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Abstract 

Utilizing MAXENT to Improve and Explain a Species Distribution Model for Freshwater 
Mussel Species in East Texas 

 
Kirian Bregan Heffentrager 

Thesis Chair: Lance Williams, Ph.D. 

The University of Texas at Tyler 
May 2013 

 

One of the greatest challenges in landscape ecology has been determining the degree to 

which landscape level environmental characteristics effect the distribution of freshwater 

mussels. Freshwater mussels have long been regarded as valuable indicators of lotic 

system health because they are often the first organisms to exhibit a response to changes 

in their environment. Understanding distributional patterns of mussels is consequently a 

valuable conservation and management tool. Here, I evaluated the improvement of 

predictive modeling software by applying MAXENT to the distributions of two 

freshwater mussel species, the Texas Pigtoe (Fusconia askewi), a state threatened species, 

and the Rock Pocketbook (Arcidens confragosus), a species of concern. Existing species 

distribution models for these two mussel species were evaluated by the addition of 

sampling data from two unique watersheds, the Sulphur and Cypress River drainages. 

The Sulphur River was historically modified and has a biogeographically unique geology 

compared to most other rivers in East Texas. In addition to locating both species of 

interest, a range extension for the White Heelsplitter (Lasmigona complanata) was 
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produced on the lower Sulphur River. The Cypress River drainage is a set of watersheds 

that includes the Big Cypress Creek, Little Cypress Creek, and Black Cypress Creek. 

Compared to other East Texas Rivers the Cypress drainage is a relatively meandering 

bottomland system that is healthy along much of its length and empties into the Little 

Cypress Bayou near Louisiana. Each species distribution was modeled with 11 GIS 

derived environmental layers. I evaluated each environmental layer by the components 

these layers were built from and drew conclusions about associations of Texas Pigtoe and 

Rock Pocketbook with the most suitable habitat types in each important environmental 

layer. Improvement may depend on a complete understanding of a species fundamental 

niche and AUC values may not be an appropriate measure of model improvement. 

Freshwater mussel species will also associate significantly with specific components of 

each most highly contributing environmental layer.
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Chapter One: Freshwater Mussel Ecology and Conservation 

Introduction 

Research in freshwater mussel ecology has recently shifted towards an interest in 

empirically linking environmental characteristics at the landscape level to patterns in 

freshwater mussel distributions (Newton et al., 2011).  Environmental characteristics may 

include surface features, such as vegetation cover, urban sprawl, or agricultural 

development.  Environmental characteristics may also include subsurface features, such 

as bedrock or aquifers. These attributes are variable across the landscape and are 

considered to be major contributors to the interactions between river biota and instream 

habitats (Allan et al., 1997; Allan, 2004). Methods for evaluation of landscape scale 

effects have been increasingly approached from the standpoint of one of the most 

imperiled animal groups in North America, the freshwater mussel (Unionidae) (Lydeard 

et al., 2004).  

Freshwater mussels have long been regarded as valuable indicators of lotic system 

health because they are often the first organisms to exhibit a response to changes in their 

environment (Kabbes and Klocek, 2004). These changes can occur at multiple spatial 

scales. Extensive research on micro-scale habitat variations has shown the potential for 

alterations to the composition of mussel species present in a study area. Broader habitat 

variables such as landscape scale effects (Brown et al., 2010) and geology (Hopkins et 

al., 2009) have recently been proposed as equally significant contributors to changes in 

mussel diversity. Freshwater resources have always been popular locations for human 
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activity so that land use, from forested to developed land, has elicited declines in 

populations of freshwater biota and shifts in the availability of habitat types for many 

species (Hopkins et al., 2009). These shifts can be attributed to an increase in run-off and 

ultimately sediment load in streams where cover has been removed from the surrounding 

landscape (Allan et al., 1997). The impacts of land use have long been recognized as they 

effect the composition of mussel communities and spatio-temporal changes in 

distributions of these animals (van der Schalie, 1938; Morris and Corkum, 1996; 

Arbuckle and Downing, 2002; Newton et al., 2011).  

A combined understanding of habitat limiting factors and geographic distribution 

patterns are necessary to forging those empirical links between landscape activities and 

the associations with freshwater mussel occurrences (Burlakova et al., 2011). Species 

distribution models provide researchers a way to evaluate these associations. 

Improvement of a model by the addition of mussel sampling data from unique watersheds 

may help explain the correlations between mussel distributions and landscape 

characteristics. Geographically, the Sulphur and Cypress River drainages are unique 

compared to other watersheds in East Texas. The Sulphur River is a historically modified 

system that is still characteristically affected by unchecked past channelization and 

development (Minahan, 2004). The Cypress watershed consists of Big Cypress Creek, 

Little Cypress Creek, and Black Cypress Creek. This watershed is located in bottomland 

and is relatively pristine compared to other East Texas watersheds (Keeland and Young, 

1997). All creeks in this watershed eventually converge into Little Cypress Bayou. Both 
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watersheds are located in the Texoma Province which is delineated by the Red River 

drainage (Burlakova et al., 2011). The Sulphur and the Cypress watersheds are the only 

Texas freshwater rivers that belong to the Red River drainage and as such are unique in 

their biogeographical history. I hypothesized that the addition of mussel sampling data 

from the Sulphur and Cypress watersheds would improve a species distribution model 

that was originally created with mussel data from the Trinity, Neches, Angelina and 

Sabine Rivers. I hypothesized that species presence within a watershed would be 

correlated with specific environmental variables. I predicted that the degree to which 

these variables affect distribution would increase with the addition of sampling data from 

these rivers. I further predicted that individual species would demonstrate an association 

with specific components of each environmental variable that can be attributed to their 

respective ecological requirements. The purpose of the following research is to 

emphasize the importance of understanding how landscape characteristics can affect the 

distribution of mussel species. An approach such as this will demonstrate the utility of 

predictive modeling as it relates to freshwater mussel distributions and the implication for 

effective management of aquatic habitats. To meet this goal, the following objectives will 

be achieved: 

• Objective 1: Quantify freshwater mussel assemblages within the Sulphur and Big 

Cypress River watersheds.  

• Objective 2: Correlate distribution of two mussel species at each site with 

environmental variables using species distribution modeling.  
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• Objective 3: Evaluate the importance of including biogeographically unique 

watersheds in an existing MAXENT model. 

• Objective 4: Identify specific environmental correlates of freshwater mussel 

distributions as they associate with environmental variables.  

Sulphur and Cypress Watersheds 

This study encompasses two watersheds in East Texas, the Sulphur and Cypress 

Rivers. The Cypress River study locations include the Big Cypress Creek, Little Cypress 

Creek, and Black Cypress Creek. Both river systems drain to the Red River in Louisiana 

but differ greatly in their respective hydrologic components and geomorphological 

characteristics. The Sulphur River is a highly modified system. Most of its length has 

been subjected to channelization or damming, resulting in a disconnection to its flood 

plain and an altered hydrologic profile (Minahan, 2003). There are two reservoirs within 

this basin, Cooper Lake and Wright-Patman Reservoir. Cooper Lake is located on the 

South Sulphur, which along with severe channelization and rerouting of this area, can be 

considered the most highly altered length of the Sulphur (Burgess, 2003). Wright-Patman 

Reservoir is located on the lower part of the mainstream Sulphur approximately 6.78 

linear miles west of the Louisiana/Texas border. At the initiation of authorized 

realignment in the North Sulphur in the 1920’s, likely to improve drainage for 

agricultural purposes, the Sulphur River was a naturally meandering, slow moving 

system. Channelization in the North Sulphur increased the velocity of this part of the 
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river and ultimately caused a cascade of exponential problems that are still managed 

today including sediment deposition along the length of the Sulphur and debris input that 

results in localized flooding issues that are particularly hazardous to agricultural farmers 

(Minahan, 2003). To control the effects of the changes in the North Sulphur the Cooper 

Lake and Channels Project was implemented in 1955 with the purpose of relieving the 

disjunction between hydrologic characteristics of the North and South Sulphur, but halted 

in 1971 because of the passage of the National Environmental Policy Act (Minahan, 

2003). The ultimate decision was made to discontinue the Cooper Lake Project where it 

was halted just west of HWY 37 resulting in a transition from channelized river to natural 

meander that continues to experience volatile environmental changes (Minahan, 2003). 

Today, riparian edge clearing because of decreases in flooding of channelized sections 

has caused erosion issues and debris accumulation downstream of areas like the HWY 37 

debris pile and subsequent “natural” avoidance of these problems by the river, resulting 

in more frequent adjacent flooding and sediment deposition (Minahan, 2003). The 

ultimate significance of these problems is that consequences, such as altered flow regime 

and sedimentation, extend across miles of downstream river and edge, making the 

description of the Sulphur River overall as a highly modified system a concise one. In 

contrast, the Big Cypress River and its component tributaries is a relatively stable system. 

Flow regimes here are interrupted only once by Lake O’ the Pines Reservoir, constructed 

by the U.S. Army Corps of Engineers in 1956. The majority of the watershed 

downstream of Jefferson, TX becomes a natural wetland as it approaches Caddo Lake, 
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Texas’ only natural lake (Keeland and Young, 1997). Channelization along the Cypress 

watershed is virtually non-existent and much of the river is well connected to its 

floodplain. Much of the land cover and topography of the lower half of the Big Cypress is 

dominated by a bottomland hardwood distribution, which is typical of East Texas 

watersheds (Burlakova et al.,2011). If it were not for the logjam that created Caddo Lake 

we might observe a vegetation type of bottomland hardwoods there today (Keeland and 

Young, 1997). The most significant conservation concern along this river is the retention 

of Bald Cypress in Caddo Lake, which are threatened by the controlled discharge from 

Lake O’ the Pines.  

So why is the Cypress watershed more natural than the Sulphur? Prior to 1900 the 

government promoted the destruction of wetland habitats because they were considered 

treacherous and of little value (Mitsch and Gosselink, 2000). In the last 40 years, 

researchers have been educating people on the value of wetlands and considerable federal 

protection, such as Section 404 and the Wetland Protection Act, has been implemented to 

conserve these habitats (EPA, 2012). It is likely that this awareness has contributed to 

protecting a majority of the Cypress watershed.  

The unique biogeographical characteristics of these watersheds created an 

opportunity for comparison of mussel assemblages to other East Texas rivers located in 

the Sabine Province.  
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Freshwater Mussel Ecology 

 Throughout the last century, freshwater mussels of the family Unionidae were 

exploited at one time for their economic value and more recently studied for their 

academic value (Williams et al., 1993). In the past mussel shells were harvested for 

construction of buttons and jewelry (Coker, 1919) as well as a valuable food source. Of 

the 300 species extant in North America, 73 are considered critically imperiled, and 37 

are listed as extinct (Strayer et al., 2004). In addition to historical harvesting, their 

complex life cycle, and sensitivity to environmental changes have drastically reduced the 

ability of these animals to survive (Howells et al., 1996). Mussels have a unique 

reproductive cycle that includes an obligate parasitic stage, glochidia, that utilizes the 

gills or fins of a host fish(es) for development (Lydeard et al., 2004). Many of the 

conservation concerns for these animals originate from habitat alterations that interrupt 

the potential for them to come into contact with their preferred host, and lack of 

identification of host species makes management difficult. To reach sexual maturity, 

glochidial mussels must become encysted upon a host fish, survive the host’s immune 

system, and disperse into the substrate where they must anchor themselves successfully 

for up to 12 years for some species before they are capable of reproduction (Howells et 

al., 1996) . The reduction in dispersal ability combined with general intolerance for 

disturbances in the environment because of their sedentary nature inhibits settlement and 

can devastate recruitment for entire year classes (Vaughn and Taylor, 1999; Layzer and 

Madison, 1995).  
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 Mussels can be found in a variety of lotic and lentic habitat types that include riffles and 

pools, and in many different substrates, such as sand, gravel and even clay.  Substrate 

stability can largely be attributed in many areas to high mussel densities, known as 

mussel beds. Low densities of mussels may provide a control for study in areas where 

substrate is ideal and can suggest that the habitat is unsuitable because of other 

influences, such as shear stress (Statzner et al., 1988; Morales et al., 2006). Freshwater 

mussels are also benthic filter feeders. Their diet typically consists of algae, diatoms, 

phytoplankton of local variety and even sediment; though it has been suggested the latter 

is used for obtaining food particles (Gatenby et al., 1996; Coker et. al, 1921). Mussels are 

also considered ecosystem engineers for their ability to transfer nutrients from the water 

column to the substrate, stabilize benthic communities (bioturbation), and provide habitat 

structure and nutrients for other organisms (Vaughn et al., 2008; Howard and Cuffey, 

2006; Gutierrez et al. 2003).These life history characteristics are what make mussels 

valuable bioindicators and essential members of aquatic ecosystems where the 

conservation of these types of benthic organisms may become a necessity for a healthy 

freshwater environment.   

Landscape Characteristics 

 Perhaps one of the most important contributions to mussel distribution is the 

effect that land use and land cover have on mussel assemblages (Ford and Nicholson, 

2006). Alteration of a watershed’s landscape has been demonstrated to change the 

assemblage of freshwater mussels not only in distributional aspects but composition as 
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well from spatial scales ranging from stream level to entire watersheds (Groffman et al., 

2003; Strayer et al., 2003; Newton et al., 2008). Agriculture, urbanization, and 

impoundments are the most notable anthropogenic inputs to rivers in east Texas (Allan et 

al., 1997). Use of landscapes for agricultural production has been shown to create long-

term declines in stream biotic health (Diamond et al., 2002; Poole and Downing, 2004). 

Urban encroachment on stream riparian habitat decreases the quality of instream habitat. 

Influences in the landscape such as urban development can be monitored by population 

data of benthic organisms like freshwater mussels (Groffman et al., 2003; Kabbes and 

Klocek, 2004; Brown et al., 2010). Dams and other impoundments alter flow regimes and 

sediment transport, both of which directly impact freshwater mussel distributions. 

Interactions between mussel populations and altered environments can create the 

potential for a predictive model of management for streams (Vaughn and Taylor, 1999; 

Rahel, 2002; Gangloff et al., 2011; Pilger and Gido, 2012). Inclusion of this type of data 

is essential to understanding the contribution of allochthonous materials to an aquatic 

environment and the benefits of predictive modeling.  To qualify the interactions between 

mussels and the environment, I utilized a set of environmental layers developed for the 

express purpose of correlating species occurrences with specific landscape attributes. The 

United States Geological Survey (USGS) in conjunction with agencies such as the 

Natural Resource Conservation Service  (NRCS) and Texas Parks and Wildlife 

Department (TPWD) has made available geodatabases for use with a geographic 

information systems (GIS) program, such as ArcMap, that includes metadata (e.g., 
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STATSGO) for environmental characteristics like soils, geology, and vegetation, to name 

a few. It is important that these environmental variables are temporally and spatially (e.g., 

corresponding grain and extent) complementary to the distributional data that are used 

(Anderson et al., 2003; Pearson et al., 2004). These environmental layers can be used to 

create a multitude of map types including population densities, climate zones, energy 

consumption, and more pertinent to this research land use and cover maps. Maps with 

this type of information contain layers that project features like surface, shape and size. 

These features can be presented in various formats (e.g., rasters, polygons, and points), 

linked to information (e.g., permeability of soils) and correlated to distributional data 

(Johnson et al., 2001). For this research I am interested in correlating the distribution of 

mussel species with the most suitable environmental layer subtypes (e.g., soils that 

contain high clay content) versus the least suitable subtypes. Species distribution models, 

such as MAXENT, produce visual distributions but do not provide an answer to why a 

species can be found at any particular point on a landscape. It is necessary to evaluate the 

correlations between mussel distributions and environmental layer subtypes being used in 

the model to answer this question.  

Maximum Entropy Modeling 

 Present day technology has promoted a shift in our abilities to conduct research 

with the use of predictive modeling. Of the available software for predictive modeling, 

general linear models (GLM), general additive models (GAM), and machine learning 

software have arguably been the most successful. Some examples include BIOCLIM, a 
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bioclimatic model that predicts changes in a species’ distribution based on temporally 

diverse climate information (Beaumont et al., 2005), DOMAIN, which uses a “distance 

to” algorithm to make predictions (Carpenter et al., 2003), and GARP, potentially the 

most widely used presence-only package (Tsoar et al., 2007). With the advancement of 

species distribution modeling software such as MAXENT (Maximum Entropy), programs 

can now compute vast amounts of presence data across complicated algorithms and refine 

the accuracy of such models (Phillips et al., 2006). MAXENT does not utilize absence 

data because of the potential inaccuracy and deficiency of this kind of information 

(Anderson et al., 2003). MAXENT operates based on a conservative estimation of a 

species’ realized niche (Hutchinson, 1957) but outputs a projection of probability of 

occurrence that defines its fundamental niche. In other words MAXENT is capable of 

utilizing the most precise estimation of available habitat types to create a continuous 

probability that accounts for species occurrence at the maximum availability of habitat 

types. A gradient such as this provides a high level of accuracy for the predictive powers 

of this model. Once the available environmental layers and distributional data have been 

input, MAXENT uses a deterministic algorithm to develop an optimal probability 

distribution similar to general linear and general additive models (Phillips et al., 2004). 

MAXENT then correlates known occurrences of species in their conservatively 

measured, variable environments and applies these data to areas with no record of that 

species. The output is AUC (area under the operating receiving curve) and it can range 

from 0 to 1. AUC is a measurement of the predictive power of a model. It estimates the 
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probability that a presence point will have a higher suitability score than a random 

background point (pseudoabsence) on the map. Any value of 0.75 or greater is considered 

to indicate a useful model (Elith et al., 2006). In theory, like most modeling software, 

MAXENT will be more accurate with the addition of distributional data. Phillips et al. 

(2006) determined that the continuous nature of MAXENT’s predictions resulted in a 

more comprehensive map of species occurrences because the inclusion of habitat areas 

that were acceptable rather than just the optimized predictions that are apparent with 

GARP. Inclusion of all possible suitable habitats is very important from a management 

perspective. One of the major restrictions of this modeling technique is its inability to 

make predictions based on a finer scale. It is more appropriate to use this method at 

broader scales that are more likely to contain the most heterogeneous variety of available 

habitat types for the species in question (Phillips et al., 2006). By working at this extent, 

MAXENT provides a more accurate estimation of potential inhabitation of the ideal 

fundamental niche. In addition to this, MAXENT is a relatively young machine learning 

technique that is not available in standard software packages. Adjusting for errors, such 

as exponential growth of elevated predictions and extrapolation between disconnected 

study areas becomes a process of utilizing other statistical programs (Phillips et al., 

2006). MAXENT, like all models, also makes assumptions about the environment 

including the lack  of importance of interspecific and intraspecific interactions between 

biota, and that species occur at all locations where the environmental variables are 

favorable. This last assumption can be disadvantageous to a probability distribution 
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model when studying a fluvial environment. As Newton et al. (2009) pointed out, there is 

a high degree of patchiness in regards to river environments and there is no adjustment 

within species distribution models to account for this disconnectivity. That said, 

conservative assessments of results are still very valuable for the predictions of species 

distributions.   

Improvement and Explanation of an Existing Model 

 My research combines sampling data from two previous studies Troia (2010) and 

Dunithan (2012), the latter of which utilized MAXENT to predict the occurrence of rare 

species of freshwater mussels and fish in East Texas rivers. Dunithan (2012) 

demonstrated that MAXENT could accurately predict the distribution of rare mussel 

species with AUC values ranging from 0.78 to 0.91 for test samples in the Trinity, 

Angelina, Neches, and Sabine watersheds. The occurrence localities produced by the 

model indicated a correlation with actual distributional patterns seen during the study. 

The accuracy of species distributions was further supported by the differing probabilities 

between watersheds that are impacted by land use disturbances and those that generally 

are not. Variation within the landscape was associated at different levels with different 

species. However, Dunithan suggested that the use of landscape characteristics where 

rare species were occurring in real time may have exaggerated predictions of occurrence. 

I was interested in including sampling data from two watersheds that demonstrated very 

different geomorphologic and landscape characteristics from the watersheds that were 

sampled in this previous study. I also wanted to explain the associations of mussel 
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species with specific habitat locations by evaluating the profiles of those landscapes. By 

including a more heterogeneous set of available habitat types for rare species, I suggested 

that MAXENT would be able to refine the fundamental niche for these species, reduce 

the over-predictive nature of the analyses, and provide a more concise contribution of 

environmental variables for each species.  
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Chapter Two: Utilizing MAXENT to Improve and Explain an Existing Probability Model 

of Occurrences for Freshwater Mussel Species in East Texas 

 

Introduction 

There has recently been heightened interest in explanations of freshwater mussel 

habitat preferences based on large scale environmental parameters by malacologists. 

Changes in mussel communities as a result of land use have not gone undocumented 

(Allan et al., 1997; Strayer et al., 2003; Poole and Downing, 2004). Associations between 

mussel occurrences and landscape characteristics have been notoriously difficult to assess 

because of the broad extent to which landscape level activities affect fluvial systems 

(Newton et al., 2008). Explanatory variables are usually vague and can constitute a host 

of possible effects on mussel communities. The value of utilizing a species distribution 

model lies in the effectiveness of the constituent environmental layers. The inclusion of 

detailed descriptions of potentially suitable habitat types will provide links between 

general changes in the landscape and mussel distributions with less specious conclusions 

(Anderson et al., 2003). Demonstrating improvement of these models with the addition of 

data samples is important to validating the accuracy of a model’s predictions. Being able 

to focus on the function of attributes of a habitat rather than subjective classifications of 

what is suitable habitat for mussels is the current goal of most research (Newton et al., 

2008). If met, these goals can produce a framework for effective and economical 

management of potentially valuable freshwater mussel habitat. 
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 I chose to evaluate two Unionid mussels, a state-threatened species, the Texas 

Pigtoe (Fusconaia askewi), and a species of concern, the Rock Pocketbook (Arcidens 

confragosus). The Texas Pigtoe has been historically reported in the Brazos, Neches, 

Sabine and San Jacinto rivers, and more recently in the Sulphur River (Howells et al., 

1996). It is a smooth shelled species that prefers sand and gravel mixed substrates. The 

Rock Pocketbook was historically distributed throughout northeast Texas to the 

Guadalupe River (Howells et al., 1996). Current distribution is still relatively widespread 

but uncommon. Howells et al. (1996) indicates that this species prefers mud/sand/gravel 

substrates and can tolerate swift currents. 

The previous study by Dunithan (2012), which included mussel data samples 

from Troia (2010), incorporated a collection of mussel species occurrences that included 

the Texas Pigtoe and Rock Pocketbook from the Trinity, Angelina, Neches, and Sabine 

Rivers. Dunithan’s study produced probabilities of distribution of freshwater mussels for 

the majority of East Texas but did not explain the associations of mussels to habitat types. 

I hypothesized that these species occurrences were correlating specifically with 

components in each of the most significantly contributing environmental layers and 

evaluation of these layers and the inclusive data would provide me with the opportunity 

to explain these associations. Improving the model would require adding data from two 

biogeographically unique watersheds, the Sulphur and Cypress, and assessing the 

compositional profiles of the most suitable habitat types within each important 

environmental layer. My objectives were to evaluate the improvement of species 
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distributions for Texas Pigtoe and Rock Pocketbook, and explain the associations that the 

models produced between the environment and mussel occurrences with these 

modifications.  

Methods 

Sampling Design 

 Collection efforts for freshwater mussels were conducted from August to October, 

2011 and June to September of 2012 in the Sulphur (Figure 2.1)  and Big Cypress Rivers, 

including its tributaries Little Cypress, and Black Cypress (Figure 2.2). There were 14 

sites sampled along the Sulphur River; two on the South Sulphur, one on the North 

Sulphur and 11 along the mainstem. There were 18 sites sampled along the Big Cypress 

River, five on the Little Cypress Creek, one on the Black Cypress and five on the 

mainstem. Each site contained a 150-200m reach that was sampled in 50m transects. 

Freshwater mussels were retrieved manually by researchers during a timed interval that 

met the equivalent of one person hour per transect when applicable. Locations that 

contained water deeper than wading depth were sampled with the use of SCUBA, in 

teams of two, and totaling one person hour per transect (Figure 2.1). Low visibility at all 

sites required the use of a 1m PVC quadrat, flipped continuously on end, to guide divers 

along linear cross sections of the transect. Living and recently dead specimens were 

isolated by transect, identified to species, and enumerated. All mussels were replaced 

with the exception of difficult or unknown specimens, which were retained as vouchers. 
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Additional sampling data from Black Cypress River was provided for my purposes by the 

United States Geological Survey (Reston, VA).  

Modeling 

 My modeling procedure was based on the original methods by Dunithan (2012) 

that included the use of the species distribution modeling program MAXENT and a set of 

11 environmental layers (Table 2.1). Each environmental layer was digitally derived from 

online geodatabases listed in the table and utilized with ArcMap 10.1. All layers were 

rasterized and the grid cell size of the constituent maps was 0.014 decimal degrees 

squared. I restricted MAXENT analyses to East Texas from the Sulphur River on the 

northern perimeter, the Trinity River on the western perimeter, the Angelina River on the 

southern perimeter, and the eastern border of Texas to complete the area. Within that 

predefined space are also the Sabine, Neches and Cypress watersheds.  

 The initial model included data previously collected by Dunithan (2012) and 

Troia (2010) using the 9 original layers and 3 modified layers to produce a baseline for 

comparison to the addition of alternate watersheds.  I chose to focus on two species of 

interest that included the state-threatened Texas Pigtoe (Fusconia askewi) and a species 

of concern the Rock Pocketbook (Arcidens confragosus) because of the need for 

conservation of particularly imperiled species. Habitat suitability profiles were 

constructed for each species individually. My analysis combined the previous data with 

sampling data for both species collected on the Sulphur and Big Cypress Rivers. Habitat 

suitability profiles were constructed for each species using this model as Well. The cross-
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validation method produced model-validating AUC values (area under the operator 

receiving curve values), which estimates the probability that a presence point will have a 

higher suitability score than a random background point (pseudoabsence) on the map. 

Values above an arbitrary designation of 0.75 were considered useful (Elith et al., 2009).  

I then isolated the three most significantly contributing environmental layers from each 

model and determined the mean habitat suitability scores (from MAXENT) for each 

component that constituted the total profile for those layers. I derived compositional 

profiles by locating the decoding information within the metadata and matching the 

habitat type with the constituent values it was built on. These analyses were performed 

using R (R Development Core Team, 2010) and a custom r-script for extracting and 

organizing the compositional data with its relevant habitat type.  I then conducted 

Student’s t-tests (Sokal and Rohlf, 1995) comparing the most suitable habitats (top 

average habitat suitability scores from Maxent) to the least suitable habitats (lowest 

average habitat suitability scores), separately for each environmental layer. I also 

analyzed significant differences between the mean habitat suitability scores of common 

environmental variable components of models before the addition of data and after the 

addition of data for each species. Finally, I made comparisons between the initial models 

for both species and also between the additive models for both species. Percent 

differences were calculated to demonstrate major changes across models.  



24 
 

Results 

Texas Pigtoe (Fusconaia askewi) 

 The first model for Texas Pigtoe that included the initial data samples resulted in 

an AUC value of 0.936. The most significantly contributing environmental variables 

were soils, rock exposure, and vegetation (Table 2.2, Figure 2.3). Specifically, willow 

oak-water oak-blackgum forest was the most suitable vegetation (mean suitability = 0.26) 

and marsh barrier island was least suitable (mean= 0.0015) (Figure 2.4). The difference 

between the mean habitat suitability scores of the top 4 vegetation types and the bottom 4 

vegetation types was marginally significant (t= 1.94, p= 0.092) (Table 2.3, Figure 2.5). 

The most suitable rock exposure type was terrace (mean= 0.87), and the least suitable 

was mudstone (mean = 0.0015; Figure 2.6). The difference between the top 5 and bottom 

5 rock exposure types was significant (t= 1.86, p= 0.05) (Table 2.4, Figure 2.7). The most 

suitable soil type was TX282 (mean= 0.74), and the least suitable was TX534 (mean= 

6.88 x 10-5; Figure 2.8). Each soil type consisted of 12 components, the totality of which I 

termed compositional profile. Of these 12 components, THICK (thickness of the soil 

layers in inches) was the only variable that showed a significant difference between the 

most suitable soil types and the least suitable soil types (t= 2.91, p= 0.0094) (Table 2.5, 

Figure 2.9). Overall, the model suggested that Texas Pigtoe prefers habitats associated 

with specific riparian deciduous trees, terrace and sand formations, and thicker soils. The 

species does not prefer habitats that are associated with the presence of deviations from 
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traditional cover types like forested areas to disturbed areas such as urban sprawl (mean= 

0.0044) and agriculture (mean=0.0035).  

The second model for Texas Pigtoe that included all collection samples improved 

the AUC value to 0.937.  The most significantly contributing environmental variables 

were soils, rock exposure, and vegetation (Table 2.2, Figure 2.10). As with the first 

model, willow oak-water oak-blackgum forest was the most suitable vegetation cover 

(mean suitability= 0.30), and marsh barrier island was the least suitable (mean= 0.0020) 

(Figure 2.11). The difference between the top 4 vegetation types and the bottom 4 

vegetation types was highly significant (t= 7.18, p= ≤ 0.001) (Table 2.6, Figure 2.12). 

The most suitable rock exposure type was terrace (mean= 0.12), and the least suitable 

was mudstone (mean= 0.0059, Figure 2.13). The difference between the top 5 and bottom 

5 rock exposure types was significant (t =16.92, p = 0.0039) (Table 2.7, Figure 2.14). The 

most suitable soil type was TX282 (mean= 0.72), and the least suitable was TX534 

(mean= 0.00024) (Figure 2.15). The component THICK again showed an average 

significant difference between the most suitable soil types and the least suitable soil types 

(t= 2.23, p= 0.039) (Table 2.8, Figure 2.16). In addition to this component, the variables 

AWC (average water capacity of the soil in inches per inch) (Figure 2.17), and SLOPE 

(slope of the soil layers in percent) (Figure 2.18) also demonstrated a significant 

difference between the most suitable soil types and the lease suitable soil types (t= 2.96, 

p= 0.0087; t=2.54, p= 0.021) (Table 2.8). The addition of sampling data to this model 

nominally improved the AUC value and contributed to the increase of habitat suitability 
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scores within each important environmental layer. The improved model suggests that 

Texas Pigtoe not only prefer habitats associated with specific riparian deciduous trees, 

terrace and sand formations, and thicker soils, but also soils with a higher capacity for 

retaining water and minimal slope. It is also notable for this model that additional data 

increased the disassociation of Texas Pigtoe with urban sprawls and agricultural lands 

(mean= 0.0003, mean= 0.0002).  

Rock Pocketbook (Arcidens confragosus) 

 The first model for Rock Pocketbook that included the initial data samples 

resulted in an AUC value of 0.899. The most significantly contributing environmental 

variables were soils, vegetation, and rock exposure (Table 2.2, Figure 2.19). Within the 

rock exposure variable, sand was the most suitable habitat (mean= 0.087) and mudstone 

the least suitable (mean= 0.0015) (Figure 2.20). The difference between the top 5 and 

bottom 5 rock exposure types was significant (t= 2.3, p= 0.05) (Table 2.9, Figure 2.21). 

As with Texas Pigtoe, Rock Pocketbook prefer habitats dominated by willow oak-water 

oak-blackgum forest (mean=0.20) and rarely associate with pecan elm forests (mean= 

0.00028) (Figure 2.22). The difference between the top 4 and bottom 4 vegetation types 

was significant (t= 2.55, p= 0.043) (Table 2.10, Figure 2.23). The most suitable soil type 

for Rock Pocketbook was TX282 (mean= 0.63) and the least suitable was TX639 (mean= 

0.00027) (Figure 2.24). The average contribution of the HYGRP (hydrology of the soil 

layer) component was significantly different between the most suitable and least suitable 

soil types (t= 2.99, p= 0.05) (Table 2.11, Figure 2.25). The model shows that Rock 
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Pocketbook prefer habitats associated with sandy rock exposure characteristics, 

deciduous riparian tree species, and soils that have a higher capacity for retaining water.  

 The second model, which included all the sampling data, improved the AUC 

value to 0.915. The most significantly contributing environmental variables were soils, 

vegetation, and rock exposure (Table 2.2, Figure 2.26). Sand was again the most suitable 

rock exposure type (mean= 0.083) and siltstone was the least suitable (mean= 0.0012) 

(Figure 2.27). The difference between the top 5 most suitable and the bottom 5 least 

suitable rock exposure types was more significant for this model (t= 2.77, p= 0.022) 

(Table 2.12, Figure 2.28). The most suitable vegetation type for this model was water 

oak-elm-hackberry forest (mean= 0.22) and the least suitable was pecan elm forest 

(mean= 0.00017) (Figure 2.29). The difference between the top 4 most suitable 

vegetation types and the bottom 4 most suitable vegetation types was significant (t= 2.59, 

p= 0.041) (Table 2.13, Figure 2.30). The most suitable soil type was TX477 (mean=0.62) 

and the least suitable was TX188 (mean= 0.00019) (Figure 2.31). Within soil type, the 

contribution of HYGRP was again significantly different between the most suitable and 

least suitable soil types (t= 2.12, p=0.048) (Table 2.14, Figure 2.32). The additional data 

suggests that Rock Pocketbook still prefer habitats associated with sandy rock exposure 

characteristics, but may vary in their preference for riparian vegetation and soil types 

because of the change in most suitable habitats for these environmental variables. 

Hydrology of the ground water was important for determining the presence of Rock 

Pocketbook. 
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Comparisons of Common Attributes 

 The comparisons between the two Texas Pigtoe models demonstrated that there 

was a large amount of variation after new data were added. Sixty-seven percent of the 

soil types that were common in the top 10 most suitable soils significantly differed in 

regards to their mean habitat suitability scores between the two models (Table 2.15). 

However, the three most suitable soil types, TX282, TX222, and TX051, did not vary 

enough to indicate a significant difference. There was also variation within the 

association to vegetation types (Table 2.16). Sixty-nine percent of the vegetation types 

differed significantly including the top two most suitable types (willow oak-water oak-

blackgum and water oak-elm hackberry forest). Observation of the mean habitat 

suitability scores indicated a significant difference of increased habitat suitability for each 

variable.  The rank of suitability of rock exposure types remained consistent, however, 

the mean habitat suitability scores increased with the addition of data to the second model 

(Table 2.17). Seventy-eight percent of the rock exposure variables significantly differed 

in mean suitability scores with versus without the new data points.  

 Variation within the Rock Pocketbook models was low. Only 22 percent of the 

common soil types’ suitability scores were significantly different between these two 

models (Table 2.15). Those soil types, TX123 and TX516, were not considered highly 

suitable habitat types by the model. Common rock exposure types also differed by 22 

percent (Table 2.16). Those rock exposure types that differed, sand and sandstone, 

demonstrated increased mean habitat suitability scores with the addition of data samples 
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to the second model. Twenty-three percent of the vegetation types significantly differed 

in mean suitability scores with versus without the new data points (Table 2.17). Among 

those types was water oak-elm-hackberry forest, which was associated with a decrease in 

mean habitat suitability score with the addition of data samples to the second model.  

 Comparisons of the first models of Texas Pigtoe and Rock Pocketbook 

demonstrated that there were 5 soil types out of the 10 most suitable that these two 

models had in common (Table 2.15).  All of the mean habitat suitability scores of these 

soil types, with the exception of the most suitable soil type TX282, differed significantly. 

Fifty-six percent of the rock exposure types were also significantly different (Table 2.16). 

There was no significant difference in the suitability of the most suitable rock exposure 

type, terrace. Vegetation varied by 38 percent. Most vegetation types that differed 

between models were not considered to be most suitable habitat types by the model 

(Table 2.17). However, water oak-elm-hackberry forest was the second most suitable 

type for both models and it differed significantly. This vegetation type was more suitable 

for Rock Pocketbook than Texas Pigtoe (ROPO mean= 0.18, TEPI mean= 0.061).  

 The comparison of models for Texas Pigtoe and Rock Pocketbook that included 

additional data samples revealed significant differences within the environmental 

variables as well. There were 4 soil types that were common between both models, all of 

which had significantly different mean habitat suitability scores, with the exception of the 

most suitable soil type, TX282 (Table 2.15). Terrace and sand were the most suitable 

rock exposure types for both models and showed no significant difference between the 
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mean habitat suitability scores. It should be noted that sand was more important than 

terrace for Rock Pocketbook but the mean habitat suitability score was not significantly 

different from sand in the Texas Pigtoe model. Overall, 33 percent of rock exposure types 

were significantly different between models (Table 2.16). Thirty-one percent of the 

vegetation types were significantly different (Table 2.17). Most of these vegetation types 

were not considered to be highly suitable by the model.  

 The average variation of suitability between models for the same species 

depended on the composition of the most suitable habitat types for those models. The 

Texas Pigtoe models displayed an average significant difference of 71.56 percent. The 

models with original data for both species and the models with additional data for both 

species also varied based on composition of the most suitable mean habitat suitability 

scores. The Rock Pocketbook models displayed an average significant difference of 

22.51 percent. The models with the original data samples for both Texas Pigtoe and Rock 

Pocketbook displayed an average significant difference of 58.01 percent. The models 

with additional data samples for both Texas Pigtoe and Rock Pocketbook displayed an 

average significant difference of 46.37 percent.  
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Tables and Figures 

Table 2.1. Environmental layers sources included in all MAXENT models. 

 

Variable 
Categories

Habitat 
Attribute

Data 
Source

Relevant 
Time Period 

Source Details

Aquifers Sediments; 
Interstitial 
Chemistry

TWDB 1990 Aquifer delineations 
developed for the 1991 

StateWater Plan
Geology Sediments; 

Current; 
Interstitial 
Chemistry

UT-BEG 2007 Dataset containing rock unit 
data from the Geologic Atlas 

of Texas

Ground-water 
Recharge

Sediments; 
Interstitial 
Chemistry

USGS 2003 1-km resolution raster grid 
dataset estimating index of 
mean annual groundwater 

recharge
Kernelreservoirs Sediments; 

Current; 
Temperature

TWDB 2007 Dataset of existing reservoirs 
in Texas greater than 5,000 

acre-feet
Kernelroads Sediments; 

Interstitial 
Chemistry

ESRI 2000 U.S. Detailed Streets and 
U.S. Census Block Centroid 
Populations were obtained 

from ESRI data CDs 
provided with ArcGIS 

software
Kernelsprings Sediments; 

Interstitial 
Chemistry

USGS 1975-2005 Vector map containing digital 
data about spring flows and 

water quality
Landform Sediments; 

Interstitial 
Chemistry

USGS 1964 A vector file of digital data 
that describes classes of land 

surface form (slope, local, 
relief, and profile)

Solar Radiation Temperature CRU 1961-1990 Solar radiation reaching the 
land surface

Soil Data Sediments; 
Interstitial 
Chemistry

NRCS 1998-2007 NRCS Soil Data Viewer 
(STATSGO)

Topmodel Sediments USGS 1871-1997 5km raster dataset that 
represents average 

percentage of infiltration-
excess overland flow in total 

stream flow
Vegetation Types Sediments TPWD 1972-1976 Vegetation types of Texas, 

including cropland and urban
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Table 2.2. Percent contributions for the most significantly contributing environmental 
variables from all MAXENT models. AUC values range from 0.899 to 0.937 for all 
models and demonstrate improvement with the addition of data samples.  

  
Texas Pigtoe 

Original 
Texas Pigtoe 

Combined 
Rock Pocketbook 

Original 
Rock Pocketbook 

Combined 

Variable Percent Contribution 

Soils 47 42. 5 54.2 53.6 

Geology 18.8 22 9.6 10.5 

Vegetation 17.7 21.3 12.6 11.6 

         
  

Texas Pigtoe 
Original 

Texas Pigtoe 
Combined 

Rock Pocketbook 
Original 

Rock Pocketbook 
Combined 

AUC 0.936 0.937 0.899 0.915 
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Table 2.3. Vegetation cover for the first Texas Pigtoe model is listed from highest to 
lowest mean habitat suitability score. The highest score is associated with the most 
suitable vegetation type for the presence of Texas Pigtoe using the initial data set.  

MEAN SE VEGETATION COVER TYPE 

0.26 0.0069 Willow Oak-Water Oak-Blackgum Forest 

0.06 0.0024 Water Oak-Elm-Hackberry Forest 

0.05 0.0022 Young Forest/Grassland 

0.048 0.00097 Pine Hardwood 

0.038 0.0069 Bald Cypress-Water Tupelo Swamp 

0.016 0.0020 Lake 

0.012 0.00027 Post Oak Woods/Forest 

0.0066 0.00017 Post Oak Woods, Forest and Grassland Mosaic 

0.0051 0.00014 Elm-Hackberry Parks/Woods 

0.0043 0.00014 Urban 

0.0035 0.00022 Crops 

0.0034 0.00097 Pecan Elm 

0.0027 0.00012 Bluestem Grassland 

0.0015 0.00035 Marsh Barrier Island 
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Table 2.4. Rock exposure type for the first Texas Pigtoe model is listed from highest to 
lowest mean habitat suitability score. The highest score is associated with the most 
suitable rock exposure type for Texas Pigtoe using the initial data set.    

MEAN SE ROCK EXPOSURE TYPE 

0.087 0.0015 terrace 

0.036 0.0023 sand 

0.025 0.00054 sandstone 

0.022 0.00090 fine-grained mixed clastic 

0.014 0.0014 siltstone 

0.0073 0.00032 clay or mud 

0.0072 0.00058 limestone 

0.0025 0.00 shale 

0.0015 0.00 mudstone 
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Table 2.5. The compositional profiles for the first Texas Pigtoe model are listed by the 
most suitable soil types (MUID) and least suitable soil types. The highest mean habitat 
suitability score is associated with the most suitable soil type for the presence of Texas 
Pigtoe using the initial data set. 
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Table 2.6. Vegetation cover for the second Texas Pigtoe model is listed from highest to 
lowest mean habitat suitability score. The highest score is associated with the most 
suitable vegetation type for the presence of Texas Pigtoe using the combined data set. 

MEAN SE VEGETATION COVER TYPE 
0.30 0.007225 Willow Oak-Water Oak-Blackgum Forest 
0.26 0.006425 Water Oak-Elm-Hackberry Forest 
0.056 0.001017 Pine Hardwood 
0.054 0.002275 Young Forest/Grassland 
0.042 0.008064 Bald Cypress-Water Tupelo Swamp 
0.025 0.000764 Post Oak Woods/Forest 
0.024 0.002092 Lake Houston 
0.015 0.000512 Elm-Hackberry Parks/Woods 
0.014 0.00036 Post Oak Woods, Forest and Grassland Mosaic 
0.010 0.000276 Crops 
0.0073 0.000303 Urban 
0.0035 0.000185 Bluestem Grassland 
0.0028 0.001038 Pecan Elm 
0.0020 0.000501 Marsh Barrier Island 

 

 

Table 2.7. Rock exposure type for the second Texas Pigtoe model is listed from highest 
to lowest mean habitat suitability score. The highest score is associated with the most 
suitable rock exposure type for Texas Pigtoe using the combined data set.    

MEAN SE ROCK EXPOSURE TYPE 
0.12 0.0017 terrace 
0.11 0.0037 sand 
0.028 ≤ 0.001 sandstone 
0.022 ≤ 0.001 fine-grained mixed clastic 
0.016 0.0014 siltstone 
0.011 ≤ 0.001 limestone 
0.0087 ≤ 0.001 clay or mud 
0.0076 ≤ 0.001 shale 
0.0059 ≤ 0.001 mudstone 
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Table 2.8. The compositional profiles for the second Texas Pigtoe model are listed by the 
most suitable soil types (MUID) and least suitable soil types. The highest mean habitat 
suitability score is associated with the most suitable soil type for the presence of Texas 
Pigtoe using the combined data set.  

 

 

 

 

 

 

 

 

 

 

MUID AWC CLAY KFFACT OM PERM THICK HYGRP DRAIN SLOPE LL IFHYDRIC AFLDFREQ
TX282 0.13 22.1 0.29 0.6 3.26 76.3 2.7 4.3 1.7 30.7 0.4 3.3
TX222 0.12 18.4 0.25 0.2 3.42 72.1 3 5.1 0.1 26.1 0.6 1.1
TX051 0.13 15.7 0.25 0.6 3.02 74.5 2 3.4 1.2 23.8 0.2 3.7
TX172 0.15 31.8 0.28 0.6 1.19 74.1 3.4 4.6 0.3 36.2 0.7 1.4
TX317 0.16 26 0.28 0.4 1.3 66 2.7 4.1 0 33.4 0 1.3
TX250 0.15 63.9 0.32 1 0.1 78.5 3.9 4.5 0.7 70.1 0.8 1.5
TX272 0.14 26.3 0.43 0.5 0.43 75.8 3.2 4.5 0.1 35.7 0.5 1.7
TX263 0.17 18.8 0.36 0.2 1.32 76.6 3 5.3 0.6 26.9 0.5 4
TX175 0.15 28.6 0.35 0.5 0.99 74.6 3.1 4.3 0.6 36.2 0.3 3.7
TX316 0.16 20.9 0.29 0.5 1.43 68.9 3.2 4.7 0.2 28.6 0.5 1.4

MUID AWC CLAY KFFACT OM PERM THICK HYGRP DRAIN SLOPE LL IFHYDRIC AFLDFREQ
TX417 0.14 24.5 0.26 0.1 2.6 77.4 2.3 3.8 3.5 30.7 0.1 3.9
TX458 0.1 38.2 0.22 0.2 0.65 64.9 3.5 3.9 4.7 49.9 0 4
TX639 0.16 71.4 0.26 2.9 0.66 73.4 4 7 0 71.7 1 1
TX238 0.1 47.1 0.31 1 0.04 61.4 4 6.3 0.2 70.5 1 2
TX256 0.15 37.1 0.34 0.6 0.33 70.9 4 5.3 0.7 48.5 0.4 4
TX421 0.07 42.3 0.34 1.8 0.04 61.1 4 6.8 1 59.5 1 1.4
TX587 0.06 14.1 0.27 0.2 6.8 65.6 3.4 5.2 0.7 27.8 0.8 2
TX549 0.11 15.2 0.21 0.4 8.76 74.2 1.4 2.7 6.2 23.9 0.1 3.9
TX293 0.1 18.5 0.2 0.3 6.99 73.3 1.8 3.1 6.7 27.6 0.1 3.7
TX534 0.13 15.1 0.24 0.5 2.28 78.8 4 5.4 0.6 34.2 0.4 2.8

Compositional Profile for Most Suitable Soil Types

Compositional Profile for Least Suitable Soil Types
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Table 2.9. Rock exposure type for the first Rock Pocketbook model is listed from highest 
to lowest mean habitat suitability score. The highest score is associated with the most 
suitable rock exposure type for Rock Pocketbook using the initial data set.    

MEAN SE ROCK EXPOSURE TYPE 
0.087 0.0015 terrace 
0.036 0.0023 sand 
0.025 ≤ 0.001 sandstone 
0.022 ≤ 0.001 fine-grained mixed clastic 
0.014 0.001493 siltstone 
0.0073 ≤ 0.001 clay or mud 
0.0072 ≤ 0.001 limestone 
0.0025 ≤ 0.001 shale 
0.0015 ≤ 0.001 mudstone 

 

 

Table 2.10. Vegetation cover for the first Rock Pocketbook model is listed from highest 
to lowest mean habitat suitability score. The highest score is associated with the most 
suitable vegetation type for the presence of Rock Pocketbook using the initial data set. 

MEAN SE VEGETATION COVER TYPE 
0.20 0.0068 Willow Oak-Water Oak-Blackgum Forest 
0.18 0.0084 Water Oak-Elm-Hackberry Forest 
0.052 0.0036 Urban 
0.032 0.0012 Post Oak Woods, Forest and Grassland Mosaic 
0.031 ≤ 0.001 Pine Hardwood 
0.031 0.0016 Young Forest/Grassland 
0.022 ≤ 0.001 Post Oak Woods/Forest 
0.011 ≤ 0.001 Lakes 
0.010 0.0027 Bald Cypress-Water Tupelo Swamp 
0.0057 ≤ 0.001 Elm-Hackberry Parks/Woods 
0.0041 ≤ 0.001 Crops 
0.0012 ≤ 0.001 Marsh Barrier Island 
≤ 0.001 ≤ 0.001 Bluestem Grassland 
≤ 0.001 ≤ 0.001 Pecan Elm 
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Table 2.11. The compositional profiles for the first Rock Pocketbook model are listed by 
the most suitable soil types (MUID) and least suitable soil types. The highest mean 
habitat suitability score is associated with the most suitable soil type for the presence of 
Rock Pocketbook using the initial data set.  
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Table 2.12. Rock exposure type for the second Rock Pocketbook model is listed from 
highest to lowest mean habitat suitability score. The highest score is associated with the 
most suitable rock exposure type for Rock Pocketbook using the combined data set.    

MEAN SE ROCK EXPOSURE TYPE 
0.082 0.0038 sand 
0.074 0.0014 terrace 
0.048 ≤ 0.001 sandstone 
0.029 ≤ 0.001 fine-grained mixed clastic 
0.012 ≤ 0.001 shale 
0.0044 ≤ 0.001 mudstone 
0.0040 ≤ 0.001 limestone 
0.0028 ≤ 0.001 clay or mud 
≤ 0.001 ≤ 0.001 siltstone 

 

 

Table 2.13. Vegetation cover for the second Rock Pocketbook model is listed from 
highest to lowest mean habitat suitability score. The highest score is associated with the 
most suitable vegetation type for the presence of Rock Pocketbook using the combined 
data set. 

MEAN SE VEGETATION COVER TYPE 
0.22 0.0093 Water Oak-Elm-Hackberry Forest 
0.19 0.0066 Willow Oak-Water Oak-Blackgum Forest 
0.057 0.0039 Urban 
0.038 ≤ 0.001 Post Oak Woods, Forest and Grassland Mosaic 
0.038 0.0022 Post Oak Woods/Forest 
0.033 ≤ 0.001 Pine Hardwood 
0.029 ≤ 0.001 Young Forest/Grassland 
0.015 ≤ 0.001 Lake 
0.013 0.0038 Bald Cypress-Water Tupelo Swamp 
0.0078 ≤ 0.001 Elm-Hackberry Parks/Woods 
0.0043 ≤ 0.001 Crops 
≤ 0.001 ≤ 0.001 Marsh Barrier Island 
≤ 0.001 ≤ 0.001 Bluestem Grassland 
≤ 0.001 ≤ 0.001 Pecan Elm 
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Table 2.14. The compositional profiles for the second Rock Pocketbook model are listed 
by the most suitable soil types (MUID) and least suitable soil types. The highest mean 
habitat suitability score is associated with the most suitable soil type for the presence of 
Rock Pocketbook using the combined data set.  
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Table 2.15. The soil habitat types (MUID) that were common between individual species 
(Texas Pigtoe original and combined models; Rock Pocketbook original and combined 
models) and common between models of different data inclusion (both species with 
original data; both species with combined data). Highlighted components submit the most 
control over what is considered the most suitable habitats within each model.  

 

 

Table 2.16. The rock exposure types that were common between individual species 
(Texas Pigtoe original and combined models; Rock Pocketbook original and combined 
models) and common between models of different data inclusion (both species with 
original data; both species with combined data). Highlighted components submit the most 
control over what is considered the most suitable habitats within each model.  

 

 

 

 

 

Common MUIDs of 
ROPO Models

Common MUIDs of 
TEPI Models

Common MUIDs of 
Original Data

Common MUIDs of 
Combined Data

Code ROPO TEPI ROPO_TEPI_ORIG ROPO_TEPI_COMB
TX282 0.96 TX282 0.66 TX282 1 TX282 1
TX250 0.14 TX222 0.35 TX250 ≤ 0.001 TX250 ≤ 0.001
TX317 0.32 TX051 0.31 TX317 ≤ 0.001 TX317 ≤ 0.001
TX357 0.79 TX172 0.02 TX172 ≤ 0.001 TX172 ≤ 0.001
TX123 ≤ 0.001 TX317 0.002 TX316 ≤ 0.001
TX172 0.65 TX250 ≤ 0.001
TX316 1 TX272 0.002
TX516 0.047 TX263 ≤ 0.001
TX574 0.23 TX175 ≤ 0.001

Comparisons of Common Soil MUIDs

MUID

p-value p-value p-value p-value

Common Rock 
Exposure Types of 

TEPI Models

Common Rock 
Exposure Types of 

ROPO Models

Common Rock 
Exposure Types of 

Original Data

Common Rock 
Exposure Types of 

Combined Data
Code TEPI ROPO ROPO_TEPI_ORIG ROPO_TEPI_COMB

Terrace ≤ 0.001 Terrace 0.23 Terrace 1 Terrace 1
Sand ≤ 0.001 Sand ≤ 0.001 Sand 0.0086 Sand 1

Sandstone ≤ 0.001 Sandstone 0.018 Sandstone ≤ 0.001 Sandstone ≤ 0.001
Fine-grained Mixed 

Clastic 0.3
Fine-grained Mixed 

Clastic 0.1
Fine-grained Mixed 

Clastic ≤ 0.001
Fine-grained Mixed 

Clastic ≤ 0.001
Siltstone 0.13 Siltstone 0.51 Siltstone 1 Siltstone 1

Clay or Mud ≤ 0.001 Clay or Mud 0.97 Clay or Mud 1 Clay or Mud 1
Limestone ≤ 0.001 Limestone 0.57 Limestone 0.98 Limestone 1

Shale NA Shale 1 Shale ≤ 0.001 Shale ≤ 0.001
Mudstone NA Mudstone 1 Mudstone ≤ 0.001 Mudstone 0.99

Comparisons of Common Rock Exposure Types

Geology 
Type

p-value p-value p-value p-value
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Table 2.17. The vegetation types that were common between individual species (Texas 
Pigtoe original and combined models; Rock Pocketbook original and combined models) 
and common between models of different data inclusion (both species with original data; 
both species with combined data). Highlighted components submit the most control over 
what is considered the most suitable habitats within each model. 
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Figure 2.1. The Sulphur River was sampled for freshwater mussels at 14 sites, 2 of which 
were located on the South Sulphur, 1 on the North Sulphur, and 11 on the mainstem. 
Sites in green indicate locations that were shallow enough to accomplish a manual search 
of the entire reach. Sites in red indicate locations where the use of SCUBA was required.  
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Figure 2.2. The Big Cypress River was sampled for freshwater mussels at 18 sites, 5 of 
which were located on the Little Cypress Creek, and 1 on the Black Cypress.  
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Figure 2.3. Probability distribution of Texas Pigtoe (Fusconaia askewi) for the initial 
model with original data samples. Sampling sites are located within the Sabine, Neches, 
Angelina, and Trinity Rivers.  
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Figure 2.4. Mean habitat suitability scores for the 4 most suitable vegetation types and 4 
least suitable vegetation types. Values are derived from the initial species distribution 
model of Texas Pigtoe (Fusconaia askewi) with the original data samples.  
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Figure 2.5. The mean habitat suitability scores of the 4 most suitable vegetation types and 
4 least suitable vegetation types are significantly different for Texas Pigtoe (Fusconaia 
askewi). Data derived from the initial species distribution model.  
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Figure 2.6. Mean habitat suitability scores for all rock exposure types. Values are derived 
from the initial species distribution model of Texas Pigtoe (Fusconaia askewi) with the 
original data samples.    
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Figure 2.7.The mean habitat suitability scores of the 5 most suitable rock exposure types 
and 5 least suitable rock exposure types are significantly different for Texas Pigtoe 
(Fusconaia askewi). Data derived from the initial species distribution model.  
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Figure 2.8. Mean habitat suitability scores for the 5 most suitable soil types and 5 of the 
least suitable soil types. Values are derived from the initial species distribution model of 
Texas Pigtoe (Fusconaia askewi) with original data.  
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Figure 2.9 The mean habitat suitability scores of the 10 most suitable soil types and the 
10 least suitable soil types are significantly different for Texas Pigtoe (Fusconaia 
askewi). Data derived from the initial species distribution model.  
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Figure 2.10. Probability distribution of Texas Pigtoe (Fusconaia askewi) for the second 
model with combined data samples. Sampling sites are located within the Sabine, 
Neches, Angelina, Trinity, Sulphur, and Big Cypress Rivers.  
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Figure 2.11. Mean habitat suitability scores for the 4 most suitable vegetation types and 4 
least suitable vegetation types. Values are derived from the second species distribution 
model of Texas Pigtoe (Fusconaia askewi) with the combined data samples.  
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Figure 2.12. The mean habitat suitability scores of the 4 most suitable vegetation types 
and 4 least suitable vegetation types are significantly different for Texas Pigtoe 
(Fusconaia askewi). Data derived from the second species distribution model.  
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Figure 2.13. Mean habitat suitability scores for all rock exposure types. Values are 
derived from the second species distribution model of Texas Pigtoe (Fusconaia askewi) 
with the combined data samples.    

 

 

 

 

 

 

 

 

 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
ea

n 
Ha

bi
ta

t S
ui

ta
bi

lit
y 

Sc
or

e 

Rock Exposure Type 

Terrace

Sand

Sandstone

Fine-grained mixed clastic

Siltstone

Limestone

Clay-Mud

Shale

Mudstone



57 
 

Figure 2.14. The mean habitat suitability scores of the 5 most suitable rock exposure 
types and 4 least suitable rock exposure types are significantly different for Texas Pigtoe 
(Fusconaia askewi). Data derived from the second species distribution model. 
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Figure 2.15. Mean habitat suitability scores for the 5 most suitable soil types and 5 of the 
least suitable soil types. Values are derived from the second species distribution model of 
Texas Pigtoe (Fusconaia askewi) with combined data.  
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Figure 2.16. The mean habitat suitability scores of the 10 most suitable soil types and the 
10 least suitable soil types are significantly different for Texas Pigtoe (Fusconaia 
askewi). Data derived from the second species distribution model. 
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Figure 2.17. The mean habitat suitability scores of the 10 most suitable soil types and the 
10 least suitable soil types are significantly different for Texas Pigtoe (Fusconaia 
askewi). Data derived from the initial species distribution model. 
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Figure 2.18. The mean habitat suitability scores of the 10 most suitable soil types and the 
10 least suitable soil types are significantly different for Texas Pigtoe (Fusconaia 
askewi). Data derived from the initial species distribution model. 
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Figure 2.19. Probability distribution of Rock Pocketbook (Arcidens confragosus) for the 
initial model with original data samples. Sampling sites are located within the Sabine, 
Neches, Angelina, and Trinity Rivers. 
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Figure 2.20. Mean habitat suitability scores for all rock exposure types. Values are 
derived from the initial species distribution model of Rock Pocketbook (Arcidens 
confragosus) with the original data samples.    
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Figure 2.21. The mean habitat suitability scores of the 5 most suitable rock exposure 
types and 5 least suitable rock exposure types are significantly different for Rock 
Pocketbook (Arcidens confragosus). Data derived from the initial species distribution 
model.  
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Figure 2.22. Mean habitat suitability scores for the 4 most suitable vegetation types and 4 
least suitable vegetation types. Values are derived from the initial species distribution 
model of Rock Pocketbook (Arcidens confragosus) with the original data samples.  
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Figure 2.23. The mean habitat suitability scores of the 4 most suitable vegetation types 
and 4 least suitable vegetation types are significantly different for Rock Pocketbook 
(Arcidens confragosus). Data derived from the initial species distribution model.  
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Figure 2.24. Mean habitat suitability scores for the 5 most suitable soil types and 5 of the 
least suitable soil types. Values are derived from the initial species distribution model of 
Rock Pocketbook (Arcidens confragosus) with original data. 
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Figure 2.25. The mean habitat suitability scores of the 10 most suitable soil types and the 
10 least suitable soil types are significantly different for Rock Pocketbook (Arcidens 
confragosus). Data derived from the initial species distribution model. 
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Figure 2.26. Probability distribution of Rock Pocketbook (Arcidens confragosus) for the 
second species distribution model with combined data samples. Sampling sites are 
located within the Sabine, Neches, Angelina, Trinity, Sulphur, and Big Cypress Rivers.  
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Figure 2.27. Mean habitat suitability scores for all rock exposure types. Values are 
derived from the second species distribution model of Rock Pocketbook (Arcidens 
confragosus) with the combined data samples.    
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Figure 2.28. The mean habitat suitability scores of the 5 most suitable rock exposure 
types and 5 least suitable rock exposure types are significantly different for Texas Pigtoe 
(Fusconaia askewi). Data derived from the second species distribution model.  

 

 

 

 

 

 

 

 

 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Av
er

ag
e 

of
 H

ab
ita

t S
ui

ta
bi

lit
y 

Sc
or

es
 

Averaged Rock Exposure Types 

Top 5 Geology Types

Bottom 5 Geology Types

t= 2.77; p= 0.022 



72 
 

Figure 2.29. Mean habitat suitability scores for the 4 most suitable vegetation types and 4 
least suitable vegetation types. Values are derived from the second species distribution 
model of Rock Pocketbook (Arcidens confragosus) with the combined data samples. 
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Figure 2.30. The mean habitat suitability scores of the 4 most suitable vegetation types 
and 4 least suitable vegetation types are significantly different for Rock Pocketbook 
(Arcidens confragosus). Data derived from the second species distribution model. 
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Figure 2.31. Mean habitat suitability scores for the 5 most suitable soil types and 5 of the 
least suitable soil types. Values are derived from the second species distribution model of 
Rock Pocketbook (Arcidens confragosus) with combined data. 
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Figure 2.32. The mean habitat suitability scores of the 10 most suitable soil types and the 
10 least suitable soil types are significantly different for Rock Pocketbook (Arcidens 
confragosus). Data derived from the combined species distribution model. 
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environmental characteristics of the surrounding landscape (Harding et al., 1998). The 

associations of freshwater mussels and environmental variables can be evaluated by 

incorporating mussel sampling data from two unique watersheds in a model previously 

constructed with sampling data in biogeographically different regions. The addition of 

new data will improve the model’s predictive abilities by advancing our knowledge of 

what is considered suitable habitat for a species.  

In my study, the improvement in AUC values supported the hypothesis that 

including two additional watersheds of varying geomorphology would improve an initial 

species distribution model (Dunithan, 2012) at least for Rock Pocketbook (Arcidens 

confragosus). However, the improvement for Texas Pigtoe (Fusconaia askewi) was 

marginal even though overall the mean habitat suitability scores for the most suitable 

habitats increased with the addition of data from the Sulphur and Cypress watersheds. 

One reason for this low improvement may be that this species is habitat specific and 

varies little in the types of substrate or other fluvial characteristics it requires. If that is 

the case then the model suggests that there are very similar habitat types within all 

watersheds regardless of the geomorphology where Texas Pigtoe can be found. 

Conversely, if we take a closer look at the output maps it is evident that the addition of 

data only affects the highlighting in the Sulphur and Big Cypress Rivers, with an 

appearance of suitable habitat in the Trinity as well. The probabilities of distribution 

within the watersheds of the original data change very little. Instead the model is 

adjusting the parameters of acceptable habitat for Texas Pigtoe, and this information is 
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not necessarily reflected in the AUC values. Additionally, recent work on the Trinity 

River by Zara Environmental revealed the presence of Texas Pigtoe in the Fort Worth 

area (Krejca pers. comm., 2013). The suggestion is that there are characteristics that these 

three watersheds share that make habitats suitable for Texas Pigtoe. Burlakova et al. 

(2011) utilized biogeographic regions to describe the distributional habits of freshwater 

mussels in East Texas. They demonstrated that the Texoma Province (containing the 

Sulphur and Cypress Rivers) and the Sabine Province (containing the Trinity River) have 

the most similar fauna. In relation to the models here, I suggest that the upper Trinity is 

biogeographically similar to the Sulphur River because of the Trinity’s proximity to the 

Texoma Province. This is why the addition of sampling data from the Sulphur and 

Cypress watersheds initiated the indication of suitable habitat in the upper Trinity River 

rather than the original set of data samples. The similarities between the three watersheds 

are most likely those components that were considered to be most significant in the 

models of combined data, THICK (thickness of the soils in inches), AWC (average water 

capacity in inches per inch), and SLOPE (slope of soil layers in percent), willow oak and 

water oak forest cover, and terrace and sand formations. These watersheds therefore have 

suitable habitat that contains thick soils (mean= 75 inches), a higher capacity for water 

retention within the soils, minimal slope, vegetation within the riparian zones, and terrace 

and sand fluvial formations. In addition, the AUC value is not designed to reflect 

differences in patterns of change between models (Peterson et al., 2007; Jeschke and 

Strayer, 2008). The output value is simply not sophisticated enough in its derivation to 
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account for these differences. Rather, the actual deviation from the original mean habitat 

suitability scores of the variable components is more useful for answering the question of 

why mussels associate with certain habitat types.  

Because the inclusion of more spatially heterogeneous habitats provides 

MAXENT with a set of increasingly comprehensive options for comparison, it is 

reasonable to predict that the addition of alternative watersheds would improve the 

accuracy of the modeling program (Phillips et al., 2006). The models that compared the 

individual species probability distributions for Rock Pocketbook before and after the 

addition of new data samples produced an increase in AUC values. The model also 

produced higher mean habitat suitability scores for many of the components within each 

of the most significant environmental variables. These results are visible in the output 

distribution maps as a decrease in ambiguous areas with regards to the probability of 

distribution for both species (Figures 2.10, 2.26). The results are supported biologically 

for two reasons: (1) the addition of alternative watersheds increases the knowledge of a 

species fundamental niche and therefore gives MAXENT additional parameters that it 

will use to more precisely define those nominally suitable habitats (Phillips et al., 2004) 

and (2) MAXENT can define a species realized niche using additional data with a higher 

degree of certainty in addition to a redefinition of what is marginally acceptable habitat 

(Phillips et al., 2006). An example of this ability is detectable in the increased suitability 

scores of individual components within the environmental variables I used. The end 
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product is a reduction in marginal habitat coverage and an increase in the identification of 

the most suitable habitat types for that species.  

I further demonstrated that the model building environmental variables can be 

used to define specific associations between these freshwater mussel species and 

geomorphological characteristics in the surrounding landscape. Price et al. (2011) 

outlined changes within alluvial systems as being a product of environmental 

characteristics such as geology, pedogenic regimes, and alterations within riparian zones. 

Soil was inevitably the most important environmental variable in every model. Arbuckle 

and Downing (2002) described soils as being one of the most influential, broad scale 

effectors of mussel distributions. It is unclear whether soil properties are directly 

affecting distributions or exaggerating hydrologic properties such as sedimentation, 

which has been shown to affect the survivability of mussels (Box and Mossa, 1999). My 

results likely describe a combination of both. In the output for the initial data set of Texas 

Pigtoe distributions, thicker soils were important. Because broad scale environmental 

influences can be the source point for changes to the biological integrity of a system, the 

variation in thickness of soils may be correlated with cascading effects that can contribute 

to the alteration of species distributions (Bedoya et al., 2011). For instance, Texas Pigtoe 

are a smooth shelled species and may not tolerate high shear stress (Goodding et al., 

2012). Shear stress is associated with increases in flow that could be a result of severe 

slope and lower water capacity of the soils. Both of these attributes become prevalent, as 

well as thickness of the soils, with the addition of data from the Sulphur and Cypress 
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Rivers. Groffman et al. (2003) described the importance of a robust soils profile as being 

a buffer to the concept of hydrologic drought. Drought is one scenario where dewatering 

of the riparian zone occurs as a result of lowering of the water table. The Sulphur River 

being a modified system likely has a decreased ability to retain water in the surrounding 

watershed, especially with consideration to the highly channelized nature of the upper 

reaches (Minahan, 2003). When a river is channelized the drainage of the surrounding 

landscape increases especially within the riparian zones. The draw-down effect would 

then likely decrease the capacity of soils to retain surface water and exaggerate the effects 

of severe slope. Mwakalila et al. (2002) suggested that the through flow zone around or 

close to the riparian districts of an alluvial system is thought to be more important than 

ground water as an effector of baseflow because of its soil and alluvium structure. Lateral 

drainage is directly affected by altering these regimes, the results of which are high relief 

watersheds that influence a shift towards high-gradient streams exhibiting substrate 

changes unsuitable for mussels (Arbuckle and Downing, 2002). Habitat characteristics 

such as these became apparent with the Rock Pocketbook models. The hydrology of the 

groundwater, with well drained soils and moderate infiltration rates, was an increasingly 

important environmental component for this species. In addition to increases in water loss 

from the surrounding landscape, erosion caused by altering soil or riparian zone 

structures can translate to excessive allochthonous inputs. These alterations can manifest 

as sediment deposition, and hydrological changes once the displaced materials enter the 

fluvial environment (Allan, 2004). The structure of the Sulphur River often exhibits these 
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characteristics. As with most ecological systems, the morphology of soils and its 

components is often directly affected by similar environmental variables, and so it is 

important to recognize that these cascading affects actually consist of more than just one 

factor.  

Soils variables can also be affected by the trends that are seen within geological 

data, such as the rock exposure variables incorporated in this study. Among the variables 

that Brutsaert (2005) outlined as important effectors of baseflow were geomorphology of 

the landscape and the function and arrangement of riparian aquifers and near-surface 

soils. Using the surficial descriptions within the geology layer, it is evident that rock 

exposures refer to a variety of geological formations at surface and sub-surface intervals. 

Terrace formations are typically associated with fluvial systems and become the most 

important component for a majority of the models. The one exception is the second Rock 

Pocketbook model in which sand is paramount. Despite this close association with 

riverscapes, terraces were not found at all sites and therefore represent a rock exposure 

type that is very important for mussel distributions. So the preference of these species for 

terrace-like habitat may actually be a product of the association of specific geological 

processes at the surface and sub-surface of the environment around these study sites. 

Mwakalila et al. (2002) demonstrated that easily eroded bedrock intensifies channel 

formation and pedogenesis, which could explain the adjacently important sand and 

sandstone associations within each model. Areas of extremely folded bedrock exhibit 

increases in the frequency of fracturing and promote less connectivity to surface water.  
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Processes such as these have a direct effect on the amount of water that is received as 

baseflow in rivers within the perimeter of this type of bedrock (Smith, 1981). The more 

permeable geological layers promote dewatering, a process that freshwater mussels 

generally do not tolerate (Layzer and Madison, 1995). Complex interactions between 

surface and subsurface characteristics such as these provide a reasonable explanation as 

to why permeable layers such as limestone disassociated with species distributions and 

more directly influential surface layers became most important for the presence of 

mussels.  

Perhaps the most interesting results were the outputs for the vegetation 

environmental variable. All models suggested that willow oak or water oak dominates the 

most suitable vegetation type for both mussel species. A relationship such as this is not 

surprising considering these plants are bottomland species that associate closely with 

floodplain and riparian habitat (Hupp et al., 1993). It is possible that these results are 

artefactual in nature because of the preferred habitat of this type of vegetation (Roura-

Pascual et al., 2009). However, it is more probable that the existence of vegetation in 

riparian areas may indicate a preference in general for habitat that is not impacted by 

development. A close inspection of the Rock Pocketbook models indicates a definitive 

association with willow oak and water oak and nothing else of significance.  Howells et 

al. (2000) conducted a study on the B.A. Steinhagen Reservoir for which surveys of 

mussel species survival were recorded over a 6 year period of drawdowns. They found 

that in general mussels were intolerant of fluctuating water levels at as little as 2.0 
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meters. Specifically, Rock Pocketbook densities plummeted and subsequent surveys 

conducted by Karatayev and Burlakova (2007) produced no live individuals and only 3 

shells. With evidence of a plain aversion to dewatering events, it is probable that this 

species does well in habitats that do not suffer drastic low water events. When vegetation 

cover is removed from riparian zones, for example to accommodate urban development, 

cascading effects such as sedimentation cause shifts in the available habitat for freshwater 

mussels (Box and Mossa, 1999; Brown et al., 2010). Urban areas are therefore associated 

with characteristic changes within proximal river reaches. The stripping of vegetation and 

implementation of concrete surfaces or other impermeable landscapes that is common 

with development causes an increase in overland flow that, when in close proximity to a 

river, can increase the input of what would otherwise have been stored water (Wang et 

al., 2001). This phenomenon inevitably exaggerates the flow regime in the affected 

portion of a river system often causing channel incision and flashier hydrological 

conditions (Groffman et al., 2003). Wang et al. (2012) further supported this by 

suggesting that urban sprawl affects the substrate particle size within a streambed by 

reducing the average mass of particles. This is consistent with substrate types that are 

common in a modified system like the Sulphur River, which often mimics the silty clay 

and fine sand of substrate in the B.A. Steinhagen Reservoir, and could explain why Rock 

Pocketbook are associating  with forested areas rather than development, such as urban 

areas.  Additionally, heavier textured species most likely cannot tolerate dynamic 

fluctuations in a flow regime because they are less mobile with this type of morphology 
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(Howells et al., 2000). Interestingly, the infiltration and overland flow layer 

(TOPMODEL) did not rank as a significant contributor to the model. It might be 

expected that Rock Pocketbook associate closely with this particular environmental 

variable if dewatering events were major effectors of distributional habits for this species. 

However, this layer is developed as an average percentage of input across the landscape 

and as such may not be built with a fine enough resolution to pick up on the finer scale 

occurrences of this uncommon species associating with urban development. An 

adjustment of resolution to a fine scale would perhaps alter the results of this particular 

association. It may be that Rock Pocketbook are less-habitat specific in their preferences 

considering Texas Pigtoe did not associate with this land cover type and so can tolerate 

the presence of urban areas. They could also be taking advantage of environmental 

changes caused by human disturbance. It would be advantageous to evaluate this species’ 

habitat preferences with more detailed vegetation layers.  

 The results of this study highlight the need for additional research with landscape 

scale variables. Researchers are still attempting to minimize erroneous correlations 

between mussel species and landscape level variables. While I was able to demonstrate 

that the addition of alternative watersheds is valuable in improving a model, the 

promotion of the study of empirical links to specific components of these watersheds is 

important. The two species in this study demonstrated model validating differences 

between the most suitable habitat types and least suitable habitat types despite the 

marginal change in AUC for Texas Pigtoe. It is important to understand the degree to 
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which the construct of the environmental layers affects the output of the model. 

Additional research should include the use of profile components, such as HYGRP, as 

individual layers. By incorporating this level of detail, associations between mussel 

species occurrences and environmental characteristics at the landscape level may be more 

accurately reported (Newton et al., 2008).   
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Appendix A 

Table 1. Cumulative sampling data for all locations where Texas Pigtoe (Fusconaia 
askewi) and Rock Pocketbook (Arcidens confragosus) were collected in the Sulphur and 
Cypress watersheds.  
 

 

 

  

 

 

-95.05754 33.39098 Sulphur 1905 Bridge 1/4 mi down 6-Jun-12 2 0.66 50 Rock Pocketbook 1 dead
-94.72572 33.30706 Sulphur East of 259 7-Aug-12 Dive/Manual 1.5 1 Team Rock Pocketbook 1 Live
-94.14342 33.29873 Sulphur Hwy 59 12-Aug-12 Dive/Manual 1.5 1 Team Rock Pocketbook 1 Live
-94.79568 33.36132 Sulphur Shirleys 3 14-Oct-12 3 1 50 Rock Pocketbook 1 live
-94.79568 33.36132 Sulphur Shirleys 3 14-Oct-12 3 1 50 Texas Pigtoe 1 dead
-95.05754 33.39098 Sulphur 1905 Bridge 1/4 mi down 6-Jun-12 1 0.83 50 Texas Pigtoe 2 dead
-95.05754 33.39098 Sulphur 1905 Bridge 1/4 mi down 6-Jun-12 3 0.66 50 Texas Pigtoe 1 live
-95.05754 33.39098 Sulphur 1905 Bridge 1/4 mi down 6-Jun-12 3 0.66 50 Texas Pigtoe 3 dead
-94.79963 33.36264 Sulphur Shirleys 2 13-Oct-12 1 1 50 Texas Pigtoe 1 live
-94.79511 33.36057 Sulphur Shirleys 3 14-Oct-12 1 1 50 Texas Pigtoe 3 dead
-94.76900 33.36169 Sulphur Shirleys 3 14-Oct-12 4 1 50 Texas Pigtoe 1 dead

-94.57822 32.62505 Little Cypress Hwy 450 5-Jun-12 3 1.00 50 Rock Pocketbook 1 live
-94.51662 33.00145 Black Cypress Hwy 11 15-Jun-12 1 0.83 50 Texas Pigtoe 1 dead
-94.51662 33.00145 Black Cypress Hwy 11 15-Jun-12 1 1.10 50 Texas Pigtoe 2 live 
-94.51662 33.00145 Black Cypress Hwy 11 15-Jun-12 1 1.10 50 Texas Pigtoe 1 dead
-94.28793 32.73478 Little Cypress N Hwy 134 4-Sep-11 3 0.75 50 Texas Pigtoe 1 dead
-94.28793 32.73478 Little Cypress N Hwy 134 4-Sep-11 3 0.75 50 Texas Pigtoe 6 dead

Sampling Data Sulphur River

Sampling Data Big Cypress River
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