to help determine optimal setups, however, by themselves 

cannot determine a setup. 

 
Figure 21. Noise versus retransmissions for one sensor when using ENSURE 1.0 
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Figure 22. Noise versus retransmissions for two sensors when using ENSURE 1.0 

 
 

 
Figure 23. Noise versus retransmissions for three sensors when using ENSURE 1.0 

 

5.2.5 Reliability versus Retransmissions 

 The main goal of ENSURE 1.0 was to eliminate packet loss through repeat 

transmissions. Tables 4, 5, and 6 show that the algorithm used accomplishes the goal. 

Also, we notice that the amount of retransmissions at 50% noise remains steady, but the 

rate that the protocol increases to this number is proportional to the number of sensors 
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on the network. Since in the Simulink environment a time limit to run the model must be 

used, the amount of retransmission reaches a maximum of this constraint. These results 

can provide insight to the industry because the number of transmissions going between 

the PLC and the base network will add further noise to the network. 

Table 4. Reliability versus retransmissions for one sensor using ENSURE 1.0 

One	  Sensor	  

Retransmissions	   Reliability	   Noise	  
0	   1	   0	  
24	   1	   0.05	  
58	   1	   0.1	  
112	   1	   0.15	  
265	   1	   0.2	  
597	   1	   0.25	  

11731	   1	   0.3	  
24825	   1	   0.35	  
24825	   1	   0.4	  
24825	   1	   0.45	  
24825	   1	   0.5	  

 
 

Table 5. Reliability versus retransmissions for two sensors using ENSURE 1.0 

Two	  Sensors	  

Retransmissions	   Reliability	   Noise	  
0	   1	   0	  
24	   1	   0.05	  
119	   1	   0.1	  
235	   1	   0.15	  
578	   1	   0.2	  
1461	   1	   0.25	  
18479	   1	   0.3	  
24825	   1	   0.35	  
24825	   1	   0.4	  
24825	   1	   0.45	  
24825	   1	   0.5	  
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Table 6. Reliability versus retransmissions for three sensors using ENSURE 1.0 

Three	  Sensors	  

Retransmissions	   Reliability	   Noise	  
0	   1	   0	  
53	   1	   0.05	  
174	   1	   0.1	  
375	   1	   0.15	  
774	   1	   0.2	  
2001	   1	   0.25	  
20504	   1	   0.3	  
24821	   1	   0.35	  
24825	   1	   0.4	  
24825	   1	   0.45	  
24825	   1	   0.5	  

 

5.2.6 Noise versus Packet Loss 

 In every network it is important to look at the network conditions from all angles, 

and while showing the noise versus packet loss may seem repetitive, it is important to 

provide. Again, no packets are lost when noise or packet sources are added to the 

network. 

5.2.7 Noise versus Domain of Delay and Channel Utilization 

 The final measurements were derived by normalizing both delay and channel 

utilization into a domain and the plotting it against noise. This process helps to identify 

clusters within the data. The ideal delay points are located in the lower left hand corner 

while channel utilization points should be in the upper right corner. Figures 21 – 23 all 

show a natural cluster in the upper right hand corner. This indicates that at high delay 

times channel utilization and noise are high.  
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5.3 ENSURE 2.0: Channel Utilization 

 In ENSURE 1.0, industry’s main concern of reliability was addressed; however, 

from a practical sense there must be a time restraint placed on the protocol. This is 

because the petroleum industry works in a real-time environment: if a reading on a 

temperature gauge comes back high, the base station can send signals to the valves to 

adjust the flow in an effort to cool it down or in a worst case situation, can completely 

shut of the pumps. Failure to make adjustments would have catastrophic results similar 

to what was seen in the 2010 British Petroleum explosion off the shore of Louisiana, 

which left workers dead. 

 ENSURE 2.0 improves on the base protocol by adding a limit on the number of 

times a reading can go through the retransmissions process. In the model used, we 

limited this number to an initial transmission and one round of retransmissions. 

Simulations were run again at noise levels of 0 to 50% in 5% steps. After each 

simulation the network conditions were recorded and then graphed for comparison 

purposes. In this section, the protocol will be examined based on the number of sensors; 

in later Chapters a comparison between protocols will be made. 

5.3.1 Delay versus Channel Utilization 

 Since ENSURE 2.0 is limiting the number of times a packet can be cycled 

through the network, delay versus channel utilization measurement must be revisited. 

There are two possible effects that the new way of handling packets could have: 1) the 

channel utilization could increase because it is not creating more noise in the 

atmosphere or 2) the utilization could drop because packets are not given enough cycles 

to overcome the noise creating losses. In the second scenario one would expect to see 

an increase in channel utilization when adding reading sources. 



 

53 
 

 In Figure 24, it can be observed that when the delay is over 0.25 seconds the 

channel utilization steadily approaches 10% when one sensor is online. The maximum 

delay is around 4.5 seconds over the 50,000 second simulation. In Figure 25, there is an 

addition of a sensor that leads to a maximum delay of 7 seconds but a minimum channel 

utilization of 20%. The pattern of the plot is the same as one sensor, just a smaller slope. 

When looking at three sensors, as in Figure 26, the pattern is repeated but the minimum 

channel usage is 30%. In conclusion, by adding a sensor a tradeoff can be made: an 

increase in delay for a gain in effective resource usage. All sensors are compared side 

by side in Figure 27 and shows that adding additional sensors does not hurt the channel 

usage capabilities. 

 
Figure 27. Delay versus channel utilization for one sensor using ENSURE 2.0 
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Figure 28. Delay versus channel utilization for two sensors using ENSURE 2.0 

 
Figure 29. Delay versus channel utilization for three sensors using ENSURE 2.0 
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5.3.2 Noise versus Channel Utilization 

 In traditional protocols, channel noise and overall delay typically go hand in hand, 

but in ENSURE 2.0 this is not the case. Since it implements a floating window size which 

is dependent on the current reliability of the network, a larger noise level does not 

automatically produce lower channel utilization. Figure 28, which represents one sensor, 

shows that in a noiseless network 50% channel usage is achieved. The reason this is 

the maximum channel utilization is because the protocol assumes a 50% PLR from the 

beginning and then adjusts down. With this said, the first transmission sends packets 

twice in attempt to overcome any loss in the initial transmission. With one sensor, as 

seen here, when noise levels are under 25%, each added noise affects it much more 

than noise added to a channel over 25% noise. With two sensors, Figure 29, noise 

levels at and below 30% keep a fairly consistent usage between 40 and 50%. Between 

30 and 35% each added noise reduces the resource usage amount dramatically, while 

levels above 35% produce slight changes hovering around 20% usage. The simulation 

process then continues to three sensors, Figure 30, where interesting results occur. With 

lower noise levels, below 25%, the 50% maximum utilization is no longer in place; the 

protocol initially overcomes this barrier, then hovers around it. However, when the 25% 

noise level is exceeded, there is a rapid decrease in meaningful transmissions. Once 

again, a sensor performance comparison, Figure 21, shows that more sensors equal 

more performance. 



 

57 
 

 
Figure 31. Noise versus channel utilization for one sensor using ENSURE 2.0 

 

 
Figure 32. Noise versus channel utilization for two sensors using ENSURE 2.0 
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Figure 33. Noise versus channel utilization for three sensors using ENSURE 2.0 
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5.3.3 Channel Utilization versus Reliability  

When examining the way ENSURE 2.0 reacts to a lost transmission, the ability of 

the protocol to respond in a way that minimizes a total loss of the reading must be 

considered. One way this can be verified is to examine a graph of the reliability versus 

channel utilization; theoretically the percentage of channel usage will decrease at a 

linear rate when the reliability decreases. Note that complete reliability is represented by 

0% on the graphs. Also, the more sensors added the less the slope of the graph 

changes. With one sensor, Figure 32 demonstrates that the total change in channel 

utilization to be roughly 40%. Thus it is extremely responsive to a lost transmission. 

Adding an additional sensor, as in Figure 33, shows that the network is still responsive 

but with a 30% range of change. With these first two simulations the resource usage is 

always diminishing, however, adding one more sensor changes this pattern. Figure 34 

graphs three sensors and shows that with low noise levels, i.e. less than 15%, the 

channel is taken advantage of more than the initial 50%. After the threshold is reached 

the patterns of the previous simulations are present with a range of 20% change in 

usage. A complete comparison on this measure, Figure 35, verifies that three sensors 

make the most of the given channel. 
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Figure 35. Reliability versus channel utilization for one sensor using ENSURE 2.0  

 
Figure 36. Reliability versus channel utilization for two sensors using ENSURE 2.0 
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Figure 37. Reliability versus channel utilization for three sensors using ENSURE 2.0 
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5.3.4 Noise versus Retransmissions 

 Given the previous measures, one must now verify that the protocol is making a 

reasonable attempt to overcome environmental noise. With ENSURE 1.0, it was proven 

that there were no lost packets, but without the added time restraint it could have 

retransmitted the same reading many times before a clean packet was received. In 

ENSURE 2.0, analysis of this measure will provide a validation of efficiency.  When 

looking at a network with one reading source, as in Figure 36, a clear drop in the amount 

of retransmissions occurs at 35% noise levels. This shows that the network is effectively 

adjusting when a lost transmission is detected; it is not automatically sending the most 

retransmissions but determining what the ideal amount is. However, this also indicates 

that at the peak of 30% noise the protocol is retransmitting more than necessary.  While 

this is also true in the two-sensor network (Figure 37), at 30% noise it is not as drastic. 

This indicates the ability to adjust with a minimum of overcompensation. Figure 38 

shows that with three sensors the protocol reverts back to the same situation as with one 

sensor, it is sending too many packets at 35% to ensure no lost readings. When 

graphing all the sensors in one graph, as shown in Figure 39, there is not an optimal 

setup for all situations, if the focus was keeping the retransmissions to a minimum.  
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Figure 39. Noise versus number of retransmissions required for one sensor using ENSURE 2.0 

 

 
Figure 40. Noise versus number of retransmissions required for two sensors using ENSURE 2.0 
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Figure 41. Noise versus number of retransmissions required for three sensors using ENSURE 2.0 
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5.3.5 Reliability versus Retransmissions 

ENSURE 2.0 is designed to produce high reliability with a minimum delay. One 

way to make sure the protocol is working as planned is to graph the reliability of a 

channel against the total number of retransmissions the simulation sent. One would 

expect the lower the reliability, the lower the number of transmissions sent. As with the 

previous measure, Figure 40 shows that there is a sharp drop in the number of 

retransmissions at 25% noise on a one sensor network. The results mirror those seen in 

the measurement of noise versus retransmissions and indicate the protocol is over-

compensating for losses at a reliability level of 25%. With two sensors, Figure 41, a 

smoother response to a loss is shown, meaning there is no point that the protocol sends 

too many retransmissions per loss. When running three sensors (Figure 42), however, 

there are points that too many retransmissions are sent at both 5% and 25%. As when 

looking at noise versus retransmissions, there is no clear answer as to the best setup 

(Figure 43). 

 
Figure 43. Reliability versus number of retransmissions required for one sensor using ENSURE 2.0 
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Figure 44. Reliability versus number of retransmissions required for two sensors using ENSURE 2.0 

 

 
Figure 45. Noise versus number of retransmissions required for three sensors using ENSURE 2.0 
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5.3.6 Noise versus Packets Loss 

 The main goal of ENSURE is to minimize loss and the final two measures 

examine these all important numbers. Since the channel interference is the cause of a 

packet loss, examining the noise level against the packet loss is an ideal starting point. 

The results of a one sensor simulation prove there are no complete losses on the 

network, i.e. all readings were recoverable by the end of the simulated time. The graphs 

for a two and three sensor network, as shown in Figures 44 and 45 respectively, reflect 

the same issue: the network has a point where it does not adjust well enough to prevent 

losses. This could be caused by not switching to a higher retransmission rate soon 

enough or by a toggling of rates that does not consistently cover a packet loss. In most 

cases, extreme changes in noise only take place in the petrochemical environment when 

the equipment setup is changed. This lack of change makes the comparing all simulation 

results for noise versus packet loss extremely important. As seen in Figure 46, adding 

sensors into a network running ENSURE 2.0 dramatically increases the number of 

packets lost around the network. 

 
Figure 47. Noise versus number of packets lost for two sensors using ENSURE 2.0 

 



 

72 
 

 
Figure 48. Noise versus number of packets lost for three sensors using ENSURE 2.0 
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5.3.7 Reliability versus Packet Loss 

 Finally, one must consider reliability versus the number of packets lost. At this 

point it is important to note the subtle difference in noise and reliability and it can be 

summed up in a simple sentence: Noise is a constant that controls the probability of 

losing a packet, while reliability is a dynamic measure of the number of packets lost over 

the lifetime of the simulation. With this said, it is interesting to note that the graphs for 

reliability reflect those of noise when plotted against loss. The main difference is where 

the losses peak with when two or more sensors are used as one sensor maintains 

complete reliability.  To further analyze this, consider the equations used to design 

ENSURE 2.0. A network with two reading sources, Figure 47, has an initial window of 4; 

at each loss the protocol adjusts the number of retransmissions it sends. With that in 

mind, the reliability cut-off points are 25%, 50% and 75% of the maximum. Earlier 

documentation establishes the maximum reliability as 50% because the initial 

transmission is two packets for each reading obtained. Thus, one should see clear 

reduction in losses following 0.125, 0.25 and 0.375 reliability on the graph, which we do. 

In Figure 48, which graphs three sensors, the cut off points should be 0.84, 0.17, 0.25, 

0.34 and 0.42, and again reductions are present at these points. Note that the numbers 

represented are normalized to a maximum loss of 46 packets on a two-sensor setup and 

78 with three sensors. Based on these results, the protocol is clearly working to 

accomplish the goal and losses are at a minimum. Plotting all the simulations in one 

graph, Figure 49, reinforces this point.  
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Figure 50. Reliability versus number of packets lost for two sensors using ENSURE 2.0 

 

 
Figure 51. Reliability versus number of packets lost for three sensors using ENSURE 2.0
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5.3.8 Noise versus Domain of Delay and Channel Utilization 

 Finally, combining two measures, delay and channel utilization, into the same 

domain and graphing them against the noise level allows one to recognize patterns. 

These patterns can be used to determine acceptable parameters when considering 

setting up a wireless network in a plant. Unlike ENSURE 1.0, 2.0 plots with low delays 

and high throughput are good. When the two measures begin to form natural clusters, 

this indicates that the setup is less than ideal. With one sensor, Figure 50, a cluster 

forms to the right of the measurements crossing between 30 and 35% noise. This 

indicates that once the delay outweighs the channel utilization, other factors, such as 

loss amounts, must be heavily considered to determine the worth of the setup. The 

same can be said of the two sensor graph (Figure 51), though by adding a larger window 

size the measurements cross later, at 40% noise. With three sources of readings (Figure 

52), the criteria change a bit. Since the two measurements never cross, a simple 

distance measurement can be used. The lower the calculated difference the more actual 

packet loss will play into decisions. 
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5.3.9 Reliability versus Domain of Delay and Channel Utilization 

 The properties of ENSURE 2.0 open the protocol to the possibility of a loss. With 

the added variable one must look at the reliability of the domain as well. In Figures 53 - 

55, a clear separation in points is seen. The points to the left indicate that the network 

engineer must carefully consider packet loss versus delay when determining if this is a 

fair protocol for his situation. 
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5.4 ENSURE 3.0: Error Correction 

 The petrochemical industry has two very critical needs out of a wireless network, 

reliability and channel utilization. Each of these requirements has be met individually by 

the two previous versions of ENSURE. ENSURE 1.0 proved that the protocol could 

guarantee packet reception while 2.0 provided reasonable time delays. Now the protocol 

must combine the two characteristics to provide a fast, reliable means of reading 

transmissions, thereby creating ENSURE 3.0. 

 The final version of the protocol will combine the best of both worlds by adding 

an error correction mechanism. For the present simulation, a robust cyclic error-

correcting code, Reed Solomon, was chosen. This is because it has the ability to correct 

erasures by filling in missing blocks of code. In channel conditions that were simulated in 

the ENSURE networks Reed Solomon was capable of recovering 190 erasures. By 

adding this code to packets sent over the ENSURE 2.0, the final 3.0 protocol took 

shape. All channel conditions were recorded allowing the effectiveness of the 

transmission parameters to be examined. 

5.4.1 Delay versus Channel Utilization 

In order to satisfy industrial needs, the final protocol must be able to maintain a 

minimal total delay with maximum channel utilization. With the combination, plant 

networks can be designed around the current equipment to effectively use the resources 

required to connect the PLC to the base station. With the changes that were made in the 

packet coding process, one would expect to see an increase in channel utilization, but it 

would still not be able to obtain total usage. In ENSURE 3.0 simulations running one 

sensor, Figure 56, shows no improvement over the previous setup up, however, the 

difference is noticeable with two reading sources, Figure 57. There is only a 10% drop in 

usage when the delay is initially added and the overall range of usage is 30% to 50%. 
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Keeping with this pattern, when three sensors are present (Figure 58), channel 

conditions are favorable with a maximum utilization of approximately 55%, a minimum of 

30%, and a steady downward slope from 0.05 to 4.5 seconds delay. Figure 59 shows 

that three sensors will make the most of available resources while not compromising 

delay when using ENSURE 3.0. 

  
Figure 59. Delay versus channel utilization for one sensor using ENSURE 3.0 

 
 

 
Figure 60. Delay versus channel utilization for two sensors using ENSURE 3.0 
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Figure 61. Delay versus channel utilization for three sensors using ENSURE 3.0 
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5.4.2 Noise versus Channel Utilization 

 As with the all of the ENSURE protocols, 3.0 has a floating transmission window 

which reacts to current reliability of the network. When a time limit was factored in before 

with one sensor, no losses occurred, but developed in the two and three sensor runs. As 

such, Figure 60 is exactly the same as before, whereas Figure 61 shows the range of 

channel utilization to be steady but the reaction to noise to be different. Decreases in 

usage are not detected until a 25% noise level, and a major decrease is seen at 35% 

before leveling out to a slight, steady decrease continuing through 50% noise levels. The 

utilization with three sources, Figure 62, is much the same, but there is only one range of 

noise, 30% to 40%, that has a sharp decrease. With these graphs, along with Figure 63, 

one can conclude that the protocol has indeed effectively minimized the effects of noise 

on the base station’s ability to decode data. 

 
Figure 63. Noise versus channel utilization for one sensor using ENSURE 3.0 
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Figure 64. Noise versus channel utilization for two sensors using ENSURE 3.0 

 

 
Figure 65. Noise versus channel utilization for three sensors using ENSURE 3.0 
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5.4.3 Channel Utilization versus Reliability  

 Wireless networks can often be thought of a series of algorithms that produce 

measures which a network engineer must determine the weights of to produce an 

equilibrium that meets their end goals. ENSURE was created with a goal of creating 

100% reliability with a reasonable amount of channel utilization, and 3.0 finds the unique 

balance that meets these requirements. The best demonstration of the effectiveness is 

to show channel utilization, noise levels, and reliability side by side. All three 

configurations, Tables 7 – 9, show that no packets were lost and the channel had a 

tolerable amount of usage when the Reed Solomon coding was added.  

Table 7. Channel utilization versus reliability for one sensor using ENSURE 3.0. 

One	  Sensor	  

Channel	  
Utilization	   Noise	   Reliability	  

0.50	   0	   1	  
0.46	   0.05	   1	  
0.42	   0.1	   1	  
0.38	   0.15	   	  1	  
0.34	   0.2	   1	  
0.24	   0.25	   1	  
0.21	   0.3	   1	  
0.14	   0.35	   1	  
0.12	   0.4	   1	  
0.11	   0.45	   1	  
0.10	   0.5	   1	  
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Table 8. Channel utilization versus reliability for two sensors using ENSURE 3.0 

Two	  Sensors	  

Channel	  
Utilization	   Noise	   Reliability	  

0.50	   0	   1	  
0.50	   0.05	   1	  
0.48	   0.1	   1	  
0.47	   0.15	   	  1	  
0.47	   0.2	   1	  
0.43	   0.25	   1	  
0.39	   0.3	   1	  
0.24	   0.35	   1	  
0.23	   0.4	   1	  
0.21	   0.45	   1	  
0.20	   0.5	   1	  

 
Table 9. Channel utilization versus reliability for three sensors using ENSURE 3.0 

Three	  Sensors	  

Channel	  
Utilization	   Noise	   Reliability	  

0.50	   0	   1	  
0.53	   0.05	   1	  
0.56	   0.1	   1	  
0.54	   0.15	   	  1	  
0.56	   0.2	   1	  
0.53	   0.25	   1	  
0.53	   0.3	   1	  
0.43	   0.35	   1	  
0.34	   0.4	   1	  
0.32	   0.45	   1	  
0.28	   0.5	   1	  

 

5.4.4 Noise versus Retransmissions 

 Since ENSURE 3.0 aims to combine its two predecessors, one would expect that 

the retransmissions measurements to reflect balance of the two prior limitations. Again, 
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since no loss was detected in a one-sensor network in either prior protocol configuration, 

Figure 64 is an exact reflection of ENSURE 2.0’s results. With an additional sensor, 

Figure 65, the simulation results clearly show the positive effects of the Reed Solomon 

coding. Retransmissions were kept to a minimum until a high level of noise, 35%, was 

reached, and then the reliability of the channel begins to cause drastic adjustments to 

the number sent. The same holds true when simulating three reading points, Figure 66, 

with a clear change taking place a 45%. The reason that the adjustment is made later is 

that the initial window is larger and when a single packet loss is detected it has less 

effect on the network reliability. This is a measure to help determine an ideal setup 

based on noise. Figure 67 demonstrates that different level ranges shift how many 

sensors are ideal.  

 
Figure 67. Noise versus retransmissions for one sensor using ENSURE 3.0 
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Figure 68.Noise versus retransmissions for two sensors using ENSURE 3.0 

 
Figure 69. Noise versus retransmissions for three sensors using ENSURE 3.0 
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5.4.5 Reliability versus Retransmissions 

 Measuring the reliability versus retransmissions in this protocol serves to 

reinforce the adjustments the network makes in the event of a loss is effective. As seen 

in Tables 10 - 12, the number of sensors and noise level both contribute to determine 

the number of retransmissions required for a successful packet decoding. 

Table 10. Reliability versus retransmissions for one sensor using ENSURE 3.0 

One	  Sensor	  

Retransmissions	   Reliability	   Noise	  

498	   1	   0	  
532	   1	   0.05	  
572	   1	   0.1	  
620	   1	   0.15	  
682	   1	   0.2	  
932	   1	   0.25	  
998	   1	   0.3	  
1300	   1	   0.35	  
510	   1	   0.4	  
1532	   1	   0.45	  
1496	   1	   0.5	  
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Table 11.  Reliability versus retransmissions for two sensors using ENSURE 3.0 

Two	  Sensors	  

Retransmissions	   Reliability	   Noise	  

996	   1	   0	  
1046	   1	   0.05	  
1136	   1	   0.1	  
1212	   1	   0.15	  
1284	   1	   0.2	  
1379	   1	   0.25	  
1603	   1	   0.3	  
2424	   1	   0.35	  
2544	   1	   0.4	  
2694	   1	   0.45	  
2664	   1	   0.5	  

 

Table 12. Reliability versus retransmissions for three sensors using ENSURE 3.0 

Three	  Sensors	  

Retransmissions	   Reliability	   Noise	  

1494	   1	   0	  
1598	   1	   0.05	  
1722	   1	   0.1	  
1772	   1	   0.15	  
1914	   1	   0.2	  
2016	   1	   0.25	  
2414	   1	   0.3	  
2540	   1	   0.35	  
3383	   1	   0.4	  
3523	   1	   0.45	  
3852	   1	   0.5	  
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5.4.6 Noise versus Packets Loss 

 As was the case with ENSURE 1.0, comparing the amount of noise against the 

number of lost packets reinforces the validity of previous measures. Tables 10 - 12 in 

5.4.5 contain supporting evidence that a packet was never lost in any of the simulations.  

5.4.7 Noise versus Domain of Delay and Channel Utilization 

 Once again, plotting noise level, length of delay and channel usage into one 

graph will prove useful. The outcomes for ENSURE 3.0 simulations show clear cutoff 

points of desirable noise levels.  The plots of delay and usage still cross, however, after 

that point the plots mirror each other using the intersection point as the relative axis. 

When comparing at Figures 68 - 70, one can conclude that when a sensor is added the 

intersection point shifts. The importance of this is the balance point has been 

discovered, offering plants a benchmark to use when implementing a network. 
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5.4.8 Reliability versus Domain of Delay and Channel Utilization 

 The measurements for reliability versus delay and channel utilization reflect the 

same patterns of the results for noise. The take-a-way is that the lines cross at the same 

levels as the previous sections. This validates the points previously made. 
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5.5 Overall Transport Protocol Improvements 

 With each adjustment to ENSURE, improvements were made that resulted in a 

final protocol that met the goal of providing 100% reliability while maintaining acceptable 

channel usage under a restricted time limit. However, ultimately one must look at the 

overall picture and ask: Does this improve on the standards that are in place today? A 

good base line to rank it against is the RDT 2.0 protocol.  

 To examine the performance differences a Simulink model of RDT 2.0 was 

developed and run under the same conditions as the ENSURE protocols. Again, at the 

end of each simulation statics pertaining to the channel were recorded. Then graphs of 

the key measures were generated that compare each protocol by the number of sensors 

present. 

5.5.1 Delay versus Channel Utilization 

In order to produce a detailed graph of the channel’s reaction throughout each 

protocol, the delay times for the simulations were normalized. In Figures 74 – 76, RDT 

2.0 has a linear increase in channel utilization, meaning that to correctly receive all 

packets the delay must be long. While the results for ENSURE 1.0 show steady 

resource usage, ENSURE 2.0 and 3.0 slowly decrease the amount of unique packets 

sent across the channel. ENSURE 3.0 shows slightly better results when 2 or more 

reading sources are present. It is important to note that the overall delay in ENSURE 1.0 

is much higher than the later versions, as shown in previous sections of this Chapter. 
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5.5.2 Noise versus Channel Utilization 

 Keeping with the method of normalization, one must examine how the simulation 

models utilized the channel when noise was added.  It can be seen in Figures 77 - 79 

that all formats of ENSURE handled noise increases much better than the RDT 2.0 

protocol. As more sensors were added to the channel ENSURE 3.0 showed a clear 

advantage over the other protocols. 
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5.5.3 Noise versus Packets Loss 

 A major need when adding a wireless network to petrochemical plants is 

guaranteed reliability.  To place this in a variable that is easy to analyze, it simply means 

the network cannot lose any packets during the lifetime of the channel. By comparing the 

number of packets lost in a range of noise levels one can assess the value of the new 

protocol. RDT 2.0 has extremely high losses when virtually any noise is added (Figures 

80 -82), while ENSURE minimizes lost packets. However, with more than one sensor 

ENSURE 2.0 does produce some missing packets. Versions 1.0 and 2.0 have the ability 

to successfully transmit all packets across the channel, regardless of network size. 
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5.5.4 Reliability versus Packet Loss 

 Measuring reliability versus packet loss allows one to visualize the same results 

of the previous section in a different manner. Figures 83-85 provide further evidence that 

both ENSURE 1.0 and 3.0 provide complete reliability. 
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Chapter VI 

Conclusions and Future Research 

 The development of the series of ENSURE protocols successfully met the 

requirements of the petrochemical industry. Specifically, the simulation results for 

ENSURE 3.0 prove that 100% reliability can be achieved over a wireless channel even 

in extremely noisy settings and under time restrictions. Basic principles of a time 

sensitive network were explained by drawing a comparison to a military unit.  This 

example demonstrated the need to adaptively make decisions based on current 

conditions. In real-time networking this principle holds true, and by incorporating current 

window size and packet loss ratio into the retransmission logic, channel conditions 

dictate the next action of the programmable logical controller.  

 This study established that a plant wide wireless implementation is not only 

feasible, but also can be controlled in three ways. An important take-away is that each 

PCL can run a different version of ENSURE, determined by the sensitivity class of the 

sensors. In other words, if simple logging of a gauge is necessary, perhaps ENSURE 1.0 

is the right protocol for the job, for overall trends 2.0 would get the job done, and for 

100% reliability delivered in a timely fashion ENSURE 3.0 has it covered.  

 The next phase of development is to utilize the CPSR Lab at The University of 

Texas at Tyler to implement the protocols on the SCADA equipment that replicates the 

functions of a petroleum plant.  Also, future research can be done on the effects of using 
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different communication channels and adding more sensors to the network. The ultimate 

goal is to present a proven and practical ENSURE prototype to the industry. One integral 

part of the package will be to have built-in security. Research into the best way to lock 

down the communications can be done in parallel to the implementation stage. Further, 

an important question is: How security and reliability can be jointly met over noisy 

wireless petroleum plant channels? What level of overhead will be introduced to the 

system to achieve joint 100% reliability and 100% wireless communication security? 

These and other research questions represent possible future research directions of this 

work.
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