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Abstract— In the field of robotics, the quadrotors have rapidly 

gained interest and have made several breakthroughs involving 

it, which range from variable pitch to application of swarm 

robotics. With that said, this paper aims to also expand upon one 

of the current developments which is the automated landing of 

quadrotors on a designated landing zone. Without GPS, the 

prototype built in this research employs image processing 

techniques to detect the landing zone, as well as to determine the 

flight altitude. Using these information, the quadrotor is 

autonomously controlled via its control surfaces (throttle, roll 

and pitch) in order to perform the landing procedure. 

Additionally, the quadrotor is capable of tracking a moving 

target and safely land even with winds reaching up to 2.2m/s. 

 

Index Terms—Automatic Landing; Quadcopter; Target 

Detection; Vision-Based. 

 

I. INTRODUCTION 

 

Small-scale Unmanned Aerial Vehicles (UAVs), particularly 

multirotors, have been rapidly gaining interest among 

hobbyists and researchers alike. 

    Among the different types of multirotors is the quadrotor 

(also called quadcopter) - a lightweight craft propelled by four 

rotors. Quadrotors are popularly used for aerial photography 

and videography due to their great portability and lower cost, 

as compared to the traditional aerial shots using passenger 

helicopters. A rising sport, quadrotor racing, is also gradually 

earning the attention of hobbysists. In fact, the first ever 

World Drone Prix was held in Dubai last March 2016. There 

are also other quadrotor appplications including but not 

limited to surveillance [1] , mapping [2], and agriculture [3]. 

In the academe, quadrotors have seen several developments 

in the recent years and have since then used as a research 

platform for robotics, demonstration of artificial intelligence, 

flight control. [4] One of the interesting and challenging 

problems in quadrotor. 

 

 
 

Figure 1: A quadrotor diagram showing the corresponding rotation of each 

motor (M1 to M4) 

 

    Roberts et al. have presented a quadrotor which employs 

minimal sensing in order to autonomously operate the 

quadrotor indoors [5]. Their system uses four infrared sensors 

facing each side, which are for drift correction and 

positioning. They also used downwards-pointing ultrasonic 

sensor for altitude control. The control strategy involves 

sensing the distance from the walls and attempting to maintain 

the quadrotor in the same position. However, their system is 

severely limited to the range and accuracy of the infrared 

sensors. In their paper, they have tested their system to work 

well inside an obstacle-free room measuring 6m by 7m. It is 

uncertain whether the system would still be able to achieve 

the same success had the room been larger. 

    Venables also worked on autonomous quadrotor flight [6]. 

He used color blob detection algorithm to detect objects on 

the ground. His algorithm, however, is GPS assisted and may 

no longer be applicable for indoor applications. 

    A lot of researches also delved with complex mathematical 

models to accurately define the dynamics of the quadrotor and 

control it, such as [7] and [8]. There are also those that 

implement SRUKF, SLAM or other 3D localization 

techniques, such as in [9], [10] and [11], where the the vision 

data is fused with the GPS data to determine the attitude of 

the craft. The control strategy in these papers proved to be 

effective, but may be resource intensive and IMU sensors tend 

to suffer from accumulated error. Moreover, these require that 

a mathematical model, which must be accurate to the 

quadorotor build, be created to be able to estimate and predict 

states. 

    In this paper, we present a quadrotor capable of landing on 

a marked landing area inside a GPS-denied environment. The 

quadrotor relies on a mounted downward-facing camera both 

for target tracking and altitude control, even without fusing 

the vision data with IMU data. It is the aim to develop a 

simpler control strategy by using only object-detection 

techniques and PD controller. 

 

II. DESIGN AND IMPLEMENTATION 

 

A. System Overview 

    The prototype system presented in this research can be 

divided into two subgroups: the ground station and the 

quadrotor itself. The ground station is the front-end and it 

consists of a laptop computer and the radio controller. The 

laptop is dedicated for monitoring and data gathering. It 

receives wireless telemetry data sent from the quadrotor. The 

radio controller (RC)is used to control the quadrotor 

movement, as well as the activation of the autonomous 

function. 

    The Arduino-Raspberry Pi coordination is the core of this 

system. The Arduino is mostly for the autonomous control 

and data transmission, while the Raspberry Pi is dedicated for 

image processing. 

    The quadrotor can be controlled in all of its principal axes 

(roll, pitch, yaw) by the control surfaces (aileron, elevator, 

throttle, rudder). Each control surface has a channel (signal 

wires) connecting the corresponding ports from the RC 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/235221312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Telecommunication, Electronic and Computer Engineering 

42 e-ISSN: 2289-8131   Vol. 10 No. 1-6  

receiver to the flight controller. Normally, PWM signals are 

passed from RC receiver to the FC. These PWM signals are 

generated in accordance to the input of a human on the RC 

controller. To control the quadrotor autonomously, Arduino 

is inserted between the connection of RC receiver to FC, and 

the period or width of the PWM signals are timed using 

interrupts. With that in mind, the FC could also be controlled 

by generating appropriate PWM signals from Arduino, 

thereby effectively gaining control of the quadrotor through 

Arduino. 

 

 
 

Figure 2: Prototype of the quadrotor presented in this paper 
 

 

 
 

Figure 3: Complete block diagram of the system 

 

B. Control Strategy 

    The system has two modes of control: manual and 

automatic. In manual mode, the quadrotor can be controlled 

as usual, using the RC transmitter. In this mode, the user has 

the full control of the quadrotor movement. In automatic 

mode, once engaged, assumes control and performs its 

alignment and landing routine. 

 

 
 

Figure 4: Block diagram of RC Receiver, Arduino, and Flight Controller 

connection 

    The control mode could be switched on or off using the 

auxiliary switch on the RC transmitter. The landing area, 

however, should be already visible to the quadrotor to 

successfully engage the automatic mode. As a safety 

mechanism, the quadrotor retains the manual mode in case the 

user attempts to engage the automatic mode even without the 

landing area nearby. Take note that the control strategy 

presented in this paper does not include 3D navigation and 

thus requires the user to control the quadrotor except for the 

landing, where the automatic mode is already an option. The 

automatic mode can be subdivided into three sub-

components: Altitude-hold, Auto-align, and Autodescend. 

The altitude hold performs hovering at the instance the 

automatic mode is engaged. The process then proceeds to 

auto-align the quadrotor with respect to the center of the 

landing area using PD controllers for Aileron and Elevator. 

The algorithm regularly checks for the alignment of the 

quadrotor, and attempts realignment if the quadrotor drifts 

away. When the quadrotor is within an acceptable range near 

the center, it starts to decrease altitude. 

 

 
 

Figure 5: Flowchart for switching between Manual and Automatic Modes 

 

 
 

Figure 6 : Major blocks of the automatic mode 
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C. Landing Area Design 

    During experimentation, it was found out that a plain, 

circular red landing area cannot be detected correctly as the 

image processing algorithm fails to recognize a concrete 

contour once the quadrotor reaches lower heights during 

descent. Additionally, the camera’s settings also change to 

preserve the white balance on the frame, which may lead to 

adverse effects on the data gathered by it, one of which is the 

change in the hue.     The problem is resolved by adding 

concentric white circles, thereby allowing the algorithm to 

detect a good contour even at lower heights down to 0.25m. 

 

D. Vision-based Altitude Measurement 

    The altitude measurement can be done in two ways: (1) 

using the radius calculations from the object-detection and (2) 

using the ultrasonic sensor. The radius of the detected area is 

inversely proportional to the altitude. Hence, the altitude can 

be known from the calculated radius from the target detection. 

However, this depends on the presence of the landing area in 

the cameras field of vision. In case that there is no landing 

area detected or if the quadrotor has drifted away too much, 

the altitude measurement will depend on the readings from the 

ultrasonic sensor. This acts as a safety mechanism as solely 

relying on the vision-based system could potentially cause a 

crash in the event that it has no reference (landing area) from 

the ground. Moreover, the difference between the 

measurements of the ultrasonic and the vision-based altitude 

is checked. This is a redundancy system to make sure that the 

altitude measurement is stable (not erratic). 

 

 
 

Figure 7: Landing area design with white concentric circles. Radius of the 

largest red circle measures 0.2845m. 

 

    Due to the landing area having 3 regions at which the 

algorithm detects its radius, it would also need 3 equations in 

order to represent the relationship between the height and the 

radius. For clarities sake, the smallest circle would be called 

1st circle, the middle circle is the 2nd circle, and the largest 

circle is the 3rd circle. After experimentation, the 1st and 2nd 

circles’ radius to height relationship was able to produce 

linear equations which are, respectively: 

 

h =−0.091r +24.182 (1) 

h =−0.22r +66.08 (2) 

     

while the 3rd circle was not able to be defined by merely a 

linear equation, but instead a power equation was used in 

order to more accurately define the relationship. This equation 

is: 

 

 h =8733.8r−0.968 (3) 

     

Additionally, in order to properly define the switching of 

equations, the difference between the previous and current 

radius was compared to a set value, 40 in this case, since when 

the algorithm switches circles, there is an obvious difference 

on the radius, due to either the previous circle being bigger or 

smaller compared to the current circle. Thus, if this difference 

is negative, the equation used would transition from the bigger 

circles to the smaller circles, while if the difference is positive, 

the equation used would transition from the smaller circle’s to 

the bigger circle’s. Lastly, as a fail-safe the algorithm would 

automatically switch to the 3rd circle’s equation if the radius 

seen is smaller than a constant value, 85 in this case since this 

is the smallest radius the other circles may provide. 

 

E. Object-Detection 

    The script, written in Python, initializes the variables such 

as the mask values, frame resolution, and matrices. After this 

initialization, the script then starts to obtain the frames that the 

camera captures, which are then resized. 

 

 
 

Figure 8: Flowchart of the object-detection program showing the output per 

process block. 

 

The algorithms adopt the blob-detection technique 

resolution initialized beforehand. After which, the frame is 

then passed through a Gaussian filter to reduce the Gaussian 

noise present in the environment. Next, the frame is then 

converted into HSV color space from RGB in order to ease 

the process of color vision, which is more thoroughly 

explained in the previous section. Then the masks are used 

using the inRange function where its output would be a binary 

mask, where the white or foreground pixels are the parts 

which were allowed to pass by the mask. This mask is then 

processed through a series of erosions and dilations, 

collectively called morphologies. Opening, in which erosion 

is done followed by dilation, is done first. Then, the process 

is reversed closing, where dilation happens before erosion. 

These produce a frame that has reduced noise, while allowing 

the foreground to be more whole. After which, the 

findContours function is used in order to detect the white 

parts or blobs on the frame. The script would only go to the 

next step if it encounters at least one blob. In the case that it 

encounters multiple blobs, it would only recognize the largest 

blob using the max function. Afterwards, 

minEnclosingCircle() is used in order to determine the radius 
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and center of the blob, wherein it calculates the zeroth, and 

first order image moments to determine the centroid of the 

blob. As for the radius, it detects three points that form a line 

that passes through the blob, this lines length is then measured 

in order to determine the diameter, and subsequently the 

radius. If the radius of the blob is more than a set value the 

script proceeds, it calculates the distance of the center of the 

blob to the center of the camera. Lastly, the coordinates are 

then formatted by converting them into string. These are sent 

to the Arduino via serial. 

 

III. TESTING AND RESULTS 

 

A. Landing Area Shape 

    A shape test was conducted in order to determine the 

optimal shape for calculating the centroid of the target using 

the image moments method. This test would be evaluated by 

calculating the standard deviation of the coordinates per 

shape, which were gathered over a period of 30 seconds. Take 

note that the shapes and the quadrotor are fixed in position 

during the test period to avoid unnecessary jitters in the 

recording of the coordinates. From the results shown on Table 

1, the circle shape has the least deviation among the three 

shapes. Hence, it is chosen as the shape of the landing area 

and is used in the subsequent tests. 

 
Table 1  

Coordinate Deviation per Shape 

 

Coordinate Deviation 

Shape x y 

Circle 0.584463682 0.338848367 

Triangle 0.590398064 0.542359344 

Square 0.622039634 0.797724035 

 

B. Resolution vs Processing Time Test 

    The results conform with the hypothesis that higher 

resolutions would yield slower processing time, and vice 

versa. Thus, further experimentation was done in order to 

determine that the resolution/frequency which interacted with 

the flight control algorithm, wherein it produced the best 

behaviour during landing, was the 320 x 240 resolution with 

12.17 Hz frequency. Therefore, in the final implementation 

this resolution would be used. 

 
Table 2  

Processing Time per Camera Resolution 

 
Resolution (pixel x 

pixel) 

Ave Processing 

Time(s) 

Frequency 

(Hz) 

240 x 240 0.061124 16.36028 

250 x 250 0.071483 13.98939 

320 x 240 0.082202 12.16518 

320 x 320 0.108091 9.251472 

640 x 480 0.332845 3.004397 

 

C. Altitude Hold Test 

    The desired altitude is set around 1.57 meters and the data 

is recorded for 35 seconds. Figure 9 shows the graph between 

the vision-based altitude values and the desired altitude. The 

maximum absolute error calculated from the actual 

visionbased data is 0.1119 meters. 

 
 

Figure 9: Vision-based altitude compared to the desired 
 

IV. CONCLUSION 

 

With the recent rise of drone usage and technology, the 

number of users who are opting to use drones in their field of 

study and expertise have also risen, but with the drones 

difficulty of control it may not be as simple as buying one and 

using it right after without proper experience as the drone may 

experience crashes, and such. One particular reason for 

crashes is during landing, especially in enclosed areas due to 

the low maneuverability inherent to such areas. As such, the 

researchers have provided a different means to alleviate these 

concerns with the use of a quadrotor with camera attachment 

that possesses an algorithm that allows it to land on a specific 

target with the flip of a button. This algorithm allows the 

quadrotor to land on a stationary circular red target, for 10 

tests, where the algorithm was engaged at a starting altitude 

averaging at 1.72m, it produced an average deviation of 0.11 

m, measured from the center of the landing area to the center 

of the quadrotor, and a landing time averaging to 7.87 

seconds. This data shows a significant improvement to the 

control test, where it lands without tracking the target, due to 

it having an average deviation of 1.47 m away from the target, 

over 10 tests. This calculates to a reduction of deviation of 

92.52%. Additionally, the algorithm was also tested for when 

the targets was moved by 1 m, and when the quadrotor was 

subjected to wind speeds of 2.2m/s, where it produced an 

average deviation of 0.14 m and 0.12 m, respectively. 
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