

 e-ISSN: 2289-8131 Vol. 10 No. 1-6 41

Development of a Quadrotor with Vision-Based

Target Detection for Autonomous Landing

Gervin Ernest C. Guevarra, Allen Rafael Tatsuya S. Koizumi, John Nicholas B. Moreno,

Jeremy Christian B. Reccion, Carl Michael O. Sy and Jay Robert B. del Rosario
Department of Electronics and Communications Engineering, Gokongwei College of Engineering,

De La Salle University-Manila, 2401Taft Ave., Malate, Manila 1004, Philippines

Abstract— In the field of robotics, the quadrotors have rapidly

gained interest and have made several breakthroughs involving

it, which range from variable pitch to application of swarm

robotics. With that said, this paper aims to also expand upon one

of the current developments which is the automated landing of

quadrotors on a designated landing zone. Without GPS, the

prototype built in this research employs image processing

techniques to detect the landing zone, as well as to determine the

flight altitude. Using these information, the quadrotor is

autonomously controlled via its control surfaces (throttle, roll

and pitch) in order to perform the landing procedure.

Additionally, the quadrotor is capable of tracking a moving

target and safely land even with winds reaching up to 2.2m/s.

Index Terms—Automatic Landing; Quadcopter; Target

Detection; Vision-Based.

I. INTRODUCTION

Small-scale Unmanned Aerial Vehicles (UAVs), particularly

multirotors, have been rapidly gaining interest among

hobbyists and researchers alike.

 Among the different types of multirotors is the quadrotor

(also called quadcopter) - a lightweight craft propelled by four

rotors. Quadrotors are popularly used for aerial photography

and videography due to their great portability and lower cost,

as compared to the traditional aerial shots using passenger

helicopters. A rising sport, quadrotor racing, is also gradually

earning the attention of hobbysists. In fact, the first ever

World Drone Prix was held in Dubai last March 2016. There

are also other quadrotor appplications including but not

limited to surveillance [1] , mapping [2], and agriculture [3].

In the academe, quadrotors have seen several developments

in the recent years and have since then used as a research

platform for robotics, demonstration of artificial intelligence,

flight control. [4] One of the interesting and challenging

problems in quadrotor.

Figure 1: A quadrotor diagram showing the corresponding rotation of each

motor (M1 to M4)

 Roberts et al. have presented a quadrotor which employs

minimal sensing in order to autonomously operate the

quadrotor indoors [5]. Their system uses four infrared sensors

facing each side, which are for drift correction and

positioning. They also used downwards-pointing ultrasonic

sensor for altitude control. The control strategy involves

sensing the distance from the walls and attempting to maintain

the quadrotor in the same position. However, their system is

severely limited to the range and accuracy of the infrared

sensors. In their paper, they have tested their system to work

well inside an obstacle-free room measuring 6m by 7m. It is

uncertain whether the system would still be able to achieve

the same success had the room been larger.

 Venables also worked on autonomous quadrotor flight [6].

He used color blob detection algorithm to detect objects on

the ground. His algorithm, however, is GPS assisted and may

no longer be applicable for indoor applications.

 A lot of researches also delved with complex mathematical

models to accurately define the dynamics of the quadrotor and

control it, such as [7] and [8]. There are also those that

implement SRUKF, SLAM or other 3D localization

techniques, such as in [9], [10] and [11], where the the vision

data is fused with the GPS data to determine the attitude of

the craft. The control strategy in these papers proved to be

effective, but may be resource intensive and IMU sensors tend

to suffer from accumulated error. Moreover, these require that

a mathematical model, which must be accurate to the

quadorotor build, be created to be able to estimate and predict

states.

 In this paper, we present a quadrotor capable of landing on

a marked landing area inside a GPS-denied environment. The

quadrotor relies on a mounted downward-facing camera both

for target tracking and altitude control, even without fusing

the vision data with IMU data. It is the aim to develop a

simpler control strategy by using only object-detection

techniques and PD controller.

II. DESIGN AND IMPLEMENTATION

A. System Overview

 The prototype system presented in this research can be

divided into two subgroups: the ground station and the

quadrotor itself. The ground station is the front-end and it

consists of a laptop computer and the radio controller. The

laptop is dedicated for monitoring and data gathering. It

receives wireless telemetry data sent from the quadrotor. The

radio controller (RC)is used to control the quadrotor

movement, as well as the activation of the autonomous

function.

 The Arduino-Raspberry Pi coordination is the core of this

system. The Arduino is mostly for the autonomous control

and data transmission, while the Raspberry Pi is dedicated for

image processing.

 The quadrotor can be controlled in all of its principal axes

(roll, pitch, yaw) by the control surfaces (aileron, elevator,

throttle, rudder). Each control surface has a channel (signal

wires) connecting the corresponding ports from the RC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/235221312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

42 e-ISSN: 2289-8131 Vol. 10 No. 1-6

receiver to the flight controller. Normally, PWM signals are

passed from RC receiver to the FC. These PWM signals are

generated in accordance to the input of a human on the RC

controller. To control the quadrotor autonomously, Arduino

is inserted between the connection of RC receiver to FC, and

the period or width of the PWM signals are timed using

interrupts. With that in mind, the FC could also be controlled

by generating appropriate PWM signals from Arduino,

thereby effectively gaining control of the quadrotor through

Arduino.

Figure 2: Prototype of the quadrotor presented in this paper

Figure 3: Complete block diagram of the system

B. Control Strategy

 The system has two modes of control: manual and

automatic. In manual mode, the quadrotor can be controlled

as usual, using the RC transmitter. In this mode, the user has

the full control of the quadrotor movement. In automatic

mode, once engaged, assumes control and performs its

alignment and landing routine.

Figure 4: Block diagram of RC Receiver, Arduino, and Flight Controller

connection

 The control mode could be switched on or off using the

auxiliary switch on the RC transmitter. The landing area,

however, should be already visible to the quadrotor to

successfully engage the automatic mode. As a safety

mechanism, the quadrotor retains the manual mode in case the

user attempts to engage the automatic mode even without the

landing area nearby. Take note that the control strategy

presented in this paper does not include 3D navigation and

thus requires the user to control the quadrotor except for the

landing, where the automatic mode is already an option. The

automatic mode can be subdivided into three sub-

components: Altitude-hold, Auto-align, and Autodescend.

The altitude hold performs hovering at the instance the

automatic mode is engaged. The process then proceeds to

auto-align the quadrotor with respect to the center of the

landing area using PD controllers for Aileron and Elevator.

The algorithm regularly checks for the alignment of the

quadrotor, and attempts realignment if the quadrotor drifts

away. When the quadrotor is within an acceptable range near

the center, it starts to decrease altitude.

Figure 5: Flowchart for switching between Manual and Automatic Modes

Figure 6 : Major blocks of the automatic mode

Development of a Quadrotor with Vision-Based Target Detection for Autonomous Landing

 e-ISSN: 2289-8131 Vol. 10 No. 1-6 43

C. Landing Area Design

 During experimentation, it was found out that a plain,

circular red landing area cannot be detected correctly as the

image processing algorithm fails to recognize a concrete

contour once the quadrotor reaches lower heights during

descent. Additionally, the camera’s settings also change to

preserve the white balance on the frame, which may lead to

adverse effects on the data gathered by it, one of which is the

change in the hue. The problem is resolved by adding

concentric white circles, thereby allowing the algorithm to

detect a good contour even at lower heights down to 0.25m.

D. Vision-based Altitude Measurement

 The altitude measurement can be done in two ways: (1)

using the radius calculations from the object-detection and (2)

using the ultrasonic sensor. The radius of the detected area is

inversely proportional to the altitude. Hence, the altitude can

be known from the calculated radius from the target detection.

However, this depends on the presence of the landing area in

the cameras field of vision. In case that there is no landing

area detected or if the quadrotor has drifted away too much,

the altitude measurement will depend on the readings from the

ultrasonic sensor. This acts as a safety mechanism as solely

relying on the vision-based system could potentially cause a

crash in the event that it has no reference (landing area) from

the ground. Moreover, the difference between the

measurements of the ultrasonic and the vision-based altitude

is checked. This is a redundancy system to make sure that the

altitude measurement is stable (not erratic).

Figure 7: Landing area design with white concentric circles. Radius of the

largest red circle measures 0.2845m.

 Due to the landing area having 3 regions at which the

algorithm detects its radius, it would also need 3 equations in

order to represent the relationship between the height and the

radius. For clarities sake, the smallest circle would be called

1st circle, the middle circle is the 2nd circle, and the largest

circle is the 3rd circle. After experimentation, the 1st and 2nd

circles’ radius to height relationship was able to produce

linear equations which are, respectively:

h =−0.091r +24.182 (1)

h =−0.22r +66.08 (2)

while the 3rd circle was not able to be defined by merely a

linear equation, but instead a power equation was used in

order to more accurately define the relationship. This equation

is:

 h =8733.8r−0.968 (3)

Additionally, in order to properly define the switching of

equations, the difference between the previous and current

radius was compared to a set value, 40 in this case, since when

the algorithm switches circles, there is an obvious difference

on the radius, due to either the previous circle being bigger or

smaller compared to the current circle. Thus, if this difference

is negative, the equation used would transition from the bigger

circles to the smaller circles, while if the difference is positive,

the equation used would transition from the smaller circle’s to

the bigger circle’s. Lastly, as a fail-safe the algorithm would

automatically switch to the 3rd circle’s equation if the radius

seen is smaller than a constant value, 85 in this case since this

is the smallest radius the other circles may provide.

E. Object-Detection

 The script, written in Python, initializes the variables such

as the mask values, frame resolution, and matrices. After this

initialization, the script then starts to obtain the frames that the

camera captures, which are then resized.

Figure 8: Flowchart of the object-detection program showing the output per

process block.

The algorithms adopt the blob-detection technique

resolution initialized beforehand. After which, the frame is

then passed through a Gaussian filter to reduce the Gaussian

noise present in the environment. Next, the frame is then

converted into HSV color space from RGB in order to ease

the process of color vision, which is more thoroughly

explained in the previous section. Then the masks are used

using the inRange function where its output would be a binary

mask, where the white or foreground pixels are the parts

which were allowed to pass by the mask. This mask is then

processed through a series of erosions and dilations,

collectively called morphologies. Opening, in which erosion

is done followed by dilation, is done first. Then, the process

is reversed closing, where dilation happens before erosion.

These produce a frame that has reduced noise, while allowing

the foreground to be more whole. After which, the

findContours function is used in order to detect the white

parts or blobs on the frame. The script would only go to the

next step if it encounters at least one blob. In the case that it

encounters multiple blobs, it would only recognize the largest

blob using the max function. Afterwards,

minEnclosingCircle() is used in order to determine the radius

Journal of Telecommunication, Electronic and Computer Engineering

44 e-ISSN: 2289-8131 Vol. 10 No. 1-6

and center of the blob, wherein it calculates the zeroth, and

first order image moments to determine the centroid of the

blob. As for the radius, it detects three points that form a line

that passes through the blob, this lines length is then measured

in order to determine the diameter, and subsequently the

radius. If the radius of the blob is more than a set value the

script proceeds, it calculates the distance of the center of the

blob to the center of the camera. Lastly, the coordinates are

then formatted by converting them into string. These are sent

to the Arduino via serial.

III. TESTING AND RESULTS

A. Landing Area Shape

 A shape test was conducted in order to determine the

optimal shape for calculating the centroid of the target using

the image moments method. This test would be evaluated by

calculating the standard deviation of the coordinates per

shape, which were gathered over a period of 30 seconds. Take

note that the shapes and the quadrotor are fixed in position

during the test period to avoid unnecessary jitters in the

recording of the coordinates. From the results shown on Table

1, the circle shape has the least deviation among the three

shapes. Hence, it is chosen as the shape of the landing area

and is used in the subsequent tests.

Table 1

Coordinate Deviation per Shape

Coordinate Deviation

Shape x y

Circle 0.584463682 0.338848367

Triangle 0.590398064 0.542359344

Square 0.622039634 0.797724035

B. Resolution vs Processing Time Test

 The results conform with the hypothesis that higher

resolutions would yield slower processing time, and vice

versa. Thus, further experimentation was done in order to

determine that the resolution/frequency which interacted with

the flight control algorithm, wherein it produced the best

behaviour during landing, was the 320 x 240 resolution with

12.17 Hz frequency. Therefore, in the final implementation

this resolution would be used.

Table 2

Processing Time per Camera Resolution

Resolution (pixel x

pixel)

Ave Processing

Time(s)

Frequency

(Hz)

240 x 240 0.061124 16.36028

250 x 250 0.071483 13.98939

320 x 240 0.082202 12.16518

320 x 320 0.108091 9.251472

640 x 480 0.332845 3.004397

C. Altitude Hold Test

 The desired altitude is set around 1.57 meters and the data

is recorded for 35 seconds. Figure 9 shows the graph between

the vision-based altitude values and the desired altitude. The

maximum absolute error calculated from the actual

visionbased data is 0.1119 meters.

Figure 9: Vision-based altitude compared to the desired

IV. CONCLUSION

With the recent rise of drone usage and technology, the

number of users who are opting to use drones in their field of

study and expertise have also risen, but with the drones

difficulty of control it may not be as simple as buying one and

using it right after without proper experience as the drone may

experience crashes, and such. One particular reason for

crashes is during landing, especially in enclosed areas due to

the low maneuverability inherent to such areas. As such, the

researchers have provided a different means to alleviate these

concerns with the use of a quadrotor with camera attachment

that possesses an algorithm that allows it to land on a specific

target with the flip of a button. This algorithm allows the

quadrotor to land on a stationary circular red target, for 10

tests, where the algorithm was engaged at a starting altitude

averaging at 1.72m, it produced an average deviation of 0.11

m, measured from the center of the landing area to the center

of the quadrotor, and a landing time averaging to 7.87

seconds. This data shows a significant improvement to the

control test, where it lands without tracking the target, due to

it having an average deviation of 1.47 m away from the target,

over 10 tests. This calculates to a reduction of deviation of

92.52%. Additionally, the algorithm was also tested for when

the targets was moved by 1 m, and when the quadrotor was

subjected to wind speeds of 2.2m/s, where it produced an

average deviation of 0.14 m and 0.12 m, respectively.

ACKNOWLEDGMENT

The authors would like to thank Dr. Jonathan Dungca, Dean

of the Gokongwei College of Engineering and Engr. Edwin

Sybingco, Chairman of the Electronics and Communications

Engineering Department of De La Salle University-Taft,

Manila.

REFERENCES

[1] L. Geng, Y. Zhang, J. Wang, J. Fuh, and S. Teo, ”Mission Planning of

Autonomous UAVs for Urban Surveillance with Evolutionary

Algorithms,” in Control and Automation (ICCA), 2013 10th IEEE
International Conference, 2013, pp. 828833

[2] M. Nagai, T. Chen, R. Shibasaki, H. Kumagai, and A. Ahmed,

”UAVborne 3-D Mapping System by Multisensor Integration,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 47, no. 3,

pp. 701708, 2009.

[3] P. Aquino, D. Dela Cruz, K. Teves, J. Trinidad and K. Villacer, ”Design
of an Android-App based crop dusting Hexacopter”, Undergraduate,

De La Salle University - Manila, 2016.

[4] A. Gautam, P.B. Sujit, S. Saripalli, ”A Survey of Autonomous Landing
Techqniques for UAVs,” in Unmanned Aircraft Systems (ICUAS),

2014 IEEE International Conference pp. 1210-1216.

Development of a Quadrotor with Vision-Based Target Detection for Autonomous Landing

 e-ISSN: 2289-8131 Vol. 10 No. 1-6 45

[5] J. Roberts, T. Stirling, J. Zufferey and D. Floreano, ”Quadrotor Using

Minimal Sensing for Autonomous Indoor Flight,” in European Micro

Air Vehicle Conference and Flight Competition (EMAV2007),

Toulouse, France, 2007, pp. 1-8.

[6] C. Venables, ”Multirotor Unmanned Aerial Vehicle Autonomous
Operation in an Industrial Environment using Onboard Image

Processing”, School of Electrical, Electronic & Computer Engineering,

University of Western Australia, 2013.
[7] J. Haines, ”Vision-based Control of a Multi-rotor Helicopter”, Master

of Science in Robotics, Pittsburgh, Pennsylvania, 2011.

[8] J. Daly, Y. Ma, S. Waslander, ”Coordinated Landing of a Quadrotor on
a Skid-Steered Ground Vehicle in the Presence of Time Delays,” in

Intelligent Robots and Systems (IROS), 2011 IEEE Conference

pp.4962-4966.

[9] S. Yang, J, Ying, Z. Li, ”Precise Quadrotor Autonomous Landing with

SRUKF Vision Perception,” in Robotics and Automation (ICRA), 2015

IEEE International Conference, 2015, pp. 2198-2201.

[10] S. Holmes, G. Klein, D. Murray, ”An O(N) Square Root Unscented
Kalman Filter for Visual Simultaneous Localization and Mapping,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol.31, No.7, pp.1251-1263, 2009.

[11] F. Ababsa, ”Advanced 3D Localization by Fusing Measurments from

GPS, Intertial and Vision Sensors,” Systems, Man and Cybernetics
(ICSMC), 2009 IEEE International Conference, 2009, pp. 871-875.

