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Abstract

ANALYSISOF DYNAMIC LOGIC CIRCUITS IN DEEP SUBMICRON
CMOS TECHNOLOGIES

Rahul C. Muppasani

Thesis Chair: David H. K. Hoe, Ph.D.

The University of Texas at Tyler
November 2012

Dynamic logic circuits are utilized to minimize the delay in the critical path of
high-performance designs such as the datapath circuits in state-of-the-art
microprocessors. However, as integrated circuits (ICs) scale to the very deep submicron
(VDSM) regime, dynamic logic becomes susceptible to a variety of failure modes due to
decreasing noise margins and increasing leakage currents. The objective of thisthesisis
to characterize the performance of dynamic logic circuitsin VDSM technologies and to
evaluate various design strategies to mitigate the effects of leakage currents and small
noise margins.

In order to effectively simulate the performance of dynamic logic circuits at the
nanoscal e dimensions, the required interconnect scaling model is described and a
transistor predictive technology model is utilized. The design optimization of the
dynamic logic circuitsis discussed and this method isillustrated viathe design of full

adder circuits using various dynamic logic families.

Vi



The effects of charge sharing and charge leakage are major concernsin the
implementation of dynamic logic.

Weak pull-up transistors known as bleeder devices are used to compensate for the
loss of charge from the dynamic storage node. The impact of these devices on the
performance of dynamic logic was evaluated through the addition of a noise generator
circuit to the smulations. It is concluded that increasing leakage currents in nanoscale
technology will be amajor concern but functional dynamic logic circuits can be
implemented in VDSM technologies through the introduction of properly sized bleeder

devices. However, some degradation in circuit speed is expected.

vii



Chapter One

I ntroduction

The design optimization of processors used in modern electronic devices has
several conflicting goals such as ever-increasing performance and ever decreasing energy
consumption. Scaling down of the semiconductor process is one of the solutions to
address these issues. This thesis examines the design issues with using dynamic logicin

deep submicron processes.

1.1 Dynamic Logic

Dynamic logic isacircuit style that is well-suited for high-performance
microprocessor implementations. It offers a significant performance advantage over static
circuits with reduced area while avoiding static power consumption. The construction of
asimple N-type dynamic logic gate is shown in Figure 1.1.

Vdd

o

Clock in N network

—

Gnd

Figure 1.1: Basic dynamic logic circuit

1.2 Background

The inverter isthe key component in all digital designs. Understanding the
properties and operations of the inverter and extrapolating its results will enable the

design of more complex logic gates which are used to construct adders and



microprocessors. The operation of a static CMOS inverter is explained with the help of a
simple switch-level model. The schematic of the CMOS inverter is shown in Figure 1.2.

vdd

—iLC
vin Vout

LCi
-

—L

Figure 1.2: Schematic of aCMOS inverter

When Vinishigh and equal to Vdd, the NMOSFET is on and PMOSFET is off,
providing a direct path between Vout and ground, resulting in a steady-state value of zero
volts. Subsequently, when the input voltage islow the NMOSFET turns off and the
PMOSFET on. This provides a path between VVdd and Vout resulting in a high output
voltage. Complementary CMOS circuits are a class of static circuit where at every point
of time each gate output is either connected to Vdd or ground viaalow resistance path. A
static CMOS logic gate with afan-in of N requires 2N devices.

In order to reduce the number of transistors required to implement alogic
function, a number of approaches such as pseudo-NMOS, pass-transistor logic, etc., were
developed. Pseudo-NMOS logic requires only N+ 1 transistor to implement an N-input
logic gate, but unfortunately it has static power dissipation.

An alternate approach called dynamic logic was developed. When thereisa
choice to select dynamic logic over conventional static CMOS logic, the following
factors are taken into consideration. In CMOS logic, both N and P logic blocks are
necessary which contribute to the input capacitance. This has a direct impact on gate
delay since thisdelay is directly proportional to the output load and inversely
proportional to the device size. By contrast, in dynamic logic, asingle logic block is
needed. Therefore the input capacitance is only due to the NMOS devices (assuming all
the logic isimplemented in a pull-down logic block)



N network

AL

Figure 1.3: CMOS network

The dynamic logic style follows the NMOS logic tree style implementation. The
two possible design styles are either using a p-type pull up network or by using an n-type
pull down network. The addition of aclock input is necessary to create a sequence of
precharge and conditional discharge phases. This eliminates the chance of any static
power that might be consumed during the precharge period (static current would flow
between the suppliesif both the pull-down and the precharge device were turned on
simultaneously). In practice, the NMOSFET type logic is preferred because the
PMOSFETSs are generally wider than NMOSFET S, which can become a major concern
when alogic tree with alarge depth is utilized.

Hence summarizing the properties of dynamic logic, thelogical function in
dynamic logic isimplemented by the NMOS pull-down network and its construction is
very similar to static CMOS but the number of transistors is substantially lower than in

the static logic which is 2N versus only N+2 in dynamic logic.

The logic gatesin dynamic logic have comparatively faster switching speeds
because of two facts. The first reason is that there exists alow load capacitance attributed
to the smaller number of transistors per gate and the single-transistor load per fan-in. This
resultsin reduced logical effort. The second reason is that the dynamic logic gate does
not have short circuit current during static operation (unlike pseudo-NMOS logic), hence
making it a very desirable choice for high-performance circuits. The disadvantages to
consider while implementing dynamic logic are the need of a clocking device and issues
with charge sharing and charge leakage.



1.3 Scaling

A prediction was made by Gordon E. Moore that technology would advance and
transistor sizes would be scaled to half their size every 24 months thereby doubling the
number of transistors that can be placed on amicrochip [1].

Circuit optimization not only is concerned with performance but also with the
physical layout size and reliability of operation, but when it comes to dynamic logic,
scaling plays acrucia role because the leakage in the circuit increases exponentialy
through scaling [2]. Hence, strict design methodologies and circuit guidelines must be
followed to scale the device sizes when designing adders using dynamic logic. This
includes analyzing their performance based on various metrics and understanding the
effect of charge leakage and charge sharing.

1.4 Resear ch Objective
The aim of this study is to evaluate the feasibility of using dynamic logic for deep
submicron CMOS technologies. The focusis on the issues of charge leakage and charge

sharing.

1.5 Research Method

The method in which the performances of the adder circuits under study are
evaluated is discussed in this subsection. First, the schematic of full adder designs of the
various dynamic logic styles are obtained from the literature and set as benchmarks. Then
each adder is optimized for delay versus area at the 45 nm technology node to determine
the transistor sizes. A physical layout is created for each adder design using the Electric
software, which allows netlists to be extracted that include the parasitic capacitances.
Various tests are then performed to evaluate the performance of the adder circuits at
several submicron technology nodes. Performance is also evaluated against different
scenarios by including bleeder devices of different sizes.

Susceptibility to noise increases exponentially with scaling which is discussed in
the later chapters. The main advantage of the use of bleeder devicesin the form of a
PMOS pull-up FET isto compensate for the loss of charge in the pull-down leakage path.

Bleeder resistances are made high to avoid the problems associated with ratioed logic.



A feedback configuration isimplemented with the bleeder devices to eliminate

static power dissipation.

1.6 Outline of Thesis

In Chapter 2, various scaling models are developed for submicron technology
nodes and a predictive technology model is discussed. Chapter 3 discusses the delay
performance of dynamic logic by means of a simple generic dynamic logic circuit.
Chapter 4 analyzes the major issues with dynamic logic which are charge sharing and
charge leakage. Improvements in noise immunity through the use of a bleeder device are

anayzed with the aid of a simple noise generator circuit.



Chapter Two
CMOS Scaling Models

This chapter discusses interconnect scaling models and how the CMOS devices
are characterized based on a predictive technology model. All the interconnect
parameters used in simulating the dynamic gates in a deep submicron process, such as

metal height, pitch, and thickness are explained.

2.1 Predictive Technology Model (PTM)

The two issues with scaling to submicron dimensions are power dissipation and
process variation. This requires the development of new device and interconnect models
which will perform accurately even when scaled down to very small geometries, alowing
the adoption of dynamic logic techniques to be implemented in future technologies. Thus,
this led to the development of a Predictive Technology Model (PTM) which enables us to
accurately characterize a CMOS device when it is ssimulated with SPICE [7]. Scaling to
submicron dimensions requires the devel opment of a Predictive Technology model
(PTM). To understand this better, the concept of atechnology node is explained first.
From the definition provided by the International Roadmap for Semiconductors, in a
DRAM implementation, the minimum half-pitch between two metal lines defines the

technology node. Thisisdepicted in Figure 2.1 [9].

DRAM 'z Pitch
= DRAM Metal Pitch/2
MPU/ASIC M1 Y2 Pitch
= MPU/ASIC M1 Pitch/2
Metal
Pitch

-

Typical DRAM/MPU/ASIC
Metal Bit Line

Figure2.1: DRAM half pitch [3].



Once the reference technology node is sel ected, other new technology node values
can be calculated by multiplying the value of the previous technology node by 0.7 as
shown in Figure 2.2 [12]. A technology node will be scaled by approximately 0.5 after

two subsequent technologies[13].

New Technology Node = Technology Node (Reference) x 0.7

1000
Pitch "
=l

TR

Gate

Pitch

(nm) 0.7x every 65nm

2 years
1125 nm 32nm
00—,
1995 2000 2005 2010

Figure 2.2: Evolution of gate pitch over the years [7].

There are challenges of scaling to submicron dimensionsin a PTM. The effective
length (Let), threshold voltage (Vino) and oxide thickness (Tox) can be scaled to
submicron dimensions, but the behavior of MOSFET cannot be accurately predicted. The
physical parameters have to be considered while devel oping an effective predictive
model. To overcome this disadvantage a newer PTM model was developed [4], having
improved smoothness and more accurate predictions. The figuresin Appendix A help
illustrate the PTM utilized in this thesis by simulating the IV curves of different
technology nodes for both pMOSFETs and nMOSFETSs.

Higher frequencies have been achieved by a microprocessor with each technology
node. Intel has just released its “tri-gate transistors” on its 22 nm technology in the year
2011. There are two components which decide the speed of an IC. First is the transistor
gate delay, which is switching the individual transistor and the other iswire delay or
interconnect delay discussed in section 2.2.



2.2 Interconnect Delay

As technol ogies scale to the submicron regime, the delay due to interconnect
becomes alarger fraction of overall gate delay. The performance of an on-chip
interconnect depends on factors such as low dielectric materials and low wire resistance
and capacitance.

Based on the extent of connection involved, there are three types of interconnects:
local interconnects which are used for short connections between devices within the same
cell, semi-global interconnects which are used to connect the devices in the same blocks,
and global interconnects which are used to connect long connections between different

blocks and power connections. Figure 2.3 illustrates the three types of interconnects [5].

Global Interconnect —_|

Semiglobal Interconnect —

contacts
Local Interconnect {

i N Well l P Well j]

P

Figure 2.3: Local and Semi-global interconnects [5].

The short connections between the devices and the neighboring cells also known
asthefirst level connections or the local interconnect are the subject of interest in this
study. Several tradeoffs are made as interconnect scales with every technology
generation. To reduce the line resistance, the metal thickness scales at a slower rate than
the width.

These parameters will have an effect on propagation delay, power distribution,
energy dissipation, and extra noise. The ssimulations will give an accurate result of the
circuit performance, if all the above parameters, also called parasitic effects are

considered.



Capacitance is one of the parameters to be considered when scaling the
interconnects. This parameter is a function of the shape of a wire characterized by width
(W), length (L), thickness (T), distance from surrounding wire (S), height (T), and
spacing (with respect to neighboring wires).The parasitic values are calculated from the

following equations. The literature [6] shows their derivations and how to obtain them.

W

<> W S

M
T M 1 I _{ }_ Charge
T \V/ I M e
1L c 1T
plate e Plate
Plate

Figure 2.4: Types of capacitances associated with a metal line.

The parasitic capacitances mentioned in Figure 2.6 are calculated and are included
in the following chapters. The parasitic values can be calculated from the formulae
obtained from [17] as shown in the equations 2.1-2.5.

Plate Capacitance: Cpjate/um* = €/H (2.1)
. . 2 T
Fringe Capacitance: Cyinge/Hm = £ In [1 + H] 2.2)

Couple Capacitance: Ceoyple/Hm = {g +§1n 1429+ % + %ln [1 +mn X g
(2.3)
Total Capacitance: Cyoral = 2 X Cringe/pm + 2 X Ccouple/um (2.9
Since the metal 2 layer is used sparingly in the layout, its coupling capacitanceis
not calculated. The other parameter considered for interconnect scaling is the inter-layer

dielectric.
Capacitance C = 8/tox (2.5)
where tox iS the thickness of the oxide layer and € is the dielectric permittivity.

Asillustrated by equation 2.6, alower capacitance value will be obtained from a
lower dielectric value, which depends on the material used. SiO2 with adielectric



constant of 3.9 is commonly used, but with scaling down of tox, SOme other materials with
lower dielectric constants are preferred. Reducing the dielectric will improve interconnect
delay, and decrease the dynamic power consumption. Using a good dielectric material
will usually cause areduction in the value of the parasitic capacitance by a factor which
depends on how it compares with that of SiO2 [8]. Some of these required properties are
good adhesion force between dielectric layer and metal, good stability under high
temperature processing, and the ability to fill in the gap or narrow space between metal
lines. Figure 2.5 shows that by reducing the dielectric constant the interconnect delay is

lowered.

—Al, Ts=0.1, epsilon=4
— —Al, Ts=0.0, epsilon=4
- - - Al, Ts=0.1, epsilon=2
Cu, Tb=0.04, epsilon=4
- == Cu, Th=0.00, epsilon=4
------ Cu, Thb=0.04, epsilon=2

-~
e e
———

Interconnect Delay (nsec)
na

—
vl e

AR=1 AR=2 AR=3 AR=4
1 i i

0 0.5 1 1.5 2
Metal Thickness { pm)

Figure 2.5: Interconnect RC delay vs thickness of metal for 0.8 um pitch and 10 mm length. [9]
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Figure 2.6: Trends of metal pitch from both literature and estimated data versus technology
node. [18][19][20-21]
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Table 2.1: Data values of metal pitch based on technology node.

Tech Node (nm) 180 | 130 | 90 65 45 32 22 16
Literaturedata(nm) | 560 | 400 | 300 | 200 | 130 | 1125 | 70 | 50
Estimated data (hnm) | 560 | 403 | 277.9 | 200 | 137.9 | 97.7 | 66.9 | 48.5

Another parameter considered while scaling is metal pitch. The figure above

shows trends of metal pitch with respect to technology node. Calculation of estimated

datais performed by using a reference node value which is scaled according to the 1/S

scaling method, where Sis the scaling factor. For example, S=2 means that the new node
has half the dimension of the reference node [8-12].

045

04r

Udn

Thickness o the Matal

03r

—&— ZETIMATED
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—+— _ITERATURE ;
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*f K
iCi PAPERS o <
o
P
*)/ //
b4 7
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v
il _‘d_;g
=

L L L L
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1
20 40

L L
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Figure 2.7: Trends of metal thickness from, literature and estimated data versus technology

node.

Table 2.2: Literature and estimated values of metal thickness based on technology node [7].

Tech Node (nm) 180 | 130 | 90 65 45 32 22 | 16
Literaturedata (nm) | 450 | 450 | 300 200 100 95 90 -
Estimated data (nm) | 450 | 450 | 267.2 | 168.4 | 100 | 61.7 | 36.3 | 231
Estimated data (nm) | - - - - 100 95 | 89.8 | 85.6

The parasitic capacitances are calculated for each node from the dimensions taken from
Table 2.3 and by using equations (2.1-2.5).

11



Table 2.3: Data values used for finding parasitic capacitances.

Technology Node (nm) | 90 65 45 32 22 16
Bulk K 28 | 2.2 25 | 23-27 |21-25| 19-23
Metal Pitch (nm) 300 | 200 | 200 | 1125 70° 50
Metal Width (nm) 150 | 100 50 49 33.5 24.2
Metal Thickness (nm) 300 | 200 | 100 95" 90 85.6
Metals Spacing (nm) 150 | 100 50 49 335 24.2
Metals Height (nm) 300 | 200 | 100 88 57 39.5

Table 2.4 shows the tabulated values of parasitic capacitances of each technology

node for metal and polysilicon. Similarly, Table 2.5 shows the summarized values of

parasitics used in this research.

Table 2.4: Parasitic capacitance and thickness of polysilicon based on the technology nodes.

Technology Node (nm) 90 65 45 32 22 16
Plate Capacitance 826 | 973 | 221.3 | 251.5 | 357.27 | 470.73
Metal 1 Fringing Capacitance | 10.9 | 859 | 9.76 | 10.3 | 12.28 13.64
Coupling Capacitance | 93.8 | 73.7 | 83.7 | 823 | 91.76 | 100.31
Metal 2 Plate Capacitance 55.0 | 649 | 1475 | 167.6 | 238.18 | 313.82
- Fringing Capacitance | 8.06 | 6.33 | 7.19 | 7.63 9.32 10.58
Thickness (hm) 180 | 130 90 62.0 | 59.10 | 56.59
. Plate Capacitance 165.2 | 194.7 | 442.7 | 503.0 | 714.55 | 941.46
Polysilicon Fringing Capacitance | 124 | 10.3 | 145 | 123 | 1455 | 16.00
Coupling Capacitance | 61.9 | 48,6 | 553 | 545 | 58.45 61.88

Table 2.5 Parasitic capacitance values according to the technology nodes used in this research.

Technology Node (nm) 90 65 45 32 22 16
Metal 1 Platg Capacitan_ce 82.6 | 97.3 | 221.3 | 2515 | 357.2 | 470.7
- Total Fringe Capacitance | 209.5 | 164.6 | 187.0 | 185.3 | 208.0 | 227.9
Metal 2 Plate Capacitance 55.0 | 64.9 | 1475 | 167.6 | 238.1 | 313.8
- Total Fringe Capacitance | 16.12 | 12.6 | 143 | 152 | 186 | 211
Polysilicon Plat(aT Capacitance 165.2 | 194.7 | 442.7 | 503.0 | 714.5 | 941.4
Total Fringe Capacitance | 148.7 | 117.9 | 139.6 | 133.9 | 146.9 | 155.7

Note: Plate Capacitance (aF /um?) Fringing Capacitance (aF /um)

Coupling Capacitance (aF /um) Total Fringe Capacitance (aF /um)

2.3 MOSFET Model

A summary of the MOSFET saturation drain-to-source current obtained from the
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PTM modé for different technology nodesis given in the table below.




Table 2.6: Vaues of current flowing through PMOS NMOS based on technology node.

Technology Node (nm) 90 65 45 32 22 16

vdd (Volts) 13 12 11 10 | 095 | 09

PMOS Width (nm) 180 130 90 64 44 32

I-V | as(LA) -100.08 | -76.59 | -25.07 | -18.07 | -10.58 | -8.48
Curves [ N\MOS Width (nm) 180 | 130 | 90 64 a4 | 32
| as(UA) 84.99 | 16365 43.04 | 30.53 | 18.49 | 1455

The transistors W/L ratio is 2:1. Due to relatively high values at the 65 nm node,

the current values are non-monotonic. The reason for this is that the 90 nm, 65 nm, and

the 45 to 16 nm models originated from different versions of the PTM model.

2.4 Conclusion

To summarize, this chapter has discussed the various parameters and dimensions

of interconnect that are very important and should be considered when designing a new

model for scaling to submicron dimensions. The parasitic capacitances for metal and

polysilicon are also determined as a part of this chapter. The summarized parasitic

capacitances are used in next chapter for finding the delay and optimized size of

transistors used in the full adder circuits implemented with different logic styles.
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Chapter Three
Dynamic Logic

This chapter discusses the design and simulations of various dynamic logic
circuits in advanced submicron processes.

3.1 Dynamic Logic Gate design

The information from the previous chapter is used to determine parasitics for
different technology nodes and sizes. As discussed, to reduce the number of transistors
required to generate agiven logic in astatic CMOS logic, which requires 2N devices,
various other logic families were devel oped, such as pseudo-NMOS and pass transistor
logic. The problem with the other logic familiesis power dissipation. To overcome this,
dynamic logic was developed. Dynamic logic circuits require a clock to generate a
sequence of precharge and evaluation cycles. The construction of adynamic circuit is
shown in Figure 3.1 below.

CLK

Evaluate Out

CLK

Cp
Precharge

PDDN

C‘LK—{ ﬁ
—

Figure 3.1: Dynamic logic circuit

There are two main phases in the operation of adynamic gate: precharge and
evaluation, as determined by the clock signal CLK. During the precharge, CLK = 0, and
the output node Out is precharged to V4¢ by PMOS M. The pull-down network (PDN) is
disabled during this time due to footer device Me. The FET ensures thereis minimal
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static power during this period. During the evaluation phase, the PDN conditionally
discharges the output node depending on the input values and PDN topology. When the
PDN isturned off, the precharged values are stored on the output capacitance Cy (i.e., a
combination of junction, wiring and input capacitance). Thus when the output is

discharged it can be charged again only in the next precharge cycle. The schematic of a6

input dynamic CMOS gate is shown in Figure 3.2.
VDD

Figure 3.2: Schematic of a6 input CMOS gate.

Electric software was used to create the layout which is shown in the Figure 3.3.

Figure 3.3: Layout of Figure 3.2
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The schematics and physical layouts of all the adder logic styles used in this
chapter are constructed after studying the literature. The Electric design tool is used to
prepare these layouts. Thisisatool used to extract the parasitics. A netlist isformed with
all the parasitic capacitance linked to the interconnect, after the parasitic capacitance of
different technology nodes, used in the previous chapter are included.

All the simulations were performed using the SPICE netlist extracted from the
layout which includes the parasitic capacitances associated with the FETs and
interconnect. Lines of codes for SPICE for supply voltage connection, type of analysis
and constants used were added to the netlist. While manually adding the connections to
the netlist, extra care was taken to ensure no changes were made to the circuit topol ogy.

The input voltage lines of the SPICE netlist are known as input stimulus
waveforms. The input stimulus waveforms are a sequence of three bits from (0,0,0) to
(1,1,1) used to test the functionality and delay of the adders. The input stimulus is used to
verify the functionality of the adder circuits obtained from the netlist, and al so to estimate
delays from input to output. The delays obtained are used to calculate the transistor sizes.
The values for different delaysin the simulations are tabulated in the Appendix. The |east
delay corresponding to minimum area of logic circuit are used to calculate the final sizes
of transistors. The values are tabulated in Table 3.1 below.

Table 3.1: Device sizes in A dimensions in generic dynamic logic circuit.

Device Size Device Size
MP1 5/2 MNa4 6/2
MPMOS@1 | 3/2 MNs 6/2
M N1 6/2 MNs 6/2
MN2 6/2 MN7 6/2
MN3 6/2 | MNMOS@1 | 3/2

3.2 Delay analysis of the pull-down path

Since most of the delay of dynamic gate isincurred by the discharge of the
dynamic node through the pull-down path, this delay is analyzed in detail in this section.
The delay values for the dynamic logic circuit are obtained for two different scenarios,
i.e. with 4 NMOS pull-down devices and 7 NMOS pull-down devices, respectively, and
the values are compared to justify the device size finalized in the previous section. The

results from these ssimulations are tabulated in Appendix C. The goa of thisanaysis was
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to obtain an estimate for the on-resistance of the FET and the capacitance valuesin the

dynamic network under study.

The drain-to-bulk capacitance Ca» was calculated using the formula,

—MJDW

Vap] ™ Vap
—AD - £ab PD —W)-CJDW |1
Cyp = AD - CJ [1+P8] iy Y-¢J [ T +
v ~MJDWG
W - CJSWG [1 +Wm] (3.2)

The values from the corresponding BSIM files are substituted in to the above
equation to get the value of the drain-to-bulk capacitance. Similarly the values of various
capacitances are calculated in the process of determining the junction capacitance using

the following equations.

Cout : derived from spice netlist

Cgb=Waerr X Letf X Cox (3.2
Cox = €ox [ tox = €si02 % Eo/ tox (3.3
tox : derived from SPICE netlist
€so2:39
€4 8.85 % 1012 F/m
C1=2WxCJISWG + 2ZxCISW + Wx ZxCJ (3.4
The values from the above equations are tabulated in Table 3.2 below.
Table 3.2: Tabulation of values used in Cox calculations
Tech node (nm) | Cox (fF/um?) Cout (fF) Cao (fF) Cy(fF)
16 28.75 0.166 0.028 0.052
22 31.3 0.21 0.027 0.073
32 21.5 0.276 0.015 0.107
45 19.17 0.398 0.013 0.15
The load capacitance is calculated using the formula,
(3.5)

CL= (Cdo)nmos H(Cab)pmos +Cout + 2 Cox

17



and the values are tabulated in Table 3.3.

Table 3.3: Tabulation of load capacitance

Tech node (nm) CL (fF) (Cds) nmos(fF) (Cds) pmos (fF)
16 0.364 0.078 0.080
22 0.480 0.1079 0.109
32 0.606 0.1558 0.144
45 0.763 0.96 0.243

In order to estimate the resistance values, the value of V gs and I¢s are determined
at Vpp/2 from the I-V plots for the corresponding technology node. Shown below in
Figure 3.4 isthe |-V plot for the 16 nm technology node plotted using LTSpice. The I-V
plots used for the remaining technology nodes in this section are in Appendix B.

Figure 3.4: I-V plot for 16 nm technology.

Vps1 was calculated as,
Vst =Vpp/2 (3.6)
where Vpp isthe supply voltage.

The value of the on-resistance is estimated by substituting the values into the equation

R=Vadlas. The resistance values for different technology nodes are shown in Table 3.4.
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Table 3.4; Tabulation of resistance R calculations.

Tech node (hm) Voo (V) Vst (V) lpsi (MA) R (KQ)
16 0.9 0.45 6.070 90
22 0.95 0.475 6.71 70.07
32 1 0.5 75 66.5
45 1.1 0.55 9.09 60

The Elmore [24] delay is calculated from the equivalent circuit of the schematic
of adynamic logic circuit with 7 NMOS pull-down devices as shown below,

Figure 3.5: Equivalent RC network

T = (RCy1+ 2RC1+ 3RC1+ 4RC1+ S5RCy+ 6RC1+ 7RCL) XK

=K%(21RC1+ 7 RCy) (3.7
where K is a semi-emperical fitting parameter.

The values of resistance and capacitance cal culated above are substituted and the
value of 1 derived from the smulation is substituted to obtain the value of K. The values

aretabulated in Table 3.5.

Table 3.5: Table of K valuesfor 7 NMOS- pull down

Tech nodes (nm) K values
16 0.38
22 0.40
32 0.42
45 0.48
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Similar calculations were performed for a dynamic logic circuit with 4 NMOS

devices and the values are shown in Table 3.6.

Table 3.6: Table of K values for ANMOS- pull down

Tech nodes (nm) K values
16 0.40
22 0.44
32 0.31
45 0.34

Table 3.7: Step response of lumped and distributed RC networks

Voltagerange Lumped RC Network Distributed RC Network
0to50 % (tp) 0.69 RC 0.38 RC

0to 63% (tp) RC 05RC
10t0 90 % (tp) 2.2RC 09RC

010 90 % (tp) 2.3RC 1.0RC

The literature [13] states that the delay of a distributed network is approximately
0.38RC, where R isthe total capacitance of the network and C isthe total capacitance of
the network. The K values derived from the calculations prove the fact that they are
consistent with the estimations in the literature, down to the K value for the 16 nm

technology simulations for the 7 NMOS pull-down circuit.

3.3 Delay of Adders

This section deals with the study of two single bit full adder cells implemented
with the dynamic logic style. One of them is hybrid CMOS logic and the other is
NPCMOS logic. Both structures are optimized and validated separately. The dynamic
mode causes the speed of cellsto be much higher than the conventional static full adders
in all voltages under study.

The hybrid CMOS circuit design is essentially a differential implementation of
the traditional dynamic domino full adder. Since it exhibits low delay, it is usually used
in high performance circuits. Its topology in Figure 3.6 is based on an NMOS pull down
network and a PMOS precharge, driven by the clock, that brings the gate into precharge
or evaluation mode. The output inverters ensure that no race condition occurs, while the
weak feedback PMOS transistors help in reducing the charge redistribution problem,

thereby increasing the noise immunity
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Figure 3.6: Schematic of a hybrid domino logic circuit, i.e. Sum and Carry blocks [23]

Figure 3.7: Electric layout of Sum block
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Figure 3.8: Electric layout of Carry block

Figuse 3.9: Electric layout of hybrid domino full adder

Another approach which uses dynamic logic is the NP-CMPS logic style, where
at the first stage the C,,; function isobtained using the bridge style [17]. At the second

stage the Sum function is gained according to the equation Sum = Cyyr X (A+ B +
Cin) + A X B X Ci,. Thisdesign has full swing voltage levels. Ciock and ciock' signals
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ensures that both stages enter the evaluation phase simultaneously. The schematic is
depicted in Figure 3.10.
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Figure 3.10: Schematic of NPCMPS

Figure 3.11: Electric layout of NPCMPS circuit.

3. 4 Adder (Full bit adder)

3.4.1 DCVSL
Dynamic CV SL is basically adynamic gate and its complimentary gate together
which makes it possible to merge the two complimentary trees to have one common pull-
down path. The schematic of full adder, shown in Figure 3.6 is obtained from the
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literature [18] and set as a benchmark. The adder circuit is optimized for delay versus
area at the 45 nm technology node to determine the transistor sizes. Several simulations
were run for worst case delay while changing the device sizes. The values obtained from
the ssmulations are tabulated in Table 3.8. Based on the delay versus device size analysis,
the device sizes are finalized. The simulations for worst case delay against the two
possible paths are tabul ated.

The layouts for all the technology nodes under study, (i.e. 16 nm, 22nm, 32nm,
45nm and 65nm) are optimized by changing the device sizes to the final values. Thefina
device sizes of the PMOS devices and the NMOS devices are shown in Table 3.9 and
Table 3.10. All the devices are sized based on lambda (A) design rules, which allow ease
of scaling to different technology nodes which is the approximation of deep submicron
process. Based on the worst case delays, the sizes X=6A; y= 12 A are utilized. The device
sizes are changed in the layout and thereby changing the parasitic to get the layout for
specific technology nodes

A physical layout of the adder design is created using the Electric Software,
which allows corresponding netlists to be extracted that include the parasitic
capacitances. Various tests were then performed to evaluate the performance of circuits
in the corresponding technology nodes. Performance is al'so evaluated for different
scenarios by including bleeder devices of different sizes. The delay values from the
optimized layouts of different technology nodes are tabulated in Table 3.10.

Table 3.8: Table of sizes of PMOS devicesin A dimension.

Device Size Device Size
M pl 3/2 M p8 3/2
M p2 4/6 M p9 12/2
M p3 4/6 M p10 4/6
M p4 3/2 M pll 3/2
M p5 4/6 M p12 3/2
M p6 4/6 M p13 4/6
M p7 3/2 M pl4 12/2
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Table 3.9: Table of sizes of NMOS devices in A dimension.

Device Size Device Size
Mn1 3/2 Mn14 3/2
Mn2 3/2 Mn1s 12/2
Mn3 3/2 Mnie 12/2
M n4 3/2 M n17 12/2
M ns 3/2 Mnis 12/2
Mne 3/2 Mn19 6/2
Mn7 3/2 M n20 6/2
M ns 3/2 M n21 12/2
Mo 3/2 M n22 12/2
Mn1o 3/2 Mn23 12/2
Mn11 3/2 M n24 3/2
Mn12 3/2 M n2s 3/2
Mn13 3/2 M n26 3/2

Table 3.10: Final delay values of DCVSL.
Tech Node(nm) | 16 20 32 45 65
Delays(ns) 0.1213 | 0.1361 | 0.0988 | 0.06876 | 0.027
3.4.2 NP-CM PS

The schematic of full adder, Figure 3.10 design is obtained from the literature
[19]. Based on the worst case delay, the device size 9 A is chosen to be optimal. Hence the
layout is optimized, i.e., the device sizes are changed accordingly. The final device sizes
in the layout are tabulated in Table 3.11. The netlists are extracted with corresponding
parasitics included and delay values are calculated for each technology node under study,
which arein Table 3.12. The same steps are repeated as in the hybrid CVSL and the

delays for determining sizes are obtained accordingly.

Table3.11: Device sizesfor NPCMPS in A dimensions.

Device | Size | Device | Size
M p1l 9/2 M ng 3/2
M p2 9/2 Mnio 3/2
M p3 9/2 Mn11 3/2
M p4 9/2 Mni12 3/2
M p5 9/2 Mn13 3/2
M p6 9/2 Mnia 3/2
M p7 3/2 Mn1s 3/2
M ps 9/2 Mnise | 3/2
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Table 3.12: Final delay values for NPCMPS.

Tech nodes (nm) 16 22 32 45 65

Delays (ns) 0.2161 0.2317 0.1164 0.777 0.065

The delay versus technology nodes for the DCV SL and NPCMPS gates are plotted in
Figures 3.12 and 3.13, respectively. For both gates, the delay increases with decreasing
technology nodes. Thisis to be expected because the same width-to-length ratios were
used in the pull-down paths for all the dynamic gates that were characterized. A similar
effect was seen in the characterization of static CMOS gates versus technology node [17].
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Figure 3.12: Delay versus technology node plot for DCV SL
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Figure 3.13: Delay versus technology node plot for NPCMPS.
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3.5 Summary

The delay characterization of dynamic gates in deep submicron technologies was
studied in this chapter. The use of the EImore delay to estimate the time constant of the
pull-down path in adynamic gate has been validated. The design and layout of the
dynamic gates have been described. Extracted SPICE netlists from the physical layout
provided the parasitic capacitance information. The interconnect model and FET
predictive technology models discussed in the previous chapter were utilized to obtain
accurate simulations of the delay characteristics for the dynamic gates.
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Chapter Four

Major issuesin Dynamic L ogic | mplementation

Dynamic logic results in high performance solutions but some problems which
have to be taken into account are charge sharing and charge |eakage. These two issues are
discussed and ways to avoid or minimize the effects of charge |eakage and charge sharing
with the aid of several simulations are discussed in the following sections.

4.1 Charge leakage

Leakage in adynamic circuit is a concern when the pull-down path isin a high-
impedance state and the charge storage node needs to maintain a high state. The
operation of adynamic gate is basically dependent on the dynamic storage of the output
value on a capacitor. If the pull-down network is off, ideally, the output should remain at
precharged state of Vq4. However this charge gradually leaks away due to leakage
currents causing the gate to not function properly. Figure 4.1 shows the sources of
leakage inside aM OS transistor.

Source Drain

+

Ao

Figure 4.1: Sources of leakage in atransistor. [23]

Bulk Ipunc:h

Asthe scaling of devices enters the deep submicron ranges, the resistance values
change in such a way that drastically influence the transistor’s functional behavior. The

more significant leakage mechanismsin MOS transistors are discussed below.
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Table 4.1: Prediction of the lsub, Ipn-jun and |gate Obtained from literature [23].

Generation Y ear I sub I pn-jun | gate
90 nm 2004 840 pA 25 nA 13nA
50 nm 2010 21 pA 3.0nA 52 nA
25nm 2016 260 pA 120 nA 510 nA

The kind of leakage which has the most impact on the overall static power
consumption of aMOS transistor is called the subthreshold current [23]. In practical
scenarios, even when the gate voltage is considerably below the threshold voltage, the
current passing through the channel is not literally zero because a transistor isnot a
simple switch but should be viewed as a complex analog component. Hence, a potential
difference between the source and drain will result in a subthreshold current through the
channel. In the case of deep submicron device sizes, this effect is substantially amplified
because the scaling of a device to such sizes reduces the length of the device drastically.
Drain induced barrier lowering (DIBL) due to greater interaction of the drain potential
with the channel, results in alowering of the threshold voltage. This resultsin increased
drain-to-source current as well.

Based on the predictions derived from [23], gate |eakage current is almost
negligible today, as the subthreshold has become exponentially high. It needsto be noted
that as the subthreshold current will rise by afactor of 25 from 90 nm to 50 nm
technology, gate leakage will rise by afactor of 4000 at 90 nm. According to [19], gate
leakage alone will contribute to 15% of the total power consumption. The above
predictions are validated by further calculating the values for 45 nm and 22 nm. The
calculations are as below:

ClAV
Atsub — - l (4.1)
leak1
Where, AV = 22 (4.2)
Leak1=2lsub (4.3)
CLAV
Atpn-—jn - flcfakz (44)
Where lieak2 = Ipnijn (4.5)
C AV
Atgate — ;I:a: (4.6)
lleak3=2l gate 4.7)
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CiAv

Atrorar = (48)

lieaka
lieaka= lieak1 + lieak2 + lieak3 (4.9
The results from the calculations are summarized in Table 4.2.
Table 4.2: Delta t calculation results.

45 nm technology 22 nm technology
Delta tsub 9.99ns Delta tsub 0.43ns
Delta tpn-jn 34ns Delta tpn-jn 0.45ns
Delta tgate 4.02ns Delta tgate 0.21ns
Delta tTotal 2.65ns Delta tTotal 0.1ns

It needs to be noted that the value of Delta tTotal is estimated to be only 0.1ns for
the 22 nm technology node and all the values arelessthan 1 ns.

The leakage issue can be counteracted by adding a bleeder device or a bleeder
transistor (Mb1) as shown in Figure 4.2. The only function of the PMOS pull-up deviceis
to compensate for the charge lost due to pull-down leakage paths. This allows the
stronger pull-down devices to lower the OUT node significantly below the switching
threshold of the next gate when the pull-down network turns on.

More commonly, the bleeder device isimplemented in afeedback configuration,

as shown in Figure 4.3, to eliminate the static power dissipation altogether.

Figure 4.2: Bleeder device implementation.
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Figure 4.3: Bleeder device practical implementation in feedback configuration.

4.2 Charge sharing

Another magjor concern in dynamic logic is the impact of charge sharing. Consider
the circuit in Figure 4.4 which is obtained from [24]. During the precharge phase the
output nodeis precharged to Vpp. Assume that all inputs are set to O during precharge,
and that the capacitance Cais discharged and aso that input B remains O during
evaluation. When input A makes 0 to 1 transition, Mais turned on. The charge initialy
stored on capacitance Cy is redistributed over C. and Ca,, This causes adrop in output
voltage which cannot be recovered due to the dynamic nature of the circuit. When the
output voltage drops below the switching threshold of the gate it drives, charge sharing

becomes amajor concern.

CIK ‘({ Mp
Jul
Cy
ﬂ— Ma ‘|;
1 .
I

E4:

-

o

Figure 4.4: Charge sharing in dynamic network
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The layout of the above schematic was generated using Electric software and the
respective capacitance values were obtained from it. The values for different technology
nodes are tabulated in Table 4.3.

Table 4.3: Vaues of C. and Caderived from the electric layout.

Technology Node CL Ca
45 nm 0.243 fF 0.763 fF
32nm 0.606 {F 0.1158 {F
22 nm 0.1079 f¥ 0.4809 fF

When V,,, < Vg, , the final value of V, equals Vpp — Vi, (Ve ). Charge conversation

then yiefds,

CLVop = CVoue (final) + Co [Vpp — Vpn (V)] (4.10)

. Ca
AVue = Vour (final) + (= Vpp) = o [Vop — Vrn (V)] (4.11)

If Voue > Vrn » Vour and Vg reachesthe samevalue AVpye = —Vpp (—)  (412)
74 L

The boundary conditions between two cases can be determined by setting V,,,+ equal to

Vrn , yielding
Ca - Vrn
Cr, a Vop—Vrn (413)

It is desirable to keep AV, below|Vr, |. The output of dynamic gate might be
connected to a static inverter, in which case the [ow level of V,,,, would cause static

power consumption.

4.2.1 Noise generator

With the continued scaling of CMOS technology and increasing performance
requirement, deep submicron noise is becoming an issue. Noise can be defined as
anything that deviates the voltage at the evaluation node from ground rails or nominal
rails when it should have astable low or high value [22]. In amodern CMOS processor
as the interconnects are packed more closely, the amount of capacitive coupling between
the netsincreases. To maintain the drive strength the threshold voltage is scaled lower
resulting in lower noise margins and increased |eakage noise. Noise can be characterized
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by peak magnitude relative to nominal supply and ground railsin time domain. Some of
the noise sources most common in digital design are leakage noise, power supply noise,
charge sharing noise and crosstalk noise. The maor reason for extensive use of digital
systems is because of its property of noise immunity. Digital systems operate over a
range of voltages which may fall out of range due to noise. But a CMOS inverter restores
these logic values by means of anonlinear voltage transfer, which reduces the noisein
low and high voltage rails.

The schematic of the noise injection circuit is derived from [22] and is shown in
Figure 4.5. The noise injection circuit is designed to produce a noise waveform, i.e.
induce a noise pulse of desired amplitude and width into alogic gate and several
simulations are run to quantify the noise immunity of a network which in other wordsis
to evaluate how tolerant is a gate to noise. It isimportant to understand the gate’s noise
immunity in the study of dynamic logic because dynamic logic gates are susceptible to
glitches. Thisis not amajor concern in static logic as it has both active pull-up and pull-
down devices to aid with the recovery, i.e. even though the output might go down
momentarily but it gets restored but whereas in dynamic logic, if we get a glitch and the
charge at the output discharges; a bleeder device is required to recharge the output
capacitance.

A glitch isintroduced using the noise injection circuit shown below. This causes
the output node to discharge due to charge leakage and then a bleeder device is added to

the output of the circuit in an effort to compensate for the charge lost.

Variable delay line

Ej né H=— 10 y
O, ~C= o 1JL
4 M [ y—he
LEH T LEH
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Y l-‘-‘i' ' i l g [m

Figure 4.5: Schematic of anoiseinjection circuit.
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Figure 4.6: Noise pulse controls.

The width of the noise pulse generated by the noise injection circuit is controlled
by the value of voltage V. and the height of the pulseis varied by a change in the value of
Vadn as seen abovein Figure 4.5.

Various simulations are generated using L TSPICE by varying the width of the
noise pulse and the response time, i.e. how long before the output is restored with the
help of the bleeder device. In other words, the whole point of these simulationsis to
analyze which bleeder device size results in the fastest recovery time when subjected to
noise waveforms of different widths. The simulations are in Appendix B. The fastest
recovery time was observed for Vnx= 0.9V for al the three bleeder sizes smulated. The
values are tabulated in Table 4 .4.

To understand the simulations, the following part of the above schematic is used
to show the nodes, at which the waveforms are simulated,

Table 4.4: Recovery time for the bleeder sizesat V=Vnx.

Bleeder device sizes L=2%Lp L=3%xLp L=5%Lp
Recovery time 0.136 ns 0.172 ns 0.231 ns
=" e pi2 | J__

Figure 4.7: Bleeder circuit.

34




Electric software is utilized to generate the layout of the above schematic, from
which the corresponding netlists are obtained. The netlistsin turn are used to derive the
parasitics which are used in running the simulations using L T SPICE software. Severa
simulations were performed by varying the bleeder device size. The results from the

simulations are tabulated in the appendix.
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Figure 4.8: Explanation of bleeder device ssmulations.

where, Vnxis the voltage used to control the width of the noise pulse.

Recovery timeis the time delay in nsfor the output Vout to approximately reach
itsorigina high value because of the bleeder device, i.e. the delay between the 90% point
of Vourand V¢,

(Vt) min IS the minimum value to which the output of the bleeder circuit drops because of

the noise pulse.

(Vx2) max 1S the maximum value to which the output of the circuit recovers because of the
bleeder device.
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Similarly, simulations are run for bleeder sizes 3xLp and 5xLp and the results are
tabulated in Appendix A.

Based on the observations made from the simulation results, it is validated that the
bleeder device does help in the charge recovery at the output. It was observed that the
response times are proportional to the size and strength of the bleeder device, i.e. the
stronger the bleeder device, the faster was the recovery time. Hence the noise immunity
of the dynamic logic circuit under study is dependent on the size and strength of the
bleeder device.
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Chapter 5

Conclusions and Future Work
5.1 Conclusion

The objective of thisthesisisto characterize the performance of dynamic logic
circuitsin VDSM technol ogies and to evaluate various design strategies to mitigate the
effects of leakage currents and small noise margins as they are amajor concern when the
technology is scaled to deep submicron dimensions and lower.

The design and layout of the dynamic gates have been described. Extracted
SPICE netlists from the physical layout provided the parasitic capacitance information.
The interconnect model and FET predictive technology models discussed in Chapter 2
were utilized to obtain accurate simulations of the delay characteristics for the dynamic
gates. The parasitic parameters for each technology node were cal culated based on the
interconnect dimensions obtained from the literature. The design optimization of the
dynamic logic circuits was discussed and this method isillustrated via the design of full
adder circuits using various dynamic logic families. The method for adder circuit
optimization included the analysis of the schematic of each full adder circuit and the
construction of physical layouts.

In the analysis of the effects of charge sharing and charge leakage mechanisms,
weak pull-up transistors known as bleeder devices were used to compensate for the loss
of charge from the dynamic storage nodes. The impact of these devices on the
performance of dynamic logic was evaluated through the addition of a noise generator
circuit to the smulations.

It is concluded that increasing leakage currents in nanoscal e technology will be a
major concern but functional dynamic logic circuits can be implemented in VDSM
technol ogies through the introduction of properly sized bleeder devices. However, some

degradation in circuit speed is expected.
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5.2 Future Work

Thiswork has paved away for implementing dynamic logic in more complex
circuits like datapaths and microprocessors at submicron technology levels. Further
research is required to explore the possibility of implementing these adders with future
nanotechnol ogies, such as carbon nanotubes. The robustness and fault tolerance of the
circuits need to be studied as these are critical factors for future technologies where the

small transistor dimensions are likely to make the devices more prone to failure.
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Appendix A: |-V plots of technology nodes
1. I-V curvesfor pMOSFET and nMOSFET for all the technology nodes.

a) |-V plot for 16 nm technology node.
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b) 1-V plot for 32 nm technology node.
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d)

[-V plot got 64 nm technology node.
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Appendix B
SPICE simulations for different bleeder device sizesi.e. 2xIp, 3xIp, 5xIp:

SPICE simulation for bleeder size 2xIp:
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SPICE simulation for bleeder size 3xIp:
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SPICE simulation for bleeder size 5xIp:
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