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Abstract—Noise as an unwanted factor always degrades the 

edge detection performance. Exploiting real edges under noise 

contaminated condition has been a challenge in the edge 

detection issue, especially when the noise power is high. This 

paper presents a robust edge detection method in a noisy 

condition based on the 1D wavelet transform domain as a 

solution for the noise problem. First of all, a new group of 

wavelet basis functions for the edge detection is introduced. 

Then, a basic ramp function is modeled by a Gaussian 

approximation, and edge detection according to introduced bases 

derived from relevant formulas is discussed. We develop the 

multiscale production method and present a new algorithm to 

reinforce real peaks and suppress fake edges. Finally, the 

simulation results of the edge detecting for the noisy uniform step 

edge are provided to evaluate proposed algorithm efficiency. The 

results showed that our scheme is more effective than the 

production of adjacent coefficients method in the low signal to 

noise ratio condition. 

 

Index Terms—Wavelet Transform; Edge Detection; Gaussian 

Filter; Multiscale Analysis; Wavelet Basis Function; Step Edge; 

Multiplying Scales. 

 

I. INTRODUCTION 

 

A major problem in the edge detection issue is the presence of 

noise. Real scenes, signals and images are contaminated by 

noise and distinguishing between correct edges and fake edges 

is difficult, especially in low SNR cases because they both 

have high frequency characteristics (signal details and noise). 

Traditionally, the maximum modulus of points along the 

gradient direction that is larger than the threshold has been 

considered as edges. The classical edge detectors, such as 

Roberts, Prewitt and Sobel use a small mask to cover the 

image: Although these detectors are simple to use, they are 

weak in noisy or blurred images. They can perform well when 

the edge is laid in certain orientation only.  

An approach that provides an efficient method of obtaining 

scaled edge map outputs by directly using linear combinations 

of edge map outputs obtained at the lowest scale has been 

presented [1]. A noise-robust color edge detector using 

gradient matrix and anisotropic Gaussian directional 

derivative (ANDD) matrix has been proposed and the results 

have been compared with color Canny edge detector [2]. A 

novel method based on entropy-driven gradient evaluation (P-

Edge) for detecting perceptual edges that represent boundaries 

of objects has been proposed [3]. In this method, P-Edge is 

characterized by iteratively employing a shape-changeable 

mask centered at a target pixel to sample gradient orientations 

of neighboring pixels for measuring the directivity of the 

target pixel. In recent years, the edge detection by the wavelet 

transform is developed in image processing and computer 

vision fields [4-8]. 

In this paper, a set of wavelet basis functions based on odd 

derivations of Gaussian smooth filter is introduced. Gaussian 

filter has the optimal localization in the spatial and frequency 

domain. Hence, it is considered as a basic edge detector in this 

article. A Gaussian family filter, i.e. Gabor filter has been 

considered [9], and optimal parameters of the step edge 

detector have been derived [10]. However, this approach does 

not cover other types of the edge.  

Zhang and Bao have proposed a wavelet based edge 

detection scheme by scale multiplication [11]. The dyadic 

wavelet transformed at the two adjacent scales is multiplied as 

a product function to magnify the edge structures and suppress 

the noise. They determined the edges as the local maxima 

directly in the scale product after an efficient thresholding. It 

has shown that the scale multiplication achieves better results 

than either of the two scales, especially on the localization 

performance. However, some fake edges remained and were 

not deleted. 

One of the most bolded research is the work of Canny [12]. 

He introduced Gaussian filter as optimal edge detectors and 

presented three optimal criteria for designing edge filters 

based on local maxima, which have been used until now. 

To have a detection with less noise or blurred condition, we 

combine multi-resolution and multi-derivation Gaussian filter 

to open a new computer vision idea in the edge detection. The 

proposed algorithm can effectively suppress noise and produce 

proper edges. 

This paper is organized as follows: Section 2 is dedicated to 

the study of the proposed wavelet bases. In this section, the 

new wavelet basis functions are introduced. Section 3 

discusses the ramp edge detection. A ramp edge is 

approximated by Gaussian filtering of a step edge function. 

This modified model helps us to reach an easier relationship. 

Then, an edge detection algorithm based on proposed bases is 

introduced; that is the subject of Section 4. In this section, the 

performance of the proposed scheme on the ideal and on the 

noisy uniform step edge is described. Three noise conditions 

are considered: low, medium and high. In each condition, the 

proposed method is described and the results are shown in 

relevant figures for comparison. The introduced algorithm can 

develop across the scale. This is the motivation to compare 
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our work with Zhang’s method [11] at the end of this section. 

Finally, the conclusion and discussion of the paper are devoted 

in Section 5. 

 

II. PROPOSED WAVELET BASIS FUNCTIONS 

 

Let 𝜃(𝑥) be a differentiable smooth function which its 

integral over (−∞,+∞) is 1 and converges to 0 at ±∞ (fast 

reduces at ±∞) . Assuming that 𝑔(𝑥) be a Gaussian filter with 

variance 𝜎2 and zero, it means that: 

 

𝑔(𝑥) =
1

√2𝜋𝜎
𝑒
−
𝑥2

2𝜎2 (1) 

 

The Gaussian filter is a smooth or primitive function 

because its integral over [−∞,+∞] is 1 and reaches to zero in 

infinity. Canny used the first derivative of the Gaussian filter 

for edge detecting and introduced it as the optimal edge 

detector [12]. We develop this idea to the higher order 

derivation of the Gaussian filter. Let wavelet 𝜓𝑛(𝑥) be the nth 

order derivative of 𝑔(𝑥). With this assumption, we have: 

 

𝜓𝑛(𝑥) =
𝑑𝑛𝑔(𝑥)

𝑑𝑥𝑛
                   𝑛 = 1,2, … (2) 

 

We introduce odd nth order derivative of Gaussian smooth 

filter as wavelet bases. Assuming that 𝑔𝑠(𝑥) is a Gaussian 

filter at the scale s: 

 

𝑔𝑠(𝑥) =
1

√2𝜋𝑠
𝑒
−
𝑥2

2𝑠2  (3) 

 

The scaled function of  𝜓(𝑥) is denoted by 𝜓𝑠(𝑥) and 

would be defined as: 

 

𝜓𝑠
𝑛(𝑥) = 𝑠𝑛

𝑑𝑛𝑔𝑠(𝑥)

𝑑𝑥𝑛
 (4) 

 

We use these wavelet functions to reach the ramp edge 

detection and step edge detection as described in the following 

subsection. 

 

A. Ramp Edge Detection 

In the noisy condition, the step shape is more similar to a 

ramp rather a step. So, it is essential to study the performance 

of the ramp edge as a real shape in signals. It can be assumed 

that a ramp is an output of the step function through a 

Gaussian smooth filter. In this situation, the slope of the ramp 

edge can be modeled by the slope of the output function in the 

break point [13]. Let 𝑔𝜎(𝑥) be a smoothing Gaussian filter 

with variance 𝜎2 as: 

 

𝑔𝜎(𝑥) =
𝑒
−
𝑥2

2𝜎2

√2𝜋𝜎
 

(5) 

Therefore, the output of the unit step function through the 

Gaussian filter would be: 

𝑢−1(𝑥) ∗ 𝑔𝜎(𝑥) =

erf (
𝑥

√2𝜋𝜎
) + 1

2
 

(6) 

 

where erf (𝑥) is the error function [14]. Figure 1 illustrates this 

approximation for the different sigma.  

 
Figure 1: An approximation of the ramp by the convolution of the step 

signal and Gaussian filter 
 

The slope of the tangent line is the derivation of Equation 

(6) at 𝑥 = 0. 

 

𝑚 =
𝑑

𝑑𝑥
𝑢−1(𝑥) ∗ 𝑔𝜎(𝑥)|

𝑥=0
=

1

√2𝜋𝜎
 (7) 

 

If the equivalent edge width is denoted by ∆𝐿 as shown in 

Figure 1, we will have: 

 

𝑚 =
1

∆𝐿
 (8) 

 

Equation (8) indicates that there is a reverse relationship 

between width ∆𝐿 and slope m. The ramp model 𝑦(𝑥) as a 

piecewise function is formulated as: 

 

𝑦(𝑥) =

{
 
 
 

 
 
 1                                              

𝜋𝜎

√2
≤ 𝑥

𝑥

√2𝜋𝜎
+
1

2
                    −

𝜋𝜎

√2
≤ 𝑥 ≤

𝜋𝜎

√2

0                                         𝑥 ≤ −
𝜋𝜎

√2
  

 (9) 

We use the function 𝑦(𝑥) instead of the ramp function. This 

approximation makes the problem easier to be solved. So: 

 

𝑟(𝑥) = 𝑢−1(𝑥) ∗ 𝑔𝜎(𝑥) ≅ 𝑦(𝑥) (10) 
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where, 𝑟(𝑥) is an approximation model of 𝑦(𝑥) in this 

equation. Near to the zero amount of ∆𝐿, the approximation 

model equals to the step edge i.e. 

 

∆𝐿 → 0 ∶   𝑚 → arctan(∞)  ∶   𝑦(𝑥) → 𝑢−1(𝑥) (11) 

 

It is possible to measure root square error of this 

approximation. This criterion helps us to find the deviation of 

the approximate model from the real signal. It is defined and 

calculated as: 

 

𝑅𝑆 = √∫ (𝑢−1(𝑥) ∗ 𝑔𝜎(𝑥) − 𝑦)
2𝑑𝑥

+∞

−∞

=

√
  
  
  
  
  
  
  
  
  

∫ (

erf (
𝑥

√2𝜋𝜎
) + 1

2
)

2

−
𝜋𝜎

√2

−∞

𝑑𝑥 +

∫ (

erf (
𝑥

√2𝜋𝜎
)

2
−

𝑥

√2𝜋𝜎
)

2
𝜋𝜎

√2

−
𝜋𝜎

√2

𝑑𝑥 +∫ (

erf (
𝑥

√2𝜋𝜎
)

2
−
1

2
)

2

∞

𝜋𝜎

√2

𝑑𝑥

 

(12) 

 

After simplifying the formula, we reach to: 

 

𝑅𝑆 = √0.0178𝜎        (13) (13) 

 

Root Square Error of this approximation versus sigma is 

traced in Figure 2. With reference to this figure, it is clear that 

by increasing the sigma, the line slope will be reduced, and the 

error approximation increases. 

 
 

Figure 2: Root square error of the ramp approximation versus sigma 
 

 For the introduced wavelet basis functions, we have: 

                𝑊𝑠
𝑛𝑓(𝑥) = 𝑟(𝑥) ∗ 𝜓𝑠

𝑛(𝑥)

= 𝑠𝑛𝑢−1(𝑥) ∗ 𝑔𝜎(𝑥) ∗
𝑑𝑛𝑔𝑠(𝑥)

𝑑𝑥𝑛

= 𝑠𝑛
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑔
√𝑠2+𝜎2

 (𝑥) 

(14) 

 

Assume 𝜓𝑠
𝑛(𝑥) is defined at the finest resolution s=1. 

Figure 3 shows wavelet coefficients of the approximated ramp 

in this case. 

 
 

Figure 3: Wavelet ramp responses in scale=1 and sigma=1 
 

B. Step Edge Detection 

In this section, we demonstrate the performance of the 

introduced wavelet basis functions in the step edge detection 

and improved the algorithm with the use of multiplication of 

responses.  

The technique of scales multiplication was first introduced 

by Rosenfeld [15] and developed by Bao [16], Zhang [11] and 

Zhu [9]. Multiscale product decreases the input noise 

correlation. We used this procedure to reinforce the edge 

amplitude and suppress the noise power, not only across the 

scale but also across the derivations n. Figure 4 illustrates the 

step edge responses by introducing the bases and multiplying 

them without noise at the scale=1. 

If we consider a noiseless step signal, single 𝑊𝑛 or Π𝑊𝑛 

with small 𝑛 (i.e. 𝑊1 ×𝑊3 or 𝑊3 ×𝑊5 ) is suitable for a 

breakpoint detection, with less amplitude and location error in 

these selections. However, low SNR 𝑊𝑛 and Π𝑊𝑛 with 

greater 𝑛 is suitable in noisy conditions. Further, in higher 

scales, amplitudes are better distinguished because of the 

suppressing noise. The use of higher multiplication across the 

derivation leads to sharper peaks. Three cases are discussed to 

clarify the matter. 

 

i. SNR= 17 dB 

First, we study the high Signal to Noise Ratio case. The 

results of the noisy step function are traced in Figure 5 at the 

finest scale=1. The signal is corrupted with AWGN. 

In high SNR mode, every basis can be solely used to detect 

the edge. Because the power of the noise is too weak and 

cannot influence the decision significantly, using the product 

of bases in this case is not necessary. In this case, the edge 

exploiting from 𝑊1 is a better choice. 

 

ii. SNR=10 dB 

Figure 6 illustrates the responses of the noisy step edge with 

SNR=10 dB and scale s=1. Focus on this Figure, we 

understand that the second column, the multiplication of 

adjacent responses, is more suitable for the edge detection 

(𝑊1 ×𝑊3 or 𝑊1 ×𝑊3 ×𝑊5 or 𝑊1 ×𝑊3 ×𝑊5 ×𝑊7 ).  
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iii. SNR=0.5 dB 

In this case, the step edge is contaminated crucially by 

noise. As shown in Figure 7, the product of higher responses 

(𝑊1 ×𝑊3 ×𝑊5 or 𝑊1 ×𝑊3 ×𝑊5 ×𝑊7) is more effective 

to detect the edge and suppress noise.  

 

 
 

Figure 4: Step responses, single and multiplication at scale=1 

 

 
 

Figure 5: Noisy step responses in SNR=17 dB and s=1 
 

 
 

Figure 6: Noisy step responses in SNR=10 dB and s=1 

 

These diagrams were traced in the resolution of s=1. It is 

possible to proceed across the scale and reach similar 

responses. A comparison between our method and Zhang 

method [11] is illustrated in Figure 8. Zhang’s algorithm has 

been based on the multiplication of adjacent wavelet 

coefficients to reinforce the real peaks, but it is poor in the 

noise blocking. As shown in this Figure, our method is more 

powerful to eliminate pseudo edges created by noise. In fact, 

our response has a sharper peak in the break point. 

Figure 9(a) shows a step edge corrupted with Gaussian 

white noise. Figure 9(b) and 9(c) are the edge detection results 

of the Zhang’s and our method. Pratt [17] introduced a 

criterion that shows the quantity performance of edge 

detection. This parameter is called figure of merit and it is 

defined as: 

 

𝐹 =
1

max {𝑁𝐼 , 𝑁𝐴}
∑

1

1 + 𝛼𝑑2(𝑖)

𝑁𝐴

𝑖=1

 (13) 

 

where 𝑁𝐼 is the number of true edges, and 𝑁𝐴 represents the 

number of marked edges by the detector algorithm. 𝛼 is a 

penalty scaling number that controls false edges, and similar 

to Pratt’s work, it is set at 1/9. d means the Euclidian distance  

between the point detected by the algorithm procedure and 

marked as the edge point and its actual edge in the reference 

map. 
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Figure 7: Noisy step responses in SNR=0.5 dB and s=1 

 

 
Figure 8: Step edge detection. A comparison between the production of 

adjacent coefficients which has been proposed by Zhang (left diagram) and 
our work, the production of adjacent coefficients and adjacent derivations 

(right diagram) in SNR= 0.1 dB 
 

These values are calculated and showed in Table 1. The 

results show that our method has higher figure of merit than 

Zhang’s method. 
Table 1 

The figure of merit values of the Zhang method and our method for the 
isolated step edge 

 

 Zhang method Our method 

Figure of merit 0.9929 0.9974 

 

The number of the multiplication of the coefficients (𝑠 and 

𝑛) depends on the degree of the noise refining. In higher 

scales, the edges are blurred and diluted, and this is a 

drawback of the edge detecting in high scales. We introduce 

the multiplication of wavelet coefficients across the 

derivations to achieve sharper peaks.  

The degree of freedom in our method is two (𝑠 and 𝑛); but 

degree of freedom in the multiscale wavelet is one (only 

scale). Thus, our method is more powerful than the multiscale 

analysis in the edge detection because our algorithm has a 

better fine-to-coarse performance and can adjust details with 

these two parameters. 
 

 

 
(a) Noisy step edge 

 
(b) Edge detection by Zhang method 

 
(c) Edge detection by our method 

 
Figure 9: Noisy step and edge maps 

  

III. CONCLUSION 

 

In this paper, we develop Canny edge detector and define 

new wavelet basis functions based on derivations of the 

Gaussian function. A ramp function is modeled and the edge 

detection by introduced bases is discussed. An accomplished 

algorithm is introduced and applied to the uniform step edge 

in the presence and absence of noise. Edge and noise can be 

better distinguished in the case of low SNR in the product of 

wavelet coefficients. It is also shown that the wavelet 

multiplication across the derivation achieves better results in 

the noise dilution and yields sharper peaks in comparison to 

either of the single wavelet responses. Moreover, our scheme 

has two freedom degrees (scale and the number of derivations) 

to compare multiresolution analysis with one freedom degree 

(only scale) to focus on details, control noise ability and solve 

edge detection problems. From the simulation results, it is 

obvious that our proposed scheme certainly has a better 

performance of inhibiting false responses wherever other edge 

detections have problems in low SNR condition.  
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