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Abstract 

 

 

SELF-CONFIGURING NEURAL NETWORKS 

 

JUSTIN M. ANDERSON 

 

Thesis Chair: Arun Kulkarni, Ph.D.  

 

The University of Texas at Tyler 

December 2012 

 

Neural Networks are an effective means of classifying data; however they are usually 

purpose built applications that are created for classifying a single data set.  Programming 

a neural network can be a time consuming and sometimes error prone process. To 

alleviate both of these problems a self-configuring multilayer perceptron model was used 

to create and train neural networks. This application can take any training data set that is 

linearly or nonlinearly separable as input, then create the needed neural network structure 

and train itself, thus saving programmers’ time and effort. The software has been tested 

with several data sets including sample data sets, the Iris data set, and the MARSI data 

set. The results indicate that once the network is created and trained, it can be used to 

effectively classify data from many data sets. 
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Chapter 1 

Introduction 

Neural networks are primarily purpose built applications that are used to classify 

data from a specific data set.  Programming a neural network can be a time consuming 

and sometimes error prone process.  A self-configuring neural network can take any data 

set that is separable as input and create the needed neural network configuration, thus 

saving programmers’ time and effort. The only requirements are that the data set must be 

separable and supports supervised learning. 

1.1 Construction 

Once a training data set has been specified, and the application is instructed to 

train, a fully connected two layer neural network is created.  

 

Figure 1. Two Layer Neural Network 
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In L1 an artificial neuron (McCulloch & Pitts, 1943), or node, for each input in 

the data set is created with the addition of a small randomized weight on each input. 

Weights on the inputs help the neural network more easily adapt to data sets that contain 

non-normalized values. 

The second layer contains a node for each output class. Each output node is fully 

connected to every input node using a small random weight.  Once data is feed into the 

network and has propagated to the output nodes, then the node with the highest value is 

considered the winner. 

1.2 Learning Algorithm 

The back-propagation learning algorithm (Rumelhart, Hinton, & Williams, 1986) 

is described below (Kulkarni, 2001). 

Step 1: Initialize the weights. The weights between layers L1L2 and L2L3 are represented 

by elements of matrices P and Q. These weights are initialized to small random values so 

that the network is not saturated by large values of weights.  Let n and m represent the 

number of units in layers L1, and L2, respectively. Let l represent units in L3. In this case l 

is equal to 1. 
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Step 3: Calculate change in weights.  In order to do this the output vector o is compared 

with the desired output vector or the target vector d, and the error between the two 

vectors is obtained.  The error is then propagated backward to obtain the change in 

weights ijqΔ  that is used to update the weights. ijqΔ  for weights between layers L2L3 is 

given by:  

ij
ij

Eq
q

α ∂
Δ = −

∂    (3) 

Equation (3) can be reduced to   

ij i jq oαδΔ =       (4)  

where α  is a training rate coefficient (typically 0.01 to 1.0), oj is the output of neuron j 

in layer L2, and iδ  is given by:   

( ) ( )1i i i i id o o oδ = − −  (5)    

In Equation (5), io  represents the actual output of neuron i in layer L3, and id  represents 

the target or the desired output at neuron i in layer L3.  The back-propagation algorithm 

trains the hidden layers by propagating the output error back through layer by layer, 

adjusting weights at each layer.  The change in weights between layers L1L2 can be 

obtained as 

ij j Hip oβ δΔ = −  (6) 

where β  is a training rate coefficient for layer L2 (typically 0.01 to 1.0), oj is the output 

of neuron j in layer L1, and  
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( )
1

1
m

Hi i i k ik
k

o o qδ δ
=

= − ∑     (7) 

In Equation (7), io  is the output of neuron i in layer L2, and the summation term  

represents the weighted sum of all kδ values corresponding to neurons in layer L3 that are 

obtained by using Equation (5)  

Step 4: Update the weights. 

( ) ( )
( ) ( )

1

1
ij ij ij

ij ij ij

q k q k q

p k p k p

+ = +Δ

+ = +Δ
    (8) 

Where ( ) ( )1 and 1ij ijq k p k+ +  represent values of the weights at iteration 1k +  (after 

adjustment), and  ( ) ( )ij ijq k and p k  represent the values of the weights at iteration k.  

Step 5: Obtain the mean squared error ε  for neurons in layer L3. 

( )2

1

1
2

n

i i
i

o dε
=

= −∑      (9) 

If the error ε  is greater than some minimum minε , then repeat steps 2 through 4; otherwise 

terminate the training process. The learning algorithm for the first model is same as the 

second model.  However, the first model does not have the hidden layer; the change in 

weights is given by Equation (5).  

1.3 Training 

Weights are updated until either a solution is found, or the neural network adds an 

extra layer of neurons.  If a network is created that yields less than the allowable error 

then the neural network configuration is saved and success is reported to the user.  
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1.4 Growth 

If the training algorithm processes through the entire training set for the specified 

iterations and did not find a neural network that produces less than the configured 

allowable error, then an extra layer of neurons is added, and all the weights are 

randomized. At this point the system would run through the training process again until 

either a solution is found, or the neural network adds an extra layer or neurons. 

1.5 Live Data 

Once a neural network has been created and trained it can be used to process live 

data. Once the data is processed it is saved to a separate file.                  
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Chapter 2 

Methodology 

Program Specification 

In order to use the Self-Configuring Neural Network, several files must be 

prepared first. 

2.1 Configuration File. The configuration file, config.xml, is an XML file that 

contains many needed parameters for the Self-Configuring Neural Network. The values 

stored in this file are loaded into memory when the application is first started. 

The proper format of the config.xml file: 
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Figure 3. Config.xml File 

Table 1 - Parameter Descriptions 

Parameter Description 

DataFile String containing the default name of the data file 
containing the data set for processing. 

NNDataFile String containing the default name of the XML file 
that will store the neural network’s specification. 

OutputFile 
String containing the name of the XML file that will 
store the neural network’s specification when using 
the LoopTrain command. 

FileType String specifying the file type of the data to be 
loaded. Acceptable values are EXCEL and XML. 

Training-TrainingFile  String containing the default name of the data file 
containing the training data set. 

Training-TestingFile  String containing the default name of the data file 
containing the testing data set. 

Training-AllowableErrorPercent 
Integer between 0 and 100 containing the default 
value of the maximum allowable error when 
training the neural network. 

Training-Iterations  

Integer containing the default value of the number 
of iterations in which the application will attempt to 
train the neural network so that the error percentage 
is less than the Training-AllowableErrorPercent 
before an additional layer is added. 

Training-OverTrainingIterations  
Integer that if greater than 0 causes the neural 
network to over train a for the given number of 
iterations after standard training has completed.  

Training-TrainingStep Decimal that specifies the training rate coefficient. 
Training-
TrainingUsingDescendingInterval 

Boolean that specifies if training will be done with a 
descending training rate. 

Training-DescendingInterval  
Decimal that will be multiplied by the TrainingStep 
value to calculate the new training rate coefficient at 
various intervals during training. 

Testing-AllowableErrorPercent  
Integer between 0 and 100 used during Loop 
Training that contains the value of the maximum 
allowable error when testing the neural network. 

Testing-MaxLoopTestingTime  

Integer that specifies the length of time in minutes 
that Loop Training will attempt to create a neural 
network which has a lower testing error percentage 
than the Testing-AllowableErrorPercent value. 
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2.2 Training Data Set File. The training data set file contains all the given inputs 

as well as the desired output for each data item. For ease of use the ability to use either an 

XML file or an XLSX file to house the training data has been included. The file name for 

the training set is specified in the config.xml file.  

The format of the XML training data set file is displayed in Figure 4. 

 

Figure 4. XML Training File 

For each item in the training set, the Object section of the XML file is repeated. 

The number of Input elements is not restricted; however, it must be the same for all items 

in the training set. There can only be a single Output element per object.  

The format of the XLSX file is displayed in Figure 5. 

 

Figure 5. Excel Training File 
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The first row contains the input variable names and also specifies the Output 

value. For each item in the training set, a new row is added below the first row. Similar to 

its XML counterpart the number of Input elements is not restricted; however, it must be 

the same for all items in the training set. There can only be a single Output element per 

item. 

2.3 Testing Data Set File. The testing data set file has the same structure as the 

train data set file. It contains all the given inputs as well as the desired output for each 

data item. For ease of use the ability to use either an XML file or an XLSX file to house 

the testing data has been included. The file name for the testing data set file is specified in 

the config.xml file.  

2.4 Data File. The data file contains the data that needs to be classified. It very 

similar to both the training and testing data set files with the exception of not including 

the output values. The data file contains all the given inputs for each data item. For ease 

of use the ability to use either an XML file or an XLSX file to house the data has been 

included. The file name for the data file is specified in the config.xml file.  

The proper format of the XML file is displayed in Figure 6. 
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Figure 6. XML Data File 

For each item in the data set, the Object section of the XML file is repeated. The 

number of Input elements is not restricted; however, it must be the same for all items in 

the training set.  

The proper format of the XLSX file is displayed in Figure 7. 

 

Figure 7. Excel Data File 

The first row contains the Input Variable names. For each item in the training set, 

a new row is added below the first row. Similar to its XML counterpart, the number of 

Input elements is not restricted; however, it must be the same for all items in the training 

set.  

2.5 Neural Network Data File. The Neural Network Data File, or NNDataFile, is 

an XML representation for the neural network created during training. This allows us to 

create and train a self-configuring neural network and then save its structure for later use. 

An excerpt from a Neural Network Data File is displayed in Figure 8. 
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Figure 8. Neural Network Data File 

Every node in the neural network is represented in the Neural Network Data File 

by a corresponding Node element and can be identified for a unique node number.  Each 

Node element also stores its assigned layer and activation function. Output node elements 
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also contain the value of their class. A list of input nodes and their input weights is 

stored. From this data a complete neural network can be created. 

2.6 Command Line Interface. All user interaction with the application is done 

via a command line interface. 

Table 2 - Available Commands 

Command Description 
Exit  Exits the application. 

GetErrorMatrix  Displays the Error Matrix, Testing Error, and Kappa coefficient for the 
current neural network when evaluated against the Testing File. 

Help  Shows all available commands. 

Load  
This command must be followed with a file name. If the file contains a 
valid NNDataFile, then a neural network is created to match its 
specification.  

LoopTrain 

Used to train the neural network for data sets that are prone to settling 
into local minimums. By default it sets the maximum layers to 2. 
However this command can be followed with an argument specifying 
the maximum layers as a different value. By default it sets the minimum 
layers to 2. However this command can be followed with an argument 
specifying the minimum layers as a different value. 

Reset  Removes any loaded neural network from memory and prepares a new 
neural network object for training.  

Run 
Used to process live data. This command can be used with or without 
specifying a file name. If no file name is specified then the output will 
be saved to the Output File specified in the config.xml file. 

Save 

Saves the current neural network to a NNDataFile. This command can 
be used with or without specifying a file name. If no file name is 
specified, then the neural network will be saved to the default 
NNDataFile name specified in the config.xml file. 

Set 
Can be used to set the Allowable Error, Data File, Training File, Testing 
File, or Training Iterations without having to change the config.xml file 
or restart the application. 

Test  

Tests the current neural network using a test file. This command can be 
used with or without specifying a file name. If no file name is specified 
then the neural network will be tested against the Testing File specified 
in the config.xml. 

Train Trains the current neural network using a training data set file. 
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Program Operation 

This self-configuring neural network uses a very specialized training function. 

While most neural networks’ training functions just alter the weights on the inputs to 

nodes in their networks, this training function also has the ability to grow the network by 

adding additional neurons and layers. 

2.7 Preprocessing. Before the training phase begins training data must be 

available in an acceptable format, which is either XML or Excel as specified earlier. 

Using the test data to generate mean vectors was the preferred method of training due to 

the reduced training set, which in turn speeds up neural network creation. Thus the mean 

vectors become the Training File and the original training data becomes the Testing File. 

2.8 Training. In order to create a neural network for a new data set, the training 

data set’s file name needs to first be entered into the config.xml file, and the file should 

be placed in the same folder as the application. Next run the SCNN.exe application, and 

type in the command “train”. 

The first step of the training is to load all data from the training data set file into a 

.NET DataTable. Next the number of inputs and the number and type of outputs classes is 

derived from the provided training data. This information is then used to instantiate a new 

fully connected back-propagation (Kulkarni, 2001) neural network with randomized input 

weights as shown in Figure 9.  
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Figure 9. Fully Connected Neural Network 

The neural network begins with two layers. There is a node in the first layer to 

represent each input from the training data. A node for each output class is placed in the 

second layer. The training phase begins, and continues until one of the following 

conditions is met: Either the calculated error is less than the allowable error, or the 

application has attempted to train the network 100 times without success. If the former is 

true, then the user is notified that training is complete along with the total training error, 

number of layers in the neural network, and the total training iterations in the current 

training attempt. However, if the latter is true, then the application will add an additional 

network layer and grow the network to a maximum of six layers. 

The ability to grow the network dynamically is what makes the self-configuring 

neural network work for data sets that are more complicated and therefore require more 
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layers. The Grow function first determines how many layers are in the current neural 

network. From that information, it decides where to insert the new layer. Then, it counts 

the nodes from the previous p and following layers f and uses that data to calculate the 

number of nodes in the new n layer using Equation (10).  

 )2)
3
2)(int(( ++= fpn     (10) 

The number of neurons to the new layer is n.  Each of the new neurons is created 

with randomized input weights for each of the fully connected nodes in the previous 

layer. Next, each of the neurons in the subsequent layer is fully connected to the nodes in 

the new layer using randomized input weights. Once the growing process is completed, 

training resumes with the new, more complicated, neural network. 

2.9 Loop Training. Some data sets do not benefit from adding additional layers 

and can be modeled using a simple neural network, but make training difficult due to 

many local minimums. For such data sets the loop training function is available.  

Similar to the standard training function, the loop training function will attempt to 

train the network until the TestingError is less than the AllowableTestingError or the max 

loop testing time specified in the config.xml file has elapsed. Loop training also differs in 

the fact that it only attempts to train the network once per iteration and saves the best 

network to a XML file. When training is completed, the best neural network that the loop 

training function created is loaded.  The looptrain command can be followed with an 

argument to specify the maximum layers. By default the maximum layers value is set to 2 
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for loop training.  The looptrain command can also be followed with an argument to 

specify the minimum layers. By default the minimum layers value is set to 2 for loop 

training. Setting the minimum layers is useful when training with mean vectors on more 

complex data sets. When set to a value greater than 2, it keeps the generated neural 

network from being overly simplistic. 

2.10 Over Training. Over Training, when enabled via the config.xml file, allows 

the neural network to be trained using a smaller training step after the original allowable 

error percentage is achieved. When enabled, on some data sets, the testing error is 

reduced by a noticeable amount. Once over training mode is entered, the training step, or 

alpha, is reduced to a tenth or its original value. Also the upper training limit is changed 

from 0.7 to 0.9. Likewise the lower training limit is changed from 0.3 to 0.1. This fine 

tuning of the neural networks can help to achieve a more accurate model. 

2.11 Testing. The Test function loads the test data set from the file specified in 

the config.xml file into a .NET DataSet object. Next it runs the data set though the loaded 

neural network and compares the output value specified in the testing data set file to that 

of the neural network. Once all records from the testing data set file are processed, the 

data is then used to calculate an overall testing error, which is then displayed in the 

interface. 

A more advanced test function can be accessed by running the geterrormatrix 

command. This function is the same as the regular test function but also includes an error 

matrix and the kappa coefficient. 
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An error matrix, also called a confusion matrix (Kohavi & Provost, 1998), is a 

square matrix that shows the performance of a classification algorithm in a table. Each 

column of the matrix represents the instances in a predicted class, while each row 

represents the instances in an actual class. Table 3 shows an example error matrix for a 

100 item set consisting of two classes. 

Table 3 – Error Matrix 

actual     \    predicted Negative Positive 
Negative 47 3 
Positive 14 36 

 

The kappa coefficient is a statistical measure of inter-rater agreement or inter-

annotator agreement (Bishop, Fienberg, & Holland, 1975) for categorical items. It is 

calculated using Equation (11). 

   

where K is the kappa coefficient, r is the number of rows, xii is the number of 

observations in row I and column I, xi+ is the total of row I, x+i is the total of column I, 

and N is the total number of observations. 

2.12 Live Data. The Run command is used to process live data though the neural 

network. It can be used with or without specifying a file name. If no file name is 

specified then the output will be saved to the Output File specified in the config.xml file. 

(11) 
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The structure of the output file should be the same as the input file with the addition of an 

output column.  



20 

 

 

Chapter 3 

Results with Test Data Sets 

Sample Data – Sample Data Set 1 

In order to begin testing the self-configuring neural network a simple linearly 

separable 1000 record data set with an equal distribution of points between two classes 

was created. A visual representation of the two classes is shown in Figure 10. 

 
Figure 10. Sample Data Set 1 

All test data is available on the accompanying CD in the Testing Data sub-folder. 
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To train the neural network for this data set a small two record data set that 

consisted of the mean vectors for both classes was created.  The mean vectors can be seen 

in Figure 11. The data files used are shown in Table 4. 

 

Figure 11. Sample Data Set 1 with Mean Vectors 

Table 4 - Sample Data Set 1 Files 

Type Name 
Training SampleDataSet1-Mean.xml 
Testing SampleDataSet1.xml 

 

Training completed with a 0% training error. However, when the testing data set 

was processed, it produced a testing error of 25%. This, of course, was not the desired 

result. Since the training data set was so simple, it stopped immediately after finding a 
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solution that worked for the data set based on the mean vectors. To illustrate this 

problem, consider the following chart. 

 

Figure 12. Sample Data Set 1 with Incorrect Decision Boundary 

The black line represents a possible choice for a decision boundary between the 

two classes. Since the mean vector points fall on either side of the decision boundary the 

training error would be 0%. However, when evaluating the testing data, it becomes clear 

that the network judges some Class 2 records as Class 1 records. 

To combat this issue the looptrain command was ran. It produced a neural 

network that achieved both a 0% training error and a 0% testing error. Application output 

is shown in Figure 13. An example of how that decision boundary may look is shown in 

Figure 14. 
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Figure 13. Output – Sample Data Set 1 using Mean Vectors and Looptrain 

 

Figure 14. Sample Data Set 1 with Correct Decision Boundary 
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In the example shown in Figure 14 both the mean vector points and their 

associated data sets fall on either side of the decision boundary. Therefore both the 

training error and testing error is 0%. 

Both 2 layer and 3 layer neural networks were generated as solutions to this data 

set over the course of testing. The structure of the 2 layer neural network that was 

produced can be seen in Figure 15. The 3 layer neural network is shown in Figure 16. 

 

Figure 15. Two Layer Neural Network 

You can load the these neural networks from the accompanying CD. They are 

located in the Testing Data sub-folder under the file names SampleDataSet1-NN-2-

Best.xml and SampleDataSet1-NN-3-Best.xml, respectively. 
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Figure 16. Three Layer Neural Network 

A comparison of all results obtained from the Sample Data Set 1 can be seen in 

Table 5. 

Table 5 - Sample Data Set 1 Results 

Training Type Layers Best Testing Error 
Mean Vector 2 0% 
Mean Vector 3 0% 

 

Sample Data – Sample Data Set 2 

To further test the self-configuring neural network a more complex linearly 

separable 50 record data set with an equal distribution of points between five classes was 

created. The following chart shows a visual representation of the five classes. 



26 

 

 

 

Figure 17. Sample Data Set 2 

3.1 Mean Vector Training. As with the simpler data set, a smaller data set from 

the mean vectors of each of the classes was created.  The mean vectors can be seen in 

Figure 18. The data files used are shown in Table 6. 

 
Figure 18. Sample Data Set 2 using Mean Vectors 
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Table 6 - Sample Data Set 2 Files 

Type Name 
Training SampleDataSet2-Mean.xml 
Testing SampleDataSet2.xml 

 

Unlike with the simpler data set, training based off the mean vectors was not as 

effective. After many attempts, the best result achieved using mean vectors based training 

is a 20% testing error as shown in Figure 19. 

 
Figure 19. Output – Sample Data Set 2 using Mean Vectors 

You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name SampleDataSet2-NN-20p.xml. 

3.2 Sample Set Training. Selecting half of the data set, with an equal distribution 

between the classes, a new training data set file based off of sample data was created. The 

other half of the data set was then used to create a new testing data set file. Both the 
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training set and the testing set can be seen in Figure 20. The data files used are shown in 

Table 7. 

 

Figure 20. Sample Data Set 2 using Sample Set 

Table 7 - Sample Data Set 2 Files 

Type Name 
Training SampleDataSet2-Train.xml 
Testing SampleDataSet2-Test.xml 

 

Using the standard training mode a three layer neural network with a 0% testing 

error was produced. Application output is shown in Figure 21. The structure of the 3 

layer neural network that was produced can be seen in Figure 22.  
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Figure 21. Output – Sample Data Set 2 using Sample Set 

 

Figure 22. Neural Network – Sample Data Set 2 using Sample Set 

You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name SampleDataSet2-NN-3-

Best.xml. 
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A comparison of all results obtained from the linearly separable with multiple 

classes data set can be seen in Table 8. 

Table 8 - Sample Data Set 2 Results 

Training Type Layers Best Testing Error 
Mean Vector 2 20% 
Sample Set 3 0% 

 

Iris Data Set 

To further refine the neural network’s growing and learning algorithms, a copy of 

the Iris Data Set (Fisher, 1988) was procured. A reference to this data set can be found in 

a great deal of pattern recognition literature. The data set contains 3 classes of 50 

instances each, where each class refers to a type of iris plant. One class is linearly 

separable from the other 2; the latter are not linearly separable from each other (Fisher, 

1936). 

3.3 Mean Vector Training. The data files used are shown in Table 9. 

Table 9 - Iris Mean Vector Data Files 

Type Name 
Training Iris-Mean.xml 
Testing Iris.xml 

 

Standard training using the mean vectors was completed with a 0% training error.  

However, like Sample Data Set 2, using the mean vectors alone produce a large testing 
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error. For this data set, the best testing error achieved using mean vectors was 36.7%.  

Application output is shown in Figure 23.  

 

Figure 23. Output – Iris Data Set with Mean Vectors 

3.4 Sample Set Training. The data files used are shown in Table 10. 

Table 10 - Iris Sample Set Data Files 

Type Name 
Training Iris-Train.xml 
Testing Iris-Test.xml 

 

Selecting half of the data set, with an equal distribution between the classes, a 

new training data set file based on sample data was created. The other half of the data set 

was then used to create a new testing data set file. 

Using the standard training mode a two layer neural network with a 5.3% testing 

error was created. Application output is shown in Figure 24. The structure of the 2 layer 

neural network that was produced can be seen in Figure 25. 
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Figure 24. Output – Iris Data Set with Sample Set 

 

Figure 25. Neural Network – Iris Data Set with Sample Set 



33 

 

 

You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name Iris-NN-2-Best.xml. 

Using the same sample data set along with loop training produced slightly better results 

while still using a 2 layer network. Application output is shown in Figure 26. The 

structure of the 2 layer neural network that was produced can be seen in Figure 27. 

 

Figure 26. Output – Iris Data Set with Sample Set and Looptrain 

 

Figure 27. Neural Network – Iris Data Set with Sample Set and Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name Iris-NN-2-BEST-2p.xml. 

A comparison of all results obtained from the Iris Data Set can be seen in Table 11. 

Table 11 - Iris Data Set Results 

Training Type Looptrain Enabled Layers Best Testing Error 
Mean Vector No 2 36.67%
Sample Set No 2 5.33%
Sample Set Yes 2 2.67%

 

Breast Cancer Wisconsin (Diagnostic) Data Set 

To further refine the Self-Configuring Neural Network’s ability to work with real 

world data, it was used to process the Breast Cancer Wisconsin (Diagnostic) Data Set 

(Street, 1995). This data set is comprised of features computed from a digitized image of 

a Fine Needle Aspirate (FNA) of a breast mass. They describe characteristics of the cell 

nuclei present in the image. A diagnosis of each breast mass, either malignant or benign, 

was later determined and assigned to the corresponding record. The diagnosis is used at 

the output class for training and testing. 

3.5 Mean Vector Training. The data files used are shown in Table 12. 

Table 12 - Breast Cancer Wisconsin Mean Vector Data Files 

Type Name 
Training BC_Training-Mean.xlsx 
Testing BC.xlsx 
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As with most of the more complicated data sets the self-configuring neural 

network created a 2 layer network that showed a 0% training error. However, the testing 

error was 11.9%.  Application output is shown in Figure 28. The structure of the 2 layer 

neural network that was produced can be seen in Figure 29. 

 
Figure 28. Output – Breast Cancer Data Set with Mean Vector 

 
Figure 29. Neural Network – Breast Cancer Data Set with Mean Vector 
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The previous result was acceptable; therefore a more complicated neural network 

was tested to evaluate if it could do better. The problem is that the mean vector data set is 

only comprised of 2 records. When the looptrain algorithm evaluated the mean vectors, it 

easily found a 2 layer network that could model them and therefore never had to create a 

more complicated network. In order to work around this issue the looptrain algorithm was 

updated as to allow setting a minimum layers value so that it could skip training less 

complicated networks and move on to larger ones. 

Running the looptrain command with a maxlayers=4 and minlayers=3, a three 

layer network was created that had a 0% training error and a 3.5% testing error. This is a 

vast improvement over the previous results. Application output is shown in Figure 30. 

The structure of the 3 layer neural network that was produced can be seen in Figure 31.

 

Figure 30. Output – Breast Cancer Data Set with Mean Vector and Looptrain 
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Figure 31. Neural Network – Breast Cancer Data Set with Mean Vector and Looptrain 

You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name BC-NN-BEST-3p.xml. 

Typically the number of nodes in a hidden layer is not the same as the number of nodes in 

the preceding layer. However, due the following growth function the number of nodes in 

layer 2 was the same as layer 1. The new layer node count is calculated using Equation 

(12) and represented by n, the previous layer node count is represented by p, and the 

following layers node count is represented by f. 

)2)
3
2)(int(( ++= fpn     (12) 
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3.6 Sample Set Training. The data files used are shown in Table 13. 

Table 13 - Breast Cancer Wisconsin Sample Set Data Files 

Type Name 
Training BC-Train.xlsx 
Testing BC-Test.xlsx 

 

Selecting about half of the data set, with an equal distribution between the classes, 

a new training data set file based on the sample data was created. The other half of the 

data set was then used to create a new testing data set file. 

Standard training using the sample set generated a 2 layer neural network with a 

4.99% testing error.  Application output is shown in Figure 32. The structure of the 2 

layer neural network that was produced can be seen in Figure 33. 

 

Figure 32. Output – Breast Cancer Data Set with Sample Set 
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Figure 33. Neural Network – Breast Cancer Data Set with Sample Set 

You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name BC-NN-BEST-2-4p.xml. 

Running the looptrain command with a maxlayers=4 and minlayers=3, a three 

layer network was created that had a 3.8% testing error. This is a slight improvement 

over the previous 2 layer neural network. Application output is shown in Figure 34. The 

structure of the 2 layer neural network that was produced can be seen in Figure 35. 



40 

 

 

 

Figure 34. Output – Breast Cancer Data Set with Sample Set and Looptrain 

 

Figure 35. Neural Network – Breast Cancer Data Set with Sample Set and Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name BC-NN-3-BEST-3.8p.xml. 

A comparison of all results obtained from the Breast Cancer Wisconsin Data Set can be 

seen in Table 14. 

Table 14 - Breast Cancer Wisconsin Data Set Results 

Training Type Network Layers Best Testing Error 
Mean Vector 2 11.86% 
Mean Vector 3 3.51% 
Sample Set 2 4.99% 
Sample Set 3 3.81% 
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Chapter 4 

MARSI Data Set Analysis 

Metacognitive Awareness-of-Reading Strategies Inventory (MARSI) (Mokhtari & 

Reichard, 2002) is a 30-item instrument which was completed by 865 middle school 

students. After removing records with missing data, 856 are remaining. MARSI is 

specifically designed for measuring students’ metacognitive awareness and use of reading 

strategies while reading academic or school-assigned materials. The following data was 

collected from the participants’ demographics (e.g., age, grade level, gender, ethnicity, 

and perceptions of their ability to read), and perceived awareness and use of reading 

strategies, which are organized in three categories, namely global, problem-solving, and 

support reading strategies (Anderson, Mokhtari, & Kulkarni, 2012).  Using the data 

gathered, participants are placed into one of three categories based on the average score 

of the perceived awareness section. The three categories are High Level of Awareness 

(3.5 or higher), Medium Level of Awareness (2.5-3.4), and Low Level of Awareness (2.4 

or lower). This can be calculated overall or based on each category. 

The data related to demographics and problem-solving skills was the primary 

focus. The goal was to reduce the amount of information needed to be gathered in order 

to accurately predict the participants’ categories.   
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Please note all the neural networks for the following MARSI data sets were 

training using the overtraining option as it usually reduced the testing error by 0.5-2.0%. 

4.1 Overall Accuracy 

Table 15 - MARSI PROB Data Files 

Type Name 
Training MARSI-PROB-Mean.xlsx 
Testing MARSI-PROB.xlsx 

 

To get a baseline for the accuracy, all the data related to global and support 

reading strategies was removed and the looptrain algorithm was ran on the remaining 

data set. This resulted in a 2 layer neural network with a 12.6% testing error. Application 

output is shown in Figure 36. The structure of the 2 layer neural network that was 

produced can be seen in Figure 37.

 

Figure 36. Output – MARSI PROB Data Set with with Looptrain 
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Figure 37. Neural Network – MARSI PROB Data Set with Looptrain 

You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-NN-2-BEST-

12p.xml. 

Running the looptrain command with a maxlayers=4 and minlayers=3 created a 

three layer network that had a 14.7% testing error. Unfortunately the accuracy of the 3 

layer neural network did not exceed that of the 2 layer neural network. This trend 

continued with further testing of the reduced data sets; therefore those results have been 

omitted. Application output is shown in Figure 38. The structure of the 3 layer neural 

network that was produced can be seen in Figure 39. 
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Figure 38. Output – MARSI PROB Data Set with Looptrain and Minlayers=3 

 

Figure 39. Neural Network – MARSI PROB Data Set with Looptrain and Minlayers=3 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-NN-3-BEST-

14p.xml. 

4.2 Data Reduction 1 

Table 16 - MARSI PROB Data Reduction 1 Data Files 

Type Name 
Training MARSI-PROB-TRIM1-Mean.xlsx 
Testing MARSI-PROB-TRIM1.xlsx 

 

In order to determine if a participants’ MARSI Problem Solving Category can be 

determined with similar accuracy using less data, the bottom 4 columns when ranked by 

standard deviation (STDp) were removed. The columns that were removed are PROB16, 

PROB27, PROB8, and PROB 21. 

Table 17 - MARSI PROB Data Reduction 1 Removed Columns 

Column Name STDp Removed 
PROB30 1.166650809 No 
PROB18 1.117007546 No 
PROB13 1.112050745 No 
PROB11 1.069847924 No 
PROB21 1.032826568 Yes 
PROB8 1.002556318 Yes 
PROB27 0.945886622 Yes 
PROB16 0.928966057 Yes 
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Running the looptrain command a 2 layer neural network was created that had an 

18.7% error rate. This is just a 6.1% difference than that of the full data set. Application 

output is shown in Figure 40. The structure of the 2 layer neural network that was 

produced can be seen in Figure 41. 

 

Figure 40. Output – MARSI PROB DR1 Data Set with Looptrain 

 

Figure 41. Neural Network – MARSI PROB DR1 Data Set with Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-Trim1-NN-2-

BEST-18p.xml. 

4.3 Data Reduction 2 

Table 18 - MARSI PROB Data Reduction 2 Data Files 

Type Name 
Training MARSI-PROB-TRIM2-Mean.xlsx 
Testing MARSI-PROB-TRIM2.xlsx 

 

For further testing the next lowest column, PROB11, when ranked by standard 

deviation was removed. 

Table 19 - MARSI PROB Data Reduction 2 Removed Columns 

Column Name STDp Removed 
PROB30 1.166650809 No 
PROB18 1.117007546 No 
PROB13 1.112050745 No 
PROB11 1.069847924 Yes 
PROB21 1.032826568 Yes 
PROB8 1.002556318 Yes 
PROB27 0.945886622 Yes 
PROB16 0.928966057 Yes 

 

Running the looptrain command a 2 layer neural network was created that had a 

20.7% error rate. This is just an 8.1% difference than that of the full data set and 2% 
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difference from the previous data reduction. Application output is shown in Figure 42. 

The structure of the 2 layer neural network that was produced can be seen in Figure 43. 

 

Figure 42. Output – MARSI PROB DR2 Data Set with Looptrain 

 

Figure 43. Neural Network – MARSI PROB DR2 Data Set with Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-Trim2-NN-2-

BEST-20.7.xml. 

4.4 Data Reduction 3 

Table 20 - MARSI PROB Data Reduction 3 Data Files 

Type Name 
Training MARSI-PROB-TRIM3-Mean.xlsx 
Testing MARSI-PROB-TRIM3.xlsx 

 

For further testing the next lowest column, PROB13, when ranked by standard 

deviation was removed. 

Table 21 - MARSI PROB Data Reduction 3 Removed Columns 

Column Name STDp Removed 
PROB30 1.166650809 No 
PROB18 1.117007546 No 
PROB13 1.112050745 Yes 
PROB11 1.069847924 Yes 
PROB21 1.032826568 Yes 
PROB8 1.002556318 Yes 
PROB27 0.945886622 Yes 
PROB16 0.928966057 Yes 

 

Running the looptrain command a 2 layer neural network was created that had a 

22.0% error rate. This is just a 9.4% difference than that of the full data set and 1.3% 
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difference from the previous data reduction. Application output is shown in Figure 44. 

The structure of the 2 layer neural network that was produced can be seen in Figure 45. 

 

Figure 44. Output – MARSI PROB DR3 Data Set with Looptrain 

 

Figure 45. Neural Network – MARSI PROB DR3 Data Set with Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-Trim3-NN-2-

BEST-22.0.xml. 

4.5 Data Reduction 4 

Table 22 - MARSI PROB Data Reduction 4 Data Files 

Type Name 
Training MARSI-PROB-TRIM4-Mean.xlsx 
Testing MARSI-PROB-TRIM4.xlsx 

 

For further testing the next lowest column, PROB18, when ranked by standard 

deviation was removed. 

Table 23 - MARSI PROB Data Reduction 4 Removed Columns 

Column Name STDp Removed 
PROB30 1.166650809 No 
PROB18 1.117007546 Yes 
PROB13 1.112050745 Yes 
PROB11 1.069847924 Yes 
PROB21 1.032826568 Yes 
PROB8 1.002556318 Yes 
PROB27 0.945886622 Yes 
PROB16 0.928966057 Yes 

 

Running the looptrain command a 2 layer neural network was created that had a 

24.3% error rate. This is just an 11.7% difference than that of the full data set and 2.3% 
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difference from the previous data reduction. Application output is shown in Figure 46. 

The structure of the 2 layer neural network that was produced can be seen in Figure 47. 

 

Figure 46. Output – MARSI PROB DR4 Data Set with Looptrain 

 

Figure 47. Neural Network – MARSI PROB DR4 Data Set with Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-Trim4-NN-2-

BEST-24.3.xml. 

4.6 Data Reduction 5 

Table 24 - MARSI PROB Data Reduction 5 Data Files 

Type Name 
Training MARSI-PROB-TRIM5-Mean.xlsx 
Testing MARSI-PROB-TRIM5.xlsx 

 

For further testing the next lowest column, PROB30, when ranked by standard 

deviation was removed. Thus removing all problem solving related data columns and 

only leaving the demographic data and the reader perception value. 

Table 25 - MARSI PROB Data Reduction 5 Removed Columns 

Column Name STDp Removed 
PROB30 1.166650809 Yes 
PROB18 1.117007546 Yes 
PROB13 1.112050745 Yes 
PROB11 1.069847924 Yes 
PROB21 1.032826568 Yes 
PROB8 1.002556318 Yes 
PROB27 0.945886622 Yes 
PROB16 0.928966057 Yes 

 

Running the looptrain command a 2 layer neural network was created that had a 

33.4% error rate. This is a 20.8% difference than that of the full data set and 9.1% 
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difference from the previous data reduction. Application output is shown in Figure 48. 

The structure of the 2 layer neural network that was produced can be seen in Figure 49. 

 

Figure 48. Output – MARSI PROB DR5 Data Set with Looptrain 

 

Figure 49. Neural Network – MARSI PROB DR5 Data Set with Looptrain 
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You can load the preceding neural network from the accompanying CD. It is 

located in the Testing Data sub-folder under the file name MARSI-PROB-Trim5-NN-2-

BEST-33.4.xml. 

4.7 MARSI Data Set Conclusion 

Table 26 - MARSI Results 

Data Set Total Columns Best Testing Error 
MARSI PROB 13 12.62%
MARSI PROB DR1 9 18.69%
MARSI PROB DR2 8 20.68%
MARSI PROB DR3 7 21.96%
MARSI PROB DR4 6 24.30%
MARSI PROB DR5 5 33.41%

 

From the results in Table 26 you can see that as the number of data columns is 

reduced, so is the overall accuracy. This is a tradeoff that must be given in order to 

reduce the data gathering requirements. The selection of the appropriate data model to 

use would depend greatly on the study’s requirements and what is an acceptable 

accuracy.  

Relatively speaking, the difference in overall accuracy of the network created for 

Data Reduction 1 and the original network using the full demographic and problem 

solving data set is only 6.1%. However it reduced the data gathering requirements by 

over 30%. In the following chart you can see that this trend continues. 
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Figure 50.  MARSI PROB Data Set Accuracy vs. Data Gathering 

Once the low level of accuracy shown in Data Reduction 5 is reached, the 

usefulness is too far degraded to warrant the time and effort saved.  

The results show that once the self-configured neural network is created and 

trained, it can be used successfully to classify any student record to a category such as 

high, medium, or low level of awareness (Anderson, et al., 2012). 
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Chapter 5 

Conclusion 

5.1 Testing Results 

Over the course of testing self-configuring neural network has demonstrated that 

it can customize itself to fit a variety of data sets. The best testing error that was achieved 

for each of the data sets tested is shown in Table 27. 

Table 27 - Best Testing Results 

Data Set Best Testing Error Layers 
Sample Data Set 1 0% 2 
Sample Data Set 2 0% 3 
Iris 2.67% 2 
Breast Cancer Wisconsin 3.81% 3 
MARSI PROB 12.62% 2 
MARSI PROB DR1 18.69% 2 
MARSI PROB DR2 20.68% 2 
MARSI PROB DR3 21.96% 2 
MARSI PROB DR4 24.30% 2 
MARSI PROB DR5 33.41% 2 

 

Some of the data sets that were tested were unable to achieve a 0% testing error. 

This is due to the classes of data not being completely separable, meaning that a set of 

attributes could belong to more than one class and therefore some instances of one class 

cannot be distinguished from another class. This is quite apparent with the MARSI data 
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set and could be due to the nature of the data itself. With the other real world data sets, 

the data is measured and repeatable. The MARSI data set, on the other hand, is based off 

of a student’s personal feelings about themselves and could vary depending on their 

mood and therefore leads to less consistent data. 

5.2 Future Work 

Adding the ability to execute multiple threads simultaneously would increase this 

application’s speed on systems with multi-core CPUs. Each neural node would run in its 

own thread and would increase the rate at which data was processed through an existing 

network. In addition, multiple training threads could be run at the same time, thus 

possibly cutting down on training time. 

This application has value in the marketplace. This concept will be further 

expanded into an Application Programming Interface (API) and packaging it as a .NET 

Dynamic Link Library (DLL). This would allow other programmers to add functionality 

from the self-configuring neural network DLL into their own applications. Therefore, 

they would be able to take advantage of the accuracy and time savings that a self-

configuring neural network has to offer. 
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