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Abstract

Item Response Models for Dichotomous and Polytomous Data in the
Context of Generalized Linear models with Applications

Grant Campbell

Thesis Chair: Nathan Smith, Ph.D.

The University of Texas at Tyler
May 2012

Item response theory is a test theory, in contrast to classical test theory, that focuses

on the individual items of an exam in order to analyze test accuracy amd reliabil-

ity, and evaluate examinee ability levels. Developed in the mid 20th century, item

response theory, or IRT, is consider superior in a number of ways to many other test

theory approaches. Provided here is an overview of basic IRT models using the a test

theory approach, as well as the development of IRT models in the context of general-

ized linear models. Binary, correct/incorrect, response and polytomous, or mutiple,

response items are considered for item response theory models developed here in the

context of generalized linear models. Applications of IRT are also explored using the

statistical software R.
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1 Item Response Theory

1.1 Introduction

Item Response Theory is a mathematical way of creating and analyzing models

mostly used in the field of psychometrics. Quite popular within the last twenty to

thirty years due to improvements in computing power, the concepts of IRT have

been around since the middle of the twentieth century. So let us first begin by

describing, in a very broad sense, the idea of classical test theory so as to have

something to compare with item response theory. As for any test theory classical

test theory is used to evaluate test scores, evaluate the ability of a test to measure

some latent trait, and determine the reliability of the test itself. To achieve these

objectives classical test focuses on the observed scores that students produce on a

given test. Classical test theory then assumes that these observed scores are

equivalent to some true score plus some random error term that in most cases is

assumed to be normally distributed. Therefore classical test theory is developed

around this relationship between the observed scores and the true score and error,

this is where item response theory will differ from classical test theory. Like classical

test theory item response theory, or IRT, is a method used to create, analyze, and

calculate scores or a persons “ability” on tests, exams, surveys, and questionnaires.

Differing from classical test theory, item response theory focusses on individual

items that appear on the exam or survey. Focussing on individual items rather than

entire test scores allow the analyst to determine not just how well a person does on

an evaluation but how well that evaluation assesses the latent trait being tested (i.e.
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a persons math skills if the evaluation is a math test). IRT models also allow one to

determine within a test which items or questions work better to evaluate the

examinees ability or trait being tested. Because item response theory has the ability

to test individual questions on exams it is used quite frequently for educational

purposes to collect banks of test questions and for improvement of exams over time

since poor questions can be quickly realized. More recently item response theory has

been implemented in the use of computer based testing or computerized adaptive

testing, in which the test can be adapted to an examinees ability by asking questions

that are more closely related to the person’s ability level. The benefit of IRT is that

even though difficulties of exam questions might differ between examinees, one can

evaluate or estimate all examinees ability level on the same continuum.

Let us first discuss the assumptions that must be met in order to accept

information gained by IRT. There exist three assumptions when dealing with item

response models:

1) The latent trait being studied, usually denoted θ, is one-dimensional. The

latent trait of an item response model is defined as the measurable ability level

that is being tested which differs over persons within the tested group.

2) Items are locally independent, i.e. the probability of responding to item i

has no effect on the probability of responding to item j.

3) There exists a function , called the item response function, that relates the

person’s latent trait and the actual response the person makes on an item.

The assumptions for IRT models are considered stronger than the assumptions for

classical test theory, which are essentially that there exists a raw test score for every

individual which consists of an observed score and a random error and that random

error is normally distributed with an expected value of zero. Logically one might
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note that the assumption of item independence in IRT might be a little misleading,

since responding to one item might have an effect on a person’s response to another

item. It has been shown that “Monte Carlo work and experience with IRT programs

suggests that minor violations of this assumption do not make much of a difference”

[6].

1.2 Rasch Model

Let us now consider the item response function that will be spotlighted and built

upon in our discussion throughout this article. The most commonly used statistical

model in IRT to relate the probability of choosing the correct response to an item

with some ability or latent trait level is the logistic model. The aim of our

discussion is to express item response models as a subset of a larger group of models

termed generalized linear models. Logistic models are a particular type of

generalized linear models and will be further expanded on in our general discussion

on generalized linear models. For now let us simply define what the logistic

regression function is and in our discussion on generalized linear models we will

further explore the entire logistic model. The logistic function is defined as

f (y) =
ey

1 + ey
(1.1)

where y is a linear combination of predictor variables in a statistical model. We will

explore three forms of this logistic function and how they relate to item response

theory. The three logistic models discussed differ in how many parameters are used

to explain the relationship between the latent trait being studied and the

probability of choosing the correct response to an item. The simplest logistic model,

and quite possibly the model most used in the field of IRT, is the one-parameter

logistic model or Rasch model, named after Georg Rasch a Danish mathematician
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and statistician. Note here that the logistic function is termed the Rasch model in

the field of item response theory. The Rasch model, which allows us to calculate the

probability of choosing the correct response for a given latent trait and item

parameter, takes the following form.

P (Ypi = 1|θp, βi) =
exp [θp − βi]

1 + exp [θp − βi]
. (1.2)

Here Ypi = 1 refers to choosing a “correct” response to item i by person p (Ypi = 0

would account for an incorrect response). Note a correct response might not

necessarily be a correct answer to an exam question, but might simply be the

studied response on a survey. Furthermore θp represents the latent trait for person p

(a person’s skill level if the items were exam questions), and βi denotes the item

parameter (if the item is on an exam, testing a certain skill level, βi would be the

difficulty of that item for whatever skill being tested.) Although it might not be

clear yet, one might notice the similarity of the Rasch model in 1.2 and the logistic

model in 1.1. In fact the Rasch model is simply an application of the logistic model

which we discuss in a later chapter. The Rasch model is mathematically nice in the

sense that it has domain of R for the latent trait, θp and range of (0, 1) for the

probability of choosing the “correct” response to the item. Another important

aspect of the Rasch model is that the fixed item parameter, βi, is scaled on the

same continuum as the person’s latent trait. The fact that the item parameters and

the person parameter allows one to relate specific person abilities to specific

difficulties of a test question. Relating unique ability parameters to unique item

parameters gives a test creator the ability to develop specialized tests depending on

the group or person being tested since ability levels are unique amongst groups or

individuals. The curve representing the logistic IRT model is termed the item

characteristic curve or ICC. As seen in Figure 1.1 the point at which the the
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Figure 1.1: P (Ypi = 1| βi = −1.009) = eθp+1.009

1+eθp+1.009

probability of answering the item correctly is 0.50 on the item characteristic curve is

the position of the item difficulty. Therefore, as the item difficulty increases, the

probability of answering that item correctly decreases for a fixed person latent trait,

θp. Figure 1.2 shows this idea by plotting several Rasch model curves with different

item difficulty levels together The Rasch Model is essentially different to most

statistical models for fitting data in the sense that the Rasch model requires the

data to fit the model rather than trying to fit a model to the data. In order to use

the properties of the Rasch model, then one must have data that approximately fits

the model. Therefore when obtaining the data one wishes to examine using this

Rasch model, the analyst is allowed to discard any data values that do not conform

to the model. That is if the majority of observed response patterns, an examinees

set of responses, follow a certain pattern, then outlier response patterns may be

discarded as they will not affect the model. The next natural question to ask is how
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Figure 1.2: Item p29: βi = −1.009, Item p25: βi = −0.001, Item p14: βi = .648

do the values discarded affect the measurements gained from using the Rasch

model? This idea of “dropping” data values is considered admissible since these

values are considered extreme as well as the information obtained from fitting the

model is quite significant [3]. Keep in mind that the significance of the Rasch model

allows an analyst to very accurately choose items that test the latent trait of an

examinee. Therefore the idea of having data fit the model is not a far stretch for

what the Rasch model is being used for. Now using the Rasch model an analyst can

only address a valid latent trait explained by the data if the data conforms to the

the model the analyst is using. Because of this approach to using the one-parameter

logistic model, it is considered more of a confirmatory approach rather than an

explanatory approach that allows an analyst to manipulate a model to fit data. The

idea of only using data that conforms to the model requires very large data sets

when applying a one-parameter Rasch model to explain a latent described by the
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data. As stated earlier, because of the need for very large data sets and, as will be

seen later, the use of non-closed form integrals for parameter prediction, IRT and

the use of the Rasch model have only become applicable in in recent decades due to

increased computing power for performing numerical approximations.

1.3 Two-Parameter Logistic Model

The second basic IRT model studied is called the two-parameter logistic model.

This model introduced a parameter, denoted αi, which allows for the discrimination

an item might have on the latent trait being studied. The discrimination factor in

the two-parameter logistic model changes the slope at the inflection point of the

item characteristic curve, i.e. the slope at P (Ypi = 1) = .05. The two-parameter

logistic IRT model is given by the following,

P (Ypi = 1|θp, βi, αi) =
exp [αi (θp − βi)]

1 + exp [αi (θp − βi)]
(1.3)

where Ypi = 1, θp, βi represent the same parameters as in the Rasch model, and αi

represents the item discrimination. Let us now discuss the physical interpretation of

the item discrimination factor. As stated previously the item discrimination affects

the slope at the point where the probability of choosing the correct response is .05,

and one can see in Figure 1.3 the lower the value for αi the flatter the item

characteristic curve and the higher the αi value the steeper the curve. The αi

parameter is called the discrimination factor since it describes how well an item

distinguishes the probability of responding correctly among the examinees along

different ability levels. Consider a low αi value, i.e. a flatter item characteristic

curve, then large changes in the ability level of the examinees leads to only small

changes in the probability of that the examinees will respond to the item correctly.

Large αi values cause the ICC to be steep, which in turn means small changes in
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Figure 1.3: Item p31 βi = −1.77, αi = .393; Item p39 βi = −.332, αi = .835; Item
p15: βi = −0.11, αi = 1.732

ability lead to large changes in the probability of responding correctly. Thus, items

with larger discrimination factors are more desirable to analysts who wish to use the

items that describe an examinees ability the greatest. Notice how the discrimination

factor plays a role in the item characteristic curve, consider a discrimination factor

value of αi = 0, which would yield the item characteristic curve of

P (Ypi = 1|θp, βi, αi = 0) =
exp [αi (θp − βi)]

1 + exp [αi (θp − βi)]
=

exp [0]

1 + exp [0]
=

1

2
. (1.4)

Therefore an alpha value of zero yields the line with slope 0 at the probability value

of .5. In other words, if there is no discrimination for an item an examinee with any

ability level will have a 50% of selecting the correct answer. This type of item would

be worthless for an analyst looking for quality items for an examine or survey.

Consider the relationship between the two-parameter logistic IRT model and the
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Rasch model. If the assumption is made that all items have equal discrimination,

i.e. this is equivalent to setting all discrimination factors to one, the Rasch model

falls out. This assumption leads to less information about the items in

consideration, but yields a much simpler model and methods that can be used when

approximating item parameters [6] [4].

1.4 Three-Parameter Logistic Model

A third basic IRT model is called, in conjunction with the previous model, the

three-parameter IRT model, or three-parameter logistic model. The additional

parameter included in this model takes into consideration the ability of an examinee

to guess the correct response of an item. This ”guessing” factor takes the form of a

lower asymptote on the item characteristic curve. This lower asymptote correctly

describes the allowance for guessing the correct response since it would allow for the

probability of choosing the correct response to increase for those examinees with

very low ability levels. Consider the item characteristic curve in Figure 1.4. It is

clear that even those examinees with ability levels of -2.5 and lower will still have

about a 30% chance of choosing the correct response, but the probability of

choosing the correct response for high ability examinees has not been affected.

Therefore the three-parameter logistic model takes the form,

P (Ypi = 1|θp, βi, αi, ci) = ci + (1− ci)
exp [αi (θp − βi)]

1 + exp [αi (θp − βi)]
. (1.5)

There exist four and five-parameter logistic models, but there is a lack of literature

applying these more complex logistic models to item response theory. Also, our

discussion will mainly focus on the Rasch, or one-parameter logistic, model and

extensions of it. As one might imagine as the number of parameters used in the

model increases the ability to accurately approximate the values of these
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Figure 1.4: ICC with βi = 0.128, αi = 1.862, ci = .302

parameters, given a set of responses, would decrease. This fact leads to many using

IRT models to ignore most other models besides the simplest, i.e. the Rasch model.

Most IRT analysts consider the Rasch model sufficient in the sense that it best

describes their data to the extent in which they need, although there are those who

adamantly defend the need to use more complex models. It has also been confirmed

that as the complexity of the model increases, much more data is needed to

accurately approximate the item characteristic curves for items.

1.5 Item Information and Scoring

Let us not forget the primary purpose of implementing a well defined test theory,

which is to accurately approximate an examinees latent trait or ability being tested

given a set of responses to questions or items. The information function for a

specific item is important in determining how accurate this approximation is along
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with other applications. We define the information function of an item as the

reciprocal of the precision measurement of the item. That is, the precision of an

item is how well that item accurately estimates the ability level, hence the variance

of the ability estimates around the actual ability parameter. Therefore we define the

information for a specific item on an exam as follows:

Ii (θ) =
1

σ2
(1.6)

where σ2 takes different forms depending on the type of model being used. For

instance, in regards to the Rasch model and the 2-parameter model,

σ2
i =

1

a2iPi

(
θ̂
)
Qi

(
θ̂
) (1.7)

where ai is the discrimination factor of item i (recall for the Rasch model we let

ai = 1), θ̂ is the estimated value of the ability parameter θ, Pi

(
θ̂
)

represents the

probability of answering correctly to item i give ability level θ̂, and

Qi

(
θ̂
)

= 1− Pi
(
θ̂
)

[4]. Therefore it is clear to see by Figure 1.5 that as the

standard deviation (i.e. σ) increases (the precision of estimating the parameter is

decreasing), the amount of information a particular item yields decreases for that

particular ability level. So, the information function can tell us how well an item

will accurately test a person’s ability level, although an item with a large amount of

information for a specific ability level will have very little information for other

ability levels. Therefore you would not want to use items with large amounts of

information for an ability level of 2 to accurately test a group of individuals with

ability level of -1. The next step is to determine an information function for an

entire test since we use entire tests to approximate an examinees ability level. We

define the test information function in a very natural way, that is for a test with N
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Figure 1.5: For θ ≈ −1.18, p13: σ2 ≈ 7.0126 and p51: σ2 ≈ 1.6205

items

I (θ) =
N∑
i=1

Ii (θ) . (1.8)

Clearly the test information function will always be equal to or larger than any one

item information function (it will only be equal to if the test consists of only one

item, in which case the test would not be very strong). Theoretically a test maker

would want to create a test with a test information function that is very high over a

large range of ability levels. This can be achieved by using a number of questions

that have high information functions over a wide range of ability levels.

Once a quality test has been created, approximating ability levels based on how an

examinee responded is the final step. This is achieved by holding the item

parameters stable and using methods to estimate the ability parameter, in the same

manner that we held the ability parameters stable to estimate the item parameters,

which was briefly discussed earlier. Note that the item parameter estimation
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methods will be explored in greater detail in a later section. We take an iterative

approach when approximating the ability parameter θ using a maximum likelihood

estimation method. For the Rasch and 2-parameter model we first estimate an

ability of the examinee and denote it θ̂s then,

θ̂s+1 = θ̂s +

∑N
i=1−a2i

[
yi − Pi

(
θ̂s

)]
∑N

i=1 a
2
iPi

(
θ̂s

)
Qi

(
θ̂s

) (1.9)

where ai is the discrimination parameter of item i, yi is the response of the

examinee (yi = 1, 0), Pi

(
θ̂s

)
is the probability that the examinee with ability level

θ̂s correctly responds to item i and Qi

(
θ̂s

)
= 1− Pi

(
θ̂s

)
[4]. This iterative process

continues until the different from one iteration to the next is negligible. This process

is valid for approximating the ability level since as the ability level becomes closer

and closer to the real value of θ the numerator of the second term in the iteration

formula will gradually converge to zero. And thus the ability has been accurately

approximated. One note to make is that if an examinee has a response pattern of

every item being answered correctly or incorrectly, this iterative method yields no

ability estimate for the examinee since the iterations will not converge to a real

value. Therefore the analyst must take this into consideration when using the

previously discussed estimation procedure. There exist a number of other methods

for accurately approximating an examinees ability level given that the item

parameters have been accurately estimated. One should keep in mind that the

ability parameters are scaled on the same continuum as the item parameters and

usually range from values of -3 to 3, thus interpretation of scoring in item response

theory is completely different than that of classical test theory which computes a

score based off of total correct responses. In other words, two examinees that

answered the same number of responses correctly could very possibly have two

different scores using item response theory depending on which items they

13



responded correctly to. Because of this weighted score that item response theory

brings to test theory, many believe that IRT is a superior method for scoring an

examinees ability, especially when considering high stakes exams.
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2 Generalized Linear Models

To further explore item response theory in the context we wish, we will need a brief

review of generalized linear models. Generalized linear models unify a number of

different statistical modeling methods under a single theoretical approach. For

example one can express everything from the basic general linear model to logit

analysis and analysis of variance as simply special cases of a broader group of

generalized linear models.

The first step in formalizing generalized linear models is to understand the

exponential family of functions. The exponential family is simply a group of

probability density functions that can be rewritten in a certain form for theoretical

convenience. The exponential family was developed by R.A. Fisher, an English

statistician and biologist, who discovered that many probability mass and density

functions can be represented as a more general type of function [2]. Functions of the

exponential family are probability density functions (PDFs) and probability mass

functions (PMFs) of the following form:

f (x | α) = exp [φ (x)ψ (α)] η (x) δ (α)

= exp [φ (x)ψ (α) + log (η (x)) + log (δ (α))] ,

where φ, ψ, η, and δ are real valued functions and η, δ > 0 ∀x, α. We also want to

note that as long as the random vector X = {x1, x2, . . . , xn} is independent,

identically distributed then the joint probability mass or density function belonging
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to the exponential family is as follows:

f (X | α) =
n∏
i=1

f (xi | α)

=
n∏
i=1

exp [φ (xi)ψ (α) + log (η (xi)) + log (δ (α))]

= exp

[
ψ (α)

n∑
i=1

φ (xi) +
n∑
i=1

log (η (xi)) + n log (δ (α))

]
.

Thus the joint probability density function or joint probability mass function for a

set of independently, identically distributed random variables, each of which having

equivalent PDFs or PMFs of the exponential family, is of the exponential family as

well. This generalization allows for a natural extension into statistical analysis since

one usually considers data sets with multiple variates.

Now let us consider a simplified version of the general form, i.e. the canonical form,

for functions in the exponential family. The motivation for the following derivation

will be clear when showing the relationship between the exponential family and

what is called the link function for generalized linear models. Let y = φ (x) and

θ = ψ (α) be a one-to-one transformation of the components of the general form for

functions in the exponential family (φ−1 and ψ−1 exist). Making these

transformations yields the following canonical form for the exponential family:

f (x | α) = exp [φ (x)ψ (α) + log (η (x)) + log (δ (α))]

which implies,

f (y | θ) = exp
[
yθ + log

(
η
(
φ−1 (y)

))
+ log

(
δ
(
ψ−1 (θ)

))]
= exp [yθ − b (θ) + c (y)] ,

where log (η (φ−1 (y))) = c (y)) and log (δ (ψ−1 (θ))) = −b (θ), and we call θ the
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canonical parameter and the form θ takes the canonical link. Note that the b (θ)

term in the canonical PDF or PMF is not a function of the unknown parameter but

yet a function of the known parameter and therefore is the term, sometimes called

the “normalizing constant”, that can be manipulated so that the PDF or PMF

integrates or sums, respectively, to one [2]. Similarly for the multivariate case

assuming X = {x1, x2, . . . , xn} is independently, identically distributed, and by

letting yi = φ (xi) be the one-to-one transformation of the PDF of the ith random

variable then the joint PDF is as follows:

f (X | α) = exp

[
ψ (α)

n∑
i=1

φ (xi) +
n∑
i=1

log (η (xi)) + n log (δ (α))

]

= exp

[
θ

n∑
i=1

yi +
n∑
i=1

log
(
η
(
φ−1 (yi)

))
+ n log

(
δ
(
ψ−1 (θ)

))]

= exp

[
θ

n∑
i=1

yi − nb (θ) +
n∑
i=1

c (yi)

]
,

where c (yi) = log (η (φ−1 (yi))) and −b (θ) = log (δ (ψ−1 (θ))). Notice that every

derivation thus far has been for PDFs or PMFs of distributions of only one known

parameter, θ. Clearly in many instances this is not the case, for example in the

normal distribution we consider two known parameters, µ and σ2. Therefore for the

multiparameter case we wish to have a similar formulation of the PDF or PMF in

consideration. Let θ = {θ1, θ2, . . . , θk} be a vector of known parameters for a

distribution. Then the canonical form for a exponential family function becomes

f (y | θ) = exp

[
k∑
j=1

yθj − b (θj) + c (y)

]
.

As an example of deriving the canonical form for the probability mass function of

the exponential family let us consider the binomial distribution. This example will

be handy when considering the translation to item response theory since the
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binomial distribution is used time and again to model counts of successes or failures

[2] of exam or survey questions. Let Y be the random variable such that

Y ∼ Binomial (n, p) where Y represents the number of “correct” responses to an

exam, questionnaire, survey, etc., n represents the known number of “questions”

asked, and p is the probability of answering with a “correct” response. Note here

that since n, the number of “questions”, is known we can disregard this value as a

parameter and consider the binomial distribution as a one-parameter distribution.

Parameters that can be disregarded are known as nuisance parameters. So for the

PMF of the binomial distribution we can say, f (y | n, p) = f (y | p). This disregard

of the nuisance parameter allows us to describe the probability mass function of the

binomial distribution in its canonical form as follows:

f (y | p) =

(
n

r

)
py (1− p)n−y

= exp

[
log

(
n

r

)
+ y log (p) + (n− y) log (1− p)

]
= exp

[
log

(
n

r

)
+ y log (p)− y log (1− p) + n log (1− p)

]
= exp

[
y log

(
p

1− p

)
− (−n log (1− p)) + log

(
n

r

)]
.

Thus yθ = y log
(

p
1−p

)
, b (θ) = −n log (1− p), and c (y) = log

(
n
r

)
fits the canonical

form. The canonical link θ = log
(

p
1−p

)
plays an important role in modeling data

using item response theory and we will call this the logit link.

We will now explore the relationship between the exponential family of functions

and generalized linear models. There are three components that make up a

generalized linear model and are as follows,

1) Random Component: The random or stochastic component consists of the vector

Y of independent, identically distributed random variables that take on a

distribution belonging to the exponential family with mean µ.
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2) Systematic Component: The systematic component, denoted η, is a linear

combination of predictors {x1, x2, . . . , xn}. that is

η =
n∑
i=1

xiβi.

Note that the systematic component describes the observed data, Y, through some

set of linear predictors.

3) The Link Function: The link function shows the relationship of the observed data

and the linear combination through a function of the means of the distributions. In

other words the link function, denoted g (·), is described as follows:

η = g (µ) =
n∑
j=1

xjβj = Xβ

such that

g−1 (η) = µ = E (Y) ,

where X is the m× n model matrix for the observed data and β is the n× 1 vector

of coefficients for the linear predictors that will need to be approximated [5], [12].

It turns out that the link function for a specific distribution is simply the

canonical link introduced earlier in the canonical form of the PDF or PMF of that

particular distribution [5] [2]. The relaxation of assumptions is the goal in modeling

a data set using generalized linear models. “The basic philosophy is to employ a

function of the mean vector to link the normal theory environment with

Gauss-Markov assumptions, to another environment that encompasses a wide class

of outcome variables”[2]. Since many classes of outcome variables contain no solid

assumptions that can be made, transforming these random variables into a linear

combination of predictors allows one to treat the model as linear regression and thus
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a number of different fitting algorithms and prediction methods open up to the

modeler.

In order to explore how a generalized linear model works consider the simple case of

a general linear model, i.e. we will generalize the general linear model in terms of

the three components discussed earlier. The general linear model consists of a

normally distributed random variable Y such that the components are

independently, identically distributed with mean µ and an equal variance over all Yi

of σ2. In the general linear model the random variables are expressed as a linear

combination of predictors and a random error, that is:

Y = Xβ + ε.

We can assume the Gauss-Markov assumptions for the general linear model, thus

E [ε] = 0. Therefore,

E [Y] = E [Xβ] + E [ε]

implies

µ = η = Xβ. (2.1)

We now have the random and systematic components for the generalization of the

general linear model, i.e. the normal random variable Y and the systematic

component η = Xβ. It is also clear from 2.1 that the link function that correlates

the systematic component to the mean of the probability distribution is

η = g (µ) = µ.

That is the link function for the general linear model is simply the identity function.

So to sum up the general linear model can be observed as a generalized linear model

using the following three components:
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1) Random Component: The independent, identically distributed random variable

of observations Y takes on a normal distribution with mean µ and constant

variance σ2 for all Yi.

2) Systematic Component: η = Xβ, where X is called the model matrix and β is a

vector of coefficients.

3) The Link Function: The link between the systematic component and the mean of

the random component is given by the identity function, that is η = µ or ηi = µi ∀i

[5].

Another very interesting example of a generalized linear model is one where the

observations in the data set take a binomial distribution. It is clear to see how

observations of this type are quite natural when discussing test theories, i.e. a

response to a question can either be correct or incorrect. Therefore the three

components to this model would be as follows:

1) Random Component: The components of the random variable Y have

independent, identically distributed binomial distributions.

2) Systematic Component: There exists a linear combination of covariates

represented in a model matrix that produces the linear predictor

η = Xβ.

3) The Link Function: Recall that canonical link formulated from the canonical

form of the PDF or PMF of the distribution is exactly the link function of the

generalized linear model that uses that particular probability distributions.
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Therefore the function g (µi) = ηi that satisfies this link between the systematic

component and the mean of the probability distribution is

ηi = g (µi) = log

(
µi

1− µi

)

We call this link function for the binomial distribution the logit link, which we will

use throughout our discussion item response theory.

Recall that one motivation for using generalized linear models is to allow the

modeler access to a number of more estimation procedures for best fitting observed

data. A few of these methods are the Newton-Raphson Method, weighted least

squares method, and perhaps the most used iteratively re-weighted least squares.

These estimation methods will be derived in the discussions of item response theory

in the context of generalized linear models [1].
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3 IRT Models for Dichotomous Data

A test theory point of view was taken in the development of the Rasch,

two-parameter, and three-parameter IRT models that were discussed in chapter 1.

That is when considering an item on a test, we created models that would comply

with possible variations on how that particular item might affect the probability of

responding correctly. Therefore things like guessing factors were inserted into the

model. Conversely a generalized linear model approach can also be taken when

developing a item response model, which is how we will look at the Rasch model in

this chapter. In other words we will show how the Rasch model is simply a subset of

the larger group of models, called generalized linear models. Keep in mind any

model constructed here will be an extension on the Rasch model, or one-parameter

IRT model, although theoretically the same extensions could be applied to two- and

three-parameter models as well. Four extensions on the Rasch model for

dichotomous data will be derived along with the derivations of likelihood functions

for the unknown parameters in each model which will be used for the means of

predicting the values of these parameters. We will also establish and discuss

methods for maximizing the likelihood functions developed for each model.

Consider a test item, question, that has two possible responses, i.e. the correct

answer to the problem and the incorrect. For every model representing this binary

data, we will let the correct solutions and incorrect solutions be represented by 1

and 0 respectively. Thus if person p chooses the correct solution to item (question) i

then the random variable Ypi = 1. Similarly the random variable Ypi = 0 represents

person p answering incorrect on item i.
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3.1 Rasch Model

Let Ypi ∼ Binomial(1, πpi) such that πpi is the probability that Ypi = 1, i.e. person p

gets item i correct.

Link function:

ηpi = log

(
π

1− π

)
(3.1)

and

ηpi = θp − βi (3.2)

where θp ∼ Normal(0, σ2
θ) is the random ability parameter of person p, and βi is the

fixed weight of item predictor (can be thought of the item difficulty).

So, from (3.1) and (3.2) we get

log

(
π

1− π

)
= θp − βi

which yields

P (Ypi = 1) = πpi =
eθp−βi

1 + eθp−βi
.

Recall that a generalized linear model consists of three components; a random

component that takes on a particular distribution, the systematic or linear

component, and the link function that connect the mean of the random component

with the systematic component. So simply defining a random variable,

Ypi ∼ Binomial(1, πpi, a particular systematic component, θp − βi, and a link, the

logit function or log
(

π
1−π

)
, then it becomes clear that the Rasch model is an

example of the larger group of generalized linear models. Being able to define the

Rasch model in this way opens up numerous different methods for approximation

and maximization of fitting the model to a set of data, that is any method that has

been proven to be succesful for generalized linear models can now be applied to the
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IRT Rasch model. Also, since we can now consider the Rasch model as a GLM,

certain extensions can be made to the model in order to describe different

situations. For instance certain hidden person or item traits within a set of data

might have an affect on the how people respond to an item. The following

extensions of the Rasch model take these possibilities into consideration.

3.2 Latent Regression Rasch Model

Let Ypi ∼ Binomial(1, πpi) such that πpi is the probability that Ypi = 1, i.e. person p

gets item i correct.

Now let θp =
∑J

j=1 ϑjZpj + εp, we get the link function

ηpi = log

(
π

1− π

)
=

J∑
j=1

ϑjZpj + εp − βi,

where Zpj is the value of the person predictor of person p on person property j, ϑj is

the fixed weight of property j, and εp is the remaining person effect after the person

property effect is accounted for. εp can be considered the random error that occurs,

and εp ∼ Normal(0, σ2
ε )

So (5) yields

P (Ypi = 1) = πpi =
e
∑J
j=1 ϑjZpj+εp−βi

1 + e
∑J
j=1 ϑjZpj+εp−βi

3.3 Linear Logistic Test Model (LLTM)

Let Ypi ∼ Binomial(1, πpi) such that πpi is the probability that Ypi = 1, i.e. person p

gets item i correct.

Now consider βi =
∑K

k=0 βkXik and working off the original Rasch model we get the

link function,

ηpi = log(
π

1− π
) = θp −

K∑
k=0

βkXik
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where θp ∼ Normal(0, σ2
θ) is the random ability parameter of person p, Xik is the

value of the item predictor of item i on item property k, and βk is the regression

weight of item property k.

The previous equation yields,

P (Ypi = 1) = πpi =
eθp−

∑K
k=0 βkXik

1 + eθp−
∑K
k=0 βkXik

3.4 Latent Regression LLTM

Let Ypi ∼ Binomial(1, πpi) such that πpi is the probability that Ypi = 1, i.e. person p

gets item i correct.

Again working off the original Rasch model consider, θp =
∑J

j=1 ϑjZpj + εp and

βi =
∑K

k=0 βkXik, in which we have the link function,

ηpi = log(
π

1− π
) =

J∑
j=1

ϑjZpj + εp −
K∑
k=0

βkXik,

where Zpj is the value of the person predictor of person p on person property j, ϑj is

the fixed weight of property j, and εp is the remaining person effect after the person

property effect is accounted for. εp can be considered the random error that occurs,

εp ∼ Normal(0, σ2
ε ), Xik is the value of the item predictor of item i on item

property k, and βk is the regression weight of item property k.

which yields,

P (Ypi = 1) = πpi =
e
∑J
j=1 ϑjZpj+εp−

∑K
k=0 βkXik

1 + e
∑J
j=1 ϑjZpj+εp−

∑K
k=0 βkXik
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4 Likelihood Functions for Item Parameters

The next section is aimed at creating a way to predict the fixed weights of the

predictors, i.e. the β values, so that for any particular item we will be able to

measure the probability of answering that item correctly. First we need to develop

the marginal maximum likelihood (MML) functions as a function of the fixed

weights of the predictors for each of the four IRT models for dichotomous data

presented above. The marginal maximum likelihood is used here simply for the fact

that the software used in this paper implements this type of likelihood function, but

note that there exist other types of likelihoods that have been applied to estimation

inside of item response theory. Therefore given a random variable x and two

parameters ψ and λ the marginal maximum likelihood function for a parameter ψ

on random variable x is denoted L(ψ;x) and is given by the equation

L (ψ;x) = P (x | ψ) =

∫
P (x | ψ, λ)P (λ | ψ) dλ (4.1)

4.1 MML for The Rasch Model

Towards developing the marginal maximum likelihood function for Rasch model

developed in the previous section consider,

P (Ypi = 1 | βi, θp) = πpi

=
eθp−βi

1 + eθp−βi

=
eypi(θp−βi)

1 + eθp−βi
(4.2)
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and

P (Ypi = 0 | βi, θp) = 1− πpi

= 1− eθp−βi

1 + eθp−βi

=
1

1 + eθp−βi

=
eypi(θp−βi)

1 + eθp−βi
. (4.3)

Thus, since Ypi can only take the values 0 or 1, equations 4.2 and 4.3 yield,

P (Ypi = ypi | βi, θp) =
eypi(θp−βi)

1 + eθp−βi
, (4.4)

where ypi is the observed value on item i by person p, i.e. 0 if person p chose the

incorrect solution to item i and 1 if person p chose the correct solution to item i.

Note that ∀i, j, the events Ypi = ypi and Ypj = ypj are independent of each other.

Therefore the probability of choosing response ypi over all items, 1,....,I, for person p

becomes

P
(
Y p = yp | β, θp

)
= P (Yp1 = yp1 ∩ Yp2 = yp2 ∩ . . . ∩ YpI = ypI | β, θp)

=
I∏
i=1

P (Ypi = ypi | βi, θp)

=
I∏
i=1

eypi(θp−βi)

1 + eθp−βi
.

(4.5)

Therefore using 4.1 we can see that

Lp (β;Y p) = P (Y p = yp | β)

=

∫ ∞
−∞

I∏
i=1

eypi(θp−βi)

1 + eθp−βi
g (θp | µθ, σθ) dθp, (4.6)
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where g(θp|µθ, σθ) represents the normal density function for θp such that θp has

mean µθ and standard deviation σθ. Note that the previous equation represents the

probability of choosing a particular set of responses for items i = 1, . . . , I

independent of the person parameter θp. Thus having the probability of responding

a certain way to the items as a function of the fixed item weights βi will allow us to

predict value of each particular item predictor weight so as to more fully understand

how each item affects the person parameter.

4.2 MML for the Latent Regression Rasch Model

Now to form the MML in regards to the Latent Regression Rasch Model, recall that

we will consider predictors on the person parameter. This will allow for different

person properties to come in effect when considering a response to an item. Recall

the link function for the Latent Regression Rasch Model is as follows

ηpi = log

(
πpi

1− πpi

)
=

J∑
j=1

ϑjZpj + εp − βi. (4.7)

Therefore we wish to proceed in the same manner as for the Rasch Model, hence we

can clearly see from (4.7)

πpi
1− πpi

= exp

[
J∑
j=1

ϑjZpj + εp − βi

]

πpi =
exp

[∑J
j=1 ϑjZpj + εp − βi

]
1 + exp

[∑J
j=1 ϑjZpj + εp − βi

]
P (Ypi = 1 | βi, ϑj, θp) =

exp
[
ypi

(∑J
j=1 ϑjZpj + εp − βi

)]
1 + exp

[∑J
j=1 ϑjZpj + εp − βi

] (4.8)
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and

P (Ypi = 0 | βi, ϑj, θp) = 1− πpi

= 1−
exp

[∑J
j=1 ϑjZpj + εp − βi

]
1 + exp

[∑J
j=1 ϑjZpj + εp − βi

]
=

1

1 + exp
[∑J

j=1 ϑjZpj + εp − βi
]

=
exp

[
ypi

(∑J
j=1 ϑjZpj + εp − βi

)]
1 + exp

[∑J
j=1 ϑjZpj + εp − βi

] . (4.9)

Therefore since (4.8) and (4.9) are equivalent then we can generalize to say that the

probability of choosing either a correct response or an incorrect is as follows,

P (Ypi = ypi | βi, ϑj, θp) =
exp

[
ypi

(∑J
j=1 ϑjZpj + εp − βi

)]
1 + exp

[∑J
j=1 ϑjZpj + εp − βi

] .
Assuming that the response of one item is independent of the response of another,

we can derive in the same manner as for the Rasch Model using (4.1), the marginal

maximum likelihood for person p is,

Lp (β,ϑ;Y p) = P
(
Y p = yp | β,ϑ, θp

)
(4.10)

=

∫ ∞
∞

I∏
i=1

exp
[
ypi

(∑J
j=1 ϑjZpj + εp − βi

)]
1 + exp

[∑J
j=1 ϑjZpj + εp − βi

] g (εp | µε, σε) dεp,

where g is the normal density function of εp. Therefore, this likelihood function is

equivalent to the probability of choosing a specific pattern of responses for items

i = 1, . . . , I for person p under a model that has item parameters βi and person

parameters ϑj.
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4.3 MML for the Linear Logistic Test Model

For the Linear Logistic Test Model, recall that we consider the link function

ηpi = log

(
πpi

1− πpi

)
= θp −

K∑
k=0

βkXik (4.11)

where θp represents the random ability parameter of person p. Recall, this model

allows us to take into consideration different properties that an item i might take,

i.e. one particular item might have a number of different properties that it can

represent or test the person on. So again we will proceed in the same manner as was

done in the previous models, hence find P (Ypi = 1 | βi, θp) = πpi and

P (Ypi = 0 | βi, θp) = 1− πpi and create a general equation for P (Ypi = ypi | βi, θp)

which can be substituted into the MML equation to find the marginal maximum

likelihood function of the unknown item property weights given the responses of

person p to item i. Therefore notice from the link function of the linear logistic test

model that we get,

πpi
1− πpi

= exp

[
θp −

K∑
k=0

βkXik

]

πpi =
exp

[
θp −

∑K
k=0 βkXik

]
1 + exp

[
θp −

∑K
k=0 βkXik

]
πpi =

exp
[
θp −

∑K
k=0 βkXik

]
1 + exp

[
θp −

∑K
k=0 βkXik

]
and

1− πpi = 1− exp[θp −
∑K

k=0 βkXik]

1 + exp[θp −
∑K

k=0 βkXik]

=
1

1 + exp[θp −
∑K

k=0 βkXik]
.
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Therefore we can see that,

P (Ypi = 1 | βk, θp) =
exp

[
θp −

∑K
k=0 βkXik

]
1 + exp

[
θp −

∑K
k=0 βkXik

] (4.12)

P (Ypi = 0 | βk, θp) =
1

1 + exp
[
θp −

∑K
k=0 βkXik

] . (4.13)

Thus using (4.12) and (4.13) one can express the probability of person p choosing

response ypi to item i as follows,

P (Ypi = ypi | βk, θp) =
exp

[
ypi

(
θp −

∑K
k=0 βkXik

)]
1 + exp

[
θp −

∑K
k=0 βkXik

] .
Now we will consider the collection of all responses for person p over all items,

i = 1, . . . , I. With the assumption that items are independent of each other we can

now write the probability that person p chooses a specific collection of responses as

follows,

P
(
Y p = yp | β, θp

)
= P (Yp1 = yp1 ∩ Yp2 = yp2 ∩ . . . ∩ YpI = ypI | β, θp)

=
I∏
i=1

P (Ypi = ypi | βk, θp)

=
I∏
i=1

exp
[
ypi

(
θp −

∑K
k=0 βkXik

)]
1 + exp

[
θp −

∑K
k=0 βkXik

] .
We wish to find a function that is independent of the random component θp so as to

predict the fixed item property parameters, βk, for a given collection of responses yp.

Therefore using the marginal maximum likelihood function from (4.1) to eliminate
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our unknown random component θp from the likelihood function, we get

Lp (β;Y p) = P
(
Y p = yp | β, θp

)
=

∫ ∞
∞

I∏
i=1

exp
[
ypi

(
θp −

∑K
k=0 βkXik

)]
1 + exp

[
θp −

∑K
k=0 βkXik

] g (θp | µθ, σθ) dθ (4.14)

such that g is the normal density function of θp ∼ Normal(0, σ2
θ) Therefore the

LLTM likelihood function gives us a function of the fixed item property weights

regardless of any random component.

4.4 MML for the Latent Regression LLTM

We now look at the marginal maximum likelihood function for the fourth model

presented for dichotomous data, which is the Latent Regression Linear Logistic Test

Model. Recall that this model is used to represent a situation where both a number

of different person effects and different properties over the items might play a roll in

how the person parameter and items interact. The link function for the Latent

Regression LLTM is

ηpi = log

(
πpi

1− πpi

)
=

J∑
j=1

ϑjZpj + εp −
K∑
k=0

βkXik, (4.15)

where εp ∼ Normal(0, σ2
ε ) is the random component that varies over persons. With

similar computations as were done in the previous three examples, one can see from

(4.15) that we get

P (Ypi = 1 | βk, ϑj, θp) = πpi

=
exp

[∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

]
1 + exp

[∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

]
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and

P (Ypi = 0 | βk, ϑj, θp) = 1− πpi

=
1

1 + exp
[∑J

j=1 ϑjZpj + εp −
∑K

k=0 βkXik

] .
Therefore, to create a general equation for the probability of any response to item i,

notice

P (Ypi = ypi | βk, ϑj, θp) =
exp

[
ypi

(∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

)]
1 + exp

[∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

] . (4.16)

Using the assumption of independence on the items and (4.16) we get

P
(
Y p = yp | β,ϑ, θp

)
=

I∏
i=1

exp
[
ypi

(∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

)]
1 + exp

[∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

] . (4.17)

Now applying the the marginal maximum likelihood function (4.1) we come to the

following function of just the fixed parameters,

Lp (β,ϑ;Y p) = P
(
Y p = yp | β,ϑ

)
=

∫ ∞
∞

P
(
Y p = yp | β,ϑ, θp

)
g (εp | µε, σε) dε

=

∫ ∞
∞

I∏
i=1

exp
[
ypi

(∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

)]
1 + exp

[∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

] g (εp | µε, σε)

where again g is the normal density function for εp.

To derive the complete marginal maximum likelihood functions for each model in

turn, we note the assumption of independence of the responses over persons. This

assumption allows us to create MML functions for each model in a general case,
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since as of now we only have a MML function for a single examinee given that

persons set of responses. Notice that since person’s responses are independent we

have

L (β;Y ) = P (Y = y | β) =
P∏
p=1

P
(
Y p = yp | β

)
=

P∏
p=1

Lp (β;Y p) . (4.18)

Thus applying (4.6) and (4.18), the complete likelihood function of the unknown

parameters β is

L (β;Y ) =
P∏
p=1

Lp (β;Y p)

=
P∏
p=1

P
(
Y p = yp | β

)
=

P∏
p=1

∫ ∞
−∞

I∏
i=1

exp [ypi (θp − βi)]
1 + exp [θp − βi]

g (θp | µθ, σθ) dθp.

Applying equations (4.10) and (4.18) the complete marginal maximum likelihood

function for the latent Regression Rasch Model is

L (β,ϑ;Y ) =
P∏
p=1

∫ ∞
∞

I∏
i=1

exp
[
ypi

(∑J
j=1 ϑjZpj + εp − βi

)]
1 + exp[

∑J
j=1 ϑjZpj + εp − βi]

g (εp | µε, σε) dεp.

Applying equations (4.14) and (4.18) the marginal maximum likelihood function for

the complete set data set over all persons for the Linear Logistic Test Model is

L (βk;Y ) =
P∏
p=1

∫ ∞
∞

I∏
i=1

exp
[
ypi

(
θp −

∑K
k=0 βkXik

)]
1 + exp

[
θp −

∑K
k=0 βkXik

] g (θp | µθ, σθ) dθ.
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And lastly the complete marginal maximum likelihood function for the Latent

Regression Linear Logistic Test Model is

L (βk,ϑj;Y ) =
P∏
p=1

∫ ∞
∞

I∏
i=1

exp
[
ypi

(∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

)]
1 + exp

[∑J
j=1 ϑjZpj + εp −

∑K
k=0 βkXik

] g (εp | µε, σε) .

Thus, for the four Item Response Models we are exploring in this section we have

have constructed functions which are independent of the random components, θp or

εp. This is vital for fitting our model since the item and person parameters βi

and/or ϑj are the contributing factors to how the model should look. In other words

the unknown random component, or latent trait, is only considered after a model

has been sufficiently fit. Since these functions are now independent of θp we may

maximize the values of the fixed components, that is find the βi values that best fit

our model to the given observed data. Note the complexity of each likelihood

function though. The integrals of each likelihood do not have closed form solutions,

therefore simplification methods must be applied in order to have tractable functions

in which to maximize. In other words the fitting procedure consists of two parts;

first, one must approximate the integral of the likelihood function; secondly, once

the integral has been approximated then a maximization method may be applied [9].
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5 Approximating for Best Fit of the Model

5.1 Integral Approximation

In this section, we will discuss a number of procedures and algorithms that have

been introduced to deal with approximating the marginal maximum likelihood

functions introduced previously. For sake of simplicity on seeing how each procedure

works, we will consider the Rasch model when presenting each approximation

procedure. Generalizing each method is straightforward for more complex models.

To approximate the unknown fixed parameters of our model we will want to

maximize the likelihood functions of each model that were derived previously.

Notice that each model has multiple unknown parameters, for the Rasch model the

latent trait θ and the item difficulty parameters β are both unknown. Therefore to

fit the model we will hold the latent trait θ stable in order to approximate β. In a

later section we will see that once the β values have been estimated to best fit our

model we can then approximate an individuals latent trait or ability level from a

given set of responses, keep in mind this is our ultimate goal.

Again for simplicity sake let us consider the Rasch model. In order to approximate

all values βi we will maximize the marginal maximum likelihood function,

L (β;Y ) =
P∏
p=1

∫ ∞
−∞

I∏
i=1

eypi(θp−βi)

1 + eθp−βi
g (θp|µθ, σθ) dθp,

where g is the normal density function. One problem with maximizing L (β;Y ) is

that the integral in the equation has no closed form solution. There are two groups

of methods one can take to attempt maximizing this likelihood function: (1)

Approximate the integral with numerical techniques then maximizing the function.
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(2) Approximate the integrand such that the integral created from the

approximation has a closed form solution, then solve the integral and maximize the

solution. Although numerous procedures have been created to accomplish both

approximating the integrand or the integral in it’s entirety, we will focus on a couple

methods for approximating the integral.

The most commonly used method for approximating the integral, and the method

used in the R package that we will employ, is the Gauss-Hermite quadrature

approximation. This approximation method states that given an integral of the

form, ∫ ∞
−∞

ex
2

f (x) dx,

we can approximate the integral as such

∫ ∞
−∞

ex
2

f (x) dx ≈
n∑
i=1

f (xi)wi

where xi for i = 1, . . . , n are the nodes of the approximation and wi for i = 1, . . . , n

are the weights that approximate the integral such that the nodes and weights have

a predetermined form they take [8].

In order to demonstrate what the approximation looks like in terms of our

likelihood function, let us consider the marginal maximum likelihood function for a

single person p, that is

Lp
(
β;σ2

θ

)
=

∫ ∞
−∞

P (Yp | β, θp) g
(
θp | 0, σ2

θ

)
dθp,

where is the normal density function of θp with µθ = 0. Notice that this is exactly

the integral of the Rasch model that needs to be approximated. Since g is the
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normal density function with µθ = 0 we have that

g
(
θp | 0, σ2

θ

)
=

1

σ
√

2π
exp

[
−
θ2p

2σ2

]
.

Towards achieving the form of the integral needed to use the Gauss-Hermite

quadrature method, let

x =
θp

σθ
√

2
⇒ θp =

√
2σθx⇒ dθp =

√
2σθdx.

Therefore the derivation of the approximation of Lp (β |;σ2
θ) is as follows,

Lp
(
β;σ2

θ

)
=

∫ ∞
−∞

P (Yp | β, θp) g
(
θp | 0, σ2

θ

)
dθp

=
1

σθ
√

2π

∫ ∞
−∞

P (Yp | β, θp) exp

[(
θp√
2σθ

)2
]
dθp

=
1

σθ
√

2π

∫ ∞
−∞

ex
2

P
(
Yp | β,

√
2σθx

)√
2σθdx

=
1√
π

∫ ∞
−∞

ex
2

P
(
Yp | β,

√
2σθx

)
dx

≈
n∑
i=1

P
(
Yp | β,

√
2σθxi

) wi√
π
.

Furthermore the approximation becomes exact if the function P (Yp | β, θp) is a

polynomial of degree 2n− 1 or less [1]. Clearly these approximations are not

computed by hand, but note that all statistical packages, that have been discussed

in the literature, have a Gauss-Hermite quadrature method built in, and

furthermore the package that will be used in this paper to show examples uses this

method with a varying number of nodes depending on the model being fitted.

The Monte Carlo integration technique is also a method widely used to approximate

such integrals that have been discussed thus far. This method involves using

randomly chosen nodes rather than predetermined values, in order to approximate
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the integral. Because of this random component one can consider the Monte Carlo

method as the stochastic counterpart to the Gaussian quadrature method [1]. The

Monte Carlo method can be applied because of the following fact, given f (x) the

pdf of a normal distribution then

E [u (x)] =

∫ ∞
−∞

u (x) f (x) .

Therefore the marginal maximum likelihood function for person p, the integral that

needs to be approximated, can be written as the expected value of P (Yp | β, θp),

that is

Lp
(
β;σ2

θ

)
=

∫ ∞
−∞

P (Yp | β, θp) g
(
θp | 0, σ2

θ

)
dθp = E [P (Yp | β, θp)]

since g is a normal density function. Then, choosing at random i = 1, . . . , n nodes

and finding P (Yp | β, θp) evaluated with at each value θp for the ith node and

averaging these values we get an approximation for the likelihood function in

question. In other words we get that

Lp
(
β;σ2

θ

)
= E [P (Yp | β, θp)]

≈ 1

n

n∑
i=1

P
(
Yp | β, θ(i)p

)

where θ
(i)
p is the value of θp evaluated at node i [1]. Monte Carlo approximation is a

consistent method in the sense as n, the number of nodes, gets sent to ∞,

1
n

∑n
i=1 P

(
Yp | β, θ(i)p

)
converges to the expected value. Therefore the number of

random nodes used in the approximation the better the approximation to the

expected value of P (Yp | β, θp), hence the better approximation for the maximum

marginal likelihood function in question. Once the approximated integral has been

found, one can then choose from a number of different methods to maximize the
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newly found function in order to accurately estimate the unknown parameters, the

difficulty parameter for the Rasch model. Lets now discuss a couple of these

methods for maximization of dichotomous item response models, specifically the

Rasch model.

5.2 Maximization Methods

There exist many iterative approaches used in maximizing maximum likelihood

functions whether it be from a item response theory model or just a GLM in

general. One such maximization procedure we will explore here is the

expectation-maximization method, or the EM algorithm. the general premise of the

EM algorithm is to maximize a lower bound of the log likelihood function for a

particular parameter. Therefore, consider the logarithm of the marginal maximum

likelihood for a general IRT model discussed previously,

logL (β| Y ) = logP (y| β) = log
P∏
p=1

∫
P (Y p| β, θp) g (θp) dθp,

where g is the normal density function and the limits of integration have been

dropped for simplification of notation. Then towards defining the EM algorithm
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notice

log [L (β | Y )] = log

[
P∏
p=1

∫
P (Y p | β, θp) g (θp) dθp

]

=
P∑
p=1

log

[∫
P (Y p | β, θp) g (θp) dθp

]

≈
P∑
p=1

log

[
n∑
i=1

P
(
Y p | β,

√
2σθxi

) wi√
π

]

=
P∑
p=1

log

[
n∑
i=1

f
(√

2σθxi | Y ,β
) P (Y p | β,

√
2σθxi

)
f
(√

2σθxi | Y ,β
) wi√

π

]

=
P∑
p=1

log

[
n∑
i=1

f
(√

2σθxi

) P (Y p | β,
√

2σθxi
)

f
(√

2σθxi
) wi√

π

]

≥
P∑
p=1

n∑
i=1

f
(√

2σθxi

) wi√
π

log

[
P
(
Y p | β,

√
2σθxi

)
f
(√

2σθxi
) ]

= F (f,β)

where f is the normal density function, but in general the EM algorithm states that

any f can be any arbitrary density function [11]. Note that the approximation

comes from the Guass-Hermite quadrature approximation and the inequality comes

from Jensen’s inequality. Therefore we now have a lower bound for the log

likelihood our models. By finding the βi values that maximize this lower bound, we

can say these βi values maximize the original likelihood function. Each iteration in

the EM algorithm is as follows

E-step: compute f (k+1) = argmaxfF
(
f,βk

)
M-step: compute βk+1 = argmaxβF

(
f (k+1),β

)
where argmaxfF (f,β) = {f | ∀f ′ F (f ′,β) ≤ F (f,β)} and

argmaxβF (f,β) = {β | ∀β′ F (f,β′) ≤ F (f,β)} [11].

Note that f (k+1) = P
(
θp | β(k)

)
. Therefore the E-step simplified by considering the
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following.

F (f,β) =
P∑
p=1

I∑
i=1

f
(√

2σθxi

) wi√
π

log
[
P
(
Y p | β,

√
2σθxi

)]
−

P∑
p=1

I∑
i=1

f
(√

2σθxi

) wi√
π

log
[
f
(√

2σθxi

)]
=

P∑
p=1

I∑
i=1

P
(
θp | β(k)

) wi√
π

log
[
P
(
Y p | β,

√
2σθxi

)]
−P

I∑
i=1

f
(√

2σθxi

) wi√
π

log
[
f
(√

2σθxi

)]
= G

(
β | β(k)

)
−H (f) .

H (f) is not a function of the unknown parameter β, therfore can be ignored when

trying to maximize F since it is simply a constant function. Now notice

G
(
β | β(k)

)
=

P∑
p=1

E

[
wi√
π

log
[
P
(
Y p | β,

√
2σθxi

)]]
(5.-28)

where the expectation is over the probability distribution of f . Therefore the

iteration steps become

E-step: compute G
(
β | β(k)

)
=
∑P

p=1E
[
wi√
π

log
[
P
(
Y p | β,

√
2σθxi

)]]
M-step: compute βk+1 = argmaxβF

(
f (k+1),β

)
where in most cases normal maximization methods, i.e. setting derivatives to zero,

can be applied to the M-step [10].

Note that each iteration consists of both the E-step and the M-step, thus the

iteration is repeated until the βi values converge. The EM algorithm is applied to

cases in which a data set is said to be incomplete, in otherwords there are missing

values that describe the model. “Repeating the E and M steps, the algorithm is

guaranteed to converge to a local maximum of the likelihood function with each

iteration increasing the log-likelihood” [10]. Note that the EM algorithm guarantees
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a local extrema, therefore in terms of the models used in item response theory

further study might be needed to guarantee global maxima are reached using the

EM algorithm. But for applications purposes, even though method converges to a

maximum value rather slowly, the EM algorithm is one of the preferred methods

used in IRT modeling [1].
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6 IRT models for Polytomous Data

In the previous section we discussed item response theory models for the case of

having a correct and an incorrect response to an item, i.e. dichotomous response

sets. A natural progression when modeling under item response theory would be to

take into consider multiple response items. That is consider all possible responses

for an item rather than just the correct response and an incorrect response. So one

might want to further analyze an item in terms of how examinees are responding to

all possible choices it might have. Sets of data where more than two possible

responses are available we will call polytomous data sets or multicategorical data

sets. There are two types of multicategorical data that will be examined here: 1)

Ordinal data sets are sets of responses or categories that have order to them and 2)

nominal data sets are sets of responses or categories that have no inherent order to

them. The type of data one is looking at, be it ordinal or nominal, determines the

type of model used. In other words, models that best describe the relationships

among ordinal data sets are most likely not the best models to use to describes data

sets of the nominal type and vice versa.

To start lets set up some notation and assumptions that will be used throughout

our discussion of polytomous data sets. We will say that item i has Mi possible

responses and we label these responses as m such that m = 0, . . . ,Mi − 1. We will

also assume that an examinee may only choose one response per item, but the

number of responses per item can change over an exam. Note that since each item

has Mi possible response categories there exist Mi probabilities within each item

representing the probabilities of choosing each possible response. Therefore for

person p and item i we say the probability of choosing response m is πpim. Also,

note that
∑Mi−1

m=0 πpim = 1 since we assume an examinee may not leave answers
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blank, without a response. Another assumption that will be made, as was made for

the dichotomous response data sets, is that items will be considered multivariate

independent, that is there are no correlations between responses to items. This

assumption of independence of items will again greatly simplify the analysis.

6.1 Multivariate Generalized Linear Models

To perform IRT analysis for items that have multiple responses we will construct

each model in terms of a multivariate generalized linear mixed model. The first step

in doing this is to recode the set of responses into random vector of binary data.

That is, say person p on item i chooses the response m, then we assign the random

variable Y the value m for person p on item i, i.e. Ypi = m. Notice that this is

simply an extension of the dichotomous responses discussed earlier since in the case

where there are only two possible responses, correct and incorrect, then Mi = 2

which implies m = 0, 1. So to recode our data in terms of 0s and 1s we create a

random vector Cpi such that Cpi has length Mi − 1 and we define the components

of the possible vectors for Cpi as

cpim =

 1 if Ypi = m where m = 1, . . . ,Mi − 1

0 otherwise
.

Therefore we have

P (Ypi = m) = P (cpim = 1) = πpim.

For visualization of how this construction of a random vector works lets consider the

case where there are three possible responses to item i, hence Mi = 3. Since Mi = 3

we have that m = 0, 1, 2.

So suppose person p chooses response m = 0 for item i, then we have that Ypi = 0.

Thus cpi1 = 0 and cpi2 = 0. Then the realization of the random vector Cpi call it cpi
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is the vector (0, 0). Thus the three possible realizations of the random vector Cpi for

the case of having an item having three responses is as follows:

If Ypi = m = 0 then cpi = (cpi1, cpi2) = (0, 0)

If Ypi = m = 1 then cpi = (cpi1, cpi2) = (1, 0)

If Ypi = m = 2 then cpi = (cpi1, cpi2) = (0, 1).

Now that a sufficient recoding of the random variable has been constructed the next

step is to develop a multivariate generalized linear model in order to develop item

response model in this framework. Recall the components of a generalized linear

model consist of 1) a random component which describes the probability

distribution of the data, 2) a link function that relates the expected value of the

distribution for the data in terms of some set of linear predictors, and 3) a set of

linear predictors that will describe the data under question.

The Distribution: in the general case, we have created from a set of M possible

responses a random vector such that the realization of this random vector, cpi, has

length Mi − 1. But, each of these vectors will contain one component that takes the

value 1 and the rest of the components taking the value 0. This yields exactly a

multinomial distribution with a total count of 1, hence a multivariate Bernoulli

distribution. Therefore we have that

P (Ypi = m) = P (Cpi = cpi) = π
cpi0
pi0 π

cpi1
pi1 π

cpi2
pi2 . . . π

cpiMi−1

piMi−1 ,

where πpi0 = 1− πpi1 − πpi2 − . . .− πpiMi−1 and cpi0 = 1− cpi1 − cpi2 − . . .− cpiMi−1.

Also notice that the expected value of this distribution will simply be the vector of

marginal probabilities for each possible response, that is

E[Cpi] = πpi = (πpi1, πpi2, . . . , πpiMi−1)

The Link Function: Generalizing a link function for the multinomial generalized
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linear model comes from a natural extension of the binomial case. Recall that the

link function used for a binomial distribution was as follows,

η (πpi) = log

(
πpi

1− πpi

)
.

Note how the link function is the logarithm of the ratio of the probability of

responding correctly and responding incorrectly to item i, which happen to be the

only two possible responses in the dichotomous case. Clearly the two events of

responding correctly and incorrectly are mutually exclusive as well. This idea of

looking at the ratio of two mutually exclusive events is how we will generalize the

link function. Given that there are more than two possible responses to an item

consider the mutually exclusive sets of possible responses Am and Bm. Then we

define the mth component to the logit link function as follows

ηpim = flinkm (πpi) = log

(
πpi (Am)

πpi (Bm)

)

where πpi (Am) and πpi (Bm) are the probabilities of responding to a possible

response in the sets Am and Bm respectively. This construction can be interpreted

as the “attractiveness” of the subset Am of responses over the subset Bm of

responses. It is also important to note that because of the many ways the mutually

exclusive sets Am and Bm can be chosen, we will only explore four unique ways to

do this in the upcoming sections. Also note that the vector link function has the

same dimension as the mean, or expected value, of the multivariate bernoulli

distribution under study. So the full link function for an item i with Mi possible
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responses takes the form

ηpi = f link (πpi) =



flink1 (πpi)

flink2 (πpi)

...

flinkMi−1 (πpi)


=



ηpi1

ηpi2
...

ηpiMi−1


.

Keep in mind the point of creating this link function is to be able to predict the

probability of responding a certain way to an item. So as seen in the dichotomous

data case, there does exist an inverse to the logit link function therefore the

probability of choosing each possible response within an item i, described in the

vector πpi, is given by f−1link

(
ηpi
)
.

The Linear Predictor: suppose after considering an item we wish to create a model

matrix such that certain factors, whether it be inherent to how the modeler thinks

the data is related or simply factors that modeler wishes to focus on, the possible

types of predictors that can be used are item, person, or logit predictors or any

combination of the three. Depending on the type of predictor being used the model

matrix will take different forms. An item or person predictor model matrix is used

when one wants to predict the model by showing a relationship between items or

persons respectively. That is, does changing from one item to another or one person

to another affect the probability of responding to that item in a specific way. The

logit predictor takes into consideration the different responses within an item, i.e. is

there an affect to the probability of choosing reponse m over response n within one

particular item. Note that we label this predictor as the logit predictor since we

represent the different possible responses through the individual logistic function

components within the link function in which case each component consists of a

different pair subsets of possible responses. So for some notation label each

individual observed value for person p, item i, and logit m under variable Xk as
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Xpimk. We will then collect these predictors for person p on item i and logit m into

a vector of predictors, that is

XT
pim = (Xpim1 Xpim2 . . . XpimK) .

Next, stack the logit predictor vectors to create a matrix of predictors for person p

on item i taking into consideration every type of possible logit predictor, and label

this matrix Xpi, which will take the form

Xpi =



Xpi11 Xpi12 . . . Xpi1K

Xpi21 Xpi22 . . . Xpi2K

...
...

. . .
...

Xpi(Mi−1)1 Xpi(Mi−1)1 . . . Xpi(Mi−1)K


such that item i has Mi possible responses. Thus Xpi has dimensions Mi − 1×K.

One can then stack all Xpi matrices over all items i = 1, . . . , I on top of one another

to create the matrix Xp which has the dimensions (Mi − 1) (I)×K [1]. Next to

construct a model matrix for an entire group of examinees over the total number of

items on an exam, stack all Xp matrices for all persons p = 1, . . . , P on top of one

another yielding a “super matrix” X which would have the dimensions

(Mi − 1) (I) (P )×K. Now that a model matrix has been constructed the next step

in developing the linear predictor component to the generalized linear model is to

create a vector of regressions coefficients. Lets label this vector of coefficients β

which takes the form

βT = (β1 β2 . . . βK)

Therefore the linear predictor for a item response model in terms of a generalized

linear models will be Xβ, which is well defined since X has dimensions

(Mi − 1) (I) (P )×K and β has dimensions K× 1. For simplicity sake let us consider

50



the link function for person p on item i. Also, because we are building this linear

predictor in the context of item response models we will let the linear predictor be

negative in order to show how certain predictors, i.e. the difficulty parameter in the

dichotomous case, affect the probability of choosing a specific response. Thus the

link function for a specific person p on item i using logit m will be as follows,

ηpim = −
K∑
k=1

Xpimkβk

= −Xpim1β1 −Xpim2β2 − . . .−XpimKβK

= −XT
pimβ

Therefore the link function for person p on item i which has Mi − 1 possible

responses is

ηpi =



ηpi1

ηpi2
...

ηpiMi−1


=



−XT
pi1β

−XT
pi2β

...

−XT
piMi−1β


= −Xpiβ

6.2 Multivariate Generalized Linear Mixed Models

In order to fully develop our item response models in the framework of a generalized

linear model, we must introduce the idea of a multivariate generalized linear mixed

model. Notice that the multivariate GLM we have developed in the previous section

only includes fixed effects to describe the probability of responding a certain way,

therefore lets introduce a random effect into our model. In many cases, and almost

always in item response theory, there exists a person specific effect that determines

how that person will respond to an item. In the case of item response theory this

person specific effect is the latent trait of ability level being tested. Lets call this

latent ability level θp just as we did in the dichotomous data case. The norm in item
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response theory is to assume θp is normally distributed, i.e. θp ∼ Normal (0, σ2
θ).

So, to properly fit this random effect component into our multivariate generalized

linear model let ZT
pi = (Zpi1 Zpi2 . . . ZpiMi−1) such that

Zpiθp =



Zpi1θp

Zpi2θp
...

ZpiMi−1θp


.

In most cases the vector Zpi is made to be a Mi− 1 vector of 1’s in order to simplify

the model. Once this random component is added to the already formed fixed

component of our generalized linear model we have what is now called a generalized

linear mixed model or GLMM. This particular GLMM takes the form

ηpi = Zpiθp −Xpiβ

=



Zpi1θp −XT
pi1β

Zpi2θp −XT
pi2β

...

ZpiMi−1θp −XT
piMi−1β



=



Zpi1θp −
∑K

k=1Xpi1kβk

Zpi2θp −
∑K

k=1Xpi2kβk
...

Zpi(Mi−1)θp −
∑K

k=1Xpi(Mi−1)kβk


So depending on how the model matrix Xpi is constructed different IRT models can

fall out. In the following two sections we will develop two item response models in

the framework of this generalized mixed model, and to do so we will first construct

a model matrix that is used quite frequently in a number of different item response
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models. We will also explore how changing the type of logit link functions used, i.e.

differing the subsets Am and Bm of responses to use in the link function, changes

the type of model.

6.3 Model Building and Predictor Model Matrices

The benefit of using this generalized linear model format to create an item response

model is that the model matrices are unique to the person fitting the model [1].

That is an analyst using item response theory for polytomous data in the context of

generalized linear mixed models can uniquely create a model matrix in order to fit

the model specifically to their own needs. For simplicity purposes and for the sake

of applying GLMM to item response theory we will assume the vector Zpi is a

vector of 1’s and thus the random component of the generalized linear mixed model

is simply the value of θp for each person p. Recall that the model matrix of

predictors for the fixed effect is denoted X and has dimension (Mi − 1) (I) (P )×K

where P is the total number of examinees in the data set, I is the total number

items on the exam or survey and Mi − 1 is the number of possible responses on item

i. For the sake of presenting a tractable model lets consider an item i with 3

possible responses, that is Mi = 3. Therefore, when we consider the model matrix

Xpi for a person p and item i, the matrix will have a total of Mi − 1 = 2 rows. Also

recall that a predictor variable can consist of predictors that represent the item,

person, logit, or any combination thereof, i.e. item-by-person, item-by-logit,

person-by-logit, or item-by-person-by-logit predictors. The model matrix that is

implemented in a number of frequently used polytomous response IRT models is

termed the item-by-logit matrix. This model provides information about each

individual possible response within a particular item. Although the components

within a model matrix can take any number of values, we will simplify our model by

setting each non-zero element of the matrix to be 1. For our example lets consider
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this item-by-logit predictor matrix for 3 items each of which have 3 different

possible responses. De Boeck and Wilson refer to Ramsey and Schafer 2001 when

they introduce this “fairly general tentative model” [1]. Thus the complete model

matrix for 3 items each of which have 3 possible responses that displays the

item-by-logit relationship can be seen below [1]. Two important models that use

Table 6.1: Item-by-Logit Model Matrix

Item Logit X1 X2 X3 X4 X5 X6

1 L1 1 0 0 0 0 0
1 L2 0 1 0 0 0 0
2 L1 0 0 1 0 0 0
2 L2 0 0 0 1 0 0
3 L1 0 0 0 0 1 0
3 L2 0 0 0 0 0 1

this model matrix are Masters’ partial credit model (PCM) and the Samejima’s

graded response model (GRM). Although there are a number of different models

that have been constructed to fit polytomous data we will focus on these two

models for our discussion. Applying this model matrix to the link function of the

multivariate generalized linear model along with the vector of regression coefficients

β and the assumption that the random component vector Zp is a vector of 1s we
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have the link function

ηp = Zpθp −Xpβ

ηp11

ηp12

ηp21

ηp22

ηp31

ηp32


=



θp

θp

θp

θp

θp

θp


−



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





β1

β2

β3

β4

β5

β6




log
(
πp1(A1)

πp1(B1)

)
log
(
πp1(A2)

πp1(B2)

)
log
(
πp2(A1)

πp2(B1)

)
log
(
πp2(A2)

πp2(B2)

)
log
(
πp3(A1)

πp3(B1)

)
log
(
πp3(A2)

πp3(B2)

)


=



θp − β1

θp − β2

θp − β3

θp − β4

θp − β5

θp − β6


.

Note the change in subtext from one logit component to the next in the left hand

side of the link function above. Recall that these represent the probabilities of

responding to each particular subset of responses on each item i = 1, 2, 3. One

might see the motivation in constructing a model matrix in this way since it yields a

link function where each component takes the form of the Rasch model explored

earlier for dichotomous data. Since the Rasch model is the simplest of item response

models, and in most cases yields enough information to accurately analyze items, we

have constructed an IRT model for polytomous data that is quite tractable which

otherwise would be quite complex. Now that the model matrix has been

constructed and we have a general link function using that model matrix, the next

step is to determine what form the individual logit functions, i.e. the components of
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the link function, will take. Recall that the logit functions differ in what ratio of

mutually exclusive subsets of responses are used. In other words we need to

determine how to split the responses into subsets and why certain combinations

might work better than others.

6.4 Constructing the Logit Functions for the Links

There are three general ways to divide up possible responses of items to create the

different link functions needed in creating a model for polytomous data. We label

these three methods as 1) the adjacent category logit, 2) the cumulative logit, and

3) the baseline category logit. The main focus of our discussion will be on the

adjacent category logit and cumulative logit methods although we will mention the

general construction of the baseline category logit.

The first model to consider is called the adjacent category, or response, logit. Using

this adjacent category method one will examine the relationship of response m with

response m− 1. Recall that each individual logit takes the form

ηpim = flogitm (πpi) = log

(
πpi (Am)

πpi (Bm)

)
.

Therefore if an adjacent category model is used then subset Am is response m and

subset Bm is response m− 1, or Am = {m} and Bm = {m− 1}. hence each

individual logit becomes

ηpim = log

(
πpi (m)

πpi (m− 1)

)
= log

(
πpim

πpi(m−1)

)

Again to explore a tractable example consider an item i that has three possible

responses and using the item-by-logit model matrix constructed in the previous
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section, the complete link function for item i takes the form

ηpi =

 ηpi1

ηpi2

 =

 log
(
πpi1
πpi0

)
log
(
πpi2
πpi1

)
 =

 θp −XT
pi1β

θp −XT
pi2β

 =

 θp − β1

θp − β2


Again one can see the motivation of the creation of this specific model since it can

be looked at as multivariate form of the much simpler Rasch model. This

construction using an item-by-logit model matrix and the adjacent category logit is

referred to as the partial credit model [1]. The adjacent category logit approach

lends itself to ordinal data, or data that has a specified order to it, since we are

considering the relationship of a response and the response just prior. Therefore the

partial credit model is highly applicable for educational purposes if one wishes to

analyze exam questions where responses can be ordered from “most right” to “least

right”, although the partial credit model has many other possible applications in the

fields of education, psychometrics and even econometrics. We will further explore

the partial credit model in sections to come.

The cumulative logit is another method that lends itself to ordinal data. This

model will represent the likelihood of choosing a response m or higher in relation to

choosing a response that is less than m. We will refer back to the original random

variable Ypi to get a better grasp of just how the cumulative logit is constructed.

Note that the likelihood, or probability, of choosing a response m or greater can be

denoted as P (Ypi ≥ m). Therefore for the example of item i that has a total of
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three possible responses we set the mutually exclusive sets as

A1 = Ypi ≥ 1

B1 = Ypi < 1

A2 = Ypi ≥ 2

B2 = Ypi < 2

and therefore

πpi (A1) = P (Ypi ≥ 1) = πpi1 + πpi2

πpi (B1) = P (Ypi < 1) = πpi0

πpi (A2) = P (Ypi ≥ 2) = πpi2

πpi (B2) = P (ypi < 2) = πpi0 + πpi1.

So using the item-by-logit predictor matrix and the cumulative logit construction

that was just presented yields the following link function for the example of an item

i that has three possible responses.

ηpi =

 ηpi1

ηpi2

 =

 log
(
πpi1+πpi2
πpi0

)
log
(

πpi2
πpi0+πpi1

)
 =

 θp −XT
pi1β

θp −XT
pi2β

 =

 θp − β1

θp − β2

 .

Note that the fixed regression coefficients, β1 and β2, need not be, and most likely

will not be, equivalent between the adjacent category logits and cumulative logits

even though they both take the same “Rasch model” form. One can clearly see how

a set of ordinal responses would fit into this cumulative logit approach nicely since

again we are considering the ratio of responding to a set of responses that have a

certain level and the responses that have a “lower” level. “In the item response

literature, models of this type have been called graded response models (GRM,
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Samejima, 1969)” [1], or Samejima’s graded response model. A further examination

of the graded response model and the partial credit model will take place in a

section to come, where we will derive the probability of choosing a specific response

from the link functions presented above along with likelihood functions that may be

used to approximate the fixed regression coefficients, βi. But first let us introduce a

third method for constructing the mutually exclusive sets of responses for the logit

functions, in this case for nominal data.

The third type of logit that can used to model polytomous data is a method where

a baseline category or response is used when considering the change from one

response to another, quite naturally this method is called the baseline category

logit. In this construction we consider each specific response that is possible for an

item in relation to a fixed baseline response. Note that we have labeled the possible

responses to an item i as m = 0, 1, . . . ,Mi − 1, thus the norm is to use response 0 as

the baseline response, although any response can be used as the baseline response,

and look at the ratio
πpi(Am)

πpi(Bm)
=

πpim
πpi0

where m 6= 0. That is we let the set used in the

denominator of each logit to be the fixed response m = 0. The link function will look

similar to those of the graded response model and the partial credit model yet have

different logits as each specific component of the link. Therefore the link function

for the baseline category model using an item by logit model matrix is as follows

ηpi =

 ηpi1

ηpi2

 =

 log
(
πpi1
πpi0

)
log
(
πpi2
πpi0

)
 =

 θp −XT
pi1β

θp −XT
pi2β

 =

 θp − β1

θp − β2

 .

This type of model construction is more applicable towards data that is nominal, i.e.

no apparent order, since we are more or less considering each response separately.

Make a note that even though the linear components for each of the three models

introduced are identical, except for the value of the βis, the most important part of

each model is how the logit components of the link function are formed. How these
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logits are constructed determines what the probability of responding to each item

separately will be, hence different logits yield different probability mass functions

for Ypi. That being said, let us now further develop the partial credit model and

graded response model in turn, that is we will now derive the probability mass

functions for each model as well as the marginal maximum likelihood functions.

6.5 Partial Credit and Graded Response Models

Lets continue to use the example of an item i that has three possible responses, keep

in mind any derivation that follows extends to an item with M possible responses.

Partial Credit Model: Recall from the link function for the partial credit model that

we have the two logit components

log

(
πpi1
πpi0

)
= θp − β1 log

(
πpi2
πpi1

)
= θp − β2

Which yield that

πpi1 = πpi0e
θp−β1 πpi2 = πpi1e

θp−β2

πpi1 = (1− πpi1 − πpi2) eθp−β1

πpi1 =
(
1− πpi1 − πpi1eθp−β2

)
eθp−β1

πpi1 = eθp−β1 − πpi1eθp−β1 − πpi1e2θp−β1−β2

πpi1
(
1 + eθp−β1 + e2θp−β1−β2

)
= eθp−β1

πpi1 =
eθp−β1

1 + eθp−β1 + e2θp−β1−β2
πpi2 =

e2θp−β1−β2

1 + eθp−β1 + e2θp−β1−β2
.

So for the partial credit model the probabilities of responding to each individual

response given a latent ability level of θp and for fixed item parameters β1 and β2
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are as follows

P (Ypi = 0) = πpi0 =
πpi1
eθp−β1

=
1

1 + eθp−β1 + e2θp−β1−β2

P (Ypi = 1) = πpi1 =
eθp−β1

1 + eθp−β1 + e2θp−β1−β2

P (Ypi = 2) = πpi2 =
e2θp−β1−β2

1 + eθp−β1 + e2θp−β1−β2
.

A slight modification to notation will allow for a general formula for the probability

of responding to a certain response of any item i, that is, we will let βij be the

regression coefficient for the jth logit of item i. And so one can see that

P (Ypi = mpi) = πpim =
exp

[∑m
j=1 (θp − βij)

]
1 +

∑Mi−1
c=1 exp

[∑c
j=1 (θp − βij)

]
where item i has Mi possible responses and mpi represents person p response to item

i, will lead to the probability mass functions developed in our example of an item

that has three possible responses
[
note that if m = 0 then

∑m
j=1 (θp − βj) = 0

]
[7].

Keep in mind the motivation of developing a general function for the probability of

responding to a question in a certain way is that we need this function in order to

approximate the fixed regression coefficients, i.e. the βij values. In order to do this

we need the likelihood function for the vector of regression coefficients β over all

responses to all items for every examinee involved in the exam, survey, etc. To do

this we will construct the likelihood function around the likelihood function for

specific examinees. Assuming that items are independent over an exam, that is

responding to one item has no affect on a person response to another item, we can
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notice that the likelihood function for β on person p is

Lp (β;mp) = P (Yp = mp| β)

= P (Yp1 = mp1 ∩ Yp2 = mp2 ∩ . . . ∩ YpI = mpI | β)

=
I∏
i=1

P (Ypi = mpi| β)

where mp is the vector of responses for all items for person p. Then it follows from

the definition of a marginal maximum likelihood that we get

Lp (β;mp) =

∫ ∞
−∞

P (Y p = mp| β, θp) g (θp|β) dθp

=

∫ ∞
−∞

I∏
i=1

P (Ypi = mpi| β) g (θp|β) dθp

=

∫ ∞
−∞

I∏
i=1

exp
[∑m

j=1 (θp − βij)
]

1 +
∑Mi−1

c=1 exp
[∑c

j=1 (θp − βij)
]g (θp|β) dθp

where g, since we assume θp is normally distributed, is the normal density function.

The final step in developing the marginal maximum likelihood function for the

partial credit model is to assume that persons are independent in which case the

complete likelihood function follows quite simply

L (β;Y ) =
P∏
p=1

Lp (β;mp)

=
P∏
p=1

∫ ∞
−∞

I∏
i=1

exp
[∑m

j=1 (θp − βij)
]

1 +
∑Mi−1

c=1 exp
[∑c

j=1 (θp − βij)
]g (θp|β) dθp

where g is the normal density function. Once we have our maximum marginal

likelihood function that is independent of the unknown random component and just

a function of the fixed parameters an approximation method can then be

implemented to simplify the integral which does not have a closed form solution.
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After the integral is approximated a maximization procedure is used to estimate the

β values in order to properly fit our model to the data. Note that any integral

approximation and maximization method discussed in Chapter 5 as well as a number

of other numerical approximation and maximization methods can be used here.

Now that the partial credit model has been fully explored, let us consider the

Samejima’s graded response model and develop its marginal maximum likelihood

function for the use of fitting a set of data. Recall from our discussion earlier that

the logit components of the vector link function for an examine item with three

possible responses using the graded response model are

log

(
πpi2 + πpi1

πpi0

)
= θp − β1 log

(
πpi2

πpi1 + πpi0

)
= θp − β2.

Therefore, in the same manner that was done prior, we solve for πpi1 and πpi2. So

the two logit components yield the following

πpi1 + πpi2 = πpi0e
θp−β1 πpi2 = (πpi1 + πpi0) e

θb−β2

πpi1 + πpi2 = [1− (πpi1 + πpi2)] e
θp−β1 πpi2 = (πpi1 + 1− πpi1 − πpi2) eθp−β2

(πpi1 + πpi2)
(
1 + eθp−β1

)
= eθp−β1 πpi2 = (1− πpi2) eθp−β2

πpi1 + πpi2 =
eθp−β1

1 + eθp−β1
πpi2 =

eθp−β2

1 + eθp−β2

P (Ypi ≥ 1) =
eθp−β1

1 + eθp−β1
P (Ypi ≥ 2) =

eθp−β2

1 + eθp−β2
.

Thus the probabilities person p responding a certain way to item i under the graded

responses model for fixed item parameters β1 and β2 are

P (Ypi = 0) = 1− P (Ypi ≥ 1) = 1− eθp−β1

1 + eθp−β1
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P (Ypi = 1) = P (Ypi ≥ 1)− P (Ypi ≥ 2) =
eθp−β1

1 + eθp−β1
− eθp−β2

1 + eθp−β2

P (Ypi = 2) = P (Ypi ≥ 2) =
eθp−β2

1 + eθp−β2
.

A special assumption must be made to ensure that the graded response model is

well defined in the sense that all probabilities are in fact values between 0 and 1.

Notice that with regards to P (Ypi = 1), if P (Ypi ≥ 2) ≥ P (Ypi ≥ 1) then we would

have that P (Ypi = 1) takes a negative value. A fix for this inconsistency can be

made by simply allowing β1 < β2 along the continuum under which the β values and

θp fall. Although this seems like a pretty strong assumption to be made, it allows us

to properly fit a data set using this graded responses model. And even though we

are making this assumption, important information about the items can still be

taken from the model which is again the reason for fitting these models to begin

with. Note that we are using an example of an item that has three possible

responses, so to extend to a general item with Mi possible responses we would have

to make the assumption of β1 < β2 < . . . < βMi−1. Therefore a well defined set of

probabilities have been created for responding to each possible response for an item

in question and thus a general formula must now be developed, that is a formula to

represent the probability of responding to an arbitrary response m for any item i.

Like we have done for previous models, once this general formula has been found, it

can be applied to the marginal maximum likelihood function in order to have a

function that can be used to find the βi values that best fit our model to the data

collected. To begin the development of this general item response function for

Samejima’s graded response model, notice that for item i with Mi possible

responses P (Ypi ≥ 0) = 1 and P (Ypi ≥Mi) = 0. That is since we denote the

possible responses as m = 0, . . . ,Mi − 1 then clearly the probably of responding to

any possible response is 1 and the probably of responding to a response greater than

Mi − 1 is 0. So using these two assumptions and noticing the pattern that is created
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from our example of an item using three possible responses we can come to the

conclusion that the general function to represent the probability of responding a

certain way is

P (Ypi = m) = πpim = P (Ypi ≥ m)− P (Ypi ≥ m+ 1)

Thus using the definition of a marginal maximum likelihood function and using the

same argument as we did for the partial credit model we come to the marginal

maximum likelihood function for our newly formed graded response function.

Assuming items i = 1, . . . , I are independent over an examine then the MML for a

person p is

Lp (β;mp) =

∫ ∞
−∞

P (Y p = mp| β, θp) g (θp| β) dθp

=

∫ ∞
−∞

I∏
i=1

P (Ypi = mpi| β) g (θp| β) dθp

where mp is the vector of responses for person p, mpi is the response for person p on

item i, g is the normal density function, and

P (Ypi = mpi) = P (Ypi ≥ mpi)− P (Ypi ≥ mpi + 1). And using the assumption that

persons p = 1, . . . , P are independent over the entire data set then the full marginal

maximum likelihood function becomes

L (β;Y ) =
P∏
p=1

Lp (β;mp)

=
P∏
p=1

∫ ∞
−∞

I∏
i=1

P (Ypi = mpi| β) g (θp| β) dθp

such that P (Ypi = mpi) = P (Ypi ≥ mpi)− P (Ypi ≥ mpi + 1). So we have explored

and developed two possible ways to construct a model using the item-by-logit model

matrix, they are the partial credit model and Samejima’s graded response model.
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Note there exist numerous different ways to build a model matrix in which case each

unique matrix will describe the data in a different manner. Looking at these

different model matrices is quite possibly an area for further research. Another

possibility for further research would be to explore different ways to select our

mutually exclusive sets of responses Am and Bm that are implemented into the logit

components of the link function, which would lead to completely different models

being formed. Also note that throughout the sections on generalized linear models

and the Rasch model we explored extensions of the one parameter item response

model, or the Rasch model. Implementing these same types of extensions to the two

and three parameter models from chapter 1 could lead to very interesting results as

well. Another area of interest is to explore models that take into consideration

multiple latent traits, i.e. could one model data under IRT using a multi-dimension

latent trait rather than the one dimension discussed through this paper. Now that

we have developed a number of different models, let us insert real life observed data

into our models so that we can see just how these models work are beneficial to a

test theorist or psychometrician studying such exams, surveys, etc.
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7 Application of IRT models in R

In this sections we will apply selected models developed throughout our discussion

to data collected from TAKS testing from around the Tyler, Texas area. Although

numerous packages have been created for multiple statistical based software, we will

implement the item response theory package developed by Dimitris Rizopoulos for

R titled ltm. The ltm package in R implements the Rasch model, two-parameter

logistic, and three-parameter logistic models for dichotomous data introduced in the

overview section on item response theory. The polytomous models that are available

in the ltm package are the generalized partial credit model and the graded response

model that we have just finished developing [13]. The motivation for using this

package in R is that it exercises the use of the marginal maximum likelihood

function in the process of finding the fixed item parameters and uses the

Newton-Raphson method for maximizing the likelihood function both of which we

have used to develop our models. We make a note of this because there are

numerous other methods for approximating the parameter values.

The data we will be modeling first is a set of responses for tenth grade students at a

local High School from the Tyler, Texas area for the Texas standardized test TAKS.

The responses to the questions have been organized such that a correct response is

denoted as 1 and an incorrect response is denoted as 0. Therefore we can consider

this data set as being dichotomous and thus we will employ a Rasch model to

analyze the items in question. The first command one can use to analyze the data is

the descript command, which yields descriptive statistics. The descriptive data

given are 1) proportions for each type of response for every item, 2) frequencies of

total scores obtained, 3) a point biserial correlation with total scores, with both an

included and excluded correlation, for every item. This value describes the
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correlation of the observed responses to a particular item with the total score on the

test, both including that particular item in the total test score and not including

that particular item. 4) A Cronbach’s alpha score for each item on the exam is also

give, which measure consistency within the test. That is the Cronchbach alpha

places a value on whether all items are truly measuring the same latent trait. And

5) a pairwise association table for pairs of items that are highly correlated [13]. The

data set in question contains 56 questions, i.e. items, so to see an example of the

output let us consider the first five items on the exam, then the descriptive statistics

given would be

Descriptive Statistics

Item 1 Item 2 Item 3 Item 4 Item 5

Proportions for each

Response

0 .0478 .0957 .0718 .0622 .1005

1 .9522 .9043 .9282 .9378 .8995

logit 2.9907 2.2460 2.5598 2.7132 2.1919

Point Biserial Correlation

with Total Score

Included .4710 .5488 .5971 .5220 .5946

Excluded .1961 .1684 .2877 .2160 .2182

Cronbach’s alpha .3798 .4054 .3091 .3646 .3641

Also a list of pairwise item correlations are given along with p-values and the

frequencies of possible total scores for individuals are listed as well. The point

biserial correlation given here is a measurement of the relationship between the

binomial random variable Y that takes values 0 or 1 depending on how the person

responds to the item and the total scores on the test. Note that the random

variables in our model are the binary variable Y that takes the values 1 and 0.

Point biserial correlations can be interpreted in a similar manner to any other

correlation coefficient, that the point biserial correlation coefficient will be positive

when high total test scores relate with Y = 1 and small test scores relate with

Y = 0. This is the natural interpretation in terms of item response theory and a
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test theory in general since one would expect a positive correlation for “good” items

since one would wish that answering more items correctly leads to higher test scores

will have a higher chance of responding to an item correctly. The other

measurement shown here, Cronbach’s alpha value, might also be unfamiliar.

Cronbach’s alpha is a statistical measure of reliability within a test or a measure of

internal consistency. In other words Cronbach’s alpha gives a numerical value to

how well all items within a group measure the same inherent trait. Clearly,

especially in terms of items response theory, one would wish to have large Cronbach

alpha values through the items on a test so that all items are essentially measuring

the same skill or latent trait. Low alpha values imply that the items in questions are

measuring different latent traits, in other words an item, say on an exam measuring

mathematics skills, that has a very low Cronbach alpha value is not necessarily

measuring the examinee’s mathematics skills. Once the descriptive statistics have

been thoroughly analyzed, one can then attempt to fit the data to a model, whether

it be the Rasch model, two-parameter, or three-parameter logistics irt models. The

ltm package will fit dichotomous data to any of these three models, therefore the

analyst must determine which model best fits the data while still being tractable

enough to be analyzed. Lets begin with fitting the Rasch model. An important note

is to ltm does not by default apply a discrimination parameter of 1 to a Rasch

model. Instead the package simply uses an equal discrimination value over all items.

Therefore if one wishes to apply a discrimination parameter equal to 1 for their

Rasch model, it must be written into the R code. The following will fit our data to

a Rasch model with discrimination parameter equal to 1, rasch1 <-

rasch(data.2,constraint=cbind(length(data.2)+1,1)). A summary command can then

be used to see log-likelihood of the model along with the Akaike’s information

criteron (AIC), Bayesian information criterion (BIC) as well the approximated

values of each items difficulty parameter, i.e. the βi values for each item on the
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exam. Lets consider the first five items fitted to the Rasch model with

discrimination parameter equal to 1, then following would be the estimated

difficulty parameters: Note how the R output even indicates the integration method

Table 7.1: Rasch Model for Items 1 through 5

value std.err z.vals
Dffclt.p1 -3.4248 .3389 -10.1067
Dffclt.p2 -2.6367 .2544 -10.3660
Dffclt.p3 -2.9716 .2853 -10.4165
Dffclt.p4 -3.1345 .3029 -10.6497
Dffclt.p5 -2.5784 .2496 -10.3287
Dscrmn 1.0000 NA NA

log.lik=-6095.851 AIC=12303.70 BIC=12490.87

Integration Method: Gauss-Hermite quadrature points 21

used to approximate the marginal maximum likelihood function of the model. If the

discrimination parameter is not constrained to be 1 a different model can be fit, all

items having the same discrimination parameter yet not necessarily 1. The following

commands would give this new Rasch model and the summary information

respectively, rasch2 <- rasch(data.2), summary(rasch2). This new model would

yield the following values for the difficulty parameters for the first five items Now

Table 7.2: Rasch Model for Items 1 through 5

value std.err z.vals
Dffclt.p1 -3.4382 .3831 -8.9756
Dffclt.p2 -2.6470 .2877 -9.1991
Dffclt.p3 -2.9836 .3238 -9.2136
Dffclt.p4 -3.1466 .3436 -9.1587
Dffclt.p5 -2.5887 .2821 -9.1770
Dscrmn .9955 .0560 17.7635

log.lik=-6095.847 AIC=12305.69 BIC=12496.21

Integration Method: Gauss-Hermite quadrature points 21

that two models have been fitted to the data, the natural question is how well do

the two models fit to the data in questions and which of the two models fit the data
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better? The ltm package has a built in goodness of fit test for Rasch models. The

goodness of fit test is a bootstrap method using the Pearson chi-squared test. A

bootstrap method involves constructing a number of sample data sets using the

model in question and comparing the sample statistics of each sample in with the

sample statistic from the original data set, in our case the sample statistics are that

of the Pearson chi-squared type. So, the goodness of fit test assumes a null

hypothesis that the model does in fact fit the observed data, then letting χb be the

chi-squared test statistic of the bth sample where b = 1, . . . , B and χobs be the

chi-squared test statistic of the observed data, the p-value of the hypothesis test is

approximated by the following

p-value ≈ (# of times χb ≥ χobs) + 1

B + 1

[13]. The command to run this bootstrap goodness of fit test GoF.rasch(‘model

here’). Therefore let us compare the goodness of fit tests between the two models

we have constructed.

Tobs 3.341564e+16
# data-sets 50

p-value 0.3

Table 7.3: Goodness of Fit Test for
rasch1

Tobs 3.339928e+16
# data-sets 50

p-value 0.28

Table 7.4: Goodness of Fit Test for
rasch2

So, the p-values for both models are large, hence in both cases we would fail to

reject the null hypothesis that the models do indeed fit the observed data. But

notice that the p-value for our rasch1 model is slightly higher than that of the

rasch2 model, thus we can interpret that rasch1 fits the data slightly better than

that of rasch2, the Rasch without the constraint of the discrimination being equal to

1. This conclusion can also be seen from the fact that the AIC and BIC values for

rasch1 are slightly lower than those of rasch2 which implies a slightly betters fit, i.e.
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Likelihood Ratio Table
AIC BIC log.lik LRT df p.value

rasch1 12303.70 12490.87 -6095.85
rasch2 12305.69 12496.21 -6095.85 0.01 1 .927

Table 7.5: Anova test for rasch1 and rasch2

lower AIC, BIC values are desired citeRizo. Also an analysis of variance test can be

ran to determine if two models, one nested inside the other, are equivalent by using

the command anova(‘model1’,‘model2’) such that ‘model1’ is nested inside ‘model2’.

Since the p-value of the anova test is quite large we would fail to reject that the two

models are equivalent, but from what the goodness of fit test implied, the fact that

the AIC and BIC are smaller for the rasch1 model, and since rasch1 is a slightly

simpler model with the discrimination parameter being 1, it would most likely be

beneficial to implement rasch1 as the model to describe our observed data.

Although we have not directly developed the two- and three-parameter models in

terms of likelihood functions as we did for the Rasch model, data can very easily be

fit to these two models by using the ltm() and tpm() commands. But since we have

more fully developed the Rasch model in our discussions and since by our goodness

of fit and anova tests show that the model rasch1 sufficiently fits our observed data,

let us more fully analyze this model. Once a model has been fit to a set of observed

data, that is the item parameters have been sufficiently approximated, then there

are a number of commands in the IRT package that will allow one to further

analyze the data. one such command is coeff(‘model’,prob=TRUE) which will

output a list of all items along with the any parameters that have been

approximated and the probability of answering that item correctly given an average

ability level. The output for the first five items on the exam would be as follows The

latent ability being studied on this exam is denoted z here, and because in the norm

in item response theory is to assume the mean ability level is z = 0 then the third

row in the table is giving the probability of answering that particular item correctly
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Item 1 Item 2 Item 3 Item 4 Item 5
Dffclt -3.4247 -2.6367 -2.9716 -3.1345 -2.5784

Dscrmn 1 1 1 1 1
P(x=1| z=0) .9684 .9331 .9512 .9582 .9294

Table 7.6: coeff(rasch1,prob=TRUE) for items 1 through 5

given an average ability level. Notice how each of these probabilities is quite high

for only an average ability level. This can be related to the fact that each items

difficulty parameters is very low hence these five items are not hard questions on

this particular exam. Also note that the discrimination parameters for every item is

1, this is because we are analyzing the Rasch model that we artificially constrained

this parameter to be 1. Another impressive aspect of the ltm package in R is that it

has a built in command that will output, for any particular model, the

approximated latent ability level given a set of possible responses. The command

factor.scores(‘model’) yields the ability level for all possible sets of responding to the

items. The exam under study has 56 items, or questions, therefore we will not list all

possible responses patterns with their ability level here but note that every possible

response pattern will have a unique ability level attached to it. In other words two

response patterns with equal number of correct responses will still have different

ability level outputs since each individual item has a unique difficulty parameter. A

simple plot command can also be used to express the item characteristic curves,

item information curves, and test information curve. Recall that the item

characteristic curve shows the relationship of the ability level of an individual

against the probability of answering that an item correctly. Figure 7.1 shows the

item characteristic curve for items 1, 14, 20, 30, and 45. The inflection point of each

item characteristic curve corresponds with a 0.50 probability of answering that item

correctly given the ability level along the x-axis. So for item 1 an examinee with

roughly an ability level around -3 will have a 50% chance answering that item

correctly and examinees with ability levels between 0 and 1 will have a 50% chance
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Figure 7.1: ICCs for five items from TAKS data set

of answering item 14 correctly. Being able to analyze each item individually using

these item characteristic curves is quite beneficial in the sense items that are too

“easy” or too “hard” in relation to all other items can be quickly identified and

thrown out if one wishes to do so. Plotting all item characteristic curves can also be

beneficial, as it can determine what type of ability levels the exam is testing. Figure

7.2 shows that the majority of the items on this exam are testing ability levels at or

below an average ability level of 0. Because the exam under study is a standardized

test to see if a student may move on to the next grade level, the fact that the items

are generally testing to see if a student has the average ability of a student in that

grade level seems to be quite natural. Notice also that this exam is using a number

of items that have item characteristic curves that are spread over a wide range of

ability levels. Being able to identify individual item characteristic curves allows test

makers to uniquely construct exams based on how they would like the results to
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Figure 7.2: ICCs for all items from TAKS data set

look. For instance for very high stakes tests where the test maker neesd to know if

an examinee has a particular ability level, the test maker can choose most of the

items to be centered over that particular ability level. Item information curves can

also be plotted quite easily using the R package ltm by identifying what type of

curve to output. Item information curves show the relationship of how much

information a particular item has over a certain range of ability levels, that is at

what ability levels does a particular item measure the latent trait the ‘best’. Recall

that the information function of an item under the Rasch model is given by

Ii (θp) =
1

σ2
= Pi (θp)Qi (θp)

where Pi (θp) = P (Ypi = 1| θp) and Qi (θp) = 1− Pi (θp), i.e. the probabilities of

answering the item correctly and incorrectly respectively. So analyzation of Figure

7.3 shows us that item or problem thirty gives the gives the most information for

75



Figure 7.3: Information curves for five items from TAKS data set

examinees with average ability level and furthermore would probability not be a

good question if one wishes to test someone with ability levels less than -1 or greater

than 1. In comparing figures 7.1 and 7.3 one can see that the peak of the item

information curve direectly relates to the inflection point of the item characteristic

curves. Therefore for the same reason a test maker that wants to test students that

have a wide range of ability levels would choose items that have item characteristic

curves that cover a large range of ability levels, the test maker would choose items

that have item information curves that cover a large range of ability levels.

Intuitively though it might be more clear to use the item information curve to

determine what items to choose for an exam, whether you want them to cover a

large or small range of ability levels. Looking at all items information curves can be

quite beneficial for reasons previously mentioned. Therefore from Figure 7.4 one can

see that the test makers for this TAKS test wanted items that give the most
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Figure 7.4: Information curves for all items from TAKS data set

information for ability levels that range from about -3 to just over 1. This might be

anticipated since one assume that in a group of tenth graders there are going to be a

wide range of abilities, thus to “cover all bases” the test maker made sure to have

items that would measure abilities at all of those ability levels. On the other hand a

test maker that was putting together questions for say a law school entry exam,

he/she might only use items that give the most information for the ‘cut off’ ability

level, in other words the test maker does not care to measure the ability levels at the

extreme ends of the ability scale only whether they have the ability to succeed at

their program. One can now see how the information function and item information

curves can be quite beneficial for test making and analyzation of an already made

exam. Also note that as mentioned in our general discussion on item response

theory that we defined the test information curve as the sum of all item information

functions, thus this test information curve can also be easily plotted and analyzed.
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In a comparison of the item information curves and the test information curve in

Figure 7.5: Test information curve for items from TAKS data set

Figure 7.5 one can see how the actual values on the y-axis, the information values,

are much higher than on for the test information. This is natural from the way we

define the test information function. The test information function for our TAKS

test observed data essentially implies the same thing that we were able to conclude

from Figure 7.4 of the individual item information functions, although having a

single curve to represent the test information is a lot of times much easier to

interpret and in general looks a little nicer graphically. So, to conclude the R

package ltm is quite easy to navigate and although we only used a few applications

in analyzing a data set with a Rasch model, there exist numerous other models and

techniques that can be explored under this package including polytomous data

models in particular the partial credit model and the graded response model [13].
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8 Conclusion

Item response theory is considered by many as the future of psychological test

theory and is being implemented more and more throughout the fields of

psychometrics, econometrics, and education, as well as being implemented in many

high stakes testing environments. Throughout this introduction to IRT we have

discussed a test theory approach, a generalized linear model approach, and applied

these methods to actual data obtained from a local highschool’s standardized test

responses. In our exploration of IRT using a test theory approach we developed

three models to describe the relationship between a person’s ability level and the

probability of answering an item correctly. These three models were the Rasch

model, or one-parameter logistic model which consists of an item difficulty

parameter, the two-parameter model which introduces an item discrimination

parameter, and the three-parameter model which introduces a guessing parameter

to go along with difficulty and discrimination parameters from the previous models.

We also discussed how the item information function can help with analyzation of

items and what ability levels that an item is best suited for measuring. In the next

few sections we explored the Rasch model in context of the larger group of

statistical models termed generalized linear models. Four extensions of the Rasch

model were constructed introducing “hidden” parameters into the models, that is

person parameters, items parameters, or both were taken into consideration.

Likelihood functions were then derived for each model under this context of GLMs

which could then be applied to approximation and maximization methods for find

parameter values that best fit the model to a set of observed data. We also explored

a couple of popular integral approximation methods that are used for generalized

linear models as well as a maximization process. The last two models developed
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were those for data sets that consisted of polytomous, or multiple, responses within

an item. These two models were termed the partial credit model and the graded

response model, each of which lend themselves to items that have ordinal responses.

Lastly, we applied Dimitris Rizopoulos R package ltm to analyze TAKS, the Texas

high school standardized test, responses for a group of tenth grade students. Using

this package we explored how item characteristic curves and item information curves

can be beneficial when interpreting how well a test measures a group of examinees

ability levels. There are many area of further research that would be quite

interesting to explore. For instance, considering the two- and three-parameters

models in the context of generalized linear models and extending these models the

same way we did with the Rasch model, introducing person and item parameters,

could have some very interesting results. Another area of further research would be

to consider models that take into account multi-dimensional latent trait parameters.

Note that throughout our discussion the latent trait, θp, we uni-dimensional ,

therefore each item was only measuring a single latent trait, or skill at a time.

Extending this latent trait into multiple dimensions would most likely have some

exciting results for item response theory.
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