
 e-ISSN: 2289-8131 Vol. 9 No. 2-2 93

A GPFCSP-Based Fuzzy XQuery Interpreter

Pannipa Sae Ueng1, Srđan Škrbić1, Supaporn Kansomkeat2, Apirada Thadadech2

1Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
2Department of Computer Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.

pannipa@dmi.uns.ac.rs

Abstract—Nowadays XQuery has become the strongest

standard for querying XML data. However, most of the real

world information is in the form of imprecise, vague,

ambiguous, uncertain and incomplete values. That is why there

is a need for a flexible query language in which users can

formulate queries that arise from their own criteria. In this

paper, we propose an implementation of the Fuzzy XQuery - an

extension of the XQuery query language based on the fuzzy set

theory. In particular, we provide priority, threshold and fuzzy

expressions for handling flexible queries. In addition, we have

implemented an interpreter for this language by using the

GPFCSP concept in Java and eXist-db environment.

Index Terms—Fuzzy XQuery; XQuery Interpreter; XML

Database; Fuzzy Set Theory.

I. INTRODUCTION

XQuery language has been proposed as a standard for XML

querying. It provides a feature called a FLWOR expression

that supports the iteration and binding of variables to

intermediate results. The FLWOR is an acronym: FOR, LET,

WHERE, ORDER BY, RETURN, which is a powerful and

important part of XQuery, similar in some aspects to the SQL

query language in relational databases.

In real life, most information is imprecise, vague,

ambiguous, uncertain or incomplete. Ideas related to

improving query languages that can include such imprecise

information in terms of the user’s criteria is therefore natural.

However, XQuery does not support the use of this kind of

information by itself. In an effort to enrich it in a suitable

manner, we have attempted to use the fuzzy set theory to

provide a more flexible XQuery language, namely “Fuzzy

XQuery”. The Fuzzy XQuery is based on the standard

XQuery v.1.0 with an added priority, threshold and fuzzy

expressions. The interpreter for Fuzzy XQuery has been

developed by using Java programming language and the

eXist-db database. We can calculate the global constraint

satisfaction degree of the result set with the concept of

Generalized Prioritized Fuzzy Constraint Satisfaction

Problem (GPFCSP) [1] [2].

This paper is organized as follows. The next section

contains the literature review. The third section presents the

definition of the GPFCSP, compatibility operation and fuzzy

ordering options. The architecture and implementation are

shown in the fourth section. The fifth section presents an

illustrative example and the last section is the conclusion.

II. RELATED WORKS

In this section we briefly review the main approaches of the

flexible query techniques focusing on the application of fuzzy

set theory.

Škrbić et al. proposed an extension of SQL with fuzzy

capabilities called PFSQL (Prioritized Fuzzy Structured

Query Language) [3]. A PFSQL interpreter was implemented

using the priority fuzzy logic that is based on the concept of

GPFCSP.

Many attempts for fuzzy querying in XML documents have

been made in recent years. Campi et al. [4] presented

FuzzyXPath, an attempt to enhance the flexibility of XPath.

They introduced two fuzzy constraints: CLOSE and

SIMILAR applied to specific items within XML documents.

Moreover, they also defined two flexible conditions for the

flexible matching of path structures: BELOW and NEAR.

Goncalves and Tineo [5] extended XQuery with the new

xs:truth built-in data type to represent gradual truth degrees

and xml:truth attribute of type xs:truth to handle the

satisfaction degree in nodes of fuzzy XQuery expressions.

Their language extension allowed users to declare fuzzy

terms and used them in query expressions. Fredrick and

Radhamani [6] illustrated their fuzzy XQuery techniques that

allowed users to use linguistic terms based on the user-

defined function. After that, in 2010 [7], they extended their

earlier work by implementing the GUI tool with VB.net for

the automatic generation of XQuery and fuzzy XQuery

queries. In 2011 [8], they described the fuzzy XQuery process

which used the arithmetic operations on fuzzy sets. Recently

in 2012 [9], they defined fuzzy information in XML

documents and the fuzzy domain integrity constraints through

XML schemas for restricting invalid XML data into the XML

database.

Panić et al. [10] implemented a similar approach as

presented in this paper. They presented the fuzzy XML and

fuzzy XQuery extension which used GPFCSP expressions,

priority expressions and threshold expressions. The GPFCSP

concept was used to calculate the membership degree in the

same way as we did. In addition, they also developed a tool

for working with XML, XSD and DTD documents, and fuzzy

XQuery extension queries. However, the main difference

between Panić’s work and our work is that Panić’s

implementation used .NET framework, MATLAB and the

Microsoft SQL Server database on a windows based

application, whereas our approach used Java programming

language to implement the new interpreter that was

independent of MATLAB with eXist-db native XML

database on web based application.

III. BACKGROUND

A. Generalized Prioritized Fuzzy Constraint Satisfaction

Problem (GPFCSP)

Skrbić et al. [1] [2] proposed the concept of GPFCSP for

calculating the fuzzy membership degrees of PFSQL in fuzzy

relational databases.

Journal of Telecommunication, Electronic and Computer Engineering

94 e-ISSN: 2289-8131 Vol. 9 No. 2-2

Theorem: The following system (X, D, Cf, , g, ∧, ∨, ￢

, ) where

1. X = {xi | i = 1, 2, …, n} is a set of variables,

2. D ={di | i=1, 2, …, n} is a set of domains. Every

domain di is a set that contains possible values of

variable xi ∈ X,

3. Cf is a set of fuzzy constraints:

𝐶𝑓 = {𝜇
𝑅𝑖

𝑓: 𝑑𝑖1× …×𝑑𝑖𝐾𝑖
→ [0,1], 𝑖 = 1, … , 𝑚, 1 ≤ 𝑘𝑖 ≤ 𝑛}

where 𝑅𝑖
𝑓
 denotes the set of constraint variables,

4. : Cf → [0,∞) is the priority of each constraint,

5. g:[0,)×[0,1]→[0,1] is the global satisfaction degree,

6. ∧ = TL,

7. ∨ = SL,

8. ￢ = 1-x,

9. (xi, ci) = SP (xi, 1-(ci)), (ci) represents its priority,

10. vX is a simultaneous valuation vX(x1,…,xn), xi  di of

all variables in X is a GPFCSP. The global satisfaction

degree of a valuation vX for a formula F is obtained in

the following way:

𝛼𝐹(𝑉𝑋) = 𝐹 { (𝑉𝑥𝑖,
𝜌(𝑅𝑓)

𝜌
𝑚𝑎𝑥

) |𝑅𝑓 ∈ 𝐶𝑓}

where Cf is the set of constraints of formula F, max =

max{(Rf), Rf ∈ Cf}.

In a similar way, we use the concept of GPFCSP to

calculate the global satisfaction degree of Fuzzy XQuery

because of the where clause in a FLWOR expression that

contains a sequence of constrains connected with logical

operators in the same way as in PFSQL.

B. Compatibility Operation

We can compare the fuzzy values in Fuzzy XQuery queries

using standard notation fuzzyvalue1 = fuzzyvalue2. For

example, $x/age = triangle(25,30,35). However, in order to

allow the use of fuzzy values in Fuzzy XQuery queries, we

need to calculate the compatibility of two fuzzy sets to

measure to what extent one fuzzy set is a subset of some other

fuzzy set.

Definition [2]: Let A and B be two fuzzy sets over universe

X. The measure of compatibility of the set A to the set B is

defined as:

𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 (𝐶𝐴,𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
 (1)

where P(A∩B) is the area of intersection between two fuzzy

sets and P(A) is the area of the fuzzy set A.

In our previous work, we implemented the modules for

calculations of compatibility operations. There are three steps

needed to calculate the compatibility in our approach [11].

Firstly, we define the algorithms to find the coordinates of the

intersection area of two fuzzy sets. Secondly, the size of the

shape of the intersection area is calculated as in Equation (2).

Area = |
(𝑥1𝑦2−𝑥2𝑦1)+(𝑥2𝑦3−𝑥3𝑦2)+⋯+(𝑥𝑛1−𝑥1𝑦𝑛)

2
| (2)

Lastly, the compatibility value is calculated using Equation

(1).

C. Fuzzy Ordering

As mentioned before, we have defined fuzzy values in

Fuzzy XQuery queries like fuzzyvalue1 = fuzzyvalue2.

However, we can compare two fuzzy sets with the relational

operators: >, >=, <, <= like fuzzyvalue1 > fuzzyvalue2. For

example, $x/age>triangle(25,30,35). In this case, we need to

calculate the fuzzy ordering of two fuzzy sets. One usable

definition of fuzzy ordering was proposed by Bodenhofer

[12]. An ordering of fuzzy sets A and B is generalized as:

𝐴 ≤𝐼 𝐵 ⟺ 𝐿𝑇𝑅(𝐴) ⊇ 𝐿𝑇𝑅(𝐵) and 𝑅𝑇𝐿(𝐴) ⊆ 𝑅𝑇𝐿(𝐵) (3)

LTR(A) stands for Left-to-Right closure which is the

smallest fuzzy superset of A with a non-decreasing

characteristic function, while RTL(A) stands for Right-to-

Left closure which is the smallest fuzzy superset of A with a

non-increasing characteristic function. We have proposed the

algorithms and developed modules for fuzzy ordering

calculations in [13].

IV. IMPLEMENTATION

A. Designing the Fuzzy XQuery Grammar

We recall the extension of the XQuery language in EBNF

(Extended Backus-Naur Form) from [14].

FLWORexpr ::= ForClause|LetClause WhereClause?

 OrderClause? ReturnClause

WhereClause ::= 'where' ExprSingle (ThresholdExpr)?

ExprSingle ::=OrExpr

ThresholdExpr :: 'threshold' DegreeLiteral

OrExpr ::=AndExpr ("or" AndExpr)*

AndExpr ::=ComparisonExpr ("and" ComparisonExpr)*

ComparisonExpr ::=ValueExpr((GeneralComp)ValueExpr)

ValueExpr ::=pathexpr|FuzzyExpr (PriorityExpr)?

GeneralComp ::= '='|'!= '|'<'|'<='|'>'|'>='

FuzzyExpr ::'#' 'ling' '('QNAME')' '#'

 | '#' 'tri' '('leftoffset','max','rightoffset')' '#'

 | '#' 'trap' '('leftoffset', 'leftmax', 'rightmax',

 'rightoffset')' '#'

 | '#' 'interval' '('leftoffset','rightoffset')' '#'

 | '#' 'fs' '('type','leftoffset','rightoffset',)' '#'

PriorityExpr ::="priority" DegreeLiteral

Having this listing in mind, we conclude that our approach

extends XQuery in the following points.

• Threshold Expression is an expression with the

keyword threshold that removes results that have a

membership degree to the result set that is less than the

specified threshold value in a Fuzzy XQuery query. If

there is no threshold expression, we assume that the

value is 0.

• Priority Expression is an expression with the keyword

priority that defines the level of influence of the

corresponding constraints on the result. If the query

does not specify the priority expression, the default

value is 1.

• Fuzzy Expression is an expression that allows users to

specify fuzzy numbers in XQuery queries. There are

five types of fuzzy constants:

• ‘ling’‘(’QNAME‘)’ means a linguistic label with

the name given by QNAME.

A GPFCSP-Based Fuzzy XQuery Interpreter

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 95

• ‘tri’‘(’leftoffset‘,’max‘,’rightoffset‘)’ means a

Triangle fuzzy number with three arguments: left

offset, maximum and right offset.

• ‘trap’‘(’leftoffset‘,’leftmax‘,’rightmax‘,’rightoffse

t‘)’ means a Trapezoidal fuzzy number with four

arguments: left offset, left maximum offset, right

maximum offset and right offset.

• ‘interval’‘(’leftoffset‘,’rightoffset‘)’ means an

Interval fuzzy number with 2 arguments: left offset

and right offset.

• ‘fs’‘(’type‘,’leftoffset‘,’rightoffset‘)’ means a

Fuzzy Shoulder with 3 arguments: type of Fuzzy

Shoulder (left shoulder or right shoulder), left

offset and right offset.

B. System Architecture

The overall picture of the system’s architecture is shown in

Figure 1. There are two main parts:

1. eXist-db [15]: eXist-db is an open source software

written in Java that is freely available in both source

code and binary form. We have chosen the eXist-db

database to store our XML documents because it

provides for a pluggable module interface that allows

for an extension modules to be easily developed in

Java. These extension modules have full access to the

eXist-db for XQuery query execution.

2. Interpreter: We implemented a parser for the Fuzzy

XQuery grammar with ANTLR (ANother Tool for

Language Recognition) version 3.4 [16]. ANTLR is

the tool for the automatic generation of a lexical

analyzer and a parser for a given EBNF grammar. We

implemented an interpreter for the Fuzzy XQuery

using Java in four main modules: Transformer

transforms a Fuzzy XQuery to a standard XQuery,

CalculateMembershipFunction uses the GPFCSP

concept to calculate the membership degree of the

results, Compatibility Operation calculates the

compatibility operation of two fuzzy sets and Fuzzy

Ordering calculates the ordering operation of two

fuzzy sets. Moreover, we developed a web application

GUI for the interpreter.

Figure 1: Architecture of the Fuzzy XQuery Interpreter

C. Fuzzy XQuery Execution

We implemented an interpreter that allowed for the

execution of the Fuzzy XQuery queries defined above. The

execution process is shown in Figure 2.

Let us explain in detail how we execute a Fuzzy XQuery.

The system first checks the syntax of the Fuzzy XQuery

following the given EBNF grammar. After that, if it is valid,

the Fuzzy XQuery is transformed to a standard XQuery by

parsing the Fuzzy XQuery, creates an Abstract Syntax Tree

(AST) and extracts the fuzzy part from it. Next, the system

sends the standard XQuery into the database. When the

database returns the result set, the system will interpret this

result set again using the GPFCSP concept to calculate the

membership degree of every element of the result set. Now

we have the results that have a fuzzy membership degree in

every element. Then, if the query has a threshold expression,

the system will remove the tuples which have the fuzzy

membership degree under the threshold value. Finally, we

print the output to an XML file.

Now we describe how to calculate the fuzzy membership

degrees in detail. After we have some result set that was

obtained from a standard XQuery query, we calculate the

fuzzy membership degree for every element of the result set.

We walk the Fuzzy XQuery tree and find the WHERE node.

Next, we traverse the whereclause subtree. If the current

node represents a conjunction (AND) or disjunction (OR)

node, we calculate the global constraint satisfaction degree

() by calling the Łukasiewicz triangular norm (TL) function

or the Łukasiewicz triangular conorm (SL) function,

respectively. However, if the current node is an operator (=,

!=, <, <=, >, >=), we walk its child node and check the type

of the child node. If it is “/”, we get the variable after this

node. On the other hand, if it is a fuzzy constant (ling, tri,

trap, interval or fs), we read the linguistic variable or offsets

after this node. After that, we check the type of the operator.

We calculate the membership degree by calling the

compatibility operation module when an operator is an

equality operator (=) or inequality operator (!=). However, if

the operator is a relational operator (<, <=, >, >=), we call the

fuzzy ordering module. Finally, if there is a child node with a

priority expression, we aggregate the obtained value with a

priority using the triangular product conorm (SP).

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the execution of the process of

Fuzzy XQuery query with an example. Suppose that we have

a Fuzzy XQuery query as in Listing 1 that retrieves the

students who are of young age and their height is more than

150 cm with the priority 0.6 and 0.3, respectively. In addition,

we define the threshold value equal to the 0.5 meaning that

we want the results that have the global constraint satisfaction

degree more than 0.5.

Listing 1: An example of a Fuzzy XQuery query

for $x in document("student.xml") where $x/GPA >2.75 and

$x/age = #ling(’young’)# priority 0.6 and

$x/height > #tri(100,150,200)# priority 0.3

Threshold 0.5

return $x

Let us now describe how to calculate this Fuzzy XQuery.

First of all, we transform the Fuzzy XQuery to a standard

XQuery by removing the fuzzy expressions, priority

expressions and threshold expression as shown in Listing 2.

Listing 2: Transformation a Fuzzy XQuery to a standard XQuery query

for $x in document("student.xml")

where $x/GPA >2.75 return $x

Journal of Telecommunication, Electronic and Computer Engineering

96 e-ISSN: 2289-8131 Vol. 9 No. 2-2

Figure 2: Activity diagram for executing a Fuzzy XQuery

Second, we get the result set after we send the standard

XQuery to the database. Third, we send the results back to the

interpreter to calculate the global constraint satisfaction

degree by calling CalculateMembershipFunction. In this

function, the system will remove the non-fuzzy conditions

from the Fuzzy XQuery, which in this example is “$x/GPA

>2.75”, as in Listing 3.

Listing 3: The Fuzzy XQuery after removing the non-fuzzy node

for $x in document("student.xml")

where $x/age = #ling(’young’) priority 0.6 and

$x/height > #tri(100,150,200)# priority 0.3

Threshold 0.5 return $x

We use the concept of GPFCSP (as in the preceding

section) to calculate the global constraint satisfaction degree

for all the result set in step two by using the Equation (4).

 = TL(SP(fR1

 (v),1- ρ(fR1
)), SP(fR2

 (v),1- ρ(fR2
))) (4)

In the Equation (4), f

iR is the fuzzy constraint i and
f

iR
 is

the satisfaction degree of constraint f

iR . The priority of each

constraint is represented by the function ρ(f

iR). The greater

value of ρ(f

iR) means that the constraint f

iR is more

important. In this example, the constraint
fR1 : age is more

important than the constraint fR2
: height because the priority

value of the constraint age is 0.6 but the priority value of the

constraint height is 0.3. It is noticeable that we use the TL

because of the conjunction AND in this Fuzzy XQuery. The

SP is used to aggregate with priority.

Let us assume that we have the student data in the XML

file as in Listing 4 and the result set from the standard XQuery

is shown in Listing 5. It is noticeable that Ana’s GPA is not

greater than 2.75. Consequently, the result in Listing 5 does

not show Ana’s record.

We calculate the constraint satisfaction degree

(𝜇
𝑅𝑖

𝑓) for every constraint and every student as in Table 1.

Table 1
The constraint satisfaction degrees of every constraint and every student

Name 𝜇
𝑅1

𝑓 𝜇
𝑅2

𝑓

John 0 0.5

Peter 0.8 0.5
Alex 1 1

In the case of the first constraint age, these degrees are

obtained directly as the values of the corresponding

membership functions of the young linguistic fuzzy variable

at the given point of the age data. Suppose that we define the

linguistic value of young in an XML document whose

membership function have the left fuzzy shoulder which can

be seen in Figure 3. However, with the second constraint

height, we calculate fR2

 by using the fuzzy ordering

modules since the type of the fuzzy constant is tri and the

operator is >. If we substitute µ(f

iR) and ρ(f

iR) for the first

student (John) into the Equation (4), we obtain the following:

John= TL(SP(0,1-0.6), SP(0.5,1-0.3)) (5)

Therefore, we obtain the global constraint satisfaction

degree of John as follows:

John= TL(SP(0,0.4), SP(0.5,0.7)) = TL (0.4,0.85) = 0.25 (6)

A GPFCSP-Based Fuzzy XQuery Interpreter

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 97

Listing 4: The snippet of student data

<?xml version= “1.0” encoding=“UTF-8”?>

<students>

 <student>

 <name>John</name>

 <GPA>3.5</name>

 <age>25</age>

 <height>170</height>

 </student>

 <student>

 <name>Peter</name>

 <GPA>3.0</name>

 <age>21</age>

 <height>165</height>

 </student>

 <student>

 <name>Ana</name>

 <GPA>2.5</name>

 <age>22</age>

 <height>180</height>

 </student>

 <student>

 <name>Alex </name>

 <GPA>2.8</name>

 <age>20</age>

 <height>tri(150,200,250)</height>

 </student>

</students>

Listing 5: The result set from standard XQuery in Listing 2

<?xml version= “1.0” encoding=“UTF-8”?>

<students>

 <student>

 <name>John</name>

 <GPA>3.5</name>

 <age>25</age>

 <height>170</height>

 </student>

 <student>

 <name>Peter</name>

 <GPA>3.0</name>

 <age>21</age>

 <height>165</height>

 </student>

 <student>

 <name>Alex </name>

 <GPA>2.8</name>

 <age>20</age>

 <height>tri(150,200,250)</height>

 </student>

</students>

The other students are calculated in the same way and are

given in Table 2.

Figure 3: Membership function of young

Table 2

The global constraint satisfaction degrees () of every student

Name 

John 0.25

Peter 0.73

Alex 1

Finally, because of the threshold value, the system will

print the results which have the global constraint satisfaction

degree more than 0.5 as shown in Listing 6.

Listing 6: The final result set

<?xml version= “1.0” encoding=“UTF-8”?>

<results>

 <student>

 <name>Peter</name>

 <alpha>0.73</alpha>

 </student>

 <student>

 <name>Alex</name>

 <alpha>1.0</alpha>

 </student>

</results>

VI. CONCLUSION

In this paper, we present an approach that uses the fuzzy set

theory that can manage the imprecise, vague, ambiguous,

uncertain or incomplete data with XML technology. We have

proposed extensions for the XQuery query language in order

to handle flexible fuzzy queries that provide priority,

threshold and fuzzy expressions. Furthermore, we implement

an interpreter for this language and web GUI using Java

programming language and eXist-db. The GPFCSP concept

is used to calculate the global constraint satisfaction degrees.

In the future, we plan to test the performance of our

application with different case studies and develop a more

modern web application using AngularJS.

ACKNOWLEDGEMENT

This work was supported by the budget revenue from

Prince of Songkla University and Faculty of Science, Prince

of Songkla University, Thailand, through the project no.

SCI570329S: A Fuzzy XML Database System and partially

supported by the Ministry of Education and Science of the

Republic of Serbia, through the project no. 174023:

Intelligent techniques and their integration into the wide-

spectrum decision support.

REFERENCES

[1] Škrbić, S., Racković, M. and Takaši, A. 2013. Prioritized fuzzy logic
based information processing in relational databases. Knowledge Based

Systems. 38:62–73.

[2] Škrbić, S., Racković, M. 2013. Fuzzy Databases. Novi Sad, Serbia:
Faculty of Sciences.

[3] Škrbić, S. and Racković, M. 2009. Pfsql: a fuzzy sql language with

priorities. The 4th International Conference on Engineering
Technologies (ICET), 2009 Novi Sad, Serbia. 28-30 April 2009. 119–

125.

[4] Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., and
Spoletini, P. 2009. A fuzzy extension of the XPath query language.

Journal of Intelligent Information Systems. 33:285–305.

[5] Goncalves, M. and Tineo, L. 2010. Fuzzy XQuery. In Soft Computing
in XML Data Management. Series Studies in Fuzziness and Soft

Computing. Ma, Z. and Yan, L. (ed.) Springer Berlin/Heidelberg.

255:133–163.
[6] Fredrick, E. T. and Radhamani, G. 2009. Fuzzy logic based XQuery

operations for native XML database systems. International Journal

Database Theory and Application. 2:13–20.
[7] Fredrick, E. T. and Radhamani, G. 2010. A GUI based tool for

generating XQuery and fuzzy XQuery. International Journal of

Computer Applications Database Theory and Application. 1:54–58.
[8] Fredrick, E. T. and Radhamani, G. 2011. Information retrieval using

XQuery processing techniques. International Journal of Database

Management Systems (IJDMS). 3:50–58. Feb, 2011.
[9] Fredrick, E. T. and Radhamani, G. 2012. Fuzzy integrity constraints for

native xml database. International Journal of Computer Science

(IJCSI). 9:50–58. Mar, 2012.
[10] Panić, G., Škrbić, S. and Racković, M. 2014. Fuzzy xml and prioritized

fuzzy xquery with implementation. Journal of Intelligent and Fuzzy
Systems. 26:303–316.

young

1

age (years)
25 0 20

µ(x)

Journal of Telecommunication, Electronic and Computer Engineering

98 e-ISSN: 2289-8131 Vol. 9 No. 2-2

[11] Sukpisit, S., Kansomkeat, S., Thadadech, A., Ueng, P. S. and Škrbić,

S. 2015. Polygon intersection based algorithm for fuzzy set
compatibility calculations. 2015 International Conference on

Information Technology (ICIT), 2015. Singapore. 2-3 Feb. 2015. 241–

248.
[12] Bodenhofer, U. 2008. Orderings of fuzzy sets based on fuzzy orderings

part i: The basic approach. Mathware Soft Computing. 15:201–218.

[13] Kansomkeat, S., Sukpisit, S., Thadadech, A., Ueng, P. S. and Škrbić,
S. 2015. Fuzzy ordering implementation applied in fuzzy XQuery. 5th

International Conference on Information Society and Technology

(ICIST), 2015. Kopaonik, Serbia. 8-11 March 2015. 443–448.
[14] Thadadech, A., Kansomkeat, S., Vonghirandecha, P. and Škrbić, S.

2015. A Fuzzy XML Database System. Final report of collaborative

research. Prince of Songkla University, Thailand.
[15] eXistdb project. 2014. eXistdb. [Online]. From:

http://existdb.org/exist/apps/homepage/index.html. [Accessed on 3

July 2015].
[16] Parr, T. 2012. ANTLR v3. [Online]. From: http://www.antlr3.org.

[Accessed on 10 June 2015.

http://www.antlr3.org/

