
University of Texas at Tyler
Scholar Works at UT Tyler

Electrical Engineering Theses Electrical Engineering

Spring 4-27-2012

Design and Implementation of Fault Tolerant
Adders on Field Programmable Gate Arrays
Lakshmi Phani Deepthi Bollepalli

Follow this and additional works at: https://scholarworks.uttyler.edu/ee_grad

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Electrical
Engineering at Scholar Works at UT Tyler. It has been accepted for
inclusion in Electrical Engineering Theses by an authorized administrator
of Scholar Works at UT Tyler. For more information, please contact
tbianchi@uttyler.edu.

Recommended Citation
Bollepalli, Lakshmi Phani Deepthi, "Design and Implementation of Fault Tolerant Adders on Field Programmable Gate Arrays"
(2012). Electrical Engineering Theses. Paper 17.
http://hdl.handle.net/10950/62

http://www.uttyler.edu/graduate/?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.uttyler.edu/graduate/?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/ee?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uttyler.edu/ee_grad?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hdl.handle.net/10950/62?utm_source=scholarworks.uttyler.edu%2Fee_grad%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tbianchi@uttyler.edu

DESIGN AND IMPLEMENTATION OF FAULT TOLERANT

ADDERS ON FIELD PROGRAMMABLE GATE ARRAYS

by

Lakshmi Phani Deepthi Bollepalli

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical Engineering

David H. K. Hoe, Ph.D., Committee Chair

College of Engineering and Computer Science

The University of Texas at Tyler

May 2012

Acknowledgements

Firstly, I sincerely thank my god for bestowing his divine blessings on me

in successfully accomplishing this task. Secondly, my hearty thanks to my family

members: my grandfather Purna Chandra Rao Ravi, mom Vijaya Kumari, uncle

Rama Krishna Prasad Ravi and my loving sisters Gayathri and Hanumasri for their

wholehearted support, love and encouragement for making my dream come true. I

would like to express my honest and heartfelt gratitude to my advisor Dr. David

Hoe for his encouragement, patience, supervision and constant support from the

preliminary stages to the concluding level on me without whom this thesis would

not have been possible. Also, I am grateful to my professor Dr. Hoe for

encouraging me with the saying, “Give it the extra push.” Without his support and

encouragement from the very first day of my work, I cannot imagine my

successful completion of this thesis. I am very grateful to my friend Chris

Martinez for spending his valuable time throughout my research, working on late

nights and weekends in the lab by encouraging me in completion of this task in

every aspect. Also I would like to thank my seniors Venkata Chandra Sekhar

Mandala and Rahul Jesuran and for making me active and supporting me

throughout my Master’s.

I would like to thank my committee members, Dr. Ron J. Piper and Dr.

Mukul V. Shirvaikar for taking time and for reviewing my work. I still remember

the precious words by Dr. Shirvaikar on the way home regarding my research with

Dr. David Hoe which gave a million tons of encouragement and will power for a

successful start. I would like to express my profound gratitude to him for his

constant support and guidance throughout my Master’s program. Finally I would

like to thank the entire EE department and the University of Texas at Tyler for

supporting me throughout my Master’s. Finally, I would like to thank all those

who supported me in any respect during the completion of the thesis.

i

Table of Contents

Chapter One ...1

Introduction ..1

1.1 Importance of Fault Tolerance in FPGAs ... 2

1.2 Review of the Relevant Literature: ... 2

1.3 Research Objectives .. 3

1.4 Research Method ... 3

1.5 Thesis Outline .. 4

Chapter Two...5

Fault Tolerance on FPGAs...5

2.1 Introduction ... 5

2.2 Basic Adder Designs ... 5

2.2.1 Full Adder ... 5

2.3 Ripple Carry Adder ... 7

2.4 Kogge-Stone Adder ... 7

2.4.1 8-bit Kogge-Stone Adder.. 8

2.5 Sparse Kogge-Stone Adder ... 13

2.6. Basic Fault Tolerance - Hardware Redundancy ... 14

2.7 Advanced Fault Tolerant Methods .. 15

2.7.1 Structural Design – Hybrid Approach .. 15

2.7.2 Roving .. 17

2.7.3 Graceful Degradation ... 19

Summary ... 21

Chapter 3 ..22

Basic Fault Tolerant Implementation...22

3.1 Introduction ... 22

3.2 FPGA Implementation Method ... 22

3.3 Triple Modular Redundancy-RCA .. 22

3.4 Regular Kogge-Stone Adder Fault Correction Approach 24

3.5 Lower Half Fault Tolerant Sparse Kogge-Stone Adder 25

ii

3.5.1 Simulations of the Sparse Kogge-Stone Adder .. 27

Summary ... 28

Chapter 4 ..29

Advanced Fault Tolerance Concepts ...29

4.1 Introduction ... 29

4.2 Upper Half Fault Tolerant Sparse Kogge-Stone Adder 29

4.2.1 Simulation Results .. 33

4.3 Graceful Degradation .. 35

4.3.1 Implementation ... 35

4.3.2 Simulation Results .. 36

4.4 Synthesis Results ... 38

4.5 Hardware Implementation ... 41

Summary ... 44

Chapter Five ...46

Conclusions and Future Work ...46

5.1 Conclusions ... 46

5.2 Future Work .. 46

References ..48

Appendices ...50

Appendix: A ...51

A1. VHDL Code for 32-bit TMR-RCA .. 51

A2. VHDL Code for adder1 in 32-bit TMR-RCA .. 52

A3. VHDL Code for adder2 in 32-bit TMR-RCA .. 53

A4. VHDL Code for adder3 in 32-bit TMR-RCA .. 54

A5. VHDL Code for comparator in 32-bit TMR-RCA ... 54

Appendix: B ...56

B1. VHDL Code for 8-bit Kogge-Stone Fault Correcting Adder 56

B2. VHDL Code for mux in 8-bit Kogge-Stone Fault Correcting Adder 62

B3. VHDL Code for GPblock in 8-bit Kogge-Stone Fault Correcting Adder 62

B4. VHDL Code for blackcell in 8-bit Kogge-Stone Fault Correcting Adder 63

B5. VHDL Code for graycell in 8-bit Kogge-Stone Fault Correcting Adder 63

iii

B6. VHDL Code for faultgraycell in 8-bit Kogge-Stone Fault Correcting Adder 64

B7. VHDL Code for buffer1 in 8-bit Kogge-Stone Fault Correcting Adder 64

B8. VHDL Code for outmux in 8-bit Kogge-Stone Fault Correcting Adder 65

B9. VHDL Code for sum in 8-bit Kogge-Stone Fault Correcting Adder 65

B10. VHDL Code for CntlMuxs in 8-bit Kogge-Stone Fault Correcting Adder 66

Appendix: C ...68

C1. VHDL Code for 32-bit Kogge-Stone Adder (Lower half) 68

C2. VHDL Code for ConcatenationRCA in 32-bit Kogge-Stone Adder (Lower half)

.. 77

C3. VHDL Code for FaultyAdder1 in 32-bit Kogge-Stone Adder (Lower half) 78

C4. VHDL Code for comparator1 in 32-bit Kogge-Stone Adder (Lower half) 78

C5. VHDL Code for bitcounter1 in 32-bit Kogge-Stone Adder (Lower half) 80

Appendix: D ...81

D1. VHDL Code for 32-bit Kogge-Stone Adder (Upper half) 81

D2. VHDL Code for greengroup in 32-bit Kogge-Stone Adder (Upper half) 85

D3. VHDL Code for purplegroup in 32-bit Kogge-Stone Adder (Upper half) 87

D4. VHDL Code for bluegroup in 32-bit Kogge-Stone Adder (Upper half) 89

D5. VHDL Code for ConcatenationRCA in 32-bit Kogge-Stone Adder (Upper half)

.. 91

D6. VHDL Code for faultgraycell in 32-bit Kogge-Stone Adder (Upper half) 92

D7. VHDL Code for faultblackcell in 32-bit Kogge-Stone Adder (Upper half) 92

Appendix: E ...94

E1. VHDL Code for 32-bit Graceful Degradation .. 94

E2. VHDL Code for comparator2 in 32-bit Graceful Degradation 104

Appendix: F .. 106

F1. VHDL code for 32-bit TMR-RCA Implemented on Hardware 106

F2. VHDL code for 32-bit Sparse Kogge-Stone Lower Half Implemented on

Hardware .. 108

F3. VHDL code for 32-bit Graceful Degradation Implemented on Hardware 110

Appendix G ..113

G.1 Other Fault Combinations for Upper Half Fault Tolerant Sparse Kogge-Stone

Adder.. 113

iv

Appendix H ..115

H1 Spartan-3E ... 115

H2 Virtex-5 .. 116

Appendix I .. 118

I1. Delay Calculation of TMR_RCA on Logic Analyzer .. 118

I2. Observing Worst Case Transition for Kogge Stone Adder 124

Appendix J ...133

v

List of Figures

Figure 2.1 Block diagram of a full adder ...6

Figure 2.2 4-bit ripple carry adder ...7

Figure 2.3 Generate-Propagate block ..9

Figure 2.4(a) Black cell ...9

Figure 2.4(a) Gray cell ..9

Figure 2.5 Buffer ..10

Figure 2.6 8-bit Kogge-Stone adder...11

Figure 2.7 16-bit Kogge-Stone adder...12

Figure 2.8 Sparse Kogge-Stone adder ...13

Figure 2.9 General Triple Modular Redundancy ...14

Figure 2.10 TMR adder circuit using ripple carry ...15

Figure 2.11 8-bit Kogge-Stone carry tree illustrating the mutually exclusive even and odd

carry trees ...16

Figure 2.12 Timing diagram for three adders in execution unit (Tc is the clock period) ..17

Figure 2.13 Block diagram for the proposed 8-bit fault tolerant Kogge-Stone adder18

Figure 2.14 Roving area under test across the chip ...18

Figure 2.15 General block diagram of graceful degradation ...19

Figure 2.16 General view of the graceful degradation process ...20

Figure 3.1 General design flow ..23

Figure 3.2 Simulation results for the 64-bit TMR-RCA ..24

Figure 3.3 Simulation results for the 64-bit error correcting Kogge-Stone adder25

Figure 3.4 Block diagram of fault tolerant sparse Kogge-Stone adder..............................26

Figure 3.5 Timing diagram for the lower half fault tolerant Kogge-Stone27

Figure 3.6 Simulation results for the 64-bit lower half FT sparse Kogge-Stone adder28

vi

Figure 4.1 Upper half detection scheme for 16-bit sparse Kogge-Stone adder30

Figure 4.2 Upper half detection truth table ..30

Figure 4.3 Upper half detection scheme with fault free carry comparisions31

Figure 4.4 Truth table for upper half error detection with fault free comparisions32

Figure 4.5 Upper half detection scheme for a 32-bit sparse Kogge-Stone adder33

Figure 4.6 (a) Normal adder operation of the sparse Kogge-Stone upper half34

Figure 4.6 (b) Fault tolerant adder operation of the sparse Kogge-Stone upper half34

Figure 4.7 Block diagram of graceful degradation approach on sparse Kogge-Stone adder

..35

Figure 4.8 (a) Normal adder operation of the graceful degradation adder37

Figure 4.8 (b) Fault tolerant adder operation of the graceful degradation adder37

Figure 4.9 Estimation of resources used from FPGA synthesis ..38

Figure 4.10 Corresponding delays for the sparse KS on Sparatn 3E FPGA......................39

Figure 4.11 Delay of FT adders on Spartan 3E FPGA ..40

Figure 4.12 Delay of FT adders on Virtex 5 FPGA ...41

Figure 4.13 Measured delay for the 64-bit TMR-RCA ...42

Figure 4.14: Implemented procedure for simulating the worst-case delay on the sparse

Kogge-Stone lower half approach ...43

Figure 4.15 Measured delay for the 64-bit sparse Kogge-Stone Adder43

Figure 4.16 Measured delay for the 64-bit graceful degradation adder44

Figure 4.17 Summary of adder delays on Spartan 3E ...45

Figure G: Fault tolerant adder operation for multiple fault combinations114

Figure H-1: Spartan-3E FPGA...115

Figure H-2: Virtex-5 FPGA ...116

Figure I-1: Adder delay including ROM and multiplexer ...118

Figure I-2: Logic cell of Spartan 3E ..120

vii

Figure I-3 Adder delay excluding ROM and multiplexer ..123

Figure I-4: Kogge-Stone adder with selected BC1 ..126

Figure I-5: Kogge-Stone adder with selected GC0 ..127

Figure I.6: Kogge-Stone adder with selected GC2 ..128

viii

List of Tables

Table 2.1: Truth table of full adder ..6

Table 2.6: Kogge-Stone adders of different bit-widths ...11

Table I-1: Input pattern chosen for testing TMR-RCA ...119

Table I-2: Worst case carry and sum delays ..121

Table I-3: Worst case input delays ...123

Table I-4: Subset of (g, p) relations used for testing ..125

Table I-5: Black cell 1 outputs for high inputs ..126

Table I-6: Gray cell 0 outputs for high inputs..127

Table I-7: Gray cell 2 outputs for high inputs..128

Table I-8: Black cell 1 outputs for one low input ..129

Table I-9: Gray cell 0 outputs for one low input ...130

Table I-10: Gray cell 2 outputs for one low input ...131

Table J-1: Delay summary for lower half fault tolerant sparse Kogge-Stone adder133

ix

Abstract

DESIGN AND IMPLEMENTATION OF FAULT TOLERANT ADDERS

ON FIELD PROGRAMMABLE GATE ARRAYS

Lakshmi Phani Deepthi Bollepalli

Thesis chair: David H. K. Hoe, Ph.D.

The University of Texas at Tyler

May 2012

 Fault tolerant systems play a very prominent role in many digital systems

especially for those implemented with nanoscale technologies because of their

susceptibility to electromagnetic interference and transient errors due to cosmic rays.

Arithmetic logic circuits play a vital role in all digital signal processing systems and also

in microprocessors. Keeping this in mind, this research is concerned with achieving fault

tolerance on various adder architectures on Field Programmable Gate Arrays (FPGAs).

 The research method involves implementing error detection and correction

techniques for the sparse Kogge-Stone adder and comparing it with Triple Modular

Redundancy (TMR) techniques. Fault tolerance is implemented on a Kogge-Stone adder

by taking the advantage of inherent redundancy in the carry tree. On a sparse Kogge-

Stone adder, fault tolerance is implemented by introducing additional ripple carry adders

into the design. Implementing this fault tolerance approach on the sparse Kogge-Stone

adder is successfully completed and verified by introducing faults either on the ripple

carry adder or in the carry tree. The adder designs are specified using a high-level

descriptor language called “Very High Speed Integrated Circuit Hardware Description

Language” (VHDL) and implemented on an FPGA. Two types of Xilinx FPGAs were

x

used in this study: the Spartan 3E and Virtex 5. The fault tolerant adders were analyzed in

terms of their delay and resource utilization as a function of their bit-widths.

 The results of this research provide important design guidelines for the

implementation of fault tolerant adders on FPGAs. The Triple Modular Redundancy-

Ripple Carry Adder (TMR-RCA) is the most efficient approach for fault tolerant design

on an FPGA in terms of its resources, due to its simplicity and the ability to take

advantage of the fast-carry chain. However, for very large bit widths, there are

indications that the sparse Kogge-Stone adder offers superior performance over an RCA

when implemented on an FPGA. Two fault tolerant approaches were implemented using

a sparse Kogge-Stone architecture. First, a fault tolerant sparse Kogge-Stone adder is

designed by taking advantage of the existing ripple carry adders in the architecture and

adopting a similar approach to the TMR-RCA by inserting two additional ripple carry

adders into the design. Second, a graceful degradation approach is implemented with the

sparse Kogge-Stone adder. In this approach, a faulty block is permanently replaced with a

spare block. As the spare block is initially used for fault checking, the fault tolerant

capability of the circuit is degraded in order to continue fault-free operation. The adder

delay is smaller for graceful degradation by approximately 1 ns from measured results

and 2 ns from the synthesis results independent of the bit widths when compared with the

fault tolerant Kogge-Stone adder. However, the resource utilization is similar for both

adders.

1

Chapter One

Introduction

Fault tolerance plays a very important role in modern systems where immediate

human intervention is not possible and system failure can have disastrous consequences.

A fault tolerant system has the ability to detect and then correct the occurrence of a

hardware failure. In order to detect the fault, the system must be able to sense any

deviations from its normal operation. A fully fault tolerant system also has the ability to

correct the fault in order to return the system to its normal functionality. An optimal

design will minimize the amount of extra logic required to detect and then correct the

occurrence of the fault. An extreme temperature change is one of the reasons in which

fault tolerance is necessary for devices operating in harsh operating environments, as

found, for example, in space and military applications. Fault tolerance will also be

necessary in nanoelectronic systems, as small device dimensions make the system more

susceptible to outside interference, such as cosmic radiation.

This thesis will study methods to implement fault tolerant arithmetic circuits on

Field Programmable Gate Arrays (FPGAs). FPGAs are integrated circuits (ICs) that can

be configured to implement a specific function after the chip has been manufactured. The

first FPGAs were put on the market by Xilinx Corporation in 1985 and by the late 1990’s

FPGAs were becoming more popular than Application Specific Integrated Circuits

(ASICs). The advantages of using FPGAs are their reprogrammable nature, ease of

prototyping, rapid time to market, and minimal non-recurring engineering (NRE) cost

compared to custom IC designs. Most modern electronic systems contain some high

performance digital chips known as Digital Signal Processors (DSPs). DSP designs are

commonly used in electronic systems such as avionics, communication systems and also

in portable electronics. DSP chips transform and manipulate digitally encoded signals

according to some specified system design goal. Various algorithms such as the Fast

Fourier Transforms are used to analyze the signals which are in digital form. The main

components of a DSP chip are the adder and multiplier along with memory elements. The

2

performance of the system is based on the speed at which arithmetic operations are

performed. Hence the adder plays a vital role in DSPs for carrying out all the required

arithmetic operations.

1.1 Importance of Fault Tolerance in FPGAs

A large portion of an FPGA chip consists of its configuration memory. The logic

stored in the memory of the system can be altered by Single-Event Upsets (SEUs). SEUs

can occur due to cosmic radiation or a high energy neutron striking the substrate of the

device silicon. As SEUs can cause single-bit errors within the configuration memory, a

fault tolerant system that uses FPGAs must guard against these occurrences. Fault

tolerant systems are also important for circuits implemented on nanoscale technologies as

external influences such as electromagnetic interference and cosmic rays can cause

transient errors which in turn affect the operation of the devices and can degrade the

system reliability. State-of-the-art FPGAs are designed with very fine geometrics making

them susceptible to faults due to such electrical interference. For example, Xilinx’s

Virtex-6 FPGA uses 40 nm technology and the Virtex-7 uses 28 nm technology. The

silicon processing technology is at the 22 nm mode at the time this thesis was written.

Degradation mechanisms of the devices become more severe with the shrinking of the

process geometry. For example, hot-carrier effects due to the increasing electric field

strength in the transistor’s channel causes a gradual degradation in the device

performance through threshold voltage shifts.

1.2 Review of the Relevant Literature:

 Previous studies have investigated fault tolerant methods implemented on FPGAs

[1]. The basic fault tolerant approach is Triple Modular Redundancy (TMR) which is

used as a point of reference to compare with advanced fault approach considered in this

thesis [2]. TMR is a common solution for hardening digital logic against SEUs and is

widely adopted in ASIC designs [3]. Hardware is essentially replicated in triplicate with a

voter circuit used to pass the majority rule signals to the output.

Roving fault detection and graceful degradation are some of the fault tolerant

approaches used for ensuring reliable FPGA designs [4]. Roving fault detection performs

a progressive scan of an FPGA structure by swapping blocks with the same functionality

3

with a block carrying out the test function. Graceful degradation is an approach in which

the faulty block is replaced with a spare block. A fault correction approach for a parallel

prefix, N bit Kogge-Stone adder, which consists of two independent N/2 bit Han-Carlson

(HC) adders, is implemented [5]. In addition, fault tolerance can be implemented by

using self-testing areas (STARs) on an FPGA, which allows fault checking to occur

without disturbing the normal system operation [6].

1.3 Research Objectives

As the adder plays a vital role in digital signal processing systems and

microprocessors, the main objective of this research is to design and implement fault

tolerant adders on FPGAs. Existing fault tolerant approaches will be applied to adders of

varying bit widths for implementation on FPGAs.

1.4 Research Method

To meet the research objectives three adder topologies, namely the ripple carry

adder, Kogge-Stone adder, and the sparse Kogge-Stone adder are studied. The ripple

carry adder in a TMR configuration is used as the reference design. The Kogge-Stone

adder, which is classified as a parallel prefix adder, has a critical path on the order of

 (where is the width of the adder in bits). The regularity of its structure makes it

suitable for VLSI designs as well as FPGA implementations. This research is performed

in two parts. First is to evaluate the previous work of K. Roy’s group on fault tolerant

adders meant for VLSI design [5] and by implementing this approach on FPGAs. Second

is to investigate and design fully fault tolerant Kogge-Stone adders on FPGAs. The fault

tolerant adders which are coded in VHDL are synthesized and implemented on the

FPGAs. The functionality of the designed fault tolerant adders are studied and then

compared with the base reference TMR adder in terms of delay and usage of resources as

a function of their bit-widths. An optimal fault tolerant design adds little overhead to the

system. The method of study for this research involves designing carry tree adders of

varying widths up to 256 bits. The designs are synthesized by coding with VHDL using

Xilinx’s ISE 12.4 software. The performance metrics of timing delay and operational cost

are observed from the synthesis reports. The functionality of the designed adders are

4

verified and simulating with ISIM. The critical delays of the designed adders are

measured using a high-speed logic analyzer.

1.5 Thesis Outline

 An outline of the thesis is as follows. Chapter Two describes the background

work on fault tolerance in FPGAs. Chapter Three discusses the results of simulations of

the basic fault tolerance adders using ISIM. Chapter Four introduces advanced fault

tolerant concepts and then analyzes the performance metrics like timing (speed-adder

delay) and the functionality based on the results obtained from the logic analyzer. Finally

Chapter Five provides the conclusions and describes potential future work in this area.

5

Chapter Two

Fault Tolerance on FPGAs

2.1 Introduction

 An adder plays a vital role in many digital circuit designs including Digital Signal

Processors (DSPs) and microprocessors. The fault tolerant techniques for high speed

adder designs are considered in this chapter. Triple Modular Redundancy (TMR), which

is a common fault tolerance approach, is used as the base reference design. Advanced

concepts for fault tolerant adders on FPGAs include roving, and graceful degradation.

This chapter describes the design of the ripple carry adder, parallel prefix adders and then

the fault tolerant concepts that can be applied to these designs.

2.2 Basic Adder Designs

 This section describes the basic adders used in this thesis. The adders

implemented on FPGAs are the ripple carry adder, Kogge-Stone adder, and sparse

Kogge-Stone adders. The ripple carry adder is one of the simplest adder designs. The

Kogge-Stone adder is an example of a parallel prefix adder. The internal blocks used in

the adder designs are described in detail in this section.

2.2.1 Full Adder

 A full adder is a circuit which adds three one bit binary numbers and outputs two

one bit binary numbers. The block diagram is shown in Figure 2.1. Here, a and b are the

two adder inputs and cin is the carry input. The two outputs produced are the sum s and

carry cout. Table 2.1 depicts the truth table of the full adder. The following are the

Boolean expressions for the full adder.

 (2.1)

6

Figure 2.1: Block diagram of a full adder

For prefix adders, it is convenient to define the intermediate signals generate, propagate,

and delete given by g, p, and d, respectively,

 (2.2)

 p = a b

 ̅̅ ̅

The sum and carry out are then given by,

 (2.3)

Table 2.1. Truth table of a full adder

a b cin s cout Carry Status

0 0 0 0 0 delete

0 0 1 1 0 delete

0 1 0 1 0 propagate

0 1 1 0 1 propagate

1 0 0 1 0 propagate

1 0 1 0 1 propagate

1 1 0 0 1 generate

1 1 1 1 1 generate

7

2.3 Ripple Carry Adder

 The ripple carry adder is one of the simplest adders. It consists of a cascaded

series of full adders. For example, a 4-bit adder can be constructed by cascading four full

adders together as shown in Figure 2.2. The ripple carry adder is relatively slow as each

full adder must wait for the carry bit to be calculated from the previous full adder.

The worst case delay of a ripple carry adder occurs when cin propagates from the

first stage to the most significant bit position. The delay for an N-bit adder is given by,

 (2.4)

where, is the carry propagation delay for one stage and is the time required to

compute the sum bit for one stage. Hence, the delay of the ripple carry adder is of order

N.

Figure 2.2: 4-bit ripple carry adder

2.4 Kogge-Stone Adder

 The Kogge-Stone adder is classified as a parallel prefix adder since the generate

and the propagate signals are precomputed. In a tree-based adder, carries are generated in

tree and fast computation is obtained at the expense of increased area and power. The

main advantage of this design is that the carry tree reduces the logic depth of the adder by

essentially generating the carries in parallel. The parallel-prefix adder becomes more

favorable in terms of speed due to the O(log2n) delay through the carry path compared to

O(n) for the RCA. The Kogge-Stone adder is widely used in high-performance 32-bit,

8

64-bit, and 128-bit adders as it reduces the critical path to a great extent compared to the

ripple carry adder.

The operation of the tree-based adder can be understood using the concept of the

fundamental carry operation (fco). This operator works on the generate and propagate

pairs as defined by,

 (gL, pL) (gR, pR) = (gL + pL gR, pL pR) (2.5)

where gL, pL are the left input generate and propagate pairs and gR, pR are the right input

generate and propagate pairs to the cell. For example, in a 4-bit carry lookahead adder,

the carry combination equation can be expressed as,

 c4 = (g4, p4) [(g3, p3) [(g2, p2) (g1, p1)]] (2.6)

= (g4, p4) [(g3, p3) [(g2 + p2 g1, p2 p1)]]

:

:

= g4 + p4 g3 + p4 p3 g2 + p4 p3 p2 g1

Since the fco obeys the associativity property, the expression can be reordered to yield

parallel computations in a tree based structure [7],

 c4 = [(g4, p4) (g3, p3)] [(g2, p2) (g1, p1)] (2.7)

2.4.1 8-bit Kogge-Stone Adder

 The 8-bit Kogge stone adder will be explained in detail in this subsection. An 8-

bit Kogge-Stone adder is built from eight generate and propagate (GP) blocks, eight black

cells (BC) blocks, eight gray cell (GC) blocks, and nine sum blocks as shown in the

Figure 2.3. The details of the various blocks used in the structure of Kogge-Stone adder

are discussed below.

9

1) GP block

The generate and propagate block takes a pair of operand bits (a, b) as inputs and

computes a pair of generate and propagate signals (g, p) as output, as depicted in Figure

2.3. The output from the GP block is given by the equation (2.2).

Figure 2.3: Generate-Propagate block

2) BC block

The black cell takes two pairs of generate and propagate signals (gi, pi) and (gj, pj) as

input and computes a pair of generate and propagate signals (g, p) as output. It is shown

in the Figure 2.4(a).

 Figure 2.4 (a): Black cell Figure 2.4 (b): Gray cell

The expressions for the output signals generated by the black cell are given by

 (2.8)

BC

GC

CC

GP

10

3) GC block:

The gray cell takes two pairs of generate and propagate signals (gi, pi) and (gj, pj) as

inputs and computes a generate signal g as output which is shown in Figure 2.4(b).

The expressions for the output signal g obtained by the gray cell is given a

 (2.9)

4) Buffer

 The buffer takes a pair of the generate and propagate signals (pi, gi) as input and

passes the same signals to the output. It is shown in Figure 2.5.

Figure 2.5: Buffer

The expressions for the output signals g, p obtained by the buffer block are given as

 (2.10)

The complete schematic for the 8-bit Kogge-Stone adder is shown in Figure 2.6.

An 8-bit Kogge-Stone adder is built from eight generate and propagate (GP) blocks,

twelve black cell (BC) blocks, eight gray cell (GC) blocks, and eight sum blocks. To be

aesthetic, an extra column has been added in our design to show the computation of c8. In

practice, c8 is generated by just adding an extra gray cell in the last column.

11

Figure 2.6: 8-bit Kogge-Stone adder

Higher Order Kogge-Stone Adders

Table 2.6. summarizes the various types of cells required for the Kogge-Stone

adders with larger bit widths.

Table 2.6. Kogge-Stone adders of different bit widths

Bit Width of Kogge-

Stone Adder

No. of GP

Blocks

No. of

Black Cells

No. of Gray

Cells

No. of Sum

blocks

16-bit 16 37 16 16

64-bit 64 257 64 64

128-bit 128 641 128 128

256-bit 256 1537 256 256

12

Figure 2.7: 16-bit Kogge-Stone adder [8]

13

2.5 Sparse Kogge-Stone Adder

 The sparse Kogge-Stone adder consists of several smaller ripple carry adders

(RCAs) on its lower half and a carry tree on its upper half. Thus, the sparse Kogge-Stone

adder terminates with RCAs. The number of carries generated is less in a sparse Kogge-

Stone adder compared to the regular Kogge-Stone adder. The functionality of the GP

block, black cell and the gray cell remains exactly the same as in the regular Kogge-Stone

adder. The schematic for a 16-bit sparse Kogge-Stone adder is shown in Figure 2.8.

Sparse and regular Kogge-Stone adders have essentially the same delay when

implemented on an FPGA although the former utilizes much less resources [9].

Figure 2.8: Sparse Kogge-Stone adder.

14

2.6. Basic Fault Tolerance - Hardware Redundancy

 Basic fault tolerance can be achieved by N-module redundancy (NMR) where N

refers to the degree of redundancy used in the design. This approach is easy to apply but

results in high area overhead. For example, Triple Modular Redundancy (TMR) is a fault

tolerant method where the hardware is essentially replicated in triplicate with a voter

circuit used to pass the majority rule signals to the output. TMR is one of the most

common methods used to create fault tolerant designs in both ASIC and FPGA

implementations.

The general TMR is shown in Figure 2.9. Three copies of the same circuit are

connected to a majority voter which is used to obtain the fault free output. This method

works as long as all the faults are confined to one of the redundant blocks. The latency

will be increased because of the voter in the circuit’s critical path. The triple modular

redundant ripple carry adder (TMR-RCA) is used as the reference design for this thesis.

This adder is the simplest approach for both detecting and correcting faults. The block

diagram of the TMR adder circuit using the ripple carry adders is shown in Figure 2.10.

Figure 2.9: General Triple Modular Redundancy

15

Figure 2.10: TMR adder circuit using ripple carry

2.7 Advanced Fault Tolerant Methods

 Compared to the basic TMR-RCA, more advanced fault tolerant methods exist

including roving and graceful degradation approaches. Allowing fault tolerance to

operate at different levels of abstraction might facilitate a more cost-effective design [10].

Fault tolerance can be classified into three categories, namely information redundancy,

time redundancy, and a hybrid approach. The technique involved in information

redundancy includes the use of error-correcting codes. Time redundancy tradeoffs area

for time of the available time slot and recomputes in a different time slot resulting in low

overhead but longer delay [11]. Hybrid approaches make use of several types of the

available tree [5] for redundancy to achieve fault tolerance. This section focuses on a

hybrid approach to achieve fault tolerance. For example, a fault tolerant design can be

implemented by taking advantage of the inherent redundancy of a parallel prefix adder

like the Kogge-Stone adder which is described next.

2.7.1 Structural Design – Hybrid Approach

 A fault tolerant parallel prefix adder can be implemented using a Kogge-Stone

adder due to the inherent redundancy in the carry-tree [5]. The even and the odd carry

trees present in the adder are mutually exclusive as shown in the Figure 2.11. An extra

16

column is added to make sure that if any fault occurs at the last sum bit then it can be

restored. This approach falls under the hybrid category due to its inherent structural

redundancy and use of time redundancy since two clock cycles are required to correct a

Figure 2.11: An 8 bit Kogge-Stone carry tree illustrating the mutually exclusive

even and odd carry trees.

fault. Due to the mutual exclusive nature, if a defect is present in the one-half of the carry

tree, the other half can be utilized to compute the carries for both the even and odd

carries. The timing diagram for this design is illustrated in Figure 2.12. In the scenario

depicted, three instructions are scheduled on three different adders present in the

execution unit. The second adder is defective and is evaluated in two clock cycles

whereas the fault free adders are evaluated in a single-clock cycle, assuming that the

defect is in the odd bits. In the timing diagram adaptive clocking is performed during the

execution of the second instruction for correct functionality of the pipeline. In cycle-3 the

odd bits are computed correctly and stored as the operands are left shifted by one bit. The

even bits are discarded in cycle-3. As the second adder which is scheduled for instruction

2 is faulty, it will be completely evaluated only at the end of cycle-3 even though it is

initiated at cycle-2. The even bits are computed in cycle-2 and registered while the odd

bits are discarded.

 Thus the output will be produced only after two clock cycles. In cycle-1, one of

the correct set of bits which are either even or odd are computed and stored at the output

17

registers. The operands are shifted by one bit and the remaining sets of bits are computed

and stored in cycle-2. The trade-off in time may be acceptable in some circumstances

using proper scheduling and micro-architectural changes, as detailed in [5]. The design

for the error correcting 8-bit Kogge-Stone adder is shown in Figure 2.13. The

multiplexers at the inputs are used for shifting the operands left by one bit whereas the

multiplexers at the output are used for shifting the partially correct sums to the right by

one bit.

Figure 2.12: Timing diagram for three adders in execution unit (TC is the clock period)

2.7.2 Roving

 Roving is one of the fault detection methods detailed in [4]. An important work

in this area is described by Emmert, Stroud and Abramovici in which the testing and the

diagnostic process takes place in designated Self-Testing Areas (STARs) of an FPGA,

without disturbing the normal operation of the system [12]. Roving performs a

progressive scan of the FPGA structure by swapping blocks of equivalent functionality

for testing. In the roving detection of faults, the FPGA is split into equal-sized regions in

which one region is configured to perform self-test, while the remaining areas carry out

the designed function of the FPGA. An important advantage is that the detected fault

does not affect the working logic of the system [6]. As a result, the operation does not

have to be interrupted for fault diagnosis. It relies on incremental run-time configuration,

which is the ability to dynamically reconfigure part of an FPGA without actually

disturbing the operation performed in the rest of the device.

18

Figure 2.13: Block diagram for the proposed 8-bit fault tolerant Kogge-Stone adder [5].

 The overhead will be less in roving compared to other redundancy methods as

the overhead consists of one-self test region and a controller which manages the

reconfiguration process. A disadvantage is that roving results in longer signal delays and

may force a reduction in the system clock speed as the connections of the adjacent

functional areas are stretched [12]. Roving spares and fault scanning is illustrated in

Figure 2.14.

Figure 2.14: Roving area under test across the chip.

19

2.7.3 Graceful Degradation

 This method involves the use of redundant hardware for both the detection and

recovery from faults. Graceful degradation occurs when one of the spare hardware blocks

is used to replace a faulty one, resulting in a degradation of system functionality.

During fault detection, each block is checked with the voter circuit against two

identical blocks used as spares. If there is any error then the faulty block will be replaced

with one of the spare blocks. Figure 2.15 shows the general description of a system that

exhibits graceful degradation. In this example, there are four operational blocks with two

test blocks.

Figure 2.15: General block diagram of graceful degradation

In this scheme, blocks 1 to 4 and the two test blocks have identical functionality.

Two redundant blocks, labeled Test block 1 and 2 are used to check the blocks labeled 1

to 4 in sequence. A TMR-like checking scheme is utilized in this example. If an error is

found, then the faulty block is replaced with one of the test blocks. Thus, the system

remains operational but the fault checking capability is degraded.

Figure 2.16 provides a detailed example. Consider the case where the fault is

present in block 4. Figure 2.16(a) shows the first block being checked with the test

blocks. As no error is found in block 1, the fault checking now proceeds to block 2,

shown in Figure 2.16(b). There is no error in block 2. Block 3 is then compared with the

test blocks shown in the Figure 2.16(c). Finally checking goes to the block 4 as no fault is

20

present in block 3 (see Figure 2.16(d)). As block 4 is faulty, the entire block is replaced

with one of the test blocks, shown in Figure 2.16(e). The system remains functional, but

the ability to detect existing faults has been degraded, since a TMR-like fault checking

scheme can no longer be utilized.

(a) Checking block 1 and no error found (b) Checking block 2 and no error found

(c) Checking block 3 and no error found (d) Checking block 4 and an error found

(e) Replacing block 4 with test block

Figure 2.16: General view of the graceful degradation process.

21

Summary

 In this chapter, the general fault tolerance methods implemented on electronic

systems like Triple Modular Redundancy (TMR) were discussed. Also advanced fault

tolerant methods like the hybrid approach with structural redundancy, the roving concept

and the graceful degradation approach were explained. In the next chapter, the methods

of implementation on an FPGA, including TMR-RCA, and the error correcting structural

approach [5] are discussed. A proposed fault tolerant sparse Kogge-Stone adder is also

introduced.

22

Chapter 3

Basic Fault Tolerant Implementation

3.1 Introduction

 Some basic methods for implementing fault tolerant adder designs are described

in this chapter. First the FPGA implementation method using Xilinx’s Integrated

Software Environment (ISE) software is described. The simulation results for the Triple

Modular Redundancy-Ripple Carry adder (TMR-RCA) and the error correcting regular

Kogge-Stone adder are detailed next. Then the design used for creating a partially fault

tolerant lower half sparse Kogge-Stone adder which includes the use of ripple carry

adders is described.

3.2 FPGA Implementation Method

 Xilinx’s ISE Design Suite 12.4 software is used to implement all the fault tolerant

adder designs on the Spartan 3E FPGA. The design flow is outlined in Figure 3.1. A

project navigator helps to manage the entire design process which includes design entry,

simulation, synthesis and implementation by downloading the configuration onto the

FPGA device.

 First, the design flow begins by creating a new project in Xilinx’s ISE, followed

by coding the model in VHDL. The VHDL code for the select fault tolerant adders is

given in the Appendices. The code is then synthesized using the ISE software. The

functionality of the designs are verified by creating a test bench in VHDL and then

simulating with the ISIM tool. Finally, the functionality of the implemented adder is

verified using a TLA 7012 Logic Analyzer.

3.3 Triple Modular Redundancy-RCA

 The simulation results for the TMR-RCA structure discussed in Chapter Two are

described in this section. Input stimuli were carefully selected to demonstrate the

functionality of each adder. Specific cases are discussed for each adder approach. The

VHDL code for the 32-bit TMR-RCA and higher bit widths implemented on hardware

23

are given in Appendix A. A signal named fault is used to inject a fault into one of the

RCAs and the signal error goes high when a fault is detected.

Figure 3.1: General design flow

The simulation results for the adders of widths up to 256 bits are observed in this

thesis. The simulation results for the 64-bit TMR-RCA are shown in the Figure 3.2 as an

example. The simulation results are shown in two parts: (a) the actual functionality of the

adder and (b) the fault tolerant operation.

(a) Consider the cycle with index = 3. The inputs are cin = 1, a = ‘0000a00000000000’,

and b = ‘0000000000000000’. There is no fault for any of the ripple carry adders in

this case and the outputs signals sum1, sum2 and sum3 from all three ripple carry

adders are the same. As expected the output from the comparator is s

=‘0000a00000000001’.

 Create a new project using

 XILINX ISE 12.4 Project Navigator

 Design Entry (VHDL)

 Simulate behavioral model

Using ISIM

 Design Implementation on FPGA

 Delay measurement

using TLA 7012 logic analyzer

24

(b) Consider the case where a fault is injected into one of the ripple carry adders at index

= 5. The inputs are cin = 1, a = ‘0000000070000000’ and b = ‘0000000100000000’.

The resulting output sum s equals ‘0000000170000001’ which is chosen from the

majority of the redundant RCA blocks, sum1 or sum2, as sum3 is incorrect. Hence the

ability of this adder to recover from the embedded fault is demonstrated.

Figure 3.2: Simulation results for the 64-bit TMR-RCA

3.4 Regular Kogge-Stone Adder Fault Correction Approach

The simulation results for the regular Kogge-Stone adder error correcting

approach discussed in chapter 2 is described in this section. For the 64-bit Kogge-Stone

adder, different values are assigned to the inputs a, b and cin for each clock cycle by

synthesizing a test bench. The VHDL code for error correction on a Kogge-Stone adder

with a width of 64 bits is given in Appendix B.

The simulation results of the error correcting 64-bit regular Kogge-Stone adder

are shown in the Figure 3.3. The simulation results are depicted in two parts: (a) the

actual functionality of the adder and (b) fault tolerant operation.

(a) Consider cycle 1 in Figure 3.3. The inputs are a = ‘ffffffffffffffff’, b =

‘0000000000000000’. After two clock cycles the resulting sum s [64:0] =

‘1fffffffffffffffe’ is obtained. The correct sum is taken by ignoring the last bit i.e. s

[64:1] as the operands are shifted by one bit and the remaining sets of bits are

computed and stored in cycle-2.

25

(b) Consider cycle 3. The inputs assigned are a = ‘ffffffffffffffff’, b = ‘ffffffffffffffff’ and

the signal named fault is used to inject a fault into the adder. As expected, the output

sum should be s[64:0] = ‘1fffffffffffffffc’ which is obtained after two clock cycles.

The correct sum is taken by ignoring the last bit i.e. s[64:1]. Hence the ability of this

adder to recover from the embedded fault is demonstrated.

Figure 3.3: Simulation results for the 64-bit error correcting Kogge-Stone adder.

3.5 Lower Half Fault Tolerant Sparse Kogge-Stone Adder

 This section describes the design of a Sparse Kogge-Stone adder which is both

fault detecting and fault correcting. In the sparse Kogge-Stone adder, ripple carry adders

are required at the output, whose length is dependent on the degree of the sparseness in

the carry tree. Figure 2.9 in chapter two illustrates a sparse Kogge-Stone adder with a

factor of four reduction in the carry tree. Thus, it needs four ripple carry adders in its

lower half.

 Fully fault tolerant designs for the sparse Kogge-Stone adder have been achieved

in two steps. First a fault tolerant design for the lower half (i.e., the ripple carry adder

chains) is implemented. Then the design is extended to make the upper half (i.e, the carry

tree) fault tolerant. This is discussed in Chapter Four.

26

 As the design contains the addition of the ripple carry adders in the sparse Kogge-

Stone adder, a similar testing methodology can be used as with the TMR-RC adder to

detect and correct errors found in any of the ripple carry adders. An illustration of the

design for the fault tolerant sparse Kogge-Stone adder is shown in Figure 3.4.

Figure 3.4: Block diagram of fault tolerant sparse Kogge-Stone adder

The highlighted portion in red in Figure 3.4 is the error correction and detecting

logic. Two extra ripple carry adders must be added to the design for testing (Test RC)

which is similar to the TMR-RCA. Also, some multiplexers and a bit counter are

required. During each clock cycle, one of the four ripple carry adders is selected for

testing. The corresponding carry-in and A and B operands are routed through the

multiplexer denoted as Carry Mux to the TestRCs. The selections of these inputs are

controlled by a counter which is driven by the clock. The final evaluation is performed by

a comparator in which the outputs of the tested RCA branch (one of RC0 to RC3) are

switched simultaneously. The final sum is obtained at the falling edge as the valid output

has been passed through the tested sum.

27

The timing diagram for this design is illustrated in Figure 3.5. Once an error is

detected, the clock operating the bit counter is stopped at the RCA branch where the error

was detected and will continue correcting the faulty RCA branch until the error has been

removed.

Figure 3.5: Timing diagram for the lower half fault tolerant Kogge-Stone adder

3.5.1 Simulations of the Sparse Kogge-Stone Adder

 The design is coded in VHDL and simulated using ISIM. The following

simulation results illustrate the successful detection and the correction of the fault in the

adder. A signal named fault is used to inject a fault into one of the RCAs and the signal

error goes high when a fault is detected. The synthesis results for the lower half fault

tolerant sparse Kogge-Stone approach are obtained for the Spartan 3E FPGA. The VHDL

code for a 32-bit lower half sparse Kogge-Stone adder is given in Appendix C.

The simulation results for the 64-bit sparse Kogge-Stone adder are shown in

Figure 3.6. The simulation results are depict in two parts: (a) the functionality of the

adder and (b) the fault tolerant operation.

(a) Consider the case where the index = 1. The corresponding assigned inputs are a =

‘ffffffffffffffff’, and b = ‘ffffffffffffffff’. The final sum obtained at that clock cycle is

correctly given as sum = ‘fffffffffffffffe’.

(b) Consider the case where the fault is introduced at index =2. The corresponding

assigned inputs are a = ‘000000000000000’ and b = ‘ffffffffffffffff’. As described

28

earlier, the error is detected and the correct sum is obtained at the falling edge of

index = 2. Thus the final sum obtained at the given inputs is sum = ‘ffffffffffffffff’.

Hence the ability of this adder to recover from the embedded fault is demonstrated.

Figure 3.6: Simulation results for the 64-bit lower half FT sparse Kogge-Stone adder.

Summary

 In this chapter, the simulation results for some basic fault tolerance techniques

suitable for implementation on FPGAs were discussed. The inherent redundancy in the

carry tree of the Kogge-Stone adder is used for error correction. Also by introducing

additional ripple carry adders in the lower half of the sparse Kogge-Stone adder, fault

tolerance can be achieved. In the next chapter, more advanced concepts for implementing

fault tolerant adders on FPGAs are described. In addition, performance metrics like

timing (speed-adder delay) and resource utilization for the different methods are

compared. The functionality of the various fault tolerant adder designs is verified using a

logic analyzer for testing these implementations.

29

Chapter 4

Advanced Fault Tolerance Concepts

4.1 Introduction

 Having discussed the simulation results for basic fault tolerant adders, this chapter

will describe the architectures for implementing advanced fault tolerant sparse Kogge-

Stone adders. First, a fault tolerant carry tree which is designated as the upper half of the

sparse Kogge-Stone adder is designed. Second, the permanent replacement of a faulty

block with a spare block is implemented for the ripple carry adders present on the lower

half of the Sparse Kogge-Stone adder. As this results in reduced fault checking ability,

this process is known as graceful degradation. The design of these proposed fault tolerant

approaches with their simulation results are detailed in this chapter.

4.2 Upper Half Fault Tolerant Sparse Kogge-Stone Adder

 The fault tolerant design for the lower half of the sparse Kogge-Stone adder

which consists of the ripple carry adder chains, was explained in Chapter Three. This

section focuses on making the carry tree of the sparse Kogge-Stone adder, designated as

the upper half, fault tolerant. In this design, the carry tree of the sparse Kogge-Stone

adder is split into three sections, which are depicted by the following colors: (1) green,

(2) purple and (3) blue in Figure 4.1. The testing methodology developed makes use of

redundant carries generated by the carry tree (Ci-C) and the ripple carry adders (Ci-R).

For example, for a 16-bit sparse Kogge-Stone adder with 4-bit RCAs, there are two sets

of carries generated for C4, C8, and C12 (i.e., = 4, 8, 12). The complete schematic for

the upper half error detection scheme for the 16-bit sparse Kogge-Stone adder is shown in

Figure 4.1.

The technique for detecting a fault is now explained in detail. For example, if

carry C4-C does not match carry C4-R, the error must be located in the first section

assuming the first ripple carry adder (RC0) is fault free. If the result obtained is fault free,

a fault free carry C4 will enter the second ripple carry adder (RC1).

30

Figure 4.1: Upper half error detection scheme for 16-bit sparse Kogge-Stone

 Next, if a mismatch is found in the C8-R and C8-C pair, there exists a fault in the

second section. Finally, if the carries C8 and C4 are fault free, the error can be in the third

section if a mismatch is found in the C12 pair. The fault detection mechanism is

summarized in Figure 4.2. A mismatch in a carry pair is indicated by ‘1’ in Figure 4.2. If

there are multiple faults at the same time this approach is still able to correct at its

corresponding clock cycle.

Figure 4.2: Upper half detection truth table

 Spares for each section can be made available to replace a faulty section by using

multiplexers to reroute the carry tree from the faulty branches to the spare section. A

X = don’t care

1 = Carry Mismatch

0 = Carry Match

31

method for increasing the number of sections detectable is possible with the adoption of a

time redundant ripple carry adder which is already in the bottom-half test circuit. By

feeding the carry out produced by the first ripple carry (C4-RCO) into the test ripple

carry adders (Test RCs), the adder produces completely fault free values for comparison

over the course of three clock cycles. These fault free carries can then be compared to the

carry tree’s output for fault detection in the five sections as illustrated in the Figure 4.3.

An example depicted in Figure 4.3 shows the fault originating in the red section (4) and

passing through C12 and C4. As C8 shows no signs of a fault in this example, the only

possible case for this error combination can be traced back to a fault in section (4).

Similarly, with this scheme a list of possible combinations was developed into a truth

table as shown in Figure 4.4. The figure also includes an example of a time redundancy

ripple carry circuit capable of producing the fault free carries necessary for the

comparison. It takes three clock cycles to produce C12 as shown in Figure 4.4. If an error

has been successfully isolated to a specific section of the adder, the faulty section can be

replaced using a decoder and multiplexer, which reroutes the signals to the replacement

sections built into the design.

Figure 4.3: Upper half detection scheme with fault free carry comparisons.

 The fault can only be corrected after a faulty sum value has been allowed to pass.

Once the rerouting of the replacement section has completed, the adder will perform

normally as seen in the simulation results in the next section.

32

Figure 4.4: Truth table for upper half error detection with fault free comparisons

A similar fault detection scheme is applied for the sparse Kogge-Stone adder of higher bit

widths. The complete schematic for the proposed upper half error detection scheme for a

32-bit sparse Kogge-Stone adder is shown in Figure 4.5. For example, for a 32-bit sparse

Kogge-Stone adder with 4-bit RCAs, there are two sets of carries generated for C8, C16,

and C24. The same technique for detecting a fault as in the 16-bit sparse Kogge-Stone is

now explained for this 32-bit adder. For example, if carry C8-C does not match carry C8-

R, the error must be located in the first section assuming the first ripple carry adder

(RC0) is fault free. If the result obtained is fault free, a fault free carry C8 will enter the

second ripple carry adder (RC1). Next, if a mismatch is found in the C16-R and C16-C

pair, there exists a fault in the second section. Finally, if the carries C16 and C8 are fault

free, the error can be in the third section if a mismatch is found in the C24 pair.

 This illustrates the proposed scheme for implementing fault tolerance in the carry

tree and can easily be extended to higher bit width sparse Kogge-Stone adders.

33

Figure 4.5: Upper half error detection scheme for a 32-bit sparse Kogge-Stone adder

4.2.1 Simulation Results

The final design is coded in VHDL and simulated using ISIM. The VHDL code

for a 32-bit sparse Kogge-Stone upper half approach is given in Appendix D. A signal

named faultgreen is used to inject a fault into the section (1) and a signal named fault2 is

injected into the backup of section (3) colored in blue in Figure 4.5. The synthesis results

for the 32-bit fault tolerant sparse Kogge-Stone upper half approach are obtained for the

Spartan 3E FPGA and its simulation results are shown in Figure 4.6.

The simulation results are shown in two parts: (a) functionality of the adder and

(b) fault tolerant performance.

(a) Consider the cycle with index = 3 shown in Figure 4.6 (a). The inputs are cin = 1, a =

‘ffffffff’, and b = ‘ff00ffff’. The correct output sum =‘ff00ffff’ is obtained.

34

(b) Consider the cycle with index = 4 shown in Figure 4.6 (b). The chosen inputs are cin =

1, a = ‘fffffff0’, and b = ‘ffffffff’. The signal named faultblue is introduced in section

(3) of the design. This tests the adders ability to detect and correct the fault. The

obtained output sum is correctly computed as ‘fffffff0’.

(c) Consider the cycle with index = 5 shown in Figure 4.6 (b). The chosen inputs are cin =

1, a = ‘ffffffff’, and b = ‘ffffffff’. In this case signals, named faultblue and

faultgreen are used to inject a fault into sections (3) and (1), respectively. The

obtained output sum is correctly computed as ‘ffffffff’.

The simulations results are also checked and verified for various other fault

combinations (see Appendix G).

4.6 (a): Normal adder operation of the sparse Kogge-Stone upper half

4.6 (b): Fault tolerant adder operation of the sparse Kogge-Stone upper half

Figure 4.6: Simulation results for 32-bit sparse Kogge-Stone upper half approach

35

4.3 Graceful Degradation

 Graceful degradation is a process of permanently replacing the faulty block with

the test block, thus degrading the fault tolerant capability of the circuit in order to

continue its primary function. The generic example with a complete block diagram was

explained in Chapter Two.

4.3.1 Implementation

This section describes the proposed graceful degradation approach for the sparse

Kogge-Stone adder. Multiplexers and a bit counter are added to this design. An

illustration of this design can be seen in Figure 4.7, where the error correction and the

detection logic is highlighted in green. In this design, RC0 to RC3 are the ripple carry

adders present on the lower half of the sparse Kogge-Stone adder and an extra ripple

carry adder called RCSpare, is added for replacement of a faulty RCA.

Figure 4.7: Block diagram of graceful degradation on the sparse Kogge-Stone adder

During each clock cycle, one of the four ripple carry adders, RC0 to RC3

(highlighted in purple in Fig. 4.7) is selected for testing. Two test input cases are chosen

36

for testing the selected adder, and while it is being tested its corresponding inputs are

routed to RCSpare. The results obtained for the given inputs are expected earlier and fed

to the multiplexer called ResMux. Thus ResMux selects one of the expected results for

the test inputs. The output obtained from the ripple carry adder which is under test is then

compared with the expected output from the ResMux using a comparator. If there is no

error while comparing then the checking continues to the other inputs chosen, i.e.

operands A, B = 0000 and C =0. Thus the expected outputs for the two chosen cases are

compared with the obtained output from the selected ripple carry adder under test. The

test inputs are chosen for testing the ripple carry adder based on the popular Stuck-At

fault model [13]. A stuck-at 0 fault is tested using inputs of 1111 and a stuck-at 1 fault is

tested by setting the inputs to 0000. If the selected ripple carry adder passes the two test

cases it is considered to be fault free.

 The counter is driven by a clock and controls the selection of these inputs. The

checking then continues to the next ripple carry adder. Once an error is detected, the

clock operating the bit counter is stopped and the block is permanently replaced with the

replacement block RCSpare while the adder can continue to function correctly. As further

checking is not possible, fault tolerant capability is lost. However this can be remedied by

adding more replacement blocks. This is a tradeoff between fault tolerant capability and

area.

4.3.2 Simulation Results

The final designs are coded in VHDL and simulated using ISIM. The VHDL code

for a 32-bit TMR-RCA and graceful degradation implemented on hardware are given in

Appendix E. A signal named fault is used to inject a fault into one of the RCAs and the

signal error goes high when a fault is detected. The synthesis results for fault tolerant

sparse Kogge-Stone lower half approach are obtained for the Spartan 3E FPGA.

The simulation results of the 64-bit graceful degradation on a sparse Kogge-Stone

adder are shown in the Figure 4.8. The simulation results are shown in two parts: (a)

functionality of the adder and (b) the fault tolerant performance.

(a) Consider the cycle with index = 1 shown in Figure 4.8 (a). The inputs are cin = 0, a =

‘ffffffffffffffff’, and b = ‘ffffffffffffffff’. The resulting output is sum =‘fffffffffffffffe’.

37

(b) Consider the cycle with index = 7 shown in Figure 4.8 (b) for worst case fault

correction. The chosen inputs are cin = 0, a = ‘ffffffffffffffff’, and b = ‘ffffffffffffffff’. The

signal named fault is used to introduce an error into the adder logic. As the resulting

output sum = ‘ffffffffffffffff’, the fault tolerant performance is demonstrated.

4.8 (a): Normal adder operation of the graceful degradation adder

4.8 (b): Fault tolerant adder operation of the graceful degradation adder

Figure 4.8: Simulation results for a 64-bit graceful degradation sparse Kogge-Stone

adder

38

4.4 Synthesis Results

 The synthesis results for a TMR-RCA, regular Kogge-Stone fault tolerant adder,

proposed fault tolerant sparse Kogge-Stone for both lower half and upper half, and

graceful degradation are obtained for a Spartan 3E FPGA. Design statistics are obtained

by synthesizing the adders using Xilinx ISE software in two ways. First, the number of

resources in terms of look up tables (LUTs) is observed. The results obtained are shown

in Figure 4.9 which gives an estimation of the number of the look up tables (LUTs) used

by each design. The sparse Kogge-Stone upper half approach was implememted for 16

and 32 bits, thus demonstrating it can be scaled to wider bit widths. However,

partitioning the sections of the sparse Kogge-Stone adder to higher order bit widths is

quite a challenging task.

Figure 4.9: Estimation of resources used from FPGA synthesis

Second, the simulated delays for the fault tolerant adders are observed. The TMR

adders seems to be the most efficient approach in terms of resources for fault tolerant

design on FPGA due to its simplicity and the ability to take the advantage of the fast-

carry chain.

39

The graphs are plotted for delay versus the bit width of the adders. The delay of

each TMR-RCA is compared to the delay of the fault tolerant sparse Kogge-Stone adder

for widths varying from 16 to 256 bits.

Figure 4.10 depicts the graph for the total adder delay taking each component into

consideration. The comparator delay is constant for all bit widths. The carry tree delay

has logarithmic characteristics whereas the ripple carry delay is linear as expected. Thus

the overall total delay of the fault tolerant lower half sparse Kogge-Stone is the

summation of all the individual component delays. Hence the obtained plot is logarithmic

as expected for the sparse Kogge-Stone adder as shown in Figure 4.10.

Figure 4.10: Corresponding delays for the sparse KS on Spartan 3E FPGA

Figure 4.11 depicts the graph for the delay of the adders on Spartan 3E FPGA. In

the figure, the delay of the fault tolerant adders for different bit widths is shown. It can be

observed from the graph that the delay is small for the TMR-RCA. Thus the TMR-RCA

is still the best approach for an FPGA fault tolerant implementation at bitwidth of 128

and less due to its simple design of the approach and the use of the fast carry chain. At

40

widths of 256 bits, a graceful degradation approach that uses a sparse Kogge-Stone adder

has smaller delay.

From the FPGA synthesis results shown in Figure 4.9, it is observed that the

regular Kogge-Stone fault tolerant adder requires a lot more resources compared with the

proposed fault tolerant approach on the sparse Kogge-Stone lower half and the graceful

degradation adder. This tradeoff comes at the expense of a higher logic depth resulting in

a longer critical path in the graceful degradation on the sparse Kogge-Stone adder than

the regular Kogge-Stone fault tolerant adder. The tradeoffs for the proposed fault tolerant

adders can be observed by looking at the delay plots. At 256 bits, the graceful

degradation is better than the TMR-RCA due to its use of a sparse Kogge-Stone adder

configuration.

Figure 4.11: Delay of FT adders on Spartan 3E FPGA

The delays for the adders synthesized on Virtex-5 FPGA are shown in Figure

4.12. It can be observed that the overall delay of all the adders is roughly half that

compared to the Spartan 3E FPGA. This is expect since the Virtex 5 FPGA is built using

a more advanced process than the Spartan 3E FPGA. In addition, the each Virtex 5 logic

cell uses 6-input look-up tables (LUTs) compared to the 4 input LUTs of the Spartan 3E

0

5

10

15

20

25

16bit 32bit 64bit 128bit 256bit

D
el

a
y
 i

n
 n

s

Adder bit width

Delay of Adders - Spartan 3E

Graceful Degradation

TMR-RCA

Sparse Kogge Lower Half

41

FPGA, resulting in a more efficient implementation overall. (See Appendix H for

details).

Figure 4.12: Delay of FT adders on the Virtex 5 FPGA

4.5 Hardware Implementation

 After synthesizing all the designs using the Xilinx ISE software, the proposed

fault tolerant adders TMR-RCA, sparse Kogge-Stone adder (lower half), and graceful

degradation are then implemented on the Spartan 3E FPGA. The functional verification

and the delays of all the structures are performed by using a high speed Tektronix Logic

Analyzer (TLA). The VHDL code for a 32-bit adder implemented on hardware is given

in Appendix F to keep it to a manageable size and all delay measurements here are shown

for 64 bits. The resulting waveforms obtained by implementing a 64-bit TMR-RCA on

Spartan 3E FPGA are shown in Figure 4.13.

 For the TMR-RCA, different values are assigned for the inputs a, b and cin for

each clock cycle by synthesizing a test circuit along with the fault tolerant adder on the

FPGA. These waveforms show how the critical adder delay is measured at every output

0

2

4

6

8

10

12

16bit 32bit 64bit 128bit 256bit

D
el

a
y
 i

n
 n

s

Adder bit width

Delay of Adders - Virtex 5

Graceful Degradation

TMR-RCA

Sparse Kogge Lower Half

42

transition with respect to a clock signal on the logic analyzer. The corresponding delay

obtained at particular transition is shown in Figure 4.13 which is highlighted in red (see

Appendix I for the detailed procedure for measuring adder delay).

Figure 4.13: Measured delay for the 64-bit TMR-RCA

For obtaining the worst case delay for the fault tolerant lower half sparse Kogge-

Stone adder, the fault has been introduced to one of the TestRC blocks as shown in

Figure 4.14. This ensures that a comparison is made between one of the RCA blocks

(RCA0 to RCA3) and the fault free TestRC block. The resulting waveforms obtained by

implementing a 64-bit sparse Kogge-Stone lower half on the Spartan 3E FPGA are

shown in Figure 4.15.

43

Figure 4.14: Implemented procedure for simulating the worst-case delay on the

sparse Kogge-Stone lower half approach

Figure 4.15: Measured delay for the 64-bit sparse Kogge-Stone adder

44

The resulting waveforms obtained by implementing a 64-bit sparse graceful

degradation on Spartan 3E FPGA are shown in Figure 4.16.

Figure 4.16: Measured delay for the 64-bit graceful degradation adder

The worst case delays are obtained from the logic analyzer for TMR-RCA, sparse

Kogge-Stone adder (Lower Half), and graceful degradation for the corresponding chosen

input patterns for the adders of different bit widths. Figure 4.17 summarizes the test

results, showing that the measured results are faster but the overall relative delay between

the adders is comparable to the results obtained from the synthesis reports.

Summary

This chapter has discussed the advanced techniques for implementing fault

tolerant adders with its simulation results. By introducing backup sections in the upper

half of the sparse Kogge-Stone adder, fault tolerance can be achieved. The key results are

summarized in terms of utilization of resources and the corresponding adder delays.

45

Figure 4.17: Summary of adder delays on Spartan 3E.

The functionality of the designs implemented on the hardware has been verified

by viewing the output signals on a logic analyzer and then measuring the resulting adder

delays. The results indicate that the TMR-RCA is the best approach for an FPGA fault

tolerant implementation at bit widths up to 128 due to its simple design and the use of the

fast carry chain. At higher bit widths of 256, the sparse Kogge-Stone adder using a

graceful degradation approach proves to be superior to the TMR-RCA in terms of delay.

The next chapter will summarize and conclude the thesis work that has been completed

and discuss some possibilities for future work.

0

2

4

6

8

10

12

14

16

16bit 32bit 64bit 128bit

D
el

a
y
 i

n
 n

s

Adder bit width

Hardware Implementation (TLA Results)

TMR-RCA (TLA)

Graceful Degradation
(TLA)

Sparse Kogge-Stone
Lower Half (TLA)

46

Chapter Five

Conclusions and Future Work

5.1 Conclusions

 The fault tolerant adders implemented on FPGAs have been characterized with

respect to their delay performance and logic complexity as a function of bit width. Basic

fault tolerant adder designs like the Triple Modular Redundancy-Ripple Carry Adder

(TMR-RCA) and error correcting regular Kogge-Stone adder were analyzed. A sparse

Kogge-Stone adder which is fully fault tolerant in its lower half (i.e., in the ripple carry

adders) was proposed. Simulation results demonstrate that this design is able to detect

and correct errors in its RCA chains.

 Architectures for implementing advanced fault tolerance techniques on the sparse

Kogge-Stone adders were proposed. This includes the upper half fault tolerant sparse

Kogge-Stone adder and a graceful degradation concept. Simulation and synthesis using

FPGA design tools have validated the performance of the lower-half and upper-half

sparse Kogge-Stone adders for both fault detection and correction. In this analysis, the

TMR-RCA seems to be the most efficient approach for fault tolerant design on an FPGA

in terms of its resources due to its simplicity and the ability to take the advantage of the

fast-carry chain. However, for very large bit widths, there are indications that the Kogge-

Stone adder offers superior performance over a ripple carry adder when implemented on

an FPGA. A fault tolerant sparse Kogge-Stone adder is designed by taking advantage of

the existing ripple carry adders in the architecture and adopting a similar approach to the

TMR-RCA by inserting two additional ripple carry adders into the design. A graceful

degradation approach is implemented with the sparse Kogge-Stone adder. In this

approach, a faulty block is permanently replaced with a spare block. As the spare block is

initially used for fault checking, the fault tolerant capability of the circuit is degraded in

order to continue fault-free operation. The adder delay is faster for graceful degradation

with an overhead of 1 ns from measured results and an overhead of 2 ns from the

synthesis results independent of the bit widths when compared with the fault tolerant

Kogge-Stone adder even though the resource utilization is similar.

47

5.2 Future Work

 Two main areas for extending the present work are briefly considered. First, the

development of methods and tools to make the proposed fault tolerant methods easier to

implement can be undertaken. A method for easily scaling to larger bit widths for the

upper half fault tolerant sparse Kogge-Stone adder should be investigated. Automated

techniques for implementing the fully fault tolerant sparse Kogge-Stone adder should be

developed. Second, a largely unexplored area of research is the application of error

correcting codes to fault tolerant adder designs. In digital communications, an additional

number of bits is added to a message to allow the detection and correction of corrupted

bits during transmission. A similar method might be feasible with arithmetic circuits. An

optimal error correcting code would take into account the logic structure of the adder and

would enable fully fault tolerant implementations while adding a minimum amount of

overhead.

48

References

[1] L. Sterpone, M. SonzaReorda and M. Violante, “Evaluating Different Solutions to

Design Fault Tolerant Sytems with SRAM-based FPGAs,” Journal of Electronic

Testing: Theory and Applications, vol. 23, pp. 47-54, 2007.

 [2] K. Kyriakoulakos and D. Pnevmatikatos, “A Novel SRAM-Based FPGA

Architecture for Efficient TMR Fault Tolerance Support,” International Conference

on Field Programmable Logic and Applications, pp. 193-198, 2009.

 [3] L. Sterpone and M. Violantem, “Analysis of the Robustness of the TMR

Architecture in SRAM-Based FPGAs”, IEEE Trans. Nucl. Sci., vol. 52, no. 5, pp.

1545-1549, Oct. 2005.

[4] E. Stott, P. Sedcole, and P. Y.K. Cheung, “Fault Tolerant Methods for Reliability in

FPGAs,” International Conference on Field Programmable Logic and

Applications, pp. 415-420, 2008.

[5] S. Ghosh, P. Ndai and K. Roy, “A Novel Low Overhead Fault Tolerant Kogge-

Stone Adder using Adaptive Clocking,” Design, Automation and Test, pp. 366-371,

2008.

[6] M. Abramovici, C. Stroud, C. Hamiltion, S. Wijesuriya, and V. Verma, “Using

Roving STARs for On-Line Testing and Diagnisis of FPGAs in Fault-Tolerant

Applications,” Test Conference, pp. 973-982, 1999.

 [7] T. Lynch and E. E. Swartzlander, “A Spanning Tree Carry Lookahead Adder,”

IEEE Transactions on Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[8] J. Vundavalli, “Design and Analysis of wide bit adders for FPGA Implementation,”

MSEE Thesis, University of Texas at Tyler, May 2010.

49

 [9] D. H. K. Hoe, C. Martinez, and J. Vundavalli, “Design and Characterization of

Parallel Prefix Adders using FPGAs,” IEEE 43
rd

 Southeastern Symposium on

System Theory, pp. 170-174, March 2011.

[10] R. Iris, D. Hammerstrom, J. Harlow, W. H. Joyner Jr., C. Lau, D. Marculescu, A.

Orailoglu, M. Pedram, “Architectures for Silicon Nanoelectronics and Beyond,”

Computer, vol. 40, no. 1, pp. 25-33, Jan. 2007.

 [11] N. Banerjee, C. Augustine, K. Roy, “Fault-Tolerance with Graceful Degradation in.

Quality: A Design Methodology and its Application to Digital Signal Processing

Systems,” IEEE International Symposium on, Defect and Fault Tolerance of VLSI

Systems, pp. 323-331, 1-3 Oct. 2008.

 [12] M. Abramovici, J. M. Emmert, and C. Stroud, “Roving STARs: An Integrated

Approach to On-Line Testing, Diagnosis, and Fault Tolerance for FPGAs,” NASA/

DoD Workshop on Evolvable Hardware, pp. 73-92, 2001.

[13] N. H. E. Weste and D. Harris, CMOS VLSI Design, Pearson-Addison-Wesley, Third

edition, 2005.

 [14] J. M. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tolerance for FPGA

Logic Blocks,” IEEE Trans. on VLSI Systems, vol. 15, no. 2, pp. 216-226, February

2007.

50

Appendices

51

Appendix: A

A1. VHDL Code for 32-bit TMR-RCA

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity TMR_RCA32 is

port(Cin : in std_logic;

 a,b : in std_logic_vector(32 downto 1);

 s: out std_logic_vector(32 downto 1);

 sum1,sum2,sum3: out std_logic_vector(32 downto 1);

 fault: in std_logic;

 cout : out std_logic);

end TMR_RCA32;

architecture Behavioral of TMR_RCA32 is

component adder1 is

port(Cin : in std_logic;

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 S: inout std_logic_vector(32 downto 1);

 cout : out std_logic);

end component ;

component adder2 is

port(Cin : in std_logic;

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 S: inout std_logic_vector(32 downto 1);

 cout : out std_logic);

end component ;

component adder3 is

port(Cin : in std_logic;

 fault: in std_logic;

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

52

Appendix: A (Continued)

 S: inout std_logic_vector(32 downto 1);

 cout : out std_logic);

end component ;

component comparator is

port(A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 C: in std_logic_vector(32 downto 1);

 O: out std_logic_vector(32 downto 1)

);

end component;

signal S1,S2,S3 : std_logic_vector(32 downto 1);

signal EQ : std_logic_vector(32 downto 1);

begin

RCAdder1 : adder1 port map(Cin,a,b,S1,Cout);

RCAdder2 : adder2 port map(Cin,a,b,S2,Cout);

RCAdder3 : adder3 port map(Cin,fault,a,b,S3,Cout);

Compare1 :comparator port map(S1,S2,S3,EQ);

s<= EQ;

sum1 <= S1;

sum2 <= S2;

sum3 <= S3;

end Behavioral;

A2. VHDL Code for adder1 in 32-bit TMR-RCA

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity adder is

port(Cin : in std_logic;

53

Appendix: A (Continued)

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 S: inout std_logic_vector(32 downto 1);

 Cout : out std_logic);

end adder1 ;

architecture Behavioral of adder1 is

signal SUM : std_logic_vector(33 downto 1);

begin

Cout <= SUM(33);

SUM <= ("0" & A) + ("0" & B) + cin;

S(32 downto 1) <= SUM(32 downto 1);

end Behavioral;

A3. VHDL Code for adder2 in 32-bit TMR-RCA

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity adder2 is

port(Cin : in std_logic;

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 S: inout std_logic_vector(32 downto 1);

 Cout : out std_logic);

end adder2 ;

architecture Behavioral of adder2 is

signal SUM : std_logic_vector(33 downto 1);

begin

Cout <= SUM(33);

54

Appendix: A (Continued)

SUM <= ("0" & A) + ("0" & B) + cin;

S(32 downto 1) <= SUM(32 downto 1);

end Behavioral;

A4. VHDL Code for adder3 in 32-bit TMR-RCA

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity a3 is

port(Cin : in std_logic;

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 S: inout std_logic_vector(32 downto 1);

 fault : in std_logic;

 Cout : out std_logic);

end a3 ;

architecture Behavioral of a3 is

signal SUM : std_logic_vector(33 downto 1);

begin

Cout <= SUM(33);

SUM <= ("0" & A) + ("0" & B) + cin+fault;

S(32 downto 1) <= SUM(32 downto 1);

end Behavioral;

A5. VHDL Code for comparator in 32-bit TMR-RCA

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity comparator is

port(

 A: in std_logic_vector(32 downto 1);

 B: in std_logic_vector(32 downto 1);

 C: in std_logic_vector(32 downto 1);

 O: out std_logic_vector(32 downto 1);

55

 Appendix: A (Continued)

error,allerror : out std_logic);

 end compararator ;

architecture Behavioral of comparator is

Appendix: A (Continued)

begin

process(A,B,C)

begin

 if ((A=B) and (A=C)) then

 O <= A;

 error <= '0';

 allerror<= ‘0’;

 elsif (A=C) then

 O <=C;

 error <= '1';

 allerror<= '0';

elsif (A=B) then

 O <= B;

 error <= '1';

 allerror<= '0';

elsif (B=C) then

 O<=C;

 error <= '1';

 allerror <= '0';

else

 O <=(others =>'X');

 error <= '1';

 allerror<= '1';

end if;

end process;

end Behavioral;

56

Appendix: B

B1. VHDL Code for 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity koggecorrecttest is

port(reset,set,clk,control : in std_logic;

 fault : in std_logic;

 a,b: in std_logic_vector(8 downto 1);

 shift : out std_logic;

 c : inout std_logic_vector(9 downto 1);

 gclk : in std_logic;

 gclk1 : in std_logic;

 smux : out std_logic_vector(9 downto 1);

 s : out std_logic_vector(9 downto 1));

end koggecorrecttest;

architecture Behavioral of koggecorrecttest is

component CntlMuxs is

port (x,y: in std_logic;

 z : out std_logic;

 control: in std_logic);

end component;

 component mux is

 port(x,y: in std_logic_vector(1 downto 0);

 sel : in std_logic;

 z: out std_logic_vector(1 downto 0));

 end component;

component d_ff is

port (clk,reset,set : in STD_LOGIC;

57

Appendix: B (Continued)

d: in std_logic_vector(1 downto 0);

q : out STD_LOGIC_vector(1 downto 0));

end component;

component outd_ff is

port (d,clk,reset,set : in STD_LOGIC;

 q : out STD_LOGIC);

end component;

component outmux is

port(v,w,x,y: in std_logic;

 sel: in std_logic;

 z: out std_logic_vector(1 downto 0));

end component;

component GPblock is

port(a,b: in std_logic;

 g,p: out std_logic);

end component;

component blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component faultgraycell is

port(x1,y1,x2,fault: in std_logic;

 x12: out std_logic);

end component;

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component buffer1 is

port(x1: in std_logic;

58

Appendix: B (Continued)

x2: out std_logic);

end component;

component Sum is

port(p,c : in std_logic;

 s : out std_logic);

end component;

signal p1,g1: std_logic_vector(2 downto 0);

signal p2,g2: std_logic_vector(2 downto 0);

signal p3,g3: std_logic_vector(3 downto 0);

signal p4,g4,p5,g5,p6,g6,p7,g7,p8,g8,p9,g9: std_logic_vector(3 downto 0);

signal mux1,mux2,mux3,mux4,mux5,mux6,mux7,mux8,mux9:std_logic_vector(1

downto 0);

signal dff1,dff2,dff3,dff4,dff5,dff6,dff7,dff8,dff9:std_logic_vector(1 downto 0);

signal

outmux1,outmux2,outmux3,outmux4,outmux5,outmux6,outmux7,outmux8,outmux9:

std_logic_vector(1 downto 0);

signal ground: std_logic := '0';

signal rightend: std_logic_vector(1 downto 0) := "10";

signal leftend: std_logic_vector(1 downto 0) := "10";

signal a1b1,a2b2,a3b3,a4b4,a5b5,a6b6,a7b7,a8b8 : std_logic_vector(1 downto 0);

signal sout,soutdff: std_logic_vector(9 downto 1);

signal o1,o2,shiftenable,sce,seclk,se: std_logic := '1';

signal temp_count : std_logic_vector(1 downto 0) := "00";

begin

a1b1 <= a(1) & b(1);

a2b2 <= a(2) & b(2);

a3b3 <= a(3) & b(3);

a4b4 <= a(4) & b(4);

a5b5 <= a(5) & b(5);

a6b6 <= a(6) & b(6);

a7b7 <= a(7) & b(7);

a8b8 <= a(8) & b(8);

59

Appendix: B (Continued)

multiplexer1 : mux port map(a1b1,rightend,se,mux1);

multiplexer2 : mux port map(a2b2,a1b1,se,mux2);

multiplexer3 : mux port map(a3b3,a2b2,se,mux3);

multiplexer4 : mux port map(a4b4,a3b3,se,mux4);

multiplexer5 : mux port map(a5b5,a4b4,se,mux5);

multiplexer6 : mux port map(a6b6,a5b5,se,mux6);

multiplexer7 : mux port map(a7b7,a6b6,se,mux7);

multiplexer8 : mux port map(a8b8,a7b7,se,mux8);

multiplexer9 : mux port map(leftend,a8b8,se,mux9);

dfflop1: d_ff port map(clk,reset,set,mux1,dff1);

dfflop2: d_ff port map(clk,reset,set,mux2,dff2);

dfflop3: d_ff port map(clk,reset,set,mux3,dff3);

dfflop4: d_ff port map(clk,reset,set,mux4,dff4);

dfflop5: d_ff port map(clk,reset,set,mux5,dff5);

dfflop6: d_ff port map(clk,reset,set,mux6,dff6);

dfflop7: d_ff port map(clk,reset,set,mux7,dff7);

dfflop8: d_ff port map(clk,reset,set,mux8,dff8);

dfflop9: d_ff port map(clk,reset,set,mux9,dff9);

GPblock1 : GPblock port map(dff1(1),dff1(0),g1(0),p1(0));

GPblock2 : GPblock port map(dff2(1),dff2(0),g2(0),p2(0));

GPblock3 : GPblock port map(dff3(1),dff3(0),g3(0),p3(0));

GPblock4 : GPblock port map(dff4(1),dff4(0),g4(0),p4(0));

GPblock5 : GPblock port map(dff5(1),dff5(0),g5(0),p5(0));

GPblock6 : GPblock port map(dff6(1),dff6(0),g6(0),p6(0));

GPblock7 : GPblock port map(dff7(1),dff7(0),g7(0),p7(0));

GPblock8 : GPblock port map(dff8(1),dff8(0),g8(0),p8(0));

GPblock9 : GPblock port map(dff9(1),dff9(0),g9(0),p9(0));

Blkcell0 : blackcell port map(g3(0),p3(0),g2(0),p2(0),g3(1),p3(1));

Blkcell1 : blackcell port map(g4(0),p4(0),g3(0),p3(0),g4(1),p4(1));

Blkcell2 : blackcell port map(g5(0),p5(0),g4(0),p4(0),g5(1),p5(1));

Blkcell3 : blackcell port map(g5(1),p5(1),g3(1),p3(1),g5(2),p5(2));

Blkcell4 : blackcell port map(g6(0),p6(0),g5(0),p5(0),g6(1),p6(1));

Blkcell5 : blackcell port map(g6(1),p6(1),g4(1),p4(1),g6(2),p6(2));

Blkcell6 : blackcell port map(g7(0),p7(0),g6(0),p6(0),g7(1),p7(1));

Blkcell7 : blackcell port map(g7(1),p7(1),g5(1),p5(1),g7(2),p7(2));

60

Appendix: B (Continued)

Blkcell8 : blackcell port map(g8(0),p8(0),g7(0),p7(0),g8(1),p8(1));

Blkcell9 : blackcell port map(g8(1),p8(1),g6(1),p6(1),g8(2),p8(2));

Blkcell10: blackcell port map(g9(0),p9(0),g8(0),p8(0),g9(1),p9(1));

Blkcell11: blackcell port map(g9(1),p9(1),g7(1),p7(1),g9(2),p9(2));

Graycell0 : graycell port map(g2(0),p2(0),g1(0),g2(1));

Graycell1 : faultgraycell port map(g3(1),p3(1),g1(1),fault,g3(2));

Graycell2 : graycell port map(g4(1),p4(1),g2(1),g4(2));

Graycell3 : faultgraycell port map(g5(2),p5(2),g1(1),fault,g5(3));

--Graycell3 : graycell port map(g5(2),p5(2),g1(1),g5(3));

Graycell4 : graycell port map(g6(2),p6(2),g2(2),g6(3));

--Graycell5 : graycell port map(g7(2),p7(2),g3(2),g7(3));

Graycell5 : faultgraycell port map(g7(2),p7(2),g3(2),fault,g7(3));

Graycell6 : graycell port map(g8(2),p8(2),g4(2),g8(3));

Graycell7 : faultgraycell port map(g9(2),p9(2),g5(2),fault,g9(3));

Buffer01 : buffer1 port map(g1(0),g1(1));

Buffer02 : buffer1 port map(g2(1),g2(2));

Buffer03 : buffer1 port map(g3(2),g3(3));

Buffer04 : buffer1 port map(g4(2),g4(3));

outmultiplexer1: outmux port map(p1(0),c(1),ground,ground,se,outmux1);

outmultiplexer2: outmux port map(p2(0),c(2),p1(0),c(1),se,outmux2);

outmultiplexer3: outmux port map(p3(0),c(3),p2(0),c(2),se,outmux3);

outmultiplexer4: outmux port map(p4(0),c(4),p3(0),c(3),se,outmux4);

outmultiplexer5: outmux port map(p5(0),c(5),p4(0),c(4),se,outmux5);

outmultiplexer6: outmux port map(p6(0),c(6),p5(0),c(5),se,outmux6);

outmultiplexer7: outmux port map(p7(0),c(7),p6(0),c(6),se,outmux7);

outmultiplexer8: outmux port map(p8(0),c(8),p7(0),c(7),se,outmux8);

outmultiplexer9: outmux port map(p9(0),c(9),p8(0),c(8),se,outmux9);

out_dff1 : outd_ff port map(sout(1),o1,reset,set,soutdff(1));

out_dff2 : outd_ff port map(sout(2),o2,reset,set,soutdff(2));

out_dff3 : outd_ff port map(sout(3),o1,reset,set,soutdff(3));

out_dff4 : outd_ff port map(sout(4),o2,reset,set,soutdff(4));

out_dff5 : outd_ff port map(sout(5),o1,reset,set,soutdff(5));

out_dff6 : outd_ff port map(sout(6),o2,reset,set,soutdff(6));

out_dff7 : outd_ff port map(sout(7),o1,reset,set,soutdff(7));

out_dff8 : outd_ff port map(sout(8),o2,reset,set,soutdff(8));

61

Appendix: B (Continued)

out_dff9 : outd_ff port map(sout(9),o1,reset,set,soutdff(9));

Sum1: Sum port map(outmux1(1),ground,sout(1));

Sum2: Sum port map(outmux2(1),outmux1(0),sout(2));

Sum3: Sum port map(outmux3(1),outmux2(0),sout(3));

Sum4: Sum port map(outmux4(1),outmux3(0),sout(4));

Sum5: Sum port map(outmux5(1),outmux4(0),sout(5));

Sum6: Sum port map(outmux6(1),outmux5(0),sout(6));

Sum7: Sum port map(outmux7(1),outmux6(0),sout(7));

Sum8: Sum port map(outmux8(1),outmux7(0),sout(8));

Sum9: Sum port map(outmux9(1),outmux8(0),sout(9));

smux <= sout;

s <= soutdff;

CntrlMux1 : CntlMuxs port map(gclk1,gclk,o1,control);

CntrlMux2 : CntlMuxs port map(gclk,gclk1,o2,control);

c(1) <= g1(1);

c(2) <= g2(2);

c(3) <= g3(3);

c(4) <= g4(3);

c(5) <= g5(3);

c(6) <= g6(3);

c(7) <= g7(3);

c(8) <= g8(3);

c(9) <= g9(3);

shift <= se;

shiftproc : process(clk)

 begin

 if clk'event and clk = '0' then

 se <= not se;

 end if;

 end process;

end Behavioral;

62

Appendix: B (Continued)

B2. VHDL Code for mux in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux is

port (x,y: in std_logic_vector(1 downto 0);

 z : out std_logic_vector(1 downto 0);

 sel: in std_logic);

end mux;

architecture Behavioral of mux is

constant delay: time :=100ns;

begin

mux_proc : process(x,y,sel)

variable temp : std_logic_vector(1 downto 0);

begin

case sel is

when '0'=> temp:=x;

when '1'=> temp:=y;

when others => temp :="XX";

end case;

z<= temp;

end process mux_proc;

end Behavioral;

B3. VHDL Code for GPblock in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity GPblock is

port(a,b: in std_logic;

 g,p: out std_logic);

63

Appendix: B (Continued)

end GPblock;

architecture Behavioral of GPblock is

begin

g <= a and b;

p <= a xor b;

end Behavioral;

B4. VHDL Code for blackcell in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end blackcell;

architecture Behavioral of blackcell is

begin

x12 <= x1 or (y1 and x2);

y12 <= y1 and y2;

end Behavioral;

B5. VHDL Code for graycell in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity graycell is

64

Appendix: B (Continued)

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

end graycell;

architecture Behavioral of graycell is

begin

x12 <= x1 or(y1 and x2);

end Behavioral;

B6. VHDL Code for faultgraycell in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity faultgraycell is

port(x1,y1,x2,fault: in std_logic;

 x12: out std_logic);

end faultgraycell;

architecture Behavioral of faultgraycell is

begin

x12 <= not(fault) and(x1 or(y1 and x2));

end Behavioral;

B7. VHDL Code for buffer1 in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity buffer1 is

port(x1: in std_logic;

 x2: out std_logic);

end buffer1;

65

Appendix: B (Continued)

architecture Behavioral of buffer1 is

begin

x2 <= x1;

end Behavioral;

B8. VHDL Code for outmux in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity outmux is

port (v,w,x,y: in std_logic;

 z : out std_logic_vector(1 downto 0);

 sel: in std_logic);

end outmux;

architecture Behavioral of outmux is

begin

mux_proc : process(v,w,x,y,sel)

variable temp : std_logic_vector(1 downto 0);

begin

case sel is

when '1'=> temp:=v&w;

when '0'=> temp:=x&y;

when others => temp :="XX";

end case;

z<= temp;

end process mux_proc;

end Behavioral;

B9. VHDL Code for sum in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

66

Appendix: B (Continued)

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sum is

port(p,c: in std_logic;

 s : out std_logic);

end sum;

architecture Behavioral of sum is

begin

s <= (p xor c);

end Behavioral;

B10. VHDL Code for CntlMuxs in 8-bit Kogge-Stone Fault Correcting Adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity CntlMuxs is

port (x,y: in std_logic;

 z : out std_logic;

 control: in std_logic);

end CntlMuxs;

architecture Behavioral of CntlMuxs is

begin

mux_proc : process(x,y,control)

variable temp : std_logic;

begin

case control is

when '1'=> temp:=x;

when others => temp:=y;

67

Appendix: B (Continued)

end case;

z<= temp;

end process mux_proc;

end Behavioral;

68

Appendix: C

C1. VHDL Code for 32-bit Kogge-Stone Adder (Lower half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity KoggeStoneAdder_32 is

port(cin,clk,fault: in std_logic;

 countout : out std_logic_vector(1 downto 0);

 c8,cx8,cx16,cx24,cx32,c32,c24,c16: inout std_logic;

 a,b: in std_logic_vector(32 downto 1);

 c: inout std_logic_vector(32 downto 1);

 sum: out std_logic_vector(32 downto 1);

 error,controlout: out std_logic);

end KoggeStoneAdder_32;

architecture Behavioral of KoggeStoneAdder_32 is

component GPblock is

port(a,b: in std_logic;

 g,p: out std_logic);

end component;

component blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component buffer1 is

port(x1: in std_logic;

 x2: out std_logic);

end component;

69

Appendix: C (Continued)

component bitcounter1 is

Port (clk : in std_logic;

 count_out : out std_logic_vector(1 downto 0));

end component;

component ConcatenationRCA is

port(c0 : in std_logic;

 A : in std_logic_vector(8 downto 1);

 B : in std_logic_vector(8 downto 1);

 S : out std_logic_vector(8 downto 1);

 cx : out std_logic);

end component;

component FaultyAdder1 is

port(c0,fault : in std_logic;

 A : in std_logic_vector(8 downto 1);

 B : in std_logic_vector(8 downto 1);

 S : out std_logic_vector(8 downto 1);

 cx : out std_logic);

end component;

component comparator1 is

port(adder1 : in std_logic_vector(8 downto 1);

 adder2 : in std_logic_vector(8 downto 1);

 adder3 : in std_logic_vector(8 downto 1);

 adderout : out std_logic_vector(8 downto 1);

 error : out std_logic;

 allerror : out std_logic);

end component;

signal p1,g1: std_logic_vector(2 downto 0);

signal p2,g2: std_logic_vector(3 downto 0);

signal p3,g3: std_logic_vector(3 downto 0);

signal p4,g4,p5,g5,p6,g6,p7,g7: std_logic_vector(4 downto 0);

signal p8,g8,p9,g9,p10,g10,p11,g11,p12,g12,p13,g13,p14,g14,p15,g15,p16,g16:

std_logic_vector(5 downto 0);

70

Appendix: C (Continued)

signal p17,g17,p18,g18,p19,g19,p20,g20,p21,g21,p22,g22,p23,g23,p24,g24,p25,g25:

std_logic_vector(5 downto 0);

signal p26,g26,p27,g27,g28,p28,g29,p29,g30,p30,g31,p31,g32,p32:

std_logic_vector(5 downto 0);

signal s: std_logic_vector(32 downto 1);

signal DMRO2,DMRB,DMRA: std_logic_vector(8 downto 1);

signal DMRO1: std_logic_vector(8 downto 1);

signal AUT,compout: std_logic_vector(8 downto 1);

signal DMRCI,cdummy2,cdummy1,ae,e,control : std_logic;

signal count: std_logic_vector(1 downto 0);

begin

GPblock1 : GPblock port map(a(1),b(1),g1(0),p1(0));

GPblock2 : GPblock port map(a(2),b(2),g2(0),p2(0));

GPblock3 : GPblock port map(a(3),b(3),g3(0),p3(0));

GPblock4 : GPblock port map(a(4),b(4),g4(0),p4(0));

GPblock5 : GPblock port map(a(5),b(5),g5(0),p5(0));

GPblock6 : GPblock port map(a(6),b(6),g6(0),p6(0));

GPblock7 : GPblock port map(a(7),b(7),g7(0),p7(0));

GPblock8 : GPblock port map(a(8),b(8),g8(0),p8(0));

GPblock9 : GPblock port map(a(9),b(9),g9(0),p9(0));

GPblock10 : GPblock port map(a(10),b(10),g10(0),p10(0));

GPblock11 : GPblock port map(a(11),b(11),g11(0),p11(0));

GPblock12 : GPblock port map(a(12),b(12),g12(0),p12(0));

GPblock13 : GPblock port map(a(13),b(13),g13(0),p13(0));

GPblock14 : GPblock port map(a(14),b(14),g14(0),p14(0));

GPblock15 : GPblock port map(a(15),b(15),g15(0),p15(0));

GPblock16 : GPblock port map(a(16),b(16),g16(0),p16(0));

GPblock17 : GPblock port map(a(17),b(17),g17(0),p17(0));

GPblock18 : GPblock port map(a(18),b(18),g18(0),p18(0));

GPblock19 : GPblock port map(a(19),b(19),g19(0),p19(0));

GPblock20 : GPblock port map(a(20),b(20),g20(0),p20(0));

GPblock21 : GPblock port map(a(21),b(21),g21(0),p21(0));

GPblock22 : GPblock port map(a(22),b(22),g22(0),p22(0));

GPblock23 : GPblock port map(a(23),b(23),g23(0),p23(0));

GPblock24 : GPblock port map(a(24),b(24),g24(0),p24(0));

GPblock25 : GPblock port map(a(25),b(25),g25(0),p25(0));

71

Appendix: C (Continued)

GPblock26 : GPblock port map(a(26),b(26),g26(0),p26(0));

GPblock27 : GPblock port map(a(27),b(27),g27(0),p27(0));

GPblock28 : GPblock port map(a(28),b(28),g28(0),p28(0));

GPblock29 : GPblock port map(a(29),b(29),g29(0),p29(0));

GPblock30 : GPblock port map(a(30),b(30),g30(0),p30(0));

GPblock31 : GPblock port map(a(31),b(31),g31(0),p31(0));

GPblock32 : GPblock port map(a(32),b(32),g32(0),p32(0));

Blkcell0 : blackcell port map(g2(0),p2(0),g1(0),p1(0),g2(1),p2(1));

Blkcell1 : blackcell port map(g3(0),p3(0),g2(0),p2(0),g3(1),p3(1));

Blkcell2 : blackcell port map(g4(0),p4(0),g3(0),p3(0),g4(1),p4(1));

Blkcell3 : blackcell port map(g4(1),p4(1),g2(1),p2(1),g4(2),p4(2));

Blkcell4 : blackcell port map(g5(0),p5(0),g4(0),p4(0),g5(1),p5(1));

Blkcell5 : blackcell port map(g5(1),p5(1),g3(1),p3(1),g5(2),p5(2));

Blkcell6 : blackcell port map(g6(0),p6(0),g5(0),p5(0),g6(1),p6(1));

Blkcell7 : blackcell port map(g6(1),p6(1),g4(1),p4(1),g6(2),p6(2));

Blkcell8 : blackcell port map(g7(0),p7(0),g6(0),p6(0),g7(1),p7(1));

Blkcell9 : blackcell port map(g7(1),p7(1),g5(1),p5(1),g7(2),p7(2));

Blkcell10 : blackcell port map(g8(0),p8(0),g7(0),p7(0),g8(1),p8(1));

Blkcell11 : blackcell port map(g8(1),p8(1),g6(1),p6(1),g8(2),p8(2));

Blkcell12 : blackcell port map(g8(2),p8(2),g4(2),p4(2),g8(3),p8(3));

Blkcell13 : blackcell port map(g9(0),p9(0),g8(0),p8(0),g9(1),p9(1));

Blkcell14 : blackcell port map(g9(1),p9(1),g7(1),p7(1),g9(2),p9(2));

Blkcell15 : blackcell port map(g9(2),p9(2),g5(2),p5(2),g9(3),p9(3));

Blkcell16 : blackcell port map(g10(0),p10(0),g9(0),p9(0),g10(1),p10(1));

Blkcell17 : blackcell port map(g10(1),p10(1),g8(1),p8(1),g10(2),p10(2));

Blkcell18 : blackcell port map(g10(2),p10(2),g6(2),p6(2),g10(3),p10(3));

Blkcell19 : blackcell port map(g11(0),p11(0),g10(0),p10(0),g11(1),p11(1));

Blkcell20 : blackcell port map(g11(1),p11(1),g9(1),p9(1),g11(2),p11(2));

Blkcell21 : blackcell port map(g11(2),p11(2),g7(2),p7(2),g11(3),p11(3));

Blkcell22 : blackcell port map(g12(0),p12(0),g11(0),p11(0),g12(1),p12(1));

Blkcell23 : blackcell port map(g12(1),p12(1),g10(1),p10(1),g12(2),p12(2));

Blkcell24 : blackcell port map(g12(2),p12(2),g8(2),p8(2),g12(3),p12(3));

Blkcell25 : blackcell port map(g13(0),p13(0),g12(0),p12(0),g13(1),p13(1));

Blkcell26 : blackcell port map(g13(1),p13(1),g11(1),p11(1),g13(2),p13(2));

Blkcell27 : blackcell port map(g13(2),p13(2),g9(2),p9(2),g13(3),p13(3));

Blkcell28 : blackcell port map(g14(0),p14(0),g13(0),p13(0),g14(1),p14(1));

Blkcell29 : blackcell port map(g14(1),p14(1),g12(1),p12(1),g14(2),p14(2));

72

Appendix: C (Continued)

Blkcell30 : blackcell port map(g14(2),p14(2),g10(2),p10(2),g14(3),p14(3));

Blkcell31 : blackcell port map(g15(0),p15(0),g14(0),p14(0),g15(1),p15(1));

Blkcell32 : blackcell port map(g15(1),p15(1),g13(1),p13(1),g15(2),p15(2));

Blkcell33 : blackcell port map(g15(2),p15(2),g11(2),p11(2),g15(3),p15(3));

Blkcell34 : blackcell port map(g16(0),p16(0),g15(0),p15(0),g16(1),p16(1));

Blkcell35 : blackcell port map(g16(1),p16(1),g14(1),p14(1),g16(2),p16(2));

Blkcell36 : blackcell port map(g16(2),p16(2),g12(2),p12(2),g16(3),p16(3));

Blkcell37 : blackcell port map(g16(3),p16(3),g12(2),p12(2),g16(4),p16(4));

Blkcell38 : blackcell port map(g17(0),p17(0),g16(0),p16(0),g17(1),p17(1));

Blkcell39 : blackcell port map(g17(1),p17(1),g15(1),p15(1),g17(2),p17(2));

Blkcell40 : blackcell port map(g17(2),p17(2),g13(2),p13(2),g17(3),p17(3));

Blkcell41 : blackcell port map(g17(3),p17(3),g9(3),p9(3),g17(4),p17(4));

Blkcell42 : blackcell port map(g18(0),p18(0),g17(0),p17(0),g18(1),p18(1));

Blkcell43 : blackcell port map(g18(1),p18(1),g16(1),p16(1),g18(2),p18(2));

Blkcell44 : blackcell port map(g18(2),p18(2),g14(2),p14(2),g18(3),p18(3));

Blkcell45 : blackcell port map(g18(3),p18(3),g10(3),p10(3),g18(4),p18(4));

Blkcell46 : blackcell port map(g19(0),p19(0),g18(0),p18(0),g19(1),p19(1));

Blkcell47 : blackcell port map(g19(1),p19(1),g17(1),p17(1),g19(2),p19(2));

Blkcell48 : blackcell port map(g19(2),p19(2),g15(2),p15(2),g19(3),p19(3));

Blkcell49 : blackcell port map(g19(3),p19(3),g11(3),p11(3),g19(4),p19(4));

Blkcell50 : blackcell port map(g20(0),p20(0),g19(0),p19(0),g20(1),p20(1));

Blkcell51 : blackcell port map(g20(1),p20(1),g18(1),p18(1),g20(2),p20(2));

Blkcell52 : blackcell port map(g20(2),p20(2),g16(2),p16(2),g20(3),p20(3));

Blkcell53 : blackcell port map(g20(3),p20(3),g12(3),p12(3),g20(4),p20(4));

Blkcell54 : blackcell port map(g21(0),p21(0),g20(0),p20(0),g21(1),p21(1));

Blkcell55 : blackcell port map(g21(1),p21(1),g19(1),p19(1),g21(2),p21(2));

Blkcell56 : blackcell port map(g21(2),p21(2),g17(2),p17(2),g21(3),p21(3));

Blkcell57 : blackcell port map(g21(3),p21(3),g13(3),p13(3),g21(4),p21(4));

Blkcell58 : blackcell port map(g22(0),p22(0),g21(0),p21(0),g22(1),p22(1));

Blkcell59 : blackcell port map(g22(1),p22(1),g20(1),p20(1),g22(2),p22(2));

Blkcell60 : blackcell port map(g22(2),p22(2),g18(2),p18(2),g22(3),p22(3));

Blkcell61 : blackcell port map(g22(3),p22(3),g14(3),p14(3),g22(4),p22(4));

Blkcell62 : blackcell port map(g23(0),p23(0),g22(0),p22(0),g23(1),p23(1));

Blkcell63 : blackcell port map(g23(1),p23(1),g21(1),p21(1),g23(2),p23(2));

Blkcell64 : blackcell port map(g23(2),p23(2),g19(2),p19(2),g23(3),p23(3));

Blkcell65 : blackcell port map(g23(3),p23(3),g15(3),p15(3),g23(4),p23(4));

Blkcell66 : blackcell port map(g24(0),p24(0),g23(0),p23(0),g24(1),p24(1));

Blkcell67 : blackcell port map(g24(1),p24(1),g22(1),p22(1),g24(2),p24(2));

73

Appendix: C (Continued)

Blkcell68 : blackcell port map(g24(2),p24(2),g20(2),p20(2),g24(3),p24(3));

Blkcell69 : blackcell port map(g24(3),p24(3),g16(3),p16(3),g24(4),p24(4));

Blkcell70 : blackcell port map(g25(0),p25(0),g24(0),p24(0),g25(1),p25(1));

Blkcell71 : blackcell port map(g25(1),p25(1),g23(1),p23(1),g25(2),p25(2));

Blkcell72 : blackcell port map(g25(2),p25(2),g21(2),p21(2),g25(3),p25(3));

Blkcell73 : blackcell port map(g25(3),p25(3),g17(3),p17(3),g25(4),p25(4));

Blkcell74 : blackcell port map(g26(0),p26(0),g25(0),p25(0),g26(1),p26(1));

Blkcell75 : blackcell port map(g26(1),p26(1),g24(1),p24(1),g26(2),p26(2));

Blkcell76 : blackcell port map(g26(2),p26(2),g22(2),p22(2),g26(3),p26(3));

Blkcell77 : blackcell port map(g26(3),p26(3),g18(3),p18(3),g26(4),p26(4));

Blkcell78 : blackcell port map(g27(0),p27(0),g26(0),p26(0),g27(1),p27(1));

Blkcell79 : blackcell port map(g27(1),p27(1),g25(1),p25(1),g27(2),p27(2));

Blkcell80 : blackcell port map(g27(2),p27(2),g23(2),p23(2),g27(3),p27(3));

Blkcell81 : blackcell port map(g27(3),p27(3),g19(3),p19(3),g27(4),p27(4));

Blkcell82 : blackcell port map(g28(0),p28(0),g27(0),p27(0),g28(1),p28(1));

Blkcell83 : blackcell port map(g28(1),p28(1),g26(1),p26(1),g28(2),p28(2));

Blkcell84 : blackcell port map(g28(2),p28(2),g24(2),p24(2),g28(3),p28(3));

Blkcell85 : blackcell port map(g28(3),p28(3),g20(3),p20(3),g28(4),p28(4));

Blkcell86 : blackcell port map(g29(0),p29(0),g28(0),p28(0),g29(1),p29(1));

Blkcell87 : blackcell port map(g29(1),p29(1),g27(1),p27(1),g29(2),p29(2));

Blkcell88 : blackcell port map(g29(2),p29(2),g25(2),p25(2),g29(3),p29(3));

Blkcell89 : blackcell port map(g29(3),p29(3),g21(3),p21(3),g29(4),p29(4));

Blkcell90 : blackcell port map(g30(0),p30(0),g29(0),p29(0),g30(1),p30(1));

Blkcell91 : blackcell port map(g30(1),p30(1),g28(1),p28(1),g30(2),p30(2));

Blkcell92 : blackcell port map(g30(2),p30(2),g26(2),p26(2),g30(3),p30(3));

Blkcell93 : blackcell port map(g30(3),p30(3),g22(3),p22(3),g30(4),p30(4));

Blkcell94 : blackcell port map(g31(0),p31(0),g30(0),p30(0),g31(1),p31(1));

Blkcell95 : blackcell port map(g31(1),p31(1),g29(1),p29(1),g31(2),p31(2));

Blkcell96 : blackcell port map(g31(2),p31(2),g27(2),p27(2),g31(3),p31(3));

Blkcell97 : blackcell port map(g31(3),p31(3),g23(3),p23(3),g31(4),p31(4));

Graycell0 : graycell port map(g1(0),p1(0),cin,g1(1));

Graycell1 : graycell port map(g2(1),p2(1),cin,g2(2));

Graycell2 : graycell port map(g3(1),p3(1),g1(1),g3(2));

Graycell3 : graycell port map(g4(2),p4(2),cin,g4(3));

Graycell4 : graycell port map(g5(2),p5(2),g1(2),g5(3));

Graycell5 : graycell port map(g6(2),p6(2),g2(2),g6(3));

Graycell6 : graycell port map(g7(2),p7(2),g3(2),g7(3));

74

Appendix: C (Continued)

Graycell7 : graycell port map(g8(3),p8(3),cin,g8(4));

Graycell8 : graycell port map(g9(3),p9(3),g1(2),g9(4));

Graycell9 : graycell port map(g10(3),p10(3),g2(3),g10(4));

Graycell10 : graycell port map(g11(3),p11(3),g3(3),g11(4));

Graycell11 : graycell port map(g12(3),p12(3),g4(3),g12(4));

Graycell12 : graycell port map(g13(3),p13(3),g5(3),g13(4));

Graycell13 : graycell port map(g14(3),p14(3),g6(3),g14(4));

Graycell14 : graycell port map(g15(3),p15(3),g7(3),g15(4));

Graycell15 : graycell port map(g16(4),p16(4),cin,g16(5));

Graycell16 : graycell port map(g17(4),p17(4),g1(2),g17(5));

Graycell17 : graycell port map(g18(4),p18(4),g2(3),g18(5));

Graycell18 : graycell port map(g19(4),p19(4),g3(3),g19(5));

Graycell19 : graycell port map(g20(4),p20(4),g4(4),g20(5));

Graycell20 : graycell port map(g21(4),p21(4),g5(4),g21(5));

Graycell21 : graycell port map(g22(4),p22(4),g6(4),g22(5));

Graycell22 : graycell port map(g23(4),p23(4),g7(4),g23(5));

Graycell23 : graycell port map(g24(4),p24(4),g8(4),g24(5));

Graycell24 : graycell port map(g25(4),p25(4),g9(4),g25(5));

Graycell25 : graycell port map(g26(4),p26(4),g10(4),g26(5));

Graycell26 : graycell port map(g27(4),p27(4),g11(4),g27(5));

Graycell27 : graycell port map(g28(4),p28(4),g12(4),g28(5));

Graycell28 : graycell port map(g29(4),p29(4),g13(4),g29(5));

Graycell29 : graycell port map(g30(4),p30(4),g14(4),g30(5));

Graycell30 : graycell port map(g31(4),p31(4),g15(4),g31(5));

Graycell31 : graycell port map(g32(0),p32(0),c(31),g32(5));

Buffer01 : buffer1 port map(g1(1),g1(2));

Buffer02 : buffer1 port map(g2(2),g2(3));

Buffer03 : buffer1 port map(g3(2),g3(3));

Buffer04 : buffer1 port map(g4(3),g4(4));

Buffer05 : buffer1 port map(g5(3),g5(4));

Buffer06 : buffer1 port map(g6(3),g6(4));

Buffer07 : buffer1 port map(g7(3),g7(4));

Buffer08 : buffer1 port map(g8(4),g8(5));

Buffer09 : buffer1 port map(g9(4),g9(5));

Buffer010 : buffer1 port map(g10(4),g10(5));

Buffer011 : buffer1 port map(g11(4),g11(5));

Buffer012 : buffer1 port map(g12(4),g12(5));

75

Appendix: C (Continued)

Buffer013 : buffer1 port map(g13(4),g13(5));

Buffer014 : buffer1 port map(g14(4),g14(5));

Buffer015 : buffer1 port map(g15(4),g15(5));

c8 <= g8(4);

c16 <= g16(5);

c24 <= g24(5);

c32 <= g32(5);

CR1 : ConcatenationRCA port map(cin,a(8 downto 1),b(8 downto 1),s(8 downto

1),cx8);

CR9 : ConcatenationRCA port map(c8,a(16 downto 9),b(16 downto 9),s(16 downto

9),cx16);

CR17 : FaultyAdder1 port map(c16,fault,a(24 downto 17),b(24 downto 17),s(24

downto 17),cx24);

CR25 : ConcatenationRCA port map(c24,a(32 downto 25),b(32 downto 25),s(32

downto 25),cx32);

DMR1 : ConcatenationRCA port map(DMRCI,DMRA,DMRB,DMRO1,cdummy1);

DMR2 : ConcatenationRCA port map(DMRCI,DMRA,DMRB,DMRO2,cdummy2);

COMP2:Comparator1 port map(DMRO1,DMRO2,AUT,Compout,e,ae);

counter: bitcounter1 port map(control,count);

control <= (not e) and clk;

controlout<= control;

error<=e;

countout<= count;

IF_PRO: process(s,clk,count)

 begin

if clk = '0' and (count = "00") then

 sum(32 downto 9) <= s(32 downto 9);

 sum(8 downto 1) <= compout;---perfect

elsif clk = '0' and (count = "01") then

 sum(32 downto 17) <= s(32 downto 17);

 sum(8 downto 1) <= s(8 downto 1);

 sum(16 downto 9) <= compout;--perfect

elsif clk = '0' and (count = "10") then

 sum(32 downto 25) <= s(32 downto 25);

76

Appendix: C (Continued)

 sum(8 downto 1) <= s(8 downto 1);

 sum(24 downto 17) <= compout; --perfect

elsif clk = '0' and (count = "11") then

 sum(24 downto 1) <= s(24 downto 1);

 sum(32 downto 25) <= compout;--perfect

else

 sum <= s;

end if;

end process;

IF_PRO1: process(cin,c8,c16,c24,a,b,s,count)

 begin

 if (count = "00") then

 DMRCI<= cin;

 DMRA <= A(8 downto 1);

 DMRB <= B(8 downto 1);

 AUT <= s(8 downto 1);

 elsif (count = "01") then

 DMRCI<= c8;

 DMRA <= A(16 downto 9);

 DMRB <= B(16 downto 9);

 AUT <= s(16 downto 9);

 elsif (count = "10") then

 DMRCI<= c16;

 DMRA <= A(24 downto 17);

 DMRB <= B(24 downto 17);

 AUT <= s(24 downto 17);

 elsif (count = "11") then

 DMRCI<= c24;

 DMRA <= A(32 downto 25);

 DMRB <= B(32 downto 25);

 AUT <= s(32 downto 25);

 Else

77

Appendix: C (Continued)

 DMRCI<= cin;

 end if;

 end process;

 end Behavioral;

C2. VHDL Code for ConcatenationRCA in 32-bit Kogge-Stone Adder (Lower half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ConcatenationRCA is

port(c0 : in std_logic;

 A : in std_logic_vector(8 downto 1);

 B : in std_logic_vector(8 downto 1);

 S : out std_logic_vector(8 downto 1);

 cx : out std_logic);

end ConcatenationRCA;

architecture Behavioral of ConcatenationRCA is

signal SUM : std_logic_vector(9 downto 1);

begin

SUM <= ("0" & A) + ("0" & B) + c0;

cx <= SUM(9);

S(8) <= SUM(8) ;

S(7) <= SUM(7) ;

S(6) <= SUM(6) ;

S(5) <= SUM(5) ;

S(4) <= SUM(4) ;

S(3) <= SUM(3) ;

S(2) <= SUM(2) ;

S(1) <= SUM(1) ;

end Behavioral;

78

Appendix: C (Continued)

C3. VHDL Code for FaultyAdder1 in 32-bit Kogge-Stone Adder (Lower half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FaultyAdder1 is

port(c0,fault : in std_logic;

 A : in std_logic_vector(8 downto 1);

 B : in std_logic_vector(8 downto 1);

 S : out std_logic_vector(8 downto 1);

 cx : out std_logic);

end FaultyAdder1;

architecture Behavioral of FaultyAdder1 is

signal SUM : std_logic_vector(9 downto 1);

begin

SUM <= ("0" & A) + ("0" & B) + c0;

cx <= SUM(9);

S(8) <= SUM(8) ;

S(7) <= SUM(7)and (not fault);

S(6) <= SUM(6) ;

S(5) <= SUM(5) ;

S(4) <= SUM(4) ;

S(3) <= SUM(3) ;

S(2) <= SUM(2) ;

S(1) <= SUM(1) ;

end Behavioral;

C4. VHDL Code for comparator1 in 32-bit Kogge-Stone Adder (Lower half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

79

Appendix: C (Continued)

entity comparator1 is

port (adder1 : in std_logic_vector(8 downto 1);

 adder2 : in std_logic_vector(8 downto 1);

 adder3 : in std_logic_vector(8 downto 1);

 adderout : out std_logic_vector(8 downto 1);

 error : out std_logic;

 allerror : out std_logic);

end comparator1;

architecture Behavioral of comparator1 is

begin

IF_PRO: process(adder1,adder2,adder3)

 begin

 if ((adder1 = adder2) and (adder1 = adder3)) then

 adderout<= adder1;

 error<= '0';

 allerror<= '0';

 elsif (adder1 = adder3) then

 adderout<=adder1;

 error<= '1';

 allerror<= '0';

 elsif (adder1=adder2) then

 adderout <= adder1;

 error<= '1';

 allerror<= '0';

 elsif (adder2= adder3) then

 adderout <= adder2;

 error<= '1';

 allerror<= '0';

 else

 adderout<= (others => 'X');

 error<= '1';

 allerror<= '1';

 end if;

80

Appendix: C (Continued)

end process;

end Behavioral;

C5. VHDL Code for bitcounter1 in 32-bit Kogge-Stone Adder (Lower half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity bitcounter1 is

Port (clk : in std_logic;

 count_out : out std_logic_vector(1 downto 0));

end bitcounter1;

architecture Behavioral of bitcounter1 is

signal temp_count : std_logic_vector(1 downto 0) := "00";

begin

counting : process(clk,temp_count)

begin

 if clk'event and clk = '1' then

 temp_count <= temp_count + 1;

 end if;

count_out <= temp_count;

end process;

end Behavioral;

81

Appendix: D

D1. VHDL Code for 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FTSparceUH32 is

port(cin,faultgreen,faultpurple,faultblue,fault2,clk : in std_logic;

 a,b: in std_logic_vector(32 downto 1);

 c32 : inout std_logic;

-----------------------------TEST PORTS ---------------------------

 error,controlout,c8test,c16test,c24test : out std_logic;

 test : out std_logic_vector(8 downto 1);

 sum : out std_logic_vector(32 downto 1));

end FTSparceUH32;

architecture Behavioral of FTSparceUH32 is

component GPblock is

port(a,b: in std_logic;

 g,p: out std_logic);

end component;

component blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component ConcatenationRCA is

port(c0 : in std_logic;

 a: in std_logic_vector(7 downto 0);

 b: in std_logic_vector(7 downto 0);

82

Appendix: D (Continued)

 S: out std_logic_vector(7 downto 0);

 cx: out std_logic);

end component;

component greengroup is

port(clk,RCcarry,fault,x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,cx: in

std_logic;

 x14,y14,cout: out std_logic);

end component;

component purplegroup is

port(

clk,RCcarry,fault,x10,y10,x11,y11,x12,y12,x13,y13,x14,y14,x15,y15,x16,y16,x17,y1

7,x9,y9,cx: in std_logic;

 x14x,y14x,cout: out std_logic);

end component;

component bluegroup is

port(

clk,RCcarry,fault,fault2,x17,y17,x18,y18,x19,y19,x20,y20,x21,y21,x22,y22,x23,y23,

x24,y24,x9,y9,cx: in std_logic;

 cout: out std_logic);

end component;

signal p0,g0: std_logic_vector(1 downto 0);

signal p1,g1: std_logic_vector(2 downto 0);

signal p2,g2: std_logic_vector(3 downto 0);

signal p3,g3: std_logic_vector(3 downto 0);

signal p4,g4,p5,g5,p6,g6,p7,g7: std_logic_vector(4 downto 0);

signal p8,g8,p9,g9,p10,g10,p11,g11,p12,g12,p13,g13,p14,g14,p15,g15,p16,g16:

std_logic_vector(5 downto 0);

signal p17,g17,p18,g18,p19,g19,p20,g20,p21,g21,p22,g22,p23,g23,p24,g24,p25,g25:

std_logic_vector(5 downto 0);

signal p26,g26,p27,g27,g28,p28,g29,p29,g30,p30,g31,p31: std_logic_vector(5

downto 0);

--2nd part

signal

g32,p32,p33,g33,p34,g34,p35,g35,p36,g36,p37,g37,p38,g38,p39,g39,p40,g40,p41,g4

1: std_logic_vector(6 downto 0);

signal p42,g42,p43,g43,p44,g44,p45,g45,p46,g46,p47,g47,p48,g48,p49,g49,p50,g50:

std_logic_vector(6 downto 0);

83

Appendix: D (Continued)

signal

p51,g51,p52,g52,p53,g53,p54,g54,p55,g55,p56,g56,p57,g57,p58,g58,p59,g59,p60,g6

0: std_logic_vector(6 downto 0);

signal p61,g61,p62,g62,p63,g63: std_logic_vector(6 downto 0);

signal s: std_logic_vector(32 downto 1);

signal DMRO2,DMRB,DMRA: std_logic_vector(8 downto 1);

signal DMRO1: std_logic_vector(8 downto 1);

signal AUT,compout: std_logic_vector(8 downto 1);

signal DMRCI,cdummy2,cdummy1,ae,e : std_logic;

signal count: std_logic_vector(1 downto 0);

signal g64,g65,g66,g67,g68,g69,g70,g71,g72,g73,g74,g75,g76,g77,g78,g79:

std_logic_vector(7 downto 0);

signal p64,p65,p66,p67,p68,p69,p70,p71,p72,p73,p74,p75,p76,p77,p78,p79:

std_logic_vector(7 downto 0);

signal g80,g81,g82,g83,g84,g85,g86,g87,g88,g89,g90,g91,g92,g93,g94,g95:

std_logic_vector(7 downto 0);

signal p80,p81,p82,p83,p84,p85,p86,p87,p88,p89,p90,p91,p92,p93,p94,p95:

std_logic_vector(7 downto 0);

signal

g96,g97,g98,g99,g100,g101,g102,g103,g104,g105,g106,g107,g108,g109,g110,g111:

std_logic_vector(7 downto 0);

signal

p96,p97,p98,p99,p100,p101,p102,p103,p104,p105,p106,p107,p108,p109,p110,p111:

std_logic_vector(7 downto 0);

signal

g112,g113,g114,g115,g116,g117,g118,g119,g120,g121,g122,g123,g124,g125,g126,g

127: std_logic_vector(7 downto 0);

signal

p112,p113,p114,p115,p116,p117,p118,p119,p120,p121,p122,p123,p124,p125,p126,p

127: std_logic_vector(7 downto 0);

signal r1,y1,b1,pr1,pr2,gr1,gr2 : std_logic;

signal errorc8,errorc16,errorc24 : std_logic;

signal c8,c16,c24: std_logic;

signal cx8,cx16,cx24,cx32 : std_logic;

begin

84

Appendix: D (Continued)

GPblock1 : GPblock port map(a(1),b(1),g1(0),p1(0));

GPblock2 : GPblock port map(a(2),b(2),g2(0),p2(0));

GPblock3 : GPblock port map(a(3),b(3),g3(0),p3(0));

GPblock4 : GPblock port map(a(4),b(4),g4(0),p4(0));

GPblock5 : GPblock port map(a(5),b(5),g5(0),p5(0));

GPblock6 : GPblock port map(a(6),b(6),g6(0),p6(0));

GPblock7 : GPblock port map(a(7),b(7),g7(0),p7(0));

GPblock8 : GPblock port map(a(8),b(8),g8(0),p8(0));

GPblock9 : GPblock port map(a(9),b(9),g9(0),p9(0));

GPblock10 : GPblock port map(a(10),b(10),g10(0),p10(0));

GPblock11 : GPblock port map(a(11),b(11),g11(0),p11(0));

GPblock12 : GPblock port map(a(12),b(12),g12(0),p12(0));

GPblock13 : GPblock port map(a(13),b(13),g13(0),p13(0));

GPblock14 : GPblock port map(a(14),b(14),g14(0),p14(0));

GPblock15 : GPblock port map(a(15),b(15),g15(0),p15(0));

GPblock16 : GPblock port map(a(16),b(16),g16(0),p16(0));

GPblock17 : GPblock port map(a(17),b(17),g17(0),p17(0));

GPblock18 : GPblock port map(a(18),b(18),g18(0),p18(0));

GPblock19 : GPblock port map(a(19),b(19),g19(0),p19(0));

GPblock20 : GPblock port map(a(20),b(20),g20(0),p20(0));

GPblock21 : GPblock port map(a(21),b(21),g21(0),p21(0));

GPblock22 : GPblock port map(a(22),b(22),g22(0),p22(0));

GPblock23 : GPblock port map(a(23),b(23),g23(0),p23(0));

GPblock24 : GPblock port map(a(24),b(24),g24(0),p24(0));

GPblock25 : GPblock port map(a(25),b(25),g25(0),p25(0));

GPblock26 : GPblock port map(a(26),b(26),g26(0),p26(0));

GPblock27 : GPblock port map(a(27),b(27),g27(0),p27(0));

GPblock28 : GPblock port map(a(28),b(28),g28(0),p28(0));

GPblock29 : GPblock port map(a(29),b(29),g29(0),p29(0));

GPblock30 : GPblock port map(a(30),b(30),g30(0),p30(0));

GPblock31 : GPblock port map(a(31),b(31),g31(0),p31(0));

GPblock32 : GPblock port map(a(32),b(32),g32(0),p32(0));

green3 : greengroup port

map(clk,cx8,faultgreen,g8(0),p8(0),g7(0),p7(0),g6(0),p6(0),g5(0),p5(0),g4(0),p4(0),g

3(0),p3(0),g2(0),p2(0),g1(0),p1(0),cin,gr1,gr2,c8);

85

Appendix: D (Continued)

purple3 : purplegroup port

map(clk,cx16,faultpurple,g16(0),p16(0),g15(0),p15(0),g14(0),p14(0),g13(0),p13(0),g

12(0),p12(0),g11(0),p11(0),g10(0),p10(0),g9(0),p9(0),gr1,gr2,cin,pr1,pr2,c16);

blue3 : bluegroup port

map(clk,cx24,faultblue,fault2,g24(0),p24(0),g23(0),p23(0),g22(0),p22(0),g21(0),p21(

0),g20(0),p20(0),g19(0),p19(0),g18(0),p18(0),g17(0),p17(0),pr1,pr2,c8,c24);

c8test<=errorc8;

c16test<=errorc16;

c24test<=errorc24;

CR1 : ConcatenationRCA port map(cin,a(8 downto 1),b(8 downto 1),s(8 downto

1),cx8);

CR2 : ConcatenationRCA port map(c8,a(16 downto 9),b(16 downto 9),s(16 downto

9),cx16);

CR3 : ConcatenationRCA port map(c16,a(24 downto 17),b(24 downto 17),s(24

downto 17),cx24);

CR4 : ConcatenationRCA port map(c24,a(32 downto 25),b(32 downto 25),s(32

downto 25),c32);

sum <=s;

end Behavioral;

D2. VHDL Code for greengroup in 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity greengroup is

port(clk,RCcarry,fault,x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,cx: in

std_logic;

 x14,y14,cout: out std_logic);

end greengroup;

architecture Beavioral of greengroup is

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

86

Appendix: D (Continued)

end component;

component faultygraycell is

port(fault,x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component faultyblackcell is

port(fault,x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

signal g2,p2,g4,p4,g5,p5,g6,p6,g8,p8,g9,p9,g10,p10 : std_logic;

signal g2a,p2a,g4a,p4a,g5a,p5a,g6a,p6a,g8a,p8a,g9a,p9a,g10a,p10a : std_logic;

signal couta,cout1 : std_logic;

begin

Blkcell0 : blackcell port map(x1,y1,x2,y2,g2,p2);

Blkcell2 : blackcell port map(x3,y3,x4,x4,g4,p4);

Blkcell3 : blackcell port map(g4,p4,g2,p2,g6,p6);

Blkcell6 : blackcell port map(x5,y5,x6,y6,g5,p5);

Blkcell10 : blackcell port map(x7,y7,x8,y8,g8,p8);

Blkcell11 : blackcell port map(g8,p8,g5,p5,g9,p9);

Blkcell12 : blackcell port map(g9,p9,g6,p6,g10,p10);

Graycell7 : graycell port map(g10,p10,cx,cout1);

Blkcell0a : faultyblackcell port map(fault,x1,y1,x2,y2,g2a,p2a);

Blkcell2b : faultyblackcell port map(fault,x3,y3,x4,x4,g4a,p4a);

Blkcell3c : faultyblackcell port map(fault,g4a,p4a,g2a,p2a,g6a,p6a);

Blkcell6d : faultyblackcell port map(fault,x5,y5,x6,y6,g5a,p5a);

Blkcell10e : faultyblackcell port map(fault,x7,y7,x8,y8,g8a,p8a);

Blkcell11f : faultyblackcell port map(fault,g8a,p8a,g5a,p5a,g9a,p9a);

Blkcell12g : faultyblackcell port map(fault,g9a,p9a,g6a,p6a,g10a,p10a);

Graycell7h : faultygraycell port map(fault,g10a,p10a,cx,couta);

87

Appendix: D (Continued)

 IF_PRO: process(RCcarry,g10,p10,g10a,p10a,clk,cout1,couta)

 begin

 if clk = '0' and clk'event then

 if RCcarry = cout1 then

 x14<= g10;

 y14<= p10;

 cout<= cout1;

 else

 x14<= g10a;

 y14<= p10a;

 cout<=couta;

 end if;

 end if;

end process;

end Behavioral;

D3. VHDL Code for purplegroup in 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity purplegroup is

port(

clk,RCcarry,fault,x10,y10,x11,y11,x12,y12,x13,y13,x14,y14,x15,y15,x16,y16,x17,y1

7,x9,y9,cx: in std_logic;

 x14x,y14x,cout: out std_logic);

end purplegroup;

architecture Behavioral of purplegroup is

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component blackcell is

88

Appendix: D (Continued)

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component faultygraycell is

port(fault,x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component faultyblackcell is

port(fault,x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

signal g10,p10,g11,p11,g12,p12,g13,p13,g14,p14,g15,p15,g16,p16,g17,p17,g18,p18

: std_logic;

signal

g10a,p10a,g11a,p11a,g12a,p12a,g13a,p13a,g14a,p14a,g15a,p15a,g16a,p16a,g17a,p17

a,g18a,p18a : std_logic;

signal couta,cout1 : std_logic;

begin

--group1

Blkcell16 : blackcell port map(x10,y10,x9,y9,g11,p11);

Blkcell22 : blackcell port map(x11,y11,x12,y12,g12,p12);

Blkcell23 : blackcell port map(g12,p12,g11,p11,g13,p13);

Blkcell28 : blackcell port map(x13,y13,x14,y14,g14,p14);

Blkcell34 : blackcell port map(x15,y15,x16,y16,g15,p15);

Blkcell35 : blackcell port map(g15,p15,g14,p14,g16,p16);

Blkcell36 : blackcell port map(g16,p16,g13,p13,g17,p17);

Blkcell37 : blackcell port map(g17,p17,g10,p10,g18,p18);

Graycell15 : graycell port map(g18,p18,cx,cout1);

--group2(backup)

Blkcell16a : faultyblackcell port map(fault,x10,y10,x9,y9,g11a,p11a);

Blkcell22a : faultyblackcell port map(fault,x11,y11,x12,y12,g12a,p12a);

Blkcell23a : faultyblackcell port map(fault,g12a,p12a,g11a,p11a,g13a,p13a);

Blkcell28a : faultyblackcell port map(fault,x13,y13,x14,y14,g14a,p14a);

Blkcell34a : faultyblackcell port map(fault,x15,y15,x16,y16,g15a,p15a);

89

Appendix: D (Continued)

Blkcell35a : faultyblackcell port map(fault,g15a,p15a,g14a,p14a,g16a,p16a);

Blkcell36a : faultyblackcell port map(fault,g16a,p16a,g13a,p13a,g17a,p17a);

Blkcell37a : faultyblackcell port map(fault,g17a,p17a,g10a,p10a,g18a,p18a);

Graycell15a : faultygraycell port map(fault,g18a,p18a,cx,couta);

IF_PRO: process(RCcarry,clk,g18,p18,g18a,p18a,cout1,couta)

 begin

 if clk = '0' and clk'event then

 if RCcarry = cout1 then

 x14x<= g18;

 y14x<= p18;

 cout<= cout1;

 else

 x14x<= g18a;

 y14x<= p18a;

 cout<=couta;

 end if;

end if;

 end process;

 end Behavioral;

D4. VHDL Code for bluegroup in 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity bluegroup is

port(

clk,RCcarry,fault,fault2,x17,y17,x18,y18,x19,y19,x20,y20,x21,y21,x22,y22,x23,y23,

x24,y24,x9,y9,cx: in std_logic;

 cout: out std_logic);

end bluegroup;

architecture Behavioral of bluegroup is

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

90

Appendix: D (Continued)

end component;

component faultygraycell is

port(fault,x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component faultyblackcell is

port(fault,x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

signal

g17,p17,g19,p19,g20,p20,g21,p21,g22,p22,g23,p23,g24,p24,g25,p25,g26,p26,couta,c

out1 : std_logic;

signal

g17a,p17a,g19a,p19a,g20a,p20a,g21a,p21a,g22a,p22a,g23a,p23a,g24a,p24a,g25a,p25

a,g26a,p26a : std_logic;

begin

Blkcell42 : blackcell port map(x17,y17,x18,y18,g19,p19);

Blkcell50 : blackcell port map(x19,y19,x20,y20,g20,p20);

Blkcell51 : blackcell port map(g19,p19,g20,p20,g21,p21);

Blkcell58 : blackcell port map(x21,y21,x22,y22,g22,p22);

Blkcell66 : blackcell port map(x23,y23,x24,y24,g23,p23);

Blkcell67 : blackcell port map(g23,p23,g22,p22,g24,p24);

Blkcell68 : blackcell port map(g24,p24,g25,p25,g25,p25);

Blkcell69 : blackcell port map(g25,p25,g17,p17,g26,p26);

Graycell11 : faultygraycell port map(fault2,g26,p26,cx,cout1);

91

Appendix: D (Continued)

Blkcell42a : faultyblackcell port map(x17,y17,x18,y18,g19a,p19a);

Blkcell50a : faultyblackcell port map(x19,y19,x20,y20,g20a,p20a);

Blkcell51a : faultyblackcell port map(g19a,p19a,g20a,p20a,g21a,p21a);

Blkcell58a : faultyblackcell port map(x21,y21,x22,y22,g22a,p22a);

Blkcell66a : faultyblackcell port map(x23,y23,x24,y24,g23a,p23a);

Blkcell67a : faultyblackcell port map(g23a,p23a,g22a,p22a,g24a,p24a);

Blkcell68a : faultyblackcell port map(g24a,p24a,g25a,p25a,g25a,p25a);

Blkcell69a : faultyblackcell port map(g25a,p25a,g17a,p17a,g26a,p26a);

Graycell11a : faultygraycell port map(fault2,g26a,p26a,cx,couta);

IF_PRO: process(RCcarry,clk,cout1,couta)

 begin

 if clk = '0' and clk'event then

 if RCcarry = cout1 then

 cout<= cout1;

 else

 cout<=couta;

 end if;

end if;

end process;

end Behavioral;

D5. VHDL Code for ConcatenationRCA in 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ConcatenationRCA is

port(c0 : in std_logic;

 A : in std_logic_vector(8 downto 1);

 B : in std_logic_vector(8 downto 1);

 S : out std_logic_vector(8 downto 1);

 cx : out std_logic);

end ConcatenationRCA;

architecture Behavioral of ConcatenationRCA is

92

Appendix: D (Continued)

signal SUM : std_logic_vector(9 downto 1);

begin

SUM <= ("0" & A) + ("0" & B) + c0;

cx <= SUM(9);

S(8) <= SUM(8);

S(7) <= SUM(7);

S(6) <= SUM(6);

S(5) <= SUM(5);

S(4) <= SUM(4);

S(3) <= SUM(3);

S(2) <= SUM(2);

S(1) <= SUM(1);

end Behavioral;

D6. VHDL Code for faultgraycell in 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity faultygraycell is

port(fault,x1,y1,x2: in std_logic;

 x12: out std_logic);

end faultygraycell;

architecture Behavioral of faultygraycell is

begin

x12 <= (not fault) and (x1 or(y1 and x2));

end Behavioral;

D7. VHDL Code for faultblackcell in 32-bit Kogge-Stone Adder (Upper half)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity faultyblackcell is

port(fault,x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end faultyblackcell;

93

Appendix: D (Continued)

architecture Behavioral of faultyblackcell is

begin

x12 <=(not fault) and(x1 or (y1 and x2));

y12 <= (not fault) and (y1 and y2);

end Behavioral;

94

Appendix: E

E1. VHDL Code for 32-bit Graceful Degradation

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sparsegd32 is

port(cin,clk,fault : in std_logic;

 a,b: in std_logic_vector(32 downto 1);

 c8,c16,c24,c32 : inout std_logic;

-----------------------------TEST PORTS ---------------------------

 error, controlout : out std_logic;

 counterout,countertest : out std_logic_vector(2 downto 0);

 cx8,cx16,cx24,cx32 : inout std_logic;

 test : out std_logic_vector(8 downto 1);

 sum : out std_logic_vector(32 downto 1));

end sparsegd32;

architecture Behavioral of sparsegd32 is

component GPblock is

port(a,b: in std_logic;

 g,p: out std_logic);

end component;

component blackcell is

port(x1,y1,x2,y2: in std_logic;

 x12,y12: out std_logic);

end component;

component graycell is

port(x1,y1,x2: in std_logic;

 x12: out std_logic);

end component;

component buffer1 is

95

Appendix: E (Continued)

port(x1: in std_logic;

 x2: out std_logic);

end component;

component FaultyAdder is

port(c0,fault : in std_logic;

 A : in std_logic_vector(8 downto 1);

 B : in std_logic_vector(8 downto 1);

 S : out std_logic_vector(8 downto 1);

 cx : out std_logic);

end component;

component ConcatenationRCA is

port(c0 : in std_logic;

 a: in std_logic_vector(7 downto 0);

 b: in std_logic_vector(7 downto 0);

 S : out std_logic_vector(7 downto 0);

 cx : out std_logic);

end component;

component bitcounter is

Port (clk : in std_logic;

 count_out : out std_logic_vector(2 downto 0));

end component;

component comparator is

port(adder1 : in std_logic_vector(8 downto 1);

 adder2 : in std_logic_vector(8 downto 1);

 adder3 : in std_logic_vector(8 downto 1);

 adderout : out std_logic_vector(8 downto 1);

 error : out std_logic;

 allerror : out std_logic);

end component;

component comparator2 is

port(

96

Appendix: E (Continued)

SUT : in std_logic_vector(8 downto 1);

error : out std_logic);

end component;

signal s: std_logic_vector(32 downto 1);

signal DMRO2,DMRB,DMRA: std_logic_vector(32 downto 1);

signal DMRO1: std_logic_vector(8 downto 1);

signal AUT,compout: std_logic_vector(8 downto 1);

signal cdummy2,cdummy1,ae,e : std_logic;

signal DMRC4,DMRC3,DMRC2,DMRC1,DMRCI : std_logic;

signal DMR1A,DMR1B, DMR2A,DMR2B ,DMR3A,DMR3B ,DMR4A,DMR4B

,DMR5A,DMR5B : std_logic_vector(8 downto 1);

signal cmux1,cmux2,cmux3,cmux4,cmux5 : std_logic;

signal smux1,smux2,smux3,smux4,smux5,stest: std_logic_vector(8 downto 1);

signal control : std_logic;

signal count,count1: std_logic_vector(2 downto 0);

signal p1,g1: std_logic_vector(2 downto 0);

signal p2,g2: std_logic_vector(3 downto 0);

signal p3,g3: std_logic_vector(3 downto 0);

signal p4,g4,p5,g5,p6,g6,p7,g7: std_logic_vector(4 downto 0);

signal p8,g8,p9,g9,p10,g10,p11,g11,p12,g12,p13,g13,p14,g14,p15,g15,p16,g16:

std_logic_vector(5 downto 0);

signal p17,g17,p18,g18,p19,g19,p20,g20,p21,g21,p22,g22,p23,g23,p24,g24,p25,g25:

std_logic_vector(5 downto 0);

signal p26,g26,p27,g27,g28,p28,g29,p29,g30,p30,g31,p31,g32,p32:

std_logic_vector(5 downto 0);

begin

GPblock1 : GPblock port map(a(1),b(1),g1(0),p1(0));

GPblock2 : GPblock port map(a(2),b(2),g2(0),p2(0));

GPblock3 : GPblock port map(a(3),b(3),g3(0),p3(0));

GPblock4 : GPblock port map(a(4),b(4),g4(0),p4(0));

97

Appendix: E (Continued)

GPblock5 : GPblock port map(a(5),b(5),g5(0),p5(0));

GPblock6 : GPblock port map(a(6),b(6),g6(0),p6(0));

GPblock7 : GPblock port map(a(7),b(7),g7(0),p7(0));

GPblock8 : GPblock port map(a(8),b(8),g8(0),p8(0));

GPblock9 : GPblock port map(a(9),b(9),g9(0),p9(0));

GPblock10 : GPblock port map(a(10),b(10),g10(0),p10(0));

GPblock11 : GPblock port map(a(11),b(11),g11(0),p11(0));

GPblock12 : GPblock port map(a(12),b(12),g12(0),p12(0));

GPblock13 : GPblock port map(a(13),b(13),g13(0),p13(0));

GPblock14 : GPblock port map(a(14),b(14),g14(0),p14(0));

GPblock15 : GPblock port map(a(15),b(15),g15(0),p15(0));

GPblock16 : GPblock port map(a(16),b(16),g16(0),p16(0));

GPblock17 : GPblock port map(a(17),b(17),g17(0),p17(0));

GPblock18 : GPblock port map(a(18),b(18),g18(0),p18(0));

GPblock19 : GPblock port map(a(19),b(19),g19(0),p19(0));

GPblock20 : GPblock port map(a(20),b(20),g20(0),p20(0));

GPblock21 : GPblock port map(a(21),b(21),g21(0),p21(0));

GPblock22 : GPblock port map(a(22),b(22),g22(0),p22(0));

GPblock23 : GPblock port map(a(23),b(23),g23(0),p23(0));

GPblock24 : GPblock port map(a(24),b(24),g24(0),p24(0));

GPblock25 : GPblock port map(a(25),b(25),g25(0),p25(0));

GPblock26 : GPblock port map(a(26),b(26),g26(0),p26(0));

GPblock27 : GPblock port map(a(27),b(27),g27(0),p27(0));

GPblock28 : GPblock port map(a(28),b(28),g28(0),p28(0));

GPblock29 : GPblock port map(a(29),b(29),g29(0),p29(0));

GPblock30 : GPblock port map(a(30),b(30),g30(0),p30(0));

GPblock31 : GPblock port map(a(31),b(31),g31(0),p31(0));

GPblock32 : GPblock port map(a(32),b(32),g32(0),p32(0));

Blkcell0 : blackcell port map(g2(0),p2(0),g1(0),p1(0),g2(1),p2(1));

Blkcell2 : blackcell port map(g4(0),p4(0),g3(0),p3(0),g4(1),p4(1));

Blkcell3 : blackcell port map(g4(1),p4(1),g2(1),p2(1),g4(2),p4(2));

Blkcell6 : blackcell port map(g6(0),p6(0),g5(0),p5(0),g6(1),p6(1));

Blkcell10 : blackcell port map(g8(0),p8(0),g7(0),p7(0),g8(1),p8(1));

Blkcell11 : blackcell port map(g8(1),p8(1),g6(1),p6(1),g8(2),p8(2));

Blkcell12 : blackcell port map(g8(2),p8(2),g4(2),p4(2),g8(3),p8(3));

Blkcell16 : blackcell port map(g10(0),p10(0),g9(0),p9(0),g10(1),p10(1));

Blkcell22 : blackcell port map(g12(0),p12(0),g11(0),p11(0),g12(1),p12(1));

98

Appendix: E (Continued)

Blkcell23 : blackcell port map(g12(1),p12(1),g10(1),p10(1),g12(2),p12(2));

Blkcell24 : blackcell port map(g12(2),p12(2),g8(2),p8(2),g12(3),p12(3));

Blkcell28 : blackcell port map(g14(0),p14(0),g13(0),p13(0),g14(1),p14(1));

Blkcell34 : blackcell port map(g16(0),p16(0),g15(0),p15(0),g16(1),p16(1));

Blkcell35 : blackcell port map(g16(1),p16(1),g14(1),p14(1),g16(2),p16(2));

Blkcell36 : blackcell port map(g16(2),p16(2),g12(2),p12(2),g16(3),p16(3));

Blkcell37 : blackcell port map(g16(3),p16(3),g12(2),p12(2),g16(4),p16(4));

Blkcell42 : blackcell port map(g18(0),p18(0),g17(0),p17(0),g18(1),p18(1));

Blkcell50 : blackcell port map(g20(0),p20(0),g19(0),p19(0),g20(1),p20(1));

Blkcell51 : blackcell port map(g20(1),p20(1),g18(1),p18(1),g20(2),p20(2));

Blkcell52 : blackcell port map(g20(2),p20(2),g16(2),p16(2),g20(3),p20(3));

Blkcell53 : blackcell port map(g20(3),p20(3),g12(3),p12(3),g20(4),p20(4));

Blkcell58 : blackcell port map(g22(0),p22(0),g21(0),p21(0),g22(1),p22(1));

Blkcell66 : blackcell port map(g24(0),p24(0),g23(0),p23(0),g24(1),p24(1));

Blkcell67 : blackcell port map(g24(1),p24(1),g22(1),p22(1),g24(2),p24(2));

Blkcell68 : blackcell port map(g24(2),p24(2),g20(2),p20(2),g24(3),p24(3));

Blkcell69 : blackcell port map(g24(3),p24(3),g16(3),p16(3),g24(4),p24(4));

Blkcell74 : blackcell port map(g26(0),p26(0),g25(0),p25(0),g26(1),p26(1));

Blkcell82 : blackcell port map(g28(0),p28(0),g27(0),p27(0),g28(1),p28(1));

Blkcell83 : blackcell port map(g28(1),p28(1),g26(1),p26(1),g28(2),p28(2));

Blkcell84 : blackcell port map(g28(2),p28(2),g24(2),p24(2),g28(3),p28(3));

Blkcell85 : blackcell port map(g28(3),p28(3),g20(3),p20(3),g28(4),p28(4));

Graycell3 : graycell port map(g4(2),p4(2),cin,g4(3));

Graycell7 : graycell port map(g8(3),p8(3),cin,g8(4));

Graycell11 : graycell port map(g12(3),p12(3),g4(3),g12(4));

Graycell15 : graycell port map(g16(4),p16(4),cin,g16(5));

Graycell19 : graycell port map(g20(4),p20(4),g4(4),g20(5));

Graycell23 : graycell port map(g24(4),p24(4),g8(4),g24(5));

Graycell27 : graycell port map(g28(4),p28(4),g12(4),g28(5));

c8 <= g8(4);

c16 <= g16(5);

c24 <= g24(5);

CR1 : ConcatenationRCA port map(DMRCI,DMR1A,DMR1B,smux1,cmux1);

CR2 : ConcatenationRCA port map(DMRC1,DMR2A,DMR2B,smux2,cmux2);

CR3 : ConcatenationRCA port map(DMRC2,DMR3A,DMR3B,smux3,cmux3);

99

Appendix: E (Continued)

CR4 : FaultyAdder port map(DMRC3,fault,DMR4A,DMR4B,smux4,cmux4);

CR5 : ConcatenationRCA port map(DMRC4,DMR5A,DMR5B,smux5,cmux5);

COMP1: comparator2 port map(stest,e);

counter: bitcounter port map(control,count);

counter1: bitcounter port map(clk,count1);

control <= clk and (not e);

controlout <= control;

error<= e;

counterout <= count;

countertest <=(count1);

IF_PRO: process(s,clk,count)

 begin

 if clk = '0' and (count = "000") then

 sum(32 downto 25) <= smux4;

 sum(24 downto 17) <= smux3;

 sum(16 downto 9) <= smux2;

 stest<= smux1;

 sum(8 downto 1) <= smux5;

 c32<=cmux4;

 elsif clk = '0' and (count = "001") then

 sum(32 downto 25) <= smux4;

 sum(24 downto 17) <= smux3;

 sum(16 downto 9) <= smux2;

 stest<= smux1;

 sum(8 downto 1) <= smux5;

 c32<=cmux4;

 elsif clk = '0' and (count = "010") then

 sum(32 downto 25) <= smux4;

 sum(24 downto 17) <= smux3;

 sum(16 downto 9) <= smux5;

 sum(8 downto 1) <= smux1;

100

 Appendix: E (Continued)

 stest<= smux2;

 c32<=cmux4;

 elsif clk = '0' and (count = "011") then

 sum(32 downto 25) <= smux4;

 sum(24 downto 17) <= smux3;

 sum(16 downto 9) <= smux5;

 sum(8 downto 1) <= smux1;

 stest<= smux2;

 c32<=cmux4;

 elsif clk = '0' and (count = "100") then

 sum(32 downto 25) <= smux4;

 sum(24 downto 17) <= smux5;

 sum(16 downto 9) <= smux2;

 sum(8 downto 1) <= smux1;

 stest<= smux3;

 c32<=cmux4;

 elsif clk = '0' and (count = "101") then

 sum(32 downto 25) <= smux4;

 sum(24 downto 17) <= smux5;

 sum(16 downto 9) <= smux2;

 sum(8 downto 1) <= smux1;

 stest<= smux3;

 c32<=cmux4;

 elsif clk = '0' and (count = "110") then

 sum(32 downto 25) <= smux5;

 sum(24 downto 17) <= smux3;

 sum(16 downto 9) <= smux2;

 sum(8 downto 1) <= smux1;

 stest<= smux4;

 c32<=cmux5;

 elsif clk = '0' and (count = "111") then

101

 Appendix: E (Continued)

 sum(32 downto 25) <= smux5;

 sum(24 downto 17) <= smux3;

 sum(16 downto 9) <= smux2;

 sum(8 downto 1) <= smux1;

 stest<= smux4;

 c32<=cmux5;

 end if;

end process;

IF_PRO1: process(cin,c8,c16,c24,a,b,s,count)

 begin

 if (count = "000") then

 DMRCI<= '1';

 DMR1A <= "11111111";

 DMR1B <= "11111111";

 DMRC1<= c8;

 DMR2A <= a(16 downto 9);

 DMR2B <= b(16 downto 9);

 DMRC2<= c16;

 DMR3A <= a(24 downto 17);

 DMR3B <= b(24 downto 17);

 DMRC3<= c24;

 DMR4A <= a(32 downto 25);

 DMR4B <= b(32 downto 25);

 DMRC4<= cin;

 DMR5A <= a(8 downto 1);

 DMR5B <= b(8 downto 1);

 elsif (count = "001") then

 DMRCI<= '0';

 DMR1A <= "00000000";

 DMR1B <= "00000000";

 DMRC1<= c8;

 DMR2A <= a(16 downto 9);

 DMR2B <= b(16 downto 9);

 DMRC2<= c16;

 DMR3A <= a(24 downto 17);

 DMR3B <= b(24 downto 17);

102

 Appendix: E (Continued)

 DMRC3<= c24;

 DMR4A <= a(32 downto 25);

 DMR4B <= b(32 downto 25);

 DMRC4<= cin;

 DMR5A <= a(8 downto 1);

 DMR5B <= b(8 downto 1);

 elsif (count = "010") then

 DMRCI<= cin;

 DMR1A <=a(8 downto 1);

 DMR1B <=b(8 downto 1);

 DMRC1<= '1';

 DMR2A <= "11111111";

 DMR2B <= "11111111";

 DMRC2<= c16;

 DMR3A <= a(24 downto 17);

 DMR3B <= b(24 downto 17);

 DMRC3<= c24;

 DMR4A <= a(32 downto 25);

 DMR4B <= b(32 downto 25);

 DMRC4<= c8;

 DMR5A <= a(16 downto 9);

 DMR5B <= b(16 downto 9);

 elsif (count = "011") then

 DMRCI<= cin;

 DMR1A <=a(8 downto 1);

 DMR1B <=b(8 downto 1);

 DMRC1<= '0';

 DMR2A <= "00000000";

 DMR2B <= "00000000";

 DMRC2<= c16;

 DMR3A <= a(24 downto 17);

 DMR3B <= b(24 downto 17);

 DMRC3<= c24;

 DMR4A <= a(32 downto 25);

 DMR4B <= b(32 downto 25);

 DMRC4<= c8;

 DMR5A <= a(16 downto 9);

103

Appendix: E (Continued)

 DMR5B <= b(16 downto 9);

elsif (count = "100") then

 DMRCI<= cin;

 DMR1A <=a(8 downto 1);

 DMR1B <=b(8 downto 1);

 DMRC1<= c8;

 DMR2A <= a(16 downto 9);

 DMR2B <= b(16 downto 9);

 DMRC2<= '1';

 DMR3A <= "11111111";

 DMR3B <= "11111111";

 DMRC3<= c24;

 DMR4A <= a(32 downto 25);

 DMR4B <= b(32 downto 25);

 DMRC4<= c16;

 DMR5A <= a(24 downto 17);

 DMR5B <= b(24 downto 17);

 elsif (count = "101") then

 DMRCI<= cin;

 DMR1A <=a(8 downto 1);

 DMR1B <=b(8 downto 1);

 DMRC1<= c8;

 DMR2A <= a(16 downto 9);

 DMR2B <= b(16 downto 9);

 DMRC2<= '0';

 DMR3A <= "00000000";

 DMR3B <= "00000000";

 DMRC3<= c24;

 DMR4A <= a(32 downto 25);

 DMR4B <= b(32 downto 25);

 DMRC4<= c16;

 DMR5A <= a(24 downto 17);

 DMR5B <= b(24 downto 17);

 elsif (count = "110") then

 DMRCI<= cin;

 DMR1A <=a(8 downto 1);

 DMR1B <=b(8 downto 1);

104

Appendix: E (Continued)

 DMRC1<= c8;

 DMR2A <= a(16 downto 9);

 DMR2B <= b(16 downto 9);

 DMRC2<= c16;

 DMR3A <= a(24 downto 17);

 DMR3B <= b(24 downto 17);

 DMRC3<= '1';

 DMR4A <= "11111111";

 DMR4B <= "11111111";

 DMRC2<= c24;

 DMR3A <= a(32 downto 25);

 DMR3B <= b(32 downto 25);

else

 DMRCI<= cin;

 DMR1A <=a(8 downto 1);

 DMR1B <=b(8 downto 1);

 DMRC1<= c8;

 DMR2A <= a(16 downto 9);

 DMR2B <= b(16 downto 9);

 DMRC2<= c16;

 DMR3A <= a(24 downto 17);

 DMR3B <= b(24 downto 17);

 DMRC3<= '0';

 DMR4A <= "00000000";

 DMR4B <= "00000000";

 DMRC2<= c24;

 DMR3A <= a(32 downto 25);

 DMR3B <= b(32 downto 25);

 end if;

end process;

end Behavioral;

E2. VHDL Code for comparator2 in 32-bit Graceful Degradation

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

105

Appendix: E (Continued)

entity comparator2 is

port (SUT : in std_logic_vector(8 downto 1);

 error : out std_logic);

end comparator2;

architecture Behavioral of comparator2 is

begin

IF_PRO: process(SUT)

 begin

 if ((SUT = "11111111") or (SUT = "00000000")) then

 error<= '0';

 else

 error <= '1';

 end if;

end process;

end Behavioral;

106

Appendix: F

F1. VHDL code for 32-bit TMR-RCA Implemented on Hardware

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity TMRblockrom32 is

port (Clk: in std_logic;

 SEL: in STD_LOGIC;

 muxout: out std_logic_vector (31 downto 0);

 carrymux: out std_logic;

 count: out std_logic_vector(2 downto 0);

 Clkout: out std_logic);

end TMRblockrom32 ;

architecture Behavioral of TMRblockrom32 is

component TMR_RCA32 is

port(Cin : in std_logic;

 a,b : in std_logic_vector(32 downto 1);

 s: out std_logic_vector(32 downto 1);

 sum1,sum2,sum3: out std_logic_vector(32 downto 1);

 fault: in std_logic;

 cout : out std_logic);

end component;

----Rom Initialization----

component rom is

 PORT (clka : IN STD_LOGIC;

107

 Appendix: F (Continued)

 addra : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(64 DOWNTO 0));

 end component;

component bitcounter IS

 port (clk: IN std_logic;

 count_out: out std_logic_VECTOR(2 downto 0));

end component;

signal a1 : std_logic_vector(31 downto 0);

signal b1 : std_logic_vector(31 downto 0) := (others => '0');

signal s1,s2,s3,s4 : std_logic_vector(31 downto 0);

signal cout : std_logic;

signal ci,fault : std_logic := '0';

signal address : std_logic_vector(2 downto 0);

signal data : std_logic_vector(64 downto 0);

begin

Clkout <= Clk;

b1 <= data(31 downto 0);

a1 <= data(63 downto 32);

ci <= data(64);

count <= address;

counter: bitcounter port map(Clk,address);

---------port mapping of rom--------------

corerom: rom port map(Clk,address,data);

108

Appendix: F (Continued)

adderundertest: TMR_RCA32 port map(ci,a1,b1,s1,s2,s3,s4,fault,cout);

IF_PRO: process(SEL,a1,s1,ci,cout)

 begin

 if (SEL = '1') then

 muxout <= s1;

 carrymux <= cout;

 else

 muxout <= a1;

 carrymux <= ci;

 end if;

end process;

end Behavioral;

F2. VHDL code for 32-bit Sparse Kogge-Stone Lower Half Implemented on

Hardware

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sparceblockrom32 is

port (Clk: in std_logic;

 SEL: in STD_LOGIC;

 count: out std_logic_vector (2 downto 0);

 addercount: out std_logic_vector (1 downto 0);

 muxout: out std_logic_vector (31 downto 0);

 carrymux: out std_logic;

 Clkout: out std_logic);

end sparceblockrom32 ;

architecture Behavioral of sparceblockrom32 is

component KoggeStoneAdder_32 is

port(cin,clk,fault: in std_logic;

109

Appendix: F (Continued)

 countout : out std_logic_vector(1 downto 0);

 c8,cx8,cx16,cx24,cx32,c32,c24,c16: inout std_logic;

 a,b: in std_logic_vector(32 downto 1);

 c: inout std_logic_vector(32 downto 1);

 sum: out std_logic_vector(32 downto 1);

 error,controlout: out std_logic);

end component;

----Rom Initialization----

component rom is

 PORT (clka : IN STD_LOGIC;

 addra : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(64 DOWNTO 0)

);

 end component;

component bitcounter IS

 port (clk: IN std_logic;

 count_out: out std_logic_VECTOR(2 downto 0));

end component;

signal a1 : std_logic_vector(32 downto 1);

signal b1,ci1 : std_logic_vector(32 downto 1) := (others => '0');

signal sum1 : std_logic_vector(32 downto 1);

signal error1,controlout1 : std_logic;

signal ci,fault1,c81,cx81,cx161,cx241,cx321,c321,c241,c161 : std_logic := '0';

signal address : std_logic_vector(2 downto 0);

signal countout1 : std_logic_vector(1 downto 0);

signal data : std_logic_vector(64 downto 0);

begin

Clkout <= Clk;

b1 <= data(31 downto 0);

a1 <= data(63 downto 32);

ci <= data(64);

count <= address;

counter: bitcounter port map(Clk,address);

---------port mapping of rom--------------

110

Appendix: F (Continued)

corerom: rom port map(Clk,address,data);

--

adderundertest: KoggeStoneAdder_32 port

map(ci,Clk,fault1,addercount,c81,cx81,cx161,cx241,cx321,c321,c241,c161,a1,b1,ci1,su

m1,error1,controlout1);

IF_PRO: process(SEL,a1,sum1,ci,controlout1)

 begin

 if (SEL = '1') then

 muxout <= sum1;

 carrymux <= c321;

 else

 muxout <= a1;

 carrymux <= ci;

 end if;

 end process;

 end Behavioral;

F3. VHDL code for 32-bit Graceful Degradation Implemented on Hardware

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity blockrom32sparse is

port (Clk: in std_logic;

 SEL: in STD_LOGIC;

 muxout: out std_logic_vector (31 downto 0);

 carrymux: out std_logic;

 count: out std_logic_vector(2 downto 0);

 Clkout: out std_logic);

end blockrom32sparse ;

architecture Behavioral of blockrom32sparse is

component sparsegd32 is

port(cin,clk,fault : in std_logic;

 a,b: in std_logic_vector(32 downto 1);

111

Appendix: F (Continued)

c8,c16,c24,c32 : inout std_logic;

-----------------------------TEST PORTS ---------------------------

error, controlout : out std_logic;

counterout,countertest : out std_logic_vector(2 downto 0);

cx8,cx16,cx24,cx32 : inout std_logic;

test : out std_logic_vector(8 downto 1);

sum : out std_logic_vector(32 downto 1));

end component;

component rom is

 PORT (clka : IN STD_LOGIC;

 addra : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(64 DOWNTO 0)

);

 end component;

component bitcounter IS

 port (clk: IN std_logic;

 count_out: out std_logic_VECTOR(2 downto 0));

end component;

signal a1 : std_logic_vector(31 downto 0);

signal b1 : std_logic_vector(31 downto 0) := (others => '0');

signal s : std_logic_vector(31 downto 0);

signal c1,c2,c3,c5,c8,c16,c24,c32 : std_logic;

signal ci,fault,error,controlout : std_logic := '0';

signal address,counterout,countertest : std_logic_vector(2 downto 0);

signal test: std_logic_vector(8 downto 1);

signal data : std_logic_vector(64 downto 0);

begin

Clkout <= Clk;

b1 <= data(31 downto 0);

a1 <= data(63 downto 32);

ci <= data(64);

count<= address;

counter: bitcounter port map(Clk,address);

112

Appendix: F (Continued)

---------port mapping of rom--------------

corerom: rom port map(Clk,address,data);

--

adderundertest: sparsegd32 port

map(ci,clk,fault,a1,b1,c8,c16,c24,c32,error,controlout,counterout,countertest,c1,c2,c3

,c5,test,s);

IF_PRO: process(SEL,a1,s,ci,c32)

 begin

 if (SEL = '1') then

 muxout <= s;

 carrymux <= c32;

 else

 muxout <= a1;

 carrymux <= ci;

 end if;

end process;

end Behavioral;

113

Appendix G

G.1 Other Fault Combinations for Upper Half Fault Tolerant Sparse Kogge-Stone

Adder

Consider the cycle with index = 6 shown in following figures. The chosen inputs

are cin = 1, a = ‘ffffffff’, and b = ‘ffffffff’. In this case multiple fault combinations of fault

are injected. The obtained output sum is correctly computed as ‘ffffffff’ for all the

combinations.

Figure G.1: Fault introduced in green section

Figure G.2: Fault introduced in green and purple section

114

Appendix G (Continued)

Figure G.3: Fault introduced in purple section

Figure G.4: Fault introduced in green and blue section

115

Appendix H

H1 Spartan-3E

The Spartan-3E starter kit is a complete development board that gives instant

access to the platform capabilities of Spartan-3E family. Some of the specific features of

the Spartan-3E FPGA are parallel NOR flash configuration, multiboot FPGA

confirmation from parallel NOR flash PROM and it has SPI serial flash configuration. It

also demonstrates the basic capabilities of micro blaze embedded processor and the

Xilinx Embedded development Kit (EDK). It features a Xilinx platform Flash, USB and

JTAG parallel programming interfaces with numerous FPGA configuration options. It is

also compatible with MicroBlaze Embedded Development Kit (EDK) and PicoBlaze

from Xilinx.

Figure H-1: Spartan-3E FPGA

Few of the key components and features of Spartan-3E are it has up to 18,624 look up

tables (LUTs), 232 user I/O pins, 320 pin FPGA package and has over 10,000 logic cells.

116

Appendix: H (Continued)

One of the major applications of Spartan-3E is general prototyping. Its major markets

include consumer, telecom/datacom, servers and storage.

H2 Virtex-5

The Virtex-5 FPGA series was introduced by Xilinx in 2006, which provides the

newest most powerful features in the FPGA market. The Virtex series includes embedded

fixed function hardware that is commonly used in functions such as memories,

multipliers and microprocessor cores. It has 69,120 look up tables (LUTs), 20 total I/O

banks and 640 maximum user I/O. It is the most advanced, high performance, optimal-

utilization, FPGA fabric using real 6-input look-up table (LUT) technology. It uses the

second generation Advanced Silicon Modular Block (ASML) column-based architecture.

They are the world’s first 65nm FPGA family fabricated in 1.0V, triple-oxide process

technology. It contains five distinct platforms, each consisting of different features that

address the needs of wide variety of advanced logic designs as mentioned in [14]. The

five platforms of Virtex-5 are LX, LXT, SXT, TXT and FXT which include high speed

serial connectivity.

Figure H-2: Virtex-5 FPGA

117

Appendix: H (Continued)

Few of the Virtex-5 FPGA’s vast applications include industrial, scientific, medical,

telecom and networking, aerospace and defence, audio, video, broadcast, servers and

storage, embedded and DSP and wireless infrastructure.

118

Appendix I

I1. Delay Calculation of TMR_RCA on Logic Analyzer

Aim: To obtain the total adder delay of the TMR_RCA of 16 bit using TLA 7012 Logic

 Analyzer.

Procedure:

 The functionality of the adder to be tested is coded in VHDL and is verified

using ISIM. The Xilinx ISE 12.4 software is used to synthesize the designs onto the

Spartan 3E FPGA. A memory block called block rom is created to allow the arbitrary

patterns of inputs which are applied to the adder design.

Step-1:

When the select pin N17 is high then the adder which is under test is included as shown

in the Figure I.1. Thus the multiplexer select signal at each adder output decides whether

to include the adder in the measured results or not. Consider the output obtained in this

case i.e. when select N17 pin is high as output signal 1.

Where,

 Output signal 1 = ROM + Adder under Test + Multiplexer + X

Figure I-1: Adder delay including ROM and multiplexer

119

Appendix I (Continued)

Then note all the reading for sum and carry of the adder accordingly based on the bit

width when N17 pin is high.

The following Table I.1 represents the input pattern used for obtaining the critical delay

of the 16 bit TMR_RCA and the noted delays for sum and carry when select pin is high.

Table I-1: Input pattern chosen for testing TMR-RCA

Cin Input A Input B Sum ∆Sum ∆Carry

1 0000 FFFF 0000 7.383 9.161

0 0000 FFFF FFFF 8.123 8.125

1 0000 FFFF 0000 7.363 9.141

0 0000 FFFF FFFF 8.106 8.106

1 0000 FFFF 0000 7.383 9.161

0 0000 FFFF FFFF 8.122 8.125

1 0000 FFFF 0000 7.364 9.141

0 FFFF 0000 FFFF 8.125 8.086

The highlighted values in the Table I-1 are the worst cases of sum and carry. The worst

case for carry is at transition 8 to transition 1 and the worst case for sum is at the

transition 7 to transition 8.

Explanation for the chosen Pattern for TMR-RCA:

X = non adder routing and input and output buffering

120

Appendix I (Continued)

Here as seen above ‘1’ is rippling all the way through carryout when all the inputs are

high and even with the high carry-in.

‘0’ is rippling all the way through carryout when one of the inputs is high and another is

low with a low carry-in.

Thus at this transition there will be worst case delay. Thus the pattern shown in Table I.1

is used while calculating the critical delay of the adder.

The highlighted bits in red are the obtained carryout for both the cases.

Note: The difference in the delays for sum and carry is due to the structure of BROM and

routing.

This can be explained as follows. Figure I.2 shows a simplified view of Spartan-3 FPGA

Carry and Arithmetic Logic in one logic cell.

Let tXOR is the time delay due to XOR gate, tBuffer is the time delay due to buffer and tMux

is the time delay due to multiplexer

In general we know that tXOR > tMux, but because of the buffer at the output of the

multiplexer some additional delay of the buffer will be included apart from the delay of

the multiplexer.

Thus tXOR < tMux+ tBuffer

Here tMux+ tBuffer is the carryout delay whereas tXOR is the delay of the last sum i.e. sum16

The simplified view of Spartan-3 FPGA Carry and Arithmetic Logic in one logic cell is

shown below.

Figure I-2: Logic cell of Spartan 3E

121

Appendix I (Continued)

Thus our observed readings make sense showing carry delay is greater than the sum

delay. Then note their corresponding worst case delay at select pin N17 is high for both

sum and carry at different patterns of the corresponding worst case . Table I-2 shows the

readings obtained.

Table I-2: Worst case carry and sum delays

Mux(15) Carryout

8.125 9.18

8.125 9.14

8.145 9.16

8.125 9.16

Average 8.13 9.16

Note: Here Mux(15) represents Sum(15)

Thus Output signal 1 in this case is 9.16 ns.

Brief discussion of selection with pin N17 is as shown below

Here are some of the screen shots from the logic analyzer

For delay at ∆Carryout

122

Appendix I (Continued)

For delay at ∆Sum16

Step-2:

Now observe the delays of the inputs and the carry when the select pin N17 is

low.

When the select pin N17 is low then the adder which is under test is excluded as shown in

the Figure I.3. Consider the output obtained in this case i.e. when select N17 pin is low as

output signal 2.

Where,

 Output signal 2 = ROM + Multiplexer + X

123

Appendix I (Continued)

Figure I-3: Adder delay excluding ROM and multiplexer

Now note down its corresponding inputs and carry for different clock cycles as shown in

the Table I.3 when select N17 is low

Table I-3: Worst case input delays

Mux(15) Cin

3.77 4.336

3.796 4.316

3.769 4.317

3.789 4.316

Average 3.781 4.321

Thus Output signal 2 in this case is 4.321 ns.

Here Mux(15) will be input A(15) in Table I-3 when select pin is low.

Here is the screen shot taken while finding out the sum delay when the select pin is low.

For delay at ∆A16

124

Appendix I (Continued)

Step-3: Critical Adder Delay

The adder delay is the difference between the average delay taken for the inputs to

pass from the bitcounter to mux including the adder under test and excluding the adder

under test i.e. result obtained at step 1 – result obtained at Step 2, gives the critical adder

delay.

Therefore the critical adder delay for 16 bit sparse kogge is given as

Adder Delay = Output signal 1 – Output signal 2

 = 9.16-4.321 = 4.838 ns.

I2. Observing Worst Case Transition for Kogge Stone Adder

Objective:

 The main objective is to observe the worst case pattern for Kogge-Stone adder

which will be helpful in obtaining the critical delay of the Kogge stone adder.

Introduction:

 First the functionality of the Kogge-Stone adder of 16bit is verified using ISIM.

Then in order to test the critical adder delay, a memory block called ROM was

instantiated on the FPGA using the core generator. The selection of the pattern of the

inputs for the Kogge-Stone adder was discussed in the explanation given below.

125

Appendix I (Continued)

For the parallel prefix adders, only a specific pattern could be used for finding out the

worst case delay. Thus by the structure of the Generate-Propagate blocks, a scheme was

developed which considers the following subset of the input values to the GP blocks.

TableI-4: Subset of (g, p) relations used for Testing

(gL,pL) (gR,pR) (gL+ pLgL, pLpR)

 (0,1) (0,1) (0,1)

 (0,1) (1,0) (1,0)

 (1,0) (0,1) (1,0)

 (1,0) (1,0) (1,0)

The assigned (g, p) ordered pairs are (1,0) = True and (0,1) = False. Hence the above

table forms an OR Truth table. Thus if both the inputs of the GP block are false, then the

output is false where as if both the inputs of the GP block are true, then the output is true.

Hence an input pattern that alternates the (g, p) pairs of (1,0) and (0,1) will force the GP

pair block to its alternate stages. The GP block pairs which are also fed by the

predecessors will be alternating the states.

Thus the scheme will ensure the worst case delay in the parallel prefix adder since every

block is active. The procedure below explains the chosen pattern for obtaining the worst

case delay of the Kogge-Stone adder.

Procedure:

Consider a Kogge-Stone adder of 3bit which is shown in Figure I-4

126

Appendix I (Continued)

Figure I-4: Kogge stone adder with selected BC1

Case 1: When both the inputs are high:

Case 1(a): Considering BC1

Thus the outputs obtained from the Black Cell 1 (Refer to Figure I-4) when the inputs ‘a3’

= 1, ‘b3’ = 1, ‘a2’ = 1, ‘b2’ = 1 is shown below in Table I-5

Table I-5: Black cell 1 outputs for high inputs

Thus the highlighted case on the Table 1 gives ‘1’ and ‘0’ as the outputs from the black

cell 1 when the (g, p) pairs are (1,0) and (1,0) .This is the one we are expecting.

127

Appendix I (Continued)

Case 1(b): Considering GC0

The diagram for the kogge stone adder considering GC0 is as shown in Figure I-5

Figure I-5: Kogge-Stone adder with selected GC0

The output obtained from the gray cell GC0 is as shown in Table I-6 when ‘a1’ = 1, ‘b1’

=1 and cin = X

Table I-6: Gray cell 0 outputs for high inputs

128

Appendix I (Continued)

Case 1(c): Considering GC2

The diagram for the Kogge stone adder considering GC2 is as shown in Figure I-6

Figure I-6: Kogge-Stone adder with selected GC2

Now the carry out which is shown as ‘c3’ is calculated as shown in the Table I-7 from the

above two cases.

Table I-7: Gray cell 2 outputs for high inputs

Thus the carryout for the above input combination when both the inputs are high is ‘1’

Thus the carryout for case1 is ‘1’

129

Appendix I (Continued)

Case 2: When one input is high and one input is low

Case 2(a): Considering Black cell BC1:

When ‘a3’ = 0, ‘b3’ =1, ‘a2’ = 0, ‘b2’ =1

Thus the outputs obtained from the Black Cell 1 when the inputs ‘a3’ = 0, ‘b3’ = 1, ‘a2’ =

0, ‘b2’ = 1 is shown below in Table I-8

Table I-8: Black cell 1 outputs for one low input

130

Appendix I (Continued)

Thus the highlighted case on the Table I-8 gives ‘0’ and ‘1’ as the outputs from the black

cell 1 when the (g, p) pairs are (0,1) and (0,1).

Case 2(b): Considering GC0

The output obtained from the gray cell GC0 is as shown in Table I-9 when ‘a1’ = 0, ‘b1’

=1 and cin = X

Table I-9: Gray cell 0 outputs for one low input

131

Appendix I (Continued)

Case 2(c): Considering GC2

Now the carry out which is shown as ‘c3’ is calculated as shown in the Table I-10 from

the above two cases.

Table I-10: Gray cell 2 outputs for one low input

132

Appendix I (Continued)

Thus the carryout for the above input combination when one of the inputs are high and

other input is low is ‘0’

Thus carryout in this case2 is ‘0’.

Observations:

Thus from the above two cases we have observed that the worst case delay will be at the

this transition for kogge stone adder

For example, the following table represents the input pattern used for obtaining the

critical delay of the 16 bit kogge stone adder.

Cin Input A Input B

1 FFFF FFFF

0 0000 FFFF

1 FFFF FFFF

0 0000 FFFF

1 FFFF FFFF

0 0000 FFFF

1 FFFF FFFF

0 0000 0000

Note:

The same pattern can also be used for sparse kogge stone adder by following the same

procedure discussed above.

133

Appendix J

Table J-1: Delay Summary for Lower Half Fault Tolerant Sparse Kogge-Stone Adder

16-bit

Corresponding Delay Gate Delay Net Delay Sum Delay

Carry tree 3.06 2.613 5.673

Ripple carry adders 1.693 1.078 2.771

Comparator 3.06 2.495 5.555

Total Delay 13.988 ns 13.988

32-bit

Corresponding Delay Gate Delay Net Delay Sum Delay

Carry tree 3.672 3.228 6.9

Ripple carry adders 1.901 1.078 2.979

Comparator 3.352 2.404 5.754

Total Delay 15.633 ns 15.633

64-bit

Corresponding Delay Gate Delay Net Delay Sum Delay

Carry tree 4.284 3.691 7.975

Ripple carry adders 2.513 1.324 3.837

Comparator 3.404 2.405 5.807

Total Delay 17.621 ns 17.621

128-bit

Corresponding Delay Gate Delay Net Delay Sum Delay

Carry tree 4.896 4.223 9.119

Ripple carry adders 3.501 1.258 4.759

Comparator 3.356 2.599 5.955

Total Delay 19.83 ns 19.833

134

Appendix J (Continued)

256-bit

Corresponding Delay Gate Delay Net Delay Sum Delay

Carry tree 5.508 4.824 10.332

Ripple carry adders 5.333 1.078 6.411

Comparator 3.2 2.773 5.973

Total Delay 22.716 ns 22.716

	University of Texas at Tyler
	Scholar Works at UT Tyler
	Spring 4-27-2012

	Design and Implementation of Fault Tolerant Adders on Field Programmable Gate Arrays
	Lakshmi Phani Deepthi Bollepalli
	Recommended Citation

	tmp.1459907986.pdf.THh73

