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Abstract—Urinalysis is considered to be a common test 

performed in laboratory in order to diagnose Urinary Tract 

Infection (UTI). It undergoes three stages, which include 

macroscopic, dipstick, and microscopic analysis. This paper 

describes a way of performing urinalysis for UTI detection using 

the Principal Component Analysis (PCA) implemented using a 

Field Programmable Gate Array (FPGA).  Input to the system 

is from five ion-selective sensors that measure five different 

components specifically sodium, nitrite, nitrate, potassium, and 

pH level of a urine sample. Tests show that the system obtained 

an accuracy of 94.13% for standard urinalysis showing the 

accuracy of sensors and measurements used.  To be able to 

detect the presence of UTI in urines, an outlier detection method 

Principal Component Analysis (PCA), was used. PCA is a tool 

used in reducing multidimensional data to lesser dimensions 

while keeping all the information.  An accuracy of 83.33% in 

detecting UTI infection was achieved.  The accuracy of FPGA 

implementation of PCA was compared with MATLAB 

calculation results and an accuracy of 99.917% was achieved.   

 

Index Terms—DE0-Nano Development Board; PCA-FPGA; 

Urinalysis; UTI Detection. 

 

I. INTRODUCTION 

 

Urinalysis is a common test performed in a laboratory to 

diagnose a Urinary Tract Infection (UTI) [1]. A urine sample 

is usually evaluated through macroscopic, dipstick, and 

microscopic analysis. In macroscopic analysis, the sample’s 

color, clarity, and cloudiness are visually observed. Urine 

dipstick test uses a narrow plastic strip that contains small 

squares representing a component of the urine to be tested. 

The entire strip is dipped into the urine samples for a certain 

period of time and the color changes in each square, which 

may indicate, urine abnormalities, are noted. The dipstick test 

is an easy to interpret test. However, the result may be 

inaccurate because of the test is time-sensitive. Moreover, it 

only provides a qualitative result.  Meaning, it does not 

provide precise measurements of that certain component 

being measured. Lastly, the microscopic analysis involves the 

use of a microscope that is responsible for examining the 

contents of the urine such as white blood cells and bacteria 

that are significant in diagnosing UTI.   

In this paper, a new way of performing urinalysis and 

detecting UTI is developed. With the use of five different 

sensors that measure five different components of a sample, 

namely sodium, nitrite, nitrate, potassium, and pH level, 

urinalysis is performed.  The sodium and potassium 

concentrations, as well as the pH level of the urine under test 

are recorded. In addition, the presence of nitrite and nitrate or 

if the urine sample is either positive or negative of nitrite and 

nitrate contents is noted. 

To be able to detect UTI, Principal Component Analysis 

(PCA), which is an outlier detection method, was used.  This 

method has been shown to detect fetal heartbeats [2].  The 

whole process of PCA was implemented on an 

EP4CE22F17C6 FPGA board using a combination of 

software running in the embedded softcore processor and in 

the FPGA fabric.  Offline training phase and online phase are 

needed for the outlier detection. In the training phase, training 

data set is stored and it is when their principal components 

are calculated. In this study’s case, this training data set 

contains only data coming from urine samples that are 

positive in UTI. On the other hand, online phase refers to 

when a random urine sample is desired to be tested if it is 

either UTI positive or negative by comparing its data to the 

offline training data. The outlier detection accuracy depends 

on the selection of the components to be measured.  This is 

demonstrated in [3] and [4] where the selection of a principal 

component as axis where other parameters are to be projected 

can indicate network intrusion. Good selection of 

components to be measured will improve the accuracy of the 

detection.  

Implementation of the PCA algorithm through hardware 

was demonstrated in [5] where an FPGA-based embedded 

system using the Xilinx ML605 FPGA Development 

Platform was used. Similarly, [6] used the Altium Nano 

Board to implement the PCA algorithm for face recognition.  

The eigenfaces of the face images were computed and stored 

in the database. Although only two faces were used in the 

database because of the hardware limitation in the 

development platform used, the authors demonstrated the 

functionality of the system.  Problem due to hardware 

limitation in implementing PCA algorithms in embedded 

systems was addressed by [7] where a two dimensional PCA 

was used for face recognition.  By using low precision in the 

representation of image feature vectors and network weights, 

the authors were able to implement a stochastic optimization 

method implemented in Xilinx Artix-7 XCA100T FPGA that 

is not constrained by image size.  

 

II. PRINCIPAL COMPONENT ANALYSIS 

 

Principal component analysis is a statistical procedure used 

in analysis of data. When a very large quantity of observed 

data is gathered and these data do not have a specific value or 

a specific pattern, the PCA will make the dimensions of the 

data smaller until principal components are determined.  This 

has been shown in [8] where PCA is used to reduce the 

dimensionality of hyper spectral data. In this work, Principal 

Component Analysis is used to reduce the dimension of the 

data sets, composed of five parameters namely, Sodium, 

Nitrite, Nitrate, Potassium and pH.  The principal components 
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obtained are the basis in detecting Urinary Tract Infection.   

Figure 1 shows the block diagram of the system.  The FPGA 

board is the DE0-Nano Development and Education Board 

[9], [10] and [11].  It contains the Cyclone IV FPGA 

hardwired to general purpose IO and 8-channel, 12-bit ADC.  

The AD8221 instrumentation amplifier [12] provides 

precision buffering to the ADC input and sensors.  Output is 

displayed on the 2-line LCD display. 

 

 
 

Figure 1: Block diagram of the FPGA-based urine analyzer. 

 

A. PCA Process in UTI Detection  

In performing PCA, the data set should first be determined. 

Performing principal component analysis involves the use of 

combining variance, covariance, covariance matrix, 

eigenvalues and eigenvectors.  As shown in Figure 2, the first 

step is to get sensor readings from urine samples.  From the 

sensor readings, the covariance matrix is formed, and the 

dominant eigenvalue and corresponding eigenvectors are 

extracted.   Matrix multiplication is then carried out between 

the adjusted data and the eigenvectors. The result is a vector 

representing the principal component.  The principal 

components are classified as UTI positive or UTI negative. 

 

 
 

Figure 2: Process of determining the principal component of sensor 
data. 

 

B. PCA Framework and Outlier Detection 

The calculation of the principal component is carried out 

during what is referred to as the training or learning phase.  It 

is an offline phase where the principal component of the data 

acquired through sensor readings is calculated.  For this work, 

10 training samples were used and there are 5 ion selective 

electrodes as sensors for nitrite, nitrate, sodium and 

potassium. pH electrode is also included as part of the 

sensors.   Sensor readings are converted to 12-bit digital 

representation.  Once the acquisition of all sensor data is 

complete, a 10 x 5 matrix is formed. This is then used to 

generate the covariance matrix.  This process is illustrated in 

Figure 3.   

 
 

Figure 3: Offline phase. Training or learning mode 

 

Once the principal component of the training set has been 

obtained from the offline operation, detection of UTI from an 

unknown urine sample can be carried out.  This operation is 

referred to as the online phase.  Here, sensors readings are 

made on the unknown urine sample.  The eigenvector is 

calculated and this is used to classify whether it belongs to 

the principal components that are UTI positive or UTI 

negative. Meanwhile in the online state, the sensor readings 

of one sample and obtained eigenvectors from the offline 

state are used to obtain the element PC11. This element is 

used to classify whether the unknown sample coincides the 

values of the principal components and returns a value of 

either positive/negative.  Figure 4 illustrates this process. 

 

 
 

Figure 4: Online phase. UTI detection mode 
 

III. HARDWARE DESIGN 

 

Implementation of the PCA algorithm is facilitated with the 

use of Altera IP cores [10] that are pipelined to solve various 

operations in solving for the covariance matrix. The 

operations are executed synchronously after collecting the 

training samples. Due to limitation in logic elements and the 

size of matrices in solving for the principal components, 

software implementation is done to solve for the most 

dominant eigenvalue and its corresponding eigenvectors 

using power iteration algorithm. The disadvantage of 

implementing designs through software is that it consumes 

more power and also executes operations at a slower rate 

compared to hardware implemented designs especially when 

dealing with matrix operations [6].  

 

A. Signal Conditioning Circuit 

The signal conditioning circuit composed of the 

instrumentation amplifier, resistor bank to vary the gain and 

filter circuit to suppress the 60Hz line noise, is used to 

condition the sensor signal before applying it to the ADC.  A 

selector switch allows selecting the right resistor combination 
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to provide the right gain. Figure 5 shows the signal 

conditioning circuit. 

 

B.  Computation Pipeline 

For computing the mean, variance and the covariance, the 

functions provided in the Qsys library were used.  The 

resulting RTL schematic is shown in Figure 6.  

 
Figure 6:  Circuit to compute for the mean, variance and co-variance 

 

C. NIOS Processor 

 

A C program that runs on the NIOS processor [5] is used 

to calculate the eigenvalue and eigenvector. 

 

 
 

Figure 7: The FPGA platform that implements an embedded system 
containing a NIOS processor. 

IV. SOFTWARE DESIGN 

 

The computation of the 5x5 covariance matrix is carried 

out as a C program running in the NIOS processor.  This was 

done because of the hardware limitations in implementing the 

desired operation purely on FPGA fabric. 

 

 
 

Figure 8:  System flowchart for the C program that computes for the 
covariance matrix 

 
 

V. DATA AND RESULTS 

 

A. Matlab Comparison 

To verify the accuracy of the computation of the principal 

component done by the system, computations are performed 

using Matlab and then compared with computations carried 

out in FPGA.  Table 1 shows the principal component 

calculation of Matlab and FPGA. The highest percent error of 

the principal component is 0.198 % and the average error of 

the calculation is 0.083%. 

 
Table 1 

Urinalysis Results Comparison Between Computation Done in Matlab and 

Computation Done Using The Proposed System 

 

Sample Matlab FPGA 
Percentage Error 

(%) 

1 -0.1644 -0.1646 0.148 

2 0.5823 0.5823 0.000 
3 0.3718 0.3716 0.020 

4 -05636 -0.5636 0.000 

5 -0.5017 -05016 0.020 
6 -0.2152 -0.2153 0.046 

7 0.2511 0.2508 0.040 

8 0.4929 0.4935 0.122 
9 -0.1522 -01919 0.197 

10 -0.1011 -0.1013 0.198 

Average Percentage Error 0.083 

 

B. Urinalysis Comparison  

Urinalysis results obtained calculated by the system is 

compared with clinical results.  Samples were taken from the 

subjects on the same day and subjected to clinical urinalysis 

using the facilities of a clinical laboratory.  Urine sample 

taken from the same sample sent to the clinical laboratory was 

used where measurements of parameters were made and 

processed using to the proposed system.  The results 

 
 

Figure 5:  Signal conditioning circuit 
 



Journal of Telecommunication, Electronic and Computer Engineering 

68 e-ISSN: 2289-8131   Vol. 9 No. 2-7  

summarized in Table 2 indicated that the proposed system can 

measure the presence of Sodium, Nitrate, Potassium and pH 

with a percentage average error of 5.87 %. 

 
Table 2 

Urinalysis Results Comparison Between Computation Done in Matlab and 

Computation Done Using The Proposed System 
 

Sample Parameter 
Laboratory 

Results 

Proposed 

System 

Percent 

Error (%) 

1 

Sodium 4783.73 5375 12.40 
Nitrite Negative Negative  

Potassium 1833.32 1730.48 5.61 

pH 6.00 6.28 4.67 

2 

Sodium 4253.09 0.5823 10.14 

Nitrite Negative Negative  

Potassium 1630.40 1481.78 9.12 
pH 6.00 5.89 1.83 

3 

Sodium 0.3718 0.3716 1.39 

Nitrite Negative Negative  
Potassium 758.50 722.99 4.68 

pH 6.00 6.38 6.33 

4 

Sodium -05636 -0.5636 1.74 
Nitrite Negative Negative  

Potassium 340.15 377.02 10.84 

pH 6.00 6.10 1.67 
 Average Percentage Error 5.87 

 

C. UTI Detection 

UTI detection was carried out using 30 test samples and 

applied to 10, 15 and 20 training samples.  The result is listed 

in Table 3. The highest accuracy achieved is 56.67 % with 20 

training samples used to calculate the Principal Component.   

 
Table 3 

Accuracy of Detection with 10, 15 And 20 Samples with 5 Sensors 
 

Training Samples  Accuracy (%) 

10  53.33 

15  50 

20  56.67 

 

It was observed that removing the pH sensor then 

calculating the eigenvalues generated the results listed in 

Table 4.   The procedure in detecting UTI is again performed 

without the pH sensor yield the result listed in Table 5.   

 
Table 4 

Computed Eigenvalues with 5 Sensors and 4 Sensors (pH Sensor Removed) 
 

Eigenvalues with pH 

sensor 
 

Eigenvalues without 

pH sensor 

0.2628  0.0720 
0.0661  0.0485 

0.0476  0.0159 

0.0136  0.0123 
0.0114   

 

As listed in Table 5, when 10 trainer samples were used, 18 

out of 30 test samples matched the expected results. With 15 

training samples, 22 out of 30 test samples matched, and 25 

out of 30 samples matched for 20 training samples.  

 
Table 5 

Accuracy of Detection for 10, 15 and 20 Samples with pH Sensor Removed 
 

Training Samples  Accuracy (%) 

10  60 

15  73.33 

20  83.33 

 

 

VI. CONCLUSION 

 

This work is an attempt to create an electronic-based 

urinalysis and to use the Principal Component Analysis to 

detect UTI. The FPGA-based Urinalysis for UTI Detection 

Using Principal Component Analysis was successfully 

developed using a 5-parameter test urinalysis and 

implemented the PCA algorithm in a DE0-NANO board 

FPGA. Urine readings were taken by the five sensors namely, 

Sodium, Nitrite, Nitrate, Potassium and pH. The results of the 

urinalysis and the UTI detection are displayed on the LCD.  

Results displayed in the LCD are the concentration levels of 

Potassium, Sodium, Nitrate, Nitrite and pH level, also if it is 

nitrate, nitrite positive or negative.  The system successfully 

computed for the principal components and compared to 

results obtained using Matlab. The percent error of 0.083 

percent is indicative of high degree of precision achieved by 

the FPGA-based computation. 

When the system is used to perform urinalysis on test urine 

samples, an average accuracy of 94.13% was achieved. When 

used to detect UTI, the system performed poorly achieving 

only 56.67 % with 5 sensors being used.  Inspection of the 

resulting eigenvalues with 5 and four sensors, indicate 4 

eigenvalues which are not distant in magnitude relative to 

each other while one eigenvalue with a relatively high value 

compared to the other four. With eigenvalues ranging from 

0.0114 to 0.0661, the eigenvalues with a value of 0.2628 

corresponding to the pH sensor is discarded.  Re-computing 

the principal component and running the UTI detection test 

yields the detection accuracy of 83.33%. This lends well to 

the PCA methodology of analyzing data where selection of 

the principal components through the eigenvalues provides 

better results. 

Increasing the number of samples used in training indicates 

that higher accuracy can be achieved. When the training 

samples were increased from 15 to 20 trainer samples the 

success rates increased from 73.33% to 83.33%. Future works 

include increasing the number of training samples and to use 

larger capacity FPGA Development boards to fully 

implement the algorithms on the FPGA fabric under the 

control of the softcore processor. 
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