
University of Texas at Tyler
Scholar Works at UT Tyler

Computer Science Theses School of Technology (Computer Science &
Technology)

Spring 5-1-2015

The Random Forest Algorithm with Application to
Multispectral Image Analysis
Barrett E. Lowe

Follow this and additional works at: https://scholarworks.uttyler.edu/compsci_grad

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the School of
Technology (Computer Science & Technology) at Scholar Works at UT
Tyler. It has been accepted for inclusion in Computer Science Theses by an
authorized administrator of Scholar Works at UT Tyler. For more
information, please contact tbianchi@uttyler.edu.

Recommended Citation
Lowe, Barrett E., "The Random Forest Algorithm with Application to Multispectral Image Analysis" (2015). Computer Science Theses.
Paper 5.
http://hdl.handle.net/10950/260

http://www.uttyler.edu/graduate/?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.uttyler.edu/graduate/?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/compsci_grad?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/technology?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/technology?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/compsci_grad?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/260?utm_source=scholarworks.uttyler.edu%2Fcompsci_grad%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tbianchi@uttyler.edu

THE RANDOM FOREST ALGORITHM

WITH APPLICATION TO MULTISPECTRAL IMAGE ANALYSIS

by

BARRETT E. LOWE

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science

Arun D. Kulkarni, Ph.D., Committee Chair

College of Business and Technology

The University of Texas at Tyler
May 2015

The University of Texas at Tyler
Tyler, Texas

This is to certify that the Master’s Thesis of

BARRETT E. LOWE

has been approved for the thesis requirement on
26 March, 2015

for the Master of Science in Computer Science

Approvals:

 Thesis/Dissertation Chair: Arun D. Kulkarni, Ph.D.

 Member: Leonard Brown, Ph.D.

 Member: Stephen Rainwater, Ed.D.

Chair, Department of Computer Science

Dean, College of Business and Technology

© Copyright 2015 by Barrett Lowe
All rights reserved.

Dedication

For Sawyer

Acknowledgements

I would like to thank Dr. Kulkarni, committee members, and the Department of

Computer Science. Without encouragement and support from them, this document would

have far fewer pages and, although I would’ve gotten more sleep over the past two years,

I would not have the knowledge, forethought, understanding, or drive that were behind

the writing of this thesis. Thank you.

i

Table of Contents

List of Tables ... iii
List of Figures .. iv

Abstract .. vi
Chapter 1 Introduction... 1

Chapter 2 Literature Review ... 4

2.1 Remote Sensing .. 4

2.2 Supervised Classifiers .. 8

2.2.1 Minimum Distance.. 9

2.2.2 K-Nearest Neighbor .. 10

2.2.3 Naïve Bayes .. 11

2.2.4 Neural Network ... 12

2.2.5 Support Vector Machine ... 15

Chapter 3 Methodology .. 20

3.1 Tree Classifiers ... 20

3.2 ID3 Tree ... 27

3.3 Random Forest ... 28

3.3.1 Supervised ... 28

3.3.2 Unsupervised... 30

3.3.3 Synthetic Data ... 31

3.3.4 Variable Importance .. 32

3.4 Accuracy Assessment ... 32

Chapter 4 Implementation and Results .. 35

4.1 Iris dataset... 35

4.2 Remotely Sensed Data.. 37

4.2.1 Yellowstone Scene .. 37

4.2.2 Mississippi Scene .. 42

Chapter 5 Conclusions and Future Work .. 46

References ... 50

Appendix A: Neural Network for Iris Data in R... 56

ii

Appendix B: Iris Data Classifiers ... 57

Appendix C: Random Forest and ID3 for Yellowstone Scene in R 58

Appendix D: SVM for Yellowstone Scene in R ... 60

Appendix E: Neural Network for Yellowstone Scene in R .. 61

Appendix F: Processing and Classification in ERDAS 2014 ... 63

iii

List of Tables

Table 1. Landsat 8 Band Descriptions .. 7

Table 2. Example of a Confusion Matrix.. 33

Table 3. RF Confusion Matrix - Yellowstone Scene .. 41

Table 4. RF Confusion Matrix - Mississippi Scene .. 43

Table 5. Classifier Statistics – Iris dataset .. 47

Table 6. Classifier Statistics – Yellowstone Scene ... 47

Table 7. Classifier Statistics – Mississippi Scene ... 47

iv

List of Figures

Figure 1. Earth Observation Process ... 6

Figure 2. Linearly Separable Data .. 8

Figure 3. Linearly Inseparable Data.. 9

Figure 4. Data Separable by a Spiral Pattern .. 9

Figure 5. K-Nearest Neighbor Problem .. 11

Figure 6. Biological Neuron ... 13

Figure 7. Artificial Neuron ... 13

Figure 8. Basic Three-Layer Neural Network .. 14

Figure 9. SVM Hyperplane (Duda et al., 2001) .. 16

Figure 10. Decision Tree (Duda et al., 2001) ... 21

Figure 11. Iris Data Clustered using Random Forest .. 36

Figure 12. Iris ID3 Tree .. 36

Figure 13. Iris Neural Network ... 37

Figure 14. Yellowstone Scene Composite .. 38

Figure 15. Spectral Signatures - Yellowstone Scene .. 39

Figure 16. Yellowstone ID3 Tree ... 39

Figure 17. OOB Error as a Function of m ... 40

Figure 18. Output Images – Yellowstone Scene ... 41

Figure 19. Mississippi Scene Composite .. 42

Figure 20. Mississippi Spectral Signatures ... 43

v

Figure 21. Output Images - Mississippi Scene ... 44

Figure 22. ID3 Tree - Mississippi Scene .. 45

Figure 23. ERDAS Inquire Box .. 63

Figure 24. ERDAS Subset Image ... 63

Figure 25. ERDAS Subset Image Window... 64

Figure 26. ERDAS Signature Editor ... 64

Figure 27. ERDAS Selecting Test Points ... 64

Figure 28. ERDAS Accuracy Assessment .. 64

vi

Abstract

THE RANDOM FOREST ALGORITHM
WITH APPLICATION TO MULTISPECTRAL IMAGE ANALYSIS

Barrett E. Lowe

Thesis Chair: Arun D. Kulkarni, Ph.D.

The University of Texas at Tyler

May 2015

The need for computers to make educated decisions is growing. Various methods

have been developed for decision making using observation vectors. Among these are

supervised and unsupervised classifiers. Recently, there has been increased attention to

ensemble learning – methods that generate many classifiers and aggregate their results.

Breiman (2001) proposed Random Forests for classification and clustering. The Random

Forest algorithm is ensemble learning using the decision tree principle. Input vectors are

used to grow decision trees and build a forest. A classification decision is reached by

sending an unknown input vector down each tree in the forest and taking the majority

vote among all trees. The main focus of this research is to evaluate the effectiveness of

Random Forest in classifying pixels in multispectral image data acquired using satellites.

In this paper the effectiveness and accuracy of Random Forest, neural networks, support

vector machines, and nearest neighbor classifiers are assessed by classifying

multispectral images and comparing each classifier’s results. As unsupervised classifiers

are also widely used, this research compares the accuracy of an unsupervised Random

vii

Forest classifier with the Mahalanobis distance classifier, maximum likelihood classifier,

and minimum distance classifier with respect to multispectral satellite data.

Chapter One

Introduction

Multispectral image data are collected and analyzed for applications such as geo-

computation, land management, potential mapping, forecast analysis, and soil assessment

to name a few (Ghose et al., 2010). The process of analyzing images of objects taken at

great distances is called remote sensing. For the earth’s surface, this process requires an

image to be taken from either an aircraft or spacecraft. This research considered scenes

taken from the satellite spacecraft Landsat 8. It relied on the interaction of

electromagnetic radiation with objects on earth’s surface. The signal acquired by Landsat

is expressed as a function of wavelength. This measurement is referred to as spectral

signature. Each object on the ground will react differently to light resulting in each class

of objects having a unique spectral signature. The first remote sensing satellite was

launched in 1972 and has since become outdated. Today Landsat 8 is equipped with the

Operational Land Imager (OLI) sensor which collects images in nine spectral bands.

Each band detects different wavelengths of the visible or non-visible spectrum.

Each pixel in a Landsat image can be classified by using the vector of band values

as input to a classifier. Conventional statistical methods have been used for classification

including neural networks, maximum likelihood classifiers (Huang and Lippman, 1988),

support vector machines (Mitra et al., 2004), and decision trees (Pal and Mather, 2001).

Supervised methods, such as these, require prior knowledge of each class. Data must be

collected to first train the classifier before classifying unknown cases. Clustering

2

algorithms have also been utilized such as split-merge (Laprade, 1988), fuzzy k-means

(Hathaway and Bezdek, 1988) for remote sensing. These methods involve algorithms that

group cases together based on input variables having no prior or explicit knowledge of

the classes. Clustering is useful when groups of data need to be found that are presently

unknown.

Recently research around some of these algorithms has increased with respect to

classifier aggregation. Breiman (1996) found that producing multiple versions of a single

classifier resulted in higher classification accuracy. He theorized a Random Forest

algorithm in 2001, and although it has been used in many data mining applications, has

not been fully explored in remote sensing or multispectral image analysis. Random Forest

is based on decision tree aggregation where each tree resembles Quinlan’s (1986) ID3

tree. Each classifier aggregate must be trained with different data to prevent identical

classifiers. During classification, each tree in the forest votes on the class of an input

vector. The forest returns the majority vote as the classification result (Breiman, 2001).

Random Forest presents unexcelled accuracy among current algorithms, efficient

implementation on large data sets, and an easily saved structure for future use of pre-

generated trees (Ghose et al., 2010).

This research uses this method for land use classification and is presented as

follows. Chapter 2, Literature Review, examines various classification methods against

which Random Forest has been tested and explores formulas and theories related to those

classifiers. Chapter 3 discusses decision tree classification and Random Forest

construction and operation. Chapter 4 provides illustrated examples of classification

3

using Random Forest and analyzes two scenes acquired with Landsat 8. We then

analyzed the same scenes with the same training data using a neural network, support

vector machine, nearest neighbor classifier, maximum likelihood classifier, minimum

distance classifier, Mahalanobis distance classifier, and spectral correlation classifier.

Chapter 5 presents classification accuracies among classifiers, provides a final analysis of

the tests, concludes, and discusses future research opportunities.

4

Chapter Two

Literature Review

2.1 Remote Sensing

Even though remote sensing today usually implies data sensed from space, it

consisted of aerial photographs before the space age. Aircraft would fly over the earth

taking pictures of interest areas in multiple bands. The photos were analyzed to achieve

some level of knowledge about the area. Groundwork for remote sensing was laid at

Purdue University in 1965 when the Department of Botany and Plant Pathology

suggested that they and the School of Electrical Engineering work together toward better

agricultural management solutions using aerospace platforms. Since the launch of

SPUTNIK in 1957 followed by the National Air and Space Administration’s (NASA)

launch of TIROS 1 in 1960, the first satellite designed for earth observation, the potential

for remote sensing had grown. TIROS 1 was initially designed as a weather satellite to

observe cloud cover but in 1966 NASA asked the National Research Council (NRC) to

take on a study regarding the “probable future usefulness of satellites in practical Earth-

oriented applications.” In 1967 a group of researchers was brought together at the NRC

Woods Hole, Massachusetts study center to discuss the use of remote sensing in thirteen

fields: forestry-agriculture-geography, geology, hydrology, meteorology, oceanography,

broadcasting, points-to-point communication, point-to-point communication, navigation

and traffic control, sensors and data systems, geodesy and cartography, economic

analysis, and systems for remote sensing information and distribution (Landgrebe, 2003).

5

At the Woods Hole meeting, three relevant aspects became apparent if remote

sensing was going to be used effectively. There was a need for timely information to

better manage forest, agricultural, and urban environments as well as other land

resources; Earth’s cover surface is of a complex and dynamic nature; The problem

requires well-coordinated, fundamental, and practical knowledge in multiple fields thus

requiring input from multiple scientific disciplines. Even with these challenges, the group

concluded that there was significant potential for the use of remote sensing in society. In

1970, a situation arose that tested the conclusion at Woods Hole under an agricultural

lens.

During the latter part of the growing season, the U.S. nation’s corn crop began

seeing buildup of a dangerous pathogen on its leaves looking like brown lesions on the

lower part of the canopy. The pathogen was called Southern Corn Leaf Blight and

developed from airborne spores. Beginning at the bottom of the plant it would spread

upward until the entire plant was destroyed. By the time the danger was discovered, seed

for the following year had already been produced. If the spores could survive the winter,

the outbreak for the following year would be massive and devastating. Since remote

sensing had not yet been tested, this presented an excellent opportunity to evaluate its

usefulness.

Efforts were made throughout the winter to track the possible epidemic using

aerial photographs taken from a C-47 aircraft. After the winter was over, several

possibilities of remote sensing were realized. It could not only be used to discriminate

between corn and other types of ground cover, it could also accurately provide data

6

indicating several degrees of the blight infestation even before it was apparent from

imagery created from the data (Landgrebe, 2005).

Since 1970, the basics of remote sensing and observing Earth have not changed.

Utilizing spatial, spectral, and temporal data we can observe variations in the data and

relate them to desired information. An observational system of the earth has three parts:

the scene, the sensor, and the processing system. The entire process can be visualized as

in Figure 1. The scene is the electromagnetic spectrum as it bounces off the area of

interest the sensor is the piece of technology that collects the electromagnetic spectrum

measurements, and the processing system is what outputs useful information where an

analyst specifically indicates what type of information is desired as output (Landgrebe,

2003).

Although remote sensing has been used for decades now, the accuracy of new and

novel processing systems seems to not be increasing. Wilkinson (2005) analyzed research

Figure 1. Earth Observation Process

7

from 1989 to 2004 and found that although more classification methods were being tested

and researched with respect to remote sensing, they were not becoming more accurate.

Depending on how the data are viewed, the methods may even be less accurate overall. It

is noted that the approaches have become more “adventurous” and the change in nature

or quality of data over the time period may be counterbalancing algorithmic

improvements.

At its first launch, TIROS 1 was not able to capture many spectral bands. By 1968

NASA was developing a new satellite – the Earth Resources Technology Satellite

(ERTS). The name was later changed to Landsat. Landsat 8 is orbiting earth today

(Landgrebe, 2005). It is equipped with sensors, as previously noted, that are capable of

capturing 11 spectral bands. Bands 1 through 9 are captured with the Operational Land

Imager (OLI) sensor while the last two are captured with the Thermal Infrared Sensor

(TIRS). This research uses bands captured with the OLI. Band descriptions and

wavelengths are shown in Table 1 (Landsat 8, 2014).

Table 1. Landsat 8 Band Descriptions

Bands Wavelength

(micrometers)
Band 1 - Coastal aerosol 0.43 - 0.45
Band 2 - Blue 0.45 - 0.51
Band 3 - Green 0.53 - 0.59
Band 4 - Red 0.64 - 0.67
Band 5 - Near Infrared (NIR) 0.85 - 0.88
Band 6 - SWIR 1 1.57 - 1.65
Band 7 - SWIR 2 2.11 - 2.29
Band 8 - Panchromatic 0.5 - 0.68
Band 9 - Cirrus 1.36 - 1.38

8

2.2 Supervised Classifiers

A classification problem exists when various input values are to imply some

output measure or class within a given range or dataset. If we were to classify some fruit

as strawberries or oranges, weight and volume might be used as input to our classifier.

Plotting the training data in two dimensions where the x-axis represents weight and the y-

axis represents volume might yield a plot such as Figure 2. By examining the plot we can

infer that the dots are strawberries and the crosses are oranges because oranges will have

higher weights and volumes than strawberries. We can also see that the data is linearly

separable meaning we can draw a straight line to separate the two classes from each

other. Classifier construction is concerned with finding the decision boundary between

the classes. This becomes more difficult as data becomes less separable as in Figure 3 and

Figure 4. This chapter reviews various methods of finding the separation between data in

Figure 2. Linearly Separable Data

9

multi-dimensional spaces. Classifiers can be either supervised or unsupervised.

Supervised classifiers require a training dataset, where input variables and desired output

are known. Supervised classifiers are susceptible to the phenomonon known as

overfitting. This occurs when the classifier performs better on training data than on test

data. When this happens it indicates that the classifier does not generalize well and

unknown samples will not be as accurate as the training data (Forsyth and Ponce, 2012).

Unsupervised classifiers do not require any prior knowledge of the data and use statistical

properties to group the data into clusters. Once clustered, a user can label each cluster as

an appropriate class.

2.2.1 Minimum Distance Possibly the simplest classifier to understand and

describe is the minimum distance classifier. This is a supervised classifier meaning prior

knowledge about the dataset is required. From the known dataset, calculate a mean

feature vector for each class. From that, assign an unknown tuple to the closest class

Figure 3. Linearly Inseparable Data Figure 4. Data Separable by a Spiral Pattern

10

when plotted in a Euclidean space. Let r1, r2, r3,…rm represent mean reference vectors

for m classes. Given an input tuple x, the classifier calculates

for i=1, 2, …, m and assigns x to the class ωi where the distance ||x-ri|| is minimum

(Kulkarni, 2001).

Due to the algorithm’s simplicity and less expensive calculations, it can be

implemented on basic hardware. It has been used to detect road signs on a field-

programmable gate array and achieved similar results to other more computationally

complex algorithms (Zhao et al., 2012). The basic principle of the classifier has been

altered and adapted in many ways to improve efficiency and accuracy among different

applications. Lin and Venetsanopoulos (1993) created a weighted minimum distance

classifier for pattern recognition and proved it had similar results to neural networks with

far less computation. It has also been used for character recognition (Senda et al., 1995).

2.2.2 K-Nearest Neighbor The k-nearest neighbor classifier is similar to the

minimum distance classifier. Instead of considering the means of each class, it considers

the k nearest points to an unknown tuple and assigns the tuple to the majority of its

neighbors. Choosing the correct value for k greatly affects the accuracy of the classifier.

Choosing a value too large will encompass all of the training data and assign the tuple to

the class with more training examples. Choosing a value too small creates a problem as in

Figure 5. Clearly the data are linearly separable and the new point, represented as a red

diamond, falls within the class on the bottom of the figure. However if we choose a k

|| || () ()T
i i ix r x r x r� � � (1)

11

value of 1, this tuple would be classified as part of the wrong class. Increasing k to just 3

or 5 would solve the problem.

2.2.3 Naïve Bayes Bayesian Decision Theory, named after Thomas Bayes, is a

statistical method of classification that considers probability of a class given some set of

data. The decision rule is simple. Suppose a goal is to classify tuples into classes ω1 and

ω2. Let the probability of a tuple belonging to class ω1 be denoted by P(ω1). We assign

the tuple to class ω1 if P(ω1)>P(ω2), otherwise we assign it to ω2. With no given data and

assuming normal distribution, both probabilities are equal and a classifier with this rule

would always give the same classification resulting in a 50% accuracy rate. To increase

this, let’s use some feature measurement x. Thus P(x|ω) indicates the probability of

measurement x given that the tuple belongs to class ω. This means that the difference in

two classes is denoted as the absolute value of P(x1|ω1)-P(x2|ω2). Now given a

measurement x with unknown class ωj, we can calculate
(|) ()

(|)
()
j j

j

P x P
P x

P x
Z Z

Z
(2)

Figure 5. K-Nearest Neighbor Problem

12

based on the probability that the tuple both belongs to class ωj and has measurement x as

in Equation (3) (Duda et al., 2001).

The class j for which P(x|ωj)P(ωj) is maximized is the maximum posteriori

hypothesis. Since P(x) is constant for all classes, we must maximize P(x|ωj)P(ωj) from

Equation (2). If P(ωj) is not known, we assume all class priors are equal and we must

maximize P(x|ωj). Computing this would be extremely computationally expensive if x

became a vector X or set of measurements. However, assuming that each measurement is

independent of the others, we can simplify the calculations as in Equation (4). Finally, to

predict a class label for input vector X, the classifier chooses class ω1 if

or ω2 otherwise (Han et al., 2012).

This basic premise has been altered in various ways to produce more accurate

classifiers across multiple applications as the simple classifier can only create linear

frontiers (Duda and Hart, 1973). Domingos and Pazzani (1997) used the basic classifier

for text classification learning conjunctions and disjunctions. They found that violation of

the independence assumption has little effect on the accuracy of the classifier in textual

applications. Rennie et al. (2003) also used the classifier for text classification removing

assumptions at the cost of efficiency but gaining high accuracy rates surpassing a support

vector machine.

2.2.4 Neural Network Perhaps the most well established classifier is the neural

network. Neural networks have been used in classification since the 1950s (Rosenblatt,

(|) () (|) ()j j jP x P x P x PZ Z Z

(3)
1

(|) (|)
n

j k j
k

P x P xZ Z

 �

(4)

1 1 2 2(|) () (|) ()P X P P X PZ Z Z Z! (5)

13

1958). They are very powerful and can accurately classify linearly inseparable data

(Huang and Lippman, 1988). Neural networks resemble the biological networking of the

brain. A biological neuron is shown in Figure 6. Dendrites receive some signal which is

interpreted by the cell body and nucleus. A reaction signal is sent from the cell body

down the axon to the synapse where it is used as input to the dendrites of another

biological neuron.

Neural networks are made up of multiple artificial neurons that can be seen in

Figure 7. Input vector x represents input of the neuron and is processed using some

activation function F. The output of the neuron is then used as input to another artificial

Figure 6. Biological Neuron

Figure 7. Artificial Neuron

6 F
out=F(net)

x1

x2

x3

xn

14

neuron. A neural network can be made up of multiple layers. Figure 8 shows a basic

three-layer network.

Neurons are connected from one layer to another by way of some weight wij.

Before training, a weight matrix W is initialized with random numbers. The network

learns by iteratively updating the weight matrix to obtain output values closer to a desired

target vector y. Actual output is computed via Equation (6) where F(.) represents the

activation function, m is the number of inputs, wij is the weight for the given input, and xj

is the input value. The change in weight can be computed as

Input Output

Figure 8. Basic Three-Layer Neural Network

1

m

i ij j
j

y F w x

§ ·
 ¨ ¸

© ¹
¦ (6)

()ij i i jw y y xD c' �
(7)

15

using a linear activation function where α is some constant defining the learning rate of

the network and yi’ is the actual output. Weights are updated by Equation (8) where l is

the previous iteration for input j. These steps are repeated until the error reaches some

value εmin or the number of iterations reaches some maximum value Nmax. For data that

are linearly separable, a single layer network can learn and classify with 100% accuracy.

If data are not linearly separable more layers need to be used (Kulkarni, 2001).

This basic method of construction was one of the most powerful classifiers of its

time. Paul Werbos, in his PhD thesis, formulated a method of backpropagation through

the various layers of the network and updating weights for more accurate classification

(Werbos, 1974). His thesis was not concentrated on neural networks. Rumelhard and

McClelland (1986) applied backpropagation specifically to neural networks and found

much higher accuracy rates for nonlinearly separable data.

2.2.5 Support Vector Machine Support vector machine (SVM) is a method of

classification with an output resembling the neural network. They have been used to

solve classification problems in handwritten digits (Cortes and Vapnik, 1995),

multispectral images (Mitra et al., 2003), gene selection in cancerous tissues (Guyon et

al., 2002), among others. SVMs were first introduced by Boser et al. (1992); however the

high level mathematics to support its operation and theory can be traced back to literature

concerning hyperplane decision boundaries by Vapnik and Chervonekis (1968). A

support vector machine, at its most basic level as a two class linearly separable problem,

(1) ()ij ij ijw l w l w� �' (8)

16

plots the input training data and finds the optimal plane separating the two classes. The

plane is established as the decision boundary and any case put through the SVM is

classified based on what side of the decision boundary it falls. The distance from the

plane to the nearest training tuple is referred to as margin and SVM will maximize the

margin for both classes thus placing the plane equidistant from the closest training tuple

in each class. These training tuples are called support vectors.

Suppose the same two class problem is no longer linearly separable. The SVM

finds multiple planes that accurately separate the data. This becomes much more complex

and challenging as the data becomes less separable thus requiring more planes for

accurate separation. Consider a classification problem where data are plotted as in Figure

4. These data are clearly not linearly separable and require a great number of separating

planes. It is possible that, in such a case, every training tuple might be a support vector

requiring expensive calculation. SVMs tackle this obstacle by increasing the

Figure 9. SVM Hyperplane (Duda et al., 2001)

17

dimensionality of the training data so that a single hyperplane can accurately separate the

data. Simply, it creates a nonlinear decision boundary represented by multiple linear

segments. Although training time for SVMs can be extremely slow, they are highly

accurate and less prone to overfitting than other classification methods. They can be used

for continuous and discontinuous data and the support vectors themselves can provide a

good deal of knowledge for rule extraction problems (Han et al., 2012).

The method of finding a decision function for pattern vectors x of n dimensions

belonging to one of two classes A or B is as follows. If the training set consisting of p

examples xi with labels yi, as in Equation (9), the algorithm finds the decision function

D(x) and after training, unknown patterns can be classified according to Equation (10).

The linear function expressed in n dimensions (the feature space) can be

expressed as Equation (11). This is identical to the perceptron decision function of neural

networks where φi is a training input tuple, ωi is the weight vector of N attributes, and b is

some scalar or bias. In our two dimensional two class example, we now need to

maximize the margin in the feature space. Let us denote the distance from the decision

1 1 2 2 3 3

k k

k k

(,), (,), (,), ..., (,)

y =1 if x class A
y =-1 if x class B

p px y x y x y x y

where
�

® �¯ (9)

A if () > 0
B otherwise.

x D x
x
�
� (10)

1
() ()

N

i
D x x bL LZM

 �¦
(11)

18

boundary to pattern x as D(x)/||w||. Assuming our training data is linearly separable and a

margin M exists, then all training patterns will fulfill Equation (12).

The goal now is to find a weight vector w that maximizes the margin M. Imposing the

constraint M||w||=1 implies that Equation (12) minimizes ||w||2. The support vectors are

the training patterns that satisfy Equation (13).

Informally speaking, we search all patterns for the worst classified pattern to use as a

support vector. This can be computationally expensive for even small training sets (Duda

et al., 2001). Transforming the data into a space with higher dimensionality actually

creates a computationally less expensive problem. Call this space the dual space.

The transformation from the feature space to the dual space takes place by way of

the Lagrangian, a high level mathematical function. Its operation is beyond this paper’s

scope. Consider, though, an example. To map our 2-D input vector into a 4-D dual space,

we could use mappings ϕ1(X)=x1, ϕ2(X)=x2, ϕ3(X)=x1
2, and ϕ3(X)=x1x2. Increasing

dimensionality of the data results in a decision function in the form of Equation (14)

where ak is the weight vector and K is some kernel function (Boser et al., 1992).

Depending on the application of the SVM, K could be a polynomial of some degree, a

Gaussian radial basis function, or a sigmoid function. These kernels create decision

boundaries similar to that of neural networks. For example, a SVM with a sigmoid kernel

is equivalent to a two-layer neural network with no hidden layers. The decision

1
() (,)

p

k k
k

D x a K x x b

 �¦ (14)

()
|| ||

y D xk k Mw t (12)

() 1 , 1, 2, ..., k ky D x k p (13)

19

corresponds to a non-linear second order polynomial in the original feature space. Using

the Langrangian, Equation (14) can be rewritten as Equation (15)

where yi is the class label of the support vector xi, xT is a test tuple, ai are Lagrangian

multipliers, b0 is the parameter figured during training, and l is the number of support

vectors. Using Equation (15), we can classify test tuple xT by checking the sign of the

result. A negative sign indicates it falls below the margin while a positive sign indicates it

falls above it (Han et al., 2012). This indicates that the classifier is binary and only able to

handle two classes. Hastie and Tibshirani (1998) created multiple binary classifiers and

using a “max-wins” rule were able to implement binary classifiers to solve a multi-class

problem. Applying the “max-wins” concept to SVMs allows their use in multi-class

problems as well.

0
1

()
l

i i
i

d y a b

 �¦T T
ix x x

(15)

20

Chapter 3

Methodology

This chapter deals with tree classifiers and the Random Forest algorithm. Their

implementations are explained and reviewed with respect to multispectral image analysis.

3.1 Tree Classifiers

Another method of classification is a decision tree classifier. The first use of a tree

based decision system can be dated back to the 1960s where decision trees were first used

in artificial intelligence in 1966 (Li et al., 2001; Hunt et al., 1966). They are supervised

classifiers and are more efficient than single stage classifiers because decisions are made

at multiple levels. Tree classifiers are represented as acyclic graphs with a root node and

successive child nodes connected by directional branches. Decisions trees use this

structure to make decisions. Each node makes a decision based on an attribute value of

the data. Binary decision tree classifiers make only true/false decisions but it is possible

to make a more complex decision based on attribute values such as “yellow”, “red”, or

“green” if “color” is the attribute in question. In binary trees, a case traversing to the left

child is true while a case traversing to the right is false. Nodes in non-binary trees have

one child for each possible attribute value. A case traverses down the tree based upon its

data until reaching a leaf node at which point the tree can return a final decision or

classification for that case. For example, if a decision tree is to classify fruit, each node

may make a decision based on attributes of fruit such as color, shape, size, and taste. An

apple and a banana might have a sweet taste and a medium size but will differ in shape

and color so a node that makes a decision based on the color being red might send apples

21

to the left child and bananas to the right child. This allows a hierarchical decision scheme

that seemingly breaks the problem down into smaller simpler questions. Figure 10 shows

a basic decision tree for classifying fruit based on the features color, shape, size, and

taste. The output classes are watermelon, apple, grape, grapefruit, lemon, banana, and

cherry (Duda et al., 2001).

For such a small data set, how to build the tree might seem obvious. When more

features are introduced, however, the problem becomes much more complex. The

difficulty in utilizing decision trees lies in their construction. Many methods have been

proposed; however, the construction of the tree heavily relies on the tree's application.

One of the heuristic approaches to construct a tree is to utilize feature vectors and

recursively partition the data at each node, based on a well-chosen feature, to obtain the

highest level of information gain from node to node (Pal and Mather, 2001). Three major

questions become apparent in construction: How data should be split at each node, the

Figure 10. Decision Tree (Duda et al., 2001)

22

splitting-condition, and when splitting should stop and a final decision be returned, the

stopping-condition. It is desirable to construct an optimum tree so as to achieve the

highest possible accuracy with the fewest calculations (Kulkarni, 2001).

In constructing the tree, every test case is presented at the root node where the tree

starts. The goal is assigning to the node a set of features that splits the data or cases most

efficiently. As more nodes are created, data are further separated until every case

remaining at a node is of the same class. This indicates a terminal node. Appropriate

splitting conditions vary across applications but among popular methods are entropy,

gini, and twoing. Each method has its advantages and splits the data differently. The

expected information needed to classify an observation vector D is given by:

where ip is the non-zero probability that an arbitrary observation vector in D belongs to

class Ci and m is the number of possible classes. Entropy is a basic measure of amount of

information. This is the most widely-used splitting condition as it attempts to divide the

data as evenly as possible giving the most information gain from parent to child nodes. It

can be seen that if all cases belong to the same class, entropy(D) will be 0 because there

is no information gain. This indicates that the current node is terminal and a classification

decision has been reached (Han et al., 2012). Entropy splits the data as evenly as possible

from parent to child node. It is also possible to split data by extracting cases into the

1
() log()

m

i i
i

entropy D p p

 �¦ (16)

23

largest possible homogeneous group (Apte and Weiss, 1997). This is obtained similarly

by calculating the gini information gain given by:

Gini information gain can also be interpreted as the expected error rate if a

classification decision is selected randomly from the class distribution present at the

current node (Duda et al., 2001). Twoing makes use of a very different idea when

splitting. It gives strategic splits by, at the top of the tree, grouping together cases that are

largely similar in some characteristic. The bottom of the tree identifies individual classes.

When twoing, classes are grouped into two super classes containing an as-equal-as-

possible number of cases. The best split of the super classes is found and used as the split

at the current node. This results in a reduction of class possibilities among cases at each

child node and a reduction in impurity. For example denote all classes at a node by C

where C={1, …, J}. At each node, divide C into two classes, C1 and C2 where C-C1=C2.

The idea is to treat the problem as a two-class problem. For any given split s, at the node,

compute the change in impurity ∆i(s, D, C1). Take the split s*(C1) giving the highest

change in impurity and find the superclass C1* maximizing ∆i(s*(C1), D, C1). Use s*(C1)

as the split at the current node. The twoing criterion function is defined by:

Other splitting methods are noted by Duda et al. (2001) and Venables and Ribley (2002).

An ideal node is one that contains only records of the same class. In practice,

reaching this node may require an excessive number of costly splits. Splitting too much

2

1
() 1

m

i
i

gini D p

 �¦

2

1
() | (|) (|) |

4
][m

L R
L R

i

p ptwoing D p i D p i D

 �¦

(17)

(18)

24

results in nothing more than a lookup table and will perform quite poorly for noisy data

while splitting too little results in a small number of terminal nodes containing an even

probability distribution among classes increasing the error rate of the decision tree (Duda

et al., 2001). Often splitting will cease when a node is considered pure using one of the

previously mentioned impurity rules. Node depth, that is length from root to node t, can

also be used to identify leaf nodes. Similarly a stopping condition could also be satisfied

by thresholding the depth of children of node t. Another common method is to threshold

the number of existing cases at node t. If there are fewer cases than some threshold,

splitting does not occur (Ghose et al., 2010). The basic algorithm for generating a

decision tree is shown below (Han et al., 2012).

Generate_decision_tree(data_partition, attribute_list)
1) create a node N;
2) IF tuples in D are all of the same class, C, THEN
3) return N as a leaf node labeled with the class C;
4) IF attribute_list is empty THEN
5) return N as a leaf node labeled with the majority class in D;
6) apply attribute_selection_method(D, attribute_list) to find the best

splitting_criterion;
7) label node N with splitting_criterion;
8) IF splitting_attribute is discrete-valued AND multiway splits are allowed THEN
9) attribute_list Å attribute_list – splitting_attribute;
10) FOR EACH outcome j of splitting_criterion
11) let Dj be the set of data tuples in D satisfying outcome j;
12) IF Dj is empty THEN
13) attach a leaf labeled with the majority class in D to node N;
14) ELSE attach the node returned by Generate_decision_tree(Dj,

attribute_list) to node N;
15) END FOR
16) return N;
17) return N;

25

In the previous example the taste of fruit could be sweet or sour and can be

represented by a single bit of data. Fruit color might use more than a single bit but is a

discrete value. Measurements, however, are not discrete. When training a classifier with a

data set of continuous values, say in the range {-1,1}, the classifier learns only a certain

number of values in the range because it views the values as discrete. Making decisions

on attributes with continuous values is difficult and has been attempted in various ways.

In order to handle continuous values, an algorithm creates interval bins where feature

values can be organized in some well-chosen manner. If the training data contains v

values for some feature F, k intervals can be created where k=v. Now every v in F can be

organized into a bin and the bin number can be used as the value of F in operation

(Jearanaitanakij, 2005).

Splitting and stopping conditions directly impact the accuracy and error rates of

decision tree classifiers and their overall efficiency. Research has shown that growing a

tree to its fullest extent and then strategically reducing, or pruning, the tree results in

higher efficiency and accuracy rates for the final classifier than growing with strategic

stopping and splitting conditions. Many methods of pruning have been proposed such as

minimal-cost complexity pruning, reduced error pruning, pessimistic-error pruning and

others (Breiman et al., 1984; Quinlan, 1986). As the Random Forest algorithm does not

use pruned trees, this research does not explore effects of pruning on the classifier but

methods are worth mentioning and considering for future research.

Breiman et al. (1984) proposed one of the first methods of pruning called

minimal-cost complexity pruning. The idea is to measure the average error produced per

26

leaf and prune the leaves with the smallest errors. For each node, find some α as a

complexity parameter. Then at that node calculate the resubstitution error estimate

including a penalty of α for each terminal node of the subtree. Pruning nodes with the

smallest α and finding subtrees with the smallest error estimates will create a more

accurate classifier and prevent overfitting of the data. Reduced error pruning proposed by

Quinlan (1987) involves using a validation set, usually a subset of the training set

withheld from the initial training of the classifier. After the tree is grown, the validation

set is put down the tree and errors are calculated. For each non-terminal node, errors of

the entire subtree are summed and established as the error of that subtree. The error is

calculated again, but this time with the subtree converted to a single leaf with a majority

class label. In the overall tree, the node with the highest reduction in error is pruned. This

process continues until error no longer reduces.

Pessimistic pruning can be performed without a validation set. If S is a subtree of

the fully grown tree T, let L(S) be the number of leaves in S. Let K be the total number of

cases reaching S and J be the number of cases S misclassifies taking into account all

leaves of S. Since S is built with training cases, we assume that after unseen cases are

passed through S, it will misclassify J + L(S)/2 out of K cases. Now if we replace S by the

most accurate leaf in S and let E be the number of cases it misclassifies, we replace S

with that leaf when E + ½ is within one standard error of J + L(S)/2. This method adjusts

the error pessimistically assuming that more errors will be encountered with non-training

data. This method is faster than minimal cost pruning and reduced error pruning because

it evaluates each subtree in T only once.

27

3.2 ID3 Tree

A variation on the basic decision tree, the ID3 tree, has been found to be not only

efficient but extremely accurate for large datasets with many features. The idea behind

ID3 trees is that given a large training set, only a portion is used to grow a decision tree

often referred to as the bootstrap portion. The remaining training cases are then put down

the tree and classified. Misclassified results are used to grow the tree further and the

process repeats. When all remaining cases in the training set are accurately classified, the

tree is complete. Evidence suggests that this method will grow an accurate tree much

more quickly than growing a tree using the entire training set; however it should be noted

that this method cannot guarantee convergence on a final tree (Quinlan, 1986).

In Quinlan’s original ID3 representation, entropy was used as a splitting condition

and total node purity was used as a stopping condition. The information gain was found

by calculating the total amount of information needed for the tree and subtracting the

information needed by a tree with a root node N after being split with attribute A as in

Equation (20). Info(D) can be computed using one of Equations (16-18) depending on the

desired method of splitting. InfoA(D) is computed using Equation (19) where |Dj|/|D|

represents the weight of the jth split and v is the number of discrete values of attribute A.

The largest information gain using A determined the attribute on which to split at node N.

The process is recursive. Using this, Quinlan was able to build efficient and accurate trees

() () ()AGain A Info D Info D � (20)

1
() ()

v
j

A j
j

D
Info D Info D

D

 u¦
(19)

28

very quickly without using the entirety of large training sets reducing construction time

and cost.

Breiman (1996) introduced the idea of bagging which is short for “bootstrap

aggregating”. The idea is to use multiple versions of a predictor or classifier to make an

ultimate decision by taking a plurality vote among the versions. Twenty-five regression

trees constructed from bootstrap samples of the training set gave a median error decrease

of 40% from a single tree predictor over five datasets. In bagging, it has been proven that

as the number of predictors increases, accuracy also increases until a certain point at

which it drops off. Finding the optimal number of predictors to generate will yield the

highest accuracy.

3.3 Random Forest

3.3.1 Supervised Random Forests are grown using a collaboration of the bagging

and ID3 principles. Each tree in the forest is grown in the following manner. Given a

training set, a random subset is sampled (with replacement) and used to construct a tree

which resembles the ID3 idea. However, every case in this bootstrap sample is not used

to grow the tree. About one third of the bootstrap is left out and considered to be out-of-

bag (OOB) data. Also, not every feature is used to construct the tree. A random selection

of features is evaluated in each tree. The OOB data is used to get a classification error

rate as trees are added to the forest and to measure input variable (feature) importance.

After the forest is completed, a sample can be classified by taking a majority vote among

all trees in the forest resembling the bootstrap aggregating idea.

29

For example, in judicial court a robber may be on trial for stealing. The jury

members will classify the robber as guilty or innocent. They have been trained by a

random subset of every account of robbery in history. This subset contains all robberies

of which a single juror has heard or seen. Having been trained by other accounts of

robbery, each jury member will take different variables of the trial into consideration.

One member might take into account the value of the object stolen, the victim of the

robbery, and the robbers age while another jury member might classify the robber’s guilt

based on gender, his/her religion, and the robber’s age. At the end of the trial, all jury

members vote on the classification of the robber. In this limited example, the jury is the

forest, each member is a tree, the robber is the case to be classified, and the pieces of

evidence of the case are the features to be used for classification.

The error rates of the forest are measured by two different values. A quick

measurement can be made using the OOB data but, of course, a set of test cases can be

put through to forest to get an error rate as well. Given the same test cases, the error rate

depends on two calculations: correlation between any two trees in the forest and the

strength, or error rate, of each tree. Returning to our jury metaphor, if every member of

the jury took only the features of age, gender, and race into account for classification,

thus showing high-correlation between jurors, the jury would come to a correct

conclusion about half the time (randomly) as age, gender, and race have almost nothing

to do with theft. The goals are to establish a jury that considers every piece of evidence of

the trial and to select jurors who, on their own, are usually right about the final outcome.

If jury members are trees, how do we grow trees with low correlation to one another and

30

high in strength? The answer lies in how many variables each tree must consider. If we

have M input variables and select m of them at random to grow a tree. As m increases

correlation and individual tree accuracy also increases; thus an optimal m will give the

lowest error rate. Each tree will be grown by splitting on m variables; m stays constant

throughout the forest.

3.3.2 Unsupervised Random Forest can be run unsupervised; that is, without any

prior information about the input data. Many unsupervised classifiers plot each input case

in a multidimensional space based on feature values. If four features are evaluated in

classification, each case is plotted in a four dimensional feature space and clustered using

Euclidean distance. Random Forest works similarly unsupervised by calculating a

variable dissimilarity measure and plotting each case in a space according to dissimilarity

measure and clustering using Euclidean distance (Shi and Horvath, 2006).

Dissimilarity measures can be found in supervised learning by putting the training

data down each tree. If observations i and j fall in the same terminal node, their similarity

is increased by one. These values can be stored in matrix form. After the forest has been

constructed and similarities have been found, the similarity matrix is divided by the

number of trees. The dissimilarity is defined as:

where S is the similarity matrix. Using multidimensional scaling with dissimilarities as

inputs, it is possible to plot points in a Euclidean space where the distance between the

points is equal to the dissimilarities. The points can then be clustered.

1ij ijD S � (21)

31

3.3.3 Synthetic Data When classes are completely unknown, it is necessary to

make up or synthesize classes. By smartly creating synthetic data and adding it to the

original dataset, we then have two classes: original data, and synthetic data. We can solve

this two class problem using Random Forest and evaluate dissimilarity measures. Plotting

based off the dissimilarity measures results in data that is able to be clustered

appropriately.

 Using synthetic data to create an accurate classifier may seem inaccurate;

however Nonnemaker and Baird (2009) have proved that an accurate unsupervised

classifier can be created for character recognition using synthetic data. Similarly we can

use Random Forest. Synthetic data is created by sampling at random from the original

data. For example, given 100 original records, one would create 100 synthetic records.

The feature values are drawn from the reference distribution. If each record has 20

individual features, we could standardize some number of those features among all

synthetic records and see if those features give good indication of original versus

synthesized data. In our example of 100 original records and 100 synthetic records, let us

say we standardize the first feature and put all data through the forest. If the OOB error

rate is, say, greater than 40%, it implies that the standardized feature looks too much like

an independent feature and is not playing a significant enough roll in classifying the data.

We could try switching the standardized feature in the synthesized data or using two

features and reclassifying. Once an appropriate OOB error is reached, say 30% or less,

the standardized features are playing an important roll in classification and a dissimilarity

matrix can be constructed in the same way as mentioned above. Using the dissimilarities

32

as input, a multidimensional scale plot can be constructed and the data can be clustered

(Shi and Horvath, 2006), (Breiman and Cutler, 2007).

3.3.4 Variable Importance Random Forest can measure variable importance.

This is useful for data mining purposes and can assist in unsupervised classification. If

we change a single feature’s input value and reclassify the record, we can determine that

the feature’s importance is based on the new classification. This is done using OOB data.

Each variable m is randomly permuted and the permuted OOB cases are sent through the

forest again. Subtracting the number of correctly classified cases using permuted data

from the number of correctly classified cases using non-permuted data gives the

importance value of variable m. These values are different for each tree, but the average

of each value over all trees in the forest gives a raw importance score for each variable

(Breiman and Cutler, 2007). This research implemented Random Forest using a software

package in R and analyzes Landsat images. Implementation and results from the analysis

are in the next chapter.

3.4 Accuracy Assessment

After a classifier is trained, test data can be put through it and error rates can be

represented in an m x m matrix where m is the number of classes in the dataset called a

confusion matrix. Columns represent reference, or correct, classes and rows represent the

classifier decision. The upper left to bottom right diagonal indicates the number of correct

classifications where reference data and classifier agree. Table 2 is an example of an error

matrix, also referred to as a confusion matrix. This matrix is a starting point for many

statistical and descriptive techniques for assessing accuracy.

33

Table 2. Example of a Confusion Matrix

Overall accuracy, the most common statistic of accuracy, is calculated by dividing

the total number of correct classifications by the number of attempted classifications. For

years, this was the only method of reporting classifier accuracy. Congalton (1991)

remarked that other calculations of accuracy are pertinent to assess a classifiers accuracy.

Assessing the classifier’s accuracy with respect to a certain class can provide valuable

data for classifier improvement. This can be found in two different ways depending on

the expected result. The number of correctly classified records can be divided by the total

number of records in the corresponding row or the corresponding column of the

confusion matrix. Dividing by the column total, or the total number of actual classes,

gives producer’s accuracy of the class in question. Producer’s accuracy is the probability

of a record in a certain class being classified correctly – a measure of omission error.

Alternatively dividing by the row total gives user’s accuracy. This is the probability that a

record classified as a certain class is correct – commission error. User’s and producer’s

accuracies may seem similar but give very different statistics. In Table 2, Class 1’s

producer’s accuracy is 65/75=87% and its user’s accuracy is 65/115=57%. If a record is

classified as Class1, it has a 57% chance of being correctly classified, but all records that

belong to Class 1 have an 87% chance of being correctly classified.

 Class 1 Class 2 Class 3 Class 4 Row Total
Class 1 65 4 22 24 115
Class 2 6 81 5 8 100
Class 3 0 11 85 19 115
Class 4 4 7 3 90 104
Column Total 75 103 115 141 434

34

Most probabilities do not take into account random chance. Cohen (1960)

formulated KAPPA, a statistic that removes chance as a factor of probability. It considers

the rate of agreement between the actual class and the classifier’s decision. Since

agreements are on the diagonal, agreement is the same as overall accuracy but this factors

in chance. Class 1 represents 75/434=17.3% of the reference classes but 115/434=26.5%

of the classifier’s decisions. This indicates that 17.3% x 26.5%=4.6% of the decisions are

due to chance. Similarly Class 2 is 5.5%, Class 3 is 7%, and Class 4 is 7.8% chance.

KAPPA is defined by:

where n is the number of records, na is the number of agreements, and ns is the number of

agreements due to chance yielding 72.4% indicating that the classifier accuracy without

chance. A KAPPA analysis can also include another statistic, KHAT. KHAT is another

accuracy measure that assumes multinominal sampling and that variance is derived using

the Delta method. It is defined in Equation (23) where r is the number of rows in the

confusion matrix, xii is the number of observations in row i and column i, xi+ is the

marginal total of row i, x+i is the marginal total of column i and N is the total number of

records classified.

a s

s

n nK
n n
�

� (22)

1 1

2

1

(*)
ˆ

(*)

r r

ii i i
i i

r

i i
i

N x x x
K

N x x

� �

� �

�

�

¦ ¦

¦ (23)

35

Chapter 4

Implementation and Results

In this project we developed the code to simulate Random Forest. The simulation

was tested with three datasets: the well-known Iris dataset from the University of

California at Irving (Bache and Lichman, 2013), a Landsat scene of the Mississippi River

Bottomland, and a Landsat scene from Yellowstone National Park. The same datasets

were classified with a single ID3 tree, neural network, support vector machine, minimum

distance classifier, maximum likelihood classifier, Mahalanobis distance classifier, and

spectral angle and correlation classifiers. The results of all classifiers are provided in this

chapter.

4.1 Iris dataset

 The well-known Iris dataset was run through the forest. It consisted of 150

records and the dataset has four features: sepal length and width and petal length and

width. The dataset describes three classes of iris, each having 50 records. For this

analysis, the randomForest package of the Comprehensive R Archive Network (CRAN)

was utilized. The package is written by Liaw and Wiener (2002) and mimics the original

Fortran code by Brieman. Other classifiers were applied to the dataset as well. The code

developed is shown in Appendix A and Appendix B. The random forest classifier was

trained with half of the dataset and is shown in Figure 11 as run in unsupervised mode.

The ID3 tree generated is shown in Figure 12, and the neural network is shown in Figure

36

13. Random Forest was able to classify data with 97.3% accuracy with a KAPPA

coefficient of 0.96.

Figure 11. Iris Data Clustered using Random Forest

PL < 2.6

Setosa
PW<1.65

Virginicia Versicolor

Figure 12. Iris ID3 Tree

37

4.2 Remotely Sensed Data

4.2.1 Yellowstone Scene As Random Forest has not been used frequently in

remote sensing, the object of this research is to provide some of the first data for

assessing its effectiveness with respect to Landsat scenes. Two scenes were considered.

The first scene is of Yellowstone National Park acquired on 18 October 2014. The scene

is centered around 44 34 5.4761 N latitude and 110 27 36.1818 W longitude and the

image is 512 rows by 512 columns. The scene is shown as a color composite of bands 5,

6, and 7 in Figure 14. Forest, Water, Field, and Fire Damage were chosen as classes for

Figure 13. Iris Neural Network

swMeans

slMeans

plMeans

pwMeans

O2

O3

O3

1 1

38

this scene. We cross-referenced the satellite image with forest fire history from the

Yellowstone National Park website confirming that damage from fires named Alum,

Dewdrop, and Beach, occurring in 2013, 2012, and 2010 respectively, can all be seen in

the figure as deep blue (Wildland Fire Activity in the Park, 2014). It can also be seen that,

over time, the reflectance of the fire damage area changes slightly. When training

Random Forest for this scene, 200 samples were taken from the Alum fire and 200

samples from the Dewdrop and Beach fires combined to represent the Fire Damage class.

A Random Forest classifier was trained with 200 samples from the field, forest,

and water classes and 400 samples from the fire damage class. Bands 1 through 7 were

used and spectral signatures were found by taking the band means of each class and are

shown in Figure 15. The random forest classifier contained 500 trees. By plotting results

Figure 14. Yellowstone Scene Composite

39

from tests with different m values, six was found to be the optimum m value as shown in

Figure 17 and the forest was grown accordingly.

The R code used to train and grow the forest is shown in Appendix C. For

comparison, a neural network and support vector machine were created in R using CRAN

BAND7>=0.1039

BAND5 >= 0.0902

Water Forest

BAND2 >= 0.1157

Fire Field

Figure 16. Yellowstone ID3 Tree

Figure 15. Spectral Signatures - Yellowstone Scene

40

packages (Fritsch et al., 2012, Meyer et al., 2014). The R code used is shown in

Appendix D and Appendix E. A minimum distance, maximum likelihood, spectral

correlation, spectral angle, and Mahalanobis distance classifiers were all constructed

using ERDAS Imagine Version 14 software. A single ID3 tree was also constructed in R

to compare the bagged versus non-bagged classifier and is shown in Figure 16. To train

the classifiers, the composite image for the scene was displayed on a computer terminal

and 200 points from the fire damage class and 100 points from each other class were

manually chosen as training data. To assess the accuracy of the classifiers, points were

manually chosen from each class. Eighty points were chosen for the fire damage class

and forty points were chosen for other classes resulting in a test dataset containing 200

Figure 17. OOB Error as a Function of m

41

records. Each record was put through each classifier to calculate an error rate. The error

matrix for Random Forest is shown in Table 3.

Table 3. RF Confusion Matrix - Yellowstone Scene

 Field Fire Forest Water
Field 40 1 0 0

Fire 0 75 1 0

Forest 0 4 39 2

Water 0 0 0 38

(a) (b)

(d) (c)
Figure 18. Output Images – Yellowstone Scene. a) Random Forest, b) Minimum

Distance, c) Neural Network, d) Support Vector Machine

Water
Field
Forest
Fire

42

In this test, Random Forest was outperformed by many of the classifiers. The

classified output images of Random Forest and the top three classifiers, minimum

distance, support vector machine, and neural network are shown in Figure 18. Breiman

and Cutler (2007) note that Random forest is unexcelled in accuracy among current

algorithms. Since this was not shown in the Yellowstone scene, another scene was tested.

4.2.2 Mississippi Scene The second scene is of the Mississippi bottomland at 34

19 33.7518 N latitude and 90 45 27.0024 W longitude on 23 September 2014. The

Mississippi scene is shown similarly in bands 5, 6, and 7 in Figure 19. Training and test

data were acquired in the same manner as the Yellowstone scene. Classes of water, soil,

forest, and agriculture were chosen and spectral signatures are shown in Figure 20.

Figure 19. Mississippi Scene Composite

43

This analysis shows that Random Forest outperforms other classifiers. Details

about its performance are described in the confusion matrix in Table 4. The minimum

distance, spectral correlation, and spectral angle classifiers performed next best to

Random Forest respectively.

Table 4. RF Confusion Matrix - Mississippi Scene

 Forest Soil Vegetation Water
Forest 39 0 5 0

Soil 0 40 0 0

Vegetation 1 0 35 0

Water 0 0 0 40

Figure 20. Mississippi Spectral Signatures

44

Figure 21. Output Images - Mississippi Scene a) Random Forest, b) ID3 Tree,
c) Minimum Distance, d) Spectral Correlation

(a) (b) Water
Soil
Forest
Agriculture

(c) (d)

45

In the analysis of the Mississippi scene Random Forest greatly outperformed a

single ID3 tree. For reference, the generated ID3 tree is shown in Figure 22 and a

comparison between Random Forest and ID3 output images is shown in Figure 21 along

with the next top performing classifiers, minimum distance and spectral correlation.

Band 1 < 0.1392

Band 5 >= 0.1431 Forest

Band 5 < 0.2588 Water

Vegetation Soil

Figure 22. ID3 Tree - Mississippi Scene

46

Chapter 5

Conclusions and Future Work

As discussed by the research group at Woods Hole, the use of remote sensing is

much broader than land use classification as discussed in this research (Landgrebe, 2003).

As research progresses, new ideas are formulated and applied in hopes of improving the

process in some way either through efficiency, accuracy, or both. In this project we have

shown that the Random Forest algorithm falls under the accuracy category in remote

sensing land use classification. Efficiency was not considered in this thesis though could

be the primary topic in future research.

We implemented classifiers to compare the accuracy of Random Forest and

classified multispectral images with each. This is a new approach for analyzing remotely

sensed data as the potential of Random Forest in remote sensing has not yet been fully

explored. Classifiers implemented included a neural network, support vector machine,

ID3 tree, and Random Forest. We considered three datasets. The UCI Iris dataset was

used for initial comparison. After positive results, shown in Table 5, two scenes acquired

with Landsat 8 were analyzed – Yellowstone National Park and Mississippi River

Bottomland. The scenes were each 512 by 512 pixels and we considered 7 spectral bands.

Training and test areas were selected manually using graphics on a computer terminal

and the results are documented in Table 6 and Table 7. Typically the field of remote

sensing uses other classifiers like those built into ERDAS 2014. For this reason, we also

included results from minimum distance, Mahalanobis distance, maximum likelihood,

spectral angle, and spectral correlation classifiers for both Landsat scene analyses.

47

Table 5. Classifier Statistics – Iris dataset

Table 6. Classifier Statistics – Yellowstone Scene

Table 7. Classifier Statistics – Mississippi Scene

CLASSIFIER ACCURACY KAPPA
Random Forest 97.3% 0.96

ID3 Tree 96% 0.94
Neural Network 76.7% 0.65

Support Vector Machine 97.3% 0.96

CLASSIFIER ACCURACY KAPPA
Random Forest 96% 0.9448

ID3 Tree 92.5% 0.8953
Neural Network 98.5% 0.9792

Support Vector Machine 99% 0.9861
Spectral Angle 98.5% 0.9792

Spectral Correlation 97.5% 0.9655
Minimum Distance 100% 1.0

Mahalanobis Distance 91.5% 0.8813
Maximum Likelihood 92.5% 0.8954

CLASSIFIER ACCURACY KAPPA
Random Rorest 96.25% 0.95

ID3 Tree 81.25% 0.75
Neural Network 76.88% 0.6917

Support Vector Machine 86.88% 0.825
Spectral Angle 92.5% 0.9

Spectral Correlation 93.13% 0.9083
Minimum Distance 95% 0.9333

Mahalanobis Distance 83.13% 0.7750
Maximum Likelihood 83.13% 0.7750

48

We found that Random Forest did well in two Landsat scenes but did not

outperform all other classifiers in both. The random forest generated for the Mississippi

scene outperformed all other classifiers while the random forest generated for the

Yellowstone scene did not. The two scenes have very different terrain. The Mississippi

Bottomland area is relatively flat but the Yellowstone National Park area is quite

mountainous. As the mountains cast shadows, intensity of pixels of the same class will

vary based on the amount light that physically reaches that area. Thus the random forest

for the Yellowstone scene was trained with areas in light and shadows making the

training data non-homogeneous. This has created errors in the confusion matrix and

supports Brieman’s noted importance on training with homogeneous data. The random

forest for the Mississippi scene was trained with homogeneous data, or no shadows, and

results in higher accuracy rates among all classes.

Data mining is a continuously growing field in an age of technology and digital

transactional trails. The need for mining of data is increasing and the necessity of

efficiency is always present. Random Forest can be applied to many data mining

classification applications. It handles large numbers of features very well and, given

homogeneous training data, has been shown to outperform many classifiers. Our

implementation of Random Forest in R contained a relatively small number of training

cases. Consideration must be made if the number of cases and data required exceeds the

capacity of memory. Although tree structures are easily saved, a large implementation of

Random Forest may require further development to efficiently handle the memory. Other

potential future research includes rule extraction. Knowledge extraction from trees has

49

been researched in detail. Extracting rules from each tree in a random forest is possible

based off single tree knowledge extraction. Analysis of rules from every tree to obtain

overall rules for the entire forest remains as potential area of research.

50

References

C. Apté and S. Weiss, “Data Mining with Decision Trees and Decision Rules,” Futur.

Gener. Comput. Syst., vol. 13, no. 2–3, pp. 197–210, Nov. 1997.

K. Bache and M. Lichman, “{UCI} Machine Learning Repository.” 2013.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for Optimal Margin

Classifiers,” in Proceedings of the fifth annual workshop on Computational

learning theory - COLT ’92, 1992, pp. 144–152.

L. Breiman, “Bagging Predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug. 1996.

L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.

L. Breiman and A. Cutler, “Random Forests,” 2007. [Online]. Available:

https://www.stat.berkeley.edu/~breiman/RandomForests/.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression

Trees. Belmont, CA: Wadsworth International Group, 1984.

J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ. Psychol. Meas., vol.

20, no. 1, pp. 37–46, 1960.

R. G. Congalton, “A Review of Assessing the Accuracy of Classifications of Remotely

Sensed Data,” Remote Sens. Environ., vol. 37, no. 1, pp. 35–46, Jul. 1991.

C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp.

273–297, Sep. 1995.

P. Domingos and M. Pazzani, “On the Optimality of the Simple Bayesian Classifier

under Zero-One Loss,” Mach. Learn., vol. 29, no. 2–3, pp. 103–130, 1997.

51

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, vol. 7. 1973, p.

482.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York, NY:

John Wiley & Sons, Inc., 2001, pp. 394–434.

Stefan Fritsch, Frauke Guenther and following earlier work by Marc Suling (2012).

neuralnet: Training of neural networks. R package version 1.32. http://CRAN.R-

project.org/package=neuralnet.

M. Ghose, R. Pradhan, and S. Ghose, “Decision Tree Classification of Remotely Sensed

Satellite Data using Spectral Separability Matrix,” Int. J. Adv. Comput. Sci. Appl.,

vol. 1, no. 5, pp. 93–101, 2010.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for Cancer

Classification using Support Vector Machines,” Mach. Learn., vol. 46, no. 1–3,

pp. 389–422, 2002.

J. Han, M. Kamber, and J. Pei, Data Mining: concepts and techniques, 3rd ed. Waltham,

MA: Morgan Kaufmann, 2012.

T. Hastie and R. Tibshirani, “Classification by Pairwise Coupling,” Ann. Stat., vol. 26,

no. 2, pp. 451–471, Apr. 1998.

R. J. Hathaway and J. C. Bezdek, “Recent Convergence Results for the Fuzzy C-Means

Clustering Algorithms,” J. Classif., vol. 5, no. 2, pp. 237–247, Sep. 1988.

W. Y. Huang and R. P. Lippmann, “Neural Net and Traditional Classifiers,” in Neural

Information Processing Systems, 1988, pp. 387–396.

E. B. Hunt, J. Marin, and P. J. Stone, Experiments in Induction. New York, NY:

Academic Press, 1966.

52

K. Jearanaitanakij, “Classifying Continuous Data Set by ID3 Algorithm,” in 2005 5th

International Conference on Information Communications & Signal Processing,

2005, pp. 1048–1051.

A. D. Kulkarni, Computer Vision and Fuzzy Neural Systems. Upper Saddle River, NJ:

Prentice Hall, 2001.

D. A. Landgrebe, “Multispectral Land Sensing: Where from, where to?,” IEEE Trans.

Geosci. Remote Sens., vol. 43, no. 3, pp. 414–421, 2005.

D. A. Landgrebe, Signal Theory Methods in Multispctral Remote Sensing. West

Lafayette, IN: Wiley, 2003.

R. H. Laprade, “Split-and-Merge Segmentation of Aerial Photographs,” Comput. Vision,

Graph. Image Process., vol. 44, no. 1, pp. 77–86, Oct. 1988.

X.-B. Li, J. Sweigart, J. Teng, J. Donohue, and L. Thombs, “A Dynamic Programming

Based Pruning Method for Decision Trees,” INFORMS J. Comput., vol. 13, no. 4,

pp. 332–344, Nov. 2001.

A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News

2(3), 18--22.

H. Lin and A. N. Venetsanopoulos, “A Weighted Minimum Distance Classifier for

Pattern Recognition,” in Proceedings of Canadian Conference on Electrical and

Computer Engineering, 1993, pp. 904–907.

L. Luo, X. Zhang, H. Peng, W. Lv, and Y. Zhang, “A New Pruning Method for Decision

Tree Based on Structural Risk of Leaf Node,” Neural Comput. Appl., vol. 22, no.

S1, pp. 17–26, Jul. 2012.

53

Mahesh Pal and P. M. Mather, “Decision Tree Based Classification of Remotely Sensed

Data,” 22nd Asian Conf. Remote Sens., 2001.

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel and Friedrich

Leisch (2014). e1071: Misc Functions of the Department of Statistics (e1071), TU

Wien. R package version 1.6-4. http://CRAN.R-project.org/package=e1071P.

Mitra, B. Uma Shankar, and S. K. Pal, “Segmentation of Multispectral Remote Sensing

Images Using Active Support Vector Machines,” Pattern Recognit. Lett., vol. 25,

no. 9, pp. 1067–1074, Jul. 2004.

J. Nonnemaker and H. S. Baird, “Using Synthetic Data Safely in Classification,” in

IS&T/SPIE Electronic Imaging, 2009, p. 72470G–72470G–11.

S. K. Pal, R. K. De, and J. Basak, “Unsupervised Feature Evaluation: a Neuro-Fuzzy

Approach.,” IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 366–76, Jan. 2000.

J. R. Quinlan, “Induction of Decision Trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106,

Mar. 1986.

J. R. Quinlan, “Simplifying Decision Trees,” Int. J. Man. Mach. Stud., vol. 27, no. 3, pp.

221–234, Sep. 1987.

J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the Poor Assumptions

of Naive Bayes Text Classifiers,” Proc. Twent. Int. Conf. Mach. Learn., vol. 20,

no. 1973, pp. 616–623, 2003.

J. A. Richards, “Analysis of Remotely Sensed Data: The Formative Decades and the

Future,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 422–432, 2005.

F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.

54

D. E. Rumelhart, J. L. McClelland, and R. J. Williams, Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, vol. 1. Cambridge, MA: The

MIT Press, 1986, pp. 318–362.

S. Senda, M. Minoh, and I. Katsuo, “A Fast Algorithm for the Minimum Distance

Classifier and its Application to Kanji Character Recognition,” in Proceedings of

3rd International Conference on Document Analysis and Recognition, 1995, vol.

1, pp. 283–286.

T. Shi and S. Horvath, “Unsupervised Learning With Random Forest Predictors,”

Journal of Computational and Graphical Statistics, vol. 15. pp. 118–138, 2006.

V. N. Vapnik and A. Y. Chervonekis, “Algorithms with Complete Memory and

Recurrent Algorithms in the Problem of Learning Pattern Recognition,” Autom.

Remote Control, vol. 29, no. 4, pp. 606–616, 1968.

V. N. Vapnik and A. Y. Chervonekis, “On the Uniform Convergence of Relative

Frequencies of Event to Their Probabilities,” Theory Probab. its Appl., vol. 16,

no. 2, pp. 264–280, 1971.

W. N. Venables and B. D. Ripley, “Modern Applied Statistics with S Fourth edition by,”

World, vol. 53, p. 86, 2002.

P. J. Werbos, The Roots of Backpropagation: from Ordered Derivatives to Neural

Networks and Political Forecasting. Wiley, 1994.

G. G. Wilkinson, “Results and Implications of a Study of Fifteen Years of Satellite Image

Classification Experiments,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3,

pp. 433–440, 2005.

J. Zhao, B. Thornberg, Y. Shi, and A. Hashemi, “Color Segmentation on FPGA Using

Minimum Distance Classifier for Automatic Road Sign Detection,” in 2012 IEEE

55

International Conference on Imaging Systems and Techniques Proceedings, 2012,

pp. 516–521.

“Wildland Fire Activity in the Park,” 2014. [Online]. Available:

http://www.nps.gov/yell/parkmgmt/firemanagement.htm.

56

Appendix A. Neural Network for Iris Data in R

> irisData <- read.csv("Iris_Data.csv")
> slMeans<-

c(mean(irisData[1:50,3]),mean(irisData[51:100,3]),mean(iris
Data[101:150,3]))

> swMeans<-
c(mean(irisData[1:50,4]),mean(irisData[51:100,4]),mean(iris
Data[101:150,4]))

> plMeans<-
c(mean(irisData[1:50,5]),mean(irisData[51:100,5]),mean(iris
Data[101:150,5]))

> pwMean<-
c(mean(irisData[1:50,6]),mean(irisData[51:100,6]),mean(iris
Data[101:150,6]))

> correctoutput <- rbind(c(0,0,1),c(0,1,1),c(1,0,0))
> nnData <- cbind(slMeans, swMeans,plMeans,pwMean,correctoutput)
> colnames(nnData)<-

c("slMeans","swMeans","plMeans","pwMean","O1","O2","O3")
> formula <- O1+O2+O3~slMeans+swMeans+plMeans+pwMean

> library(neuralnet)
> net <- neuralnet(formula, nnData, hidden=2)
> initialoutput <- compute(net,irisData[,3:6])
> picks<-(c(3,2,1))[apply(initialoutput$net.result,1,which.max)]

> results<-

data.frame(cbind(Correct=irisData[,2],Prediction=picks))
> results[results==1]<-"Setosa"
> results[results==2]<-"Versicolor"
> results[results==3]<-"Virginicia"
> library(caret)
> confusionMatrix(results$Prediction,results$Correct)

57

Appendix B. Iris Data Classifiers

> #IMPORT NEEDED LIBRARIES
> library(randomForest)
> library(caret)

> #IMPORT IRIS DATA FROM CSV FILE
> irisData <- read.csv("Iris_Data.csv")

> #USE HALF OF EACH CLASS FOR BUILDING THE CLASSIFIER
> trainingData<-

rbind(irisData[1:25,],irisData[51:75,],irisData[101:125,])

> #SETUP AND CONSTRUCT THE RANDOM FOREST WITH 50 TREES
> formula <- Species~SL+SW+PL+PW
> rf<-randomForest(formula, trainingData,mtry=4, ntree=50)

> #PUT ALL DATA THROUGH THE FOREST AND OBTAIN CONFUSION MATRIX
> testResults <- predict(rf,irisData)
> results <- data.frame(Correct=irisData$Species,

Prediction=testResults)
> confusionMatrix(results$Prediction, results$Correct)

> #USE THE SAME DATA TO BUILD SVM AND GIVE RESULTS
> mySVM<-svm(formula, trainingData)
> testResults <- predict(mySVM,irisData)
> results <- data.frame(Correct=irisData$Species,

Prediction=testResults)
> confusionMatrix(results$Prediction, results$Correct)

> #USE THE SAME DATA TO BUILD AN ID3 TREE
> library(party)
> tree<-ctree(formula, trainingData)
> testResults <- predict(tree,irisData)
> results <- data.frame(Correct=irisData$Species,

Prediction=testResults)
> confusionMatrix(results$Prediction, results$Correct)

58

Appendix C. Random Forest and ID3 for Yellowstone Scene in R

#IMPORT LIBRARIES NEEDED FOR RANDOM FOREST AND
#CONFUSION MATRIX
> library(caret)
> library(randomForest)

#IMPORT TRAINING DATA AND REFERENCE DATA
#AND CONSTRUCT THE FOREST
> setwd("C:/Users/barrettlowe/Dropbox/ThesisFiles/Yellowstone")
> trainingData<-read.csv("200Samples.csv")
> x<-trainingData[,1:7]
> y<-trainingData[,9]
> rf<-randomForest(x,y, mtry=6, ntree=500)

#IMPORT TEST DATA AND
#PUT IT THROUGH THE FOREST
> testData <- read.csv("HardBandValues.csv")
> testResults <- predict(rf,testData[,1:7])
> results <- data.frame(correct =
+ testData[,9],prediction=testResults)

#GENERATE CONFUSION MATRIX
> confusionMatrix(results$prediction,results$correct)

#Read pgm files in to generate fully classified image
> library(pixmap)
> band1<-read.pnm("Band1.pgm")
> band2<-read.pnm("Band2.pgm")
> band3<-read.pnm("Band3.pgm")
> band4<-read.pnm("Band4.pgm")
> band5<-read.pnm("Band5.pgm")
> band6<-read.pnm("Band6.pgm")
> band7<-read.pnm("Band7.pgm")

> band1<-getChannels(band1)
> band2<-getChannels(band2)
> band3<-getChannels(band3)
> band4<-getChannels(band4)
> band5<-getChannels(band5)
> band6<-getChannels(band6)
> band7<-getChannels(band7)

#Function to extract band values for a given point
> bandValues <- function(xc,yc) {
> + c(band1[xc,yc], band2[xc,yc], band3[xc,yc], band4[xc,yc],

band5[xc,yc], band6[xc,yc], band7[xc,yc])
> + }

59

Appendix C. (Continued)

> final<-array(,c(512,512))

> for (ix in 1:512){
> + for (jy in 1:512) {
> + val<-bandValues(ix,jy)
> + cl<-predict(rf,val)
> + final[ix,jy]<-cl
> + }
> + }

> classifiedImage<-pixmapGrey(data=final)
> write.pnm(classifiedImage, file="RRandomForestClassified.pgm",

forceplain=TRUE, type="pgm",maxval=255)

> #GENERATE ID3 TREE TREE
> formula<-CLASS ~ BAND1+BAND2+BAND3+BAND4+BAND5+BAND6+BAND7
> tree<-rpart(formula,trainingData)

> testData <- read.csv("HardBandValues.csv")
> testResults <- predict(tree,testData[,1:7])
> picks <- (c(1,2,3,4))[apply(testResults,1,which.max)]
> picks[picks==1]<-"Field"
> picks[picks==2]<-"Fire"
> picks[picks==3]<-"Forest"
> picks[picks==4]<-"Water"
> results <- data.frame(correct = testData[,8], prediction=picks)
> confusionMatrix(results$prediction,results$correct)
> plot(tree)

60

Appendix D. SVM for Yellowstone Scene in R

> library(e1071)
> library(caret)

> trainingData<-read.csv("200Samples.csv")
> x<-trainingData[,1:7]
> y<-trainingData[,9]
> mySVM<-svm(x,y)

> testData <- read.csv("HardBandValues.csv")
> testResults <- predict(mySVM,testData[,1:7])
> results <- data.frame(correct = testData[,9],

prediction=testResults)
> confusionMatrix(results$prediction,results$correct)
> #Function to extract band values for a given point
> bandValues <- function(xc,yc) {
> + c(band1[xc,yc], band2[xc,yc], band3[xc,yc], band4[xc,yc],

band5[xc,yc], band6[xc,yc], band7[xc,yc])
> + }

> final<-array(,c(512,512))

> for (ix in 1:512){
> + for (jy in 1:512) {
> + val<-bandValues(ix,jy)
> + cl<-predict(mySVM,rbind(val))
> + final[ix,jy]<-cl
> + }
> + }

> classifiedImage<-pixmapGrey(data=final)
> write.pnm(classifiedImage, file="SVMClassified.pgm",

forceplain=TRUE, type="pgm",maxval=255)

61

Appendix E. Neural Network for Yellowstone Scene in R

> library(neuralnet)
> library(caret)

#training
> ysData<- read.csv("MeanValues200.csv",header=TRUE)
> output<-c(1,0,0,0)
> output<-rbind(output,c(0,1,0,0))
> output<-rbind(output,c(0,0,1,0))
> output<-rbind(output,c(0,0,0,1))
> colnames(output)<-c("Field","Fire","Forest","Water")
> output.names<-colnames(output)
> input.names<-colnames(ysData[,1:7])
> ysData<-cbind(ysData[,1:7],output)
> formula<-Field+Fire+Forest+Water ~

BAND1+BAND2+BAND3+BAND4+BAND5+BAND6+BAND7
> net <- neuralnet(formula, ysData, hidden=2)

#testing
> ysTest<- read.csv("HardBandValues.csv")
> ysResults <- compute(net,ysTest[,1:7])
> picks<-(c(1,2,3,4))[apply(ysResults$net.result,1,which.max)]
> ysResults<-

data.frame(cbind(Correct=ysTest[,9],Prediction=picks))
> confusionMatrix(ysResults$Prediction,ysResults$Correct)

#Read pgm files in to generate fully classified image
> library(pixmap)
> band1<-read.pnm("BAND1.pgm")
> band2<-read.pnm("BAND2.pgm")
> band3<-read.pnm("BAND3.pgm")
> band4<-read.pnm("BAND4.pgm")
> band5<-read.pnm("BAND5.pgm")
> band6<-read.pnm("BAND6.pgm")
> band7<-read.pnm("BAND7.pgm")

> band1<-getChannels(band1)
> band2<-getChannels(band2)
> band3<-getChannels(band3)
> band4<-getChannels(band4)
> band5<-getChannels(band5)
> band6<-getChannels(band6)
> band7<-getChannels(band7)

62

Appendix E. (Continued)

#Function to extract band values for a given point
> bandValues <- function(xc,yc) {
> + c(band1[xc,yc], band2[xc,yc], band3[xc,yc], band4[xc,yc],

band5[xc,yc], band6[xc,yc], band7[xc,yc])
> + }

> final<-array(,c(512,512))

> + for (ix in 1:512){
> + for (jy in 1:512) {
> + #use rbind to create a multi dimensional array as the network

expects
> + val<-rbind(bandValues(ix,jy))
> + cl<-compute(net,val)
> + cl<-(c(1,2,3,4))[apply(cl$net.result,1,which.max)]
> + final[ix,jy]<-cl
> + }
> + }

> classifiedImage<-pixmapGrey(data=final)
> write.pnm(classifiedImage, file="NNetClassified.pgm",
> forceplain=TRUE, type="pgm",maxval=255)

63

Appendix F. Processing and Classification in ERDAS 2014

1. Open .img file in ERDAS

2. Select Home > Inquire > Inquire Box

3. Use Inquire Box to select subset – do not close the inquire box window

4. Select Raster > Subset & Chip > Create Subset Image

Figure 23. ERDAS Inquire Box

Figure 24. ERDAS Subset Image

64

5. In the subset window select an output file location, click From Inquire Box,

specify layers desired in subset image and click OK. Wait for process to complete

6. Close the original .img file. The new .img file may now be opened for processing

7. To begin supervised classification select Supervised > Signature Editor

8. Select Raster > Drawing > Insert Geometry and select a desired tool. Use the tool

to select training points for one class

Figure 25. ERDAS Subset Image Window

65

9. In the Signature Editor window, select Create New Signature(s) from AOI and

specify a class name

10. Repeat for all other classes, select desired color for each class, and save signature

file

11. Select Raster > Supervised > Supervised Classification

Figure 27. ERDAS Selecting Test Points

Figure 26. ERDAS Signature Editor

66

12. In the Supervised Classification window, choose the saved signature file, select a

name and destination for the classified file, choose a parametric rule

(classification technique) and select OK

13. Open the classified .img file

14. Select Raster > Supervised > Accuracy Assessment and open the classified .img

file from the Accuracy Assessment window

15. Under Edit select whether you want to select random points for testing or import

custom points from a .txt file

16. Using the unclassified file, manually determine the reference class for each point

17. Select Report > Accuracy Report to view the accuracy report, error matrix, and

KAPPA statistics. These may then be saved to a file

Figure 28. ERDAS Accuracy Assessment

	University of Texas at Tyler
	Scholar Works at UT Tyler
	Spring 5-1-2015

	The Random Forest Algorithm with Application to Multispectral Image Analysis
	Barrett E. Lowe
	Recommended Citation

	tmp.1459952754.pdf.OE4mi

