
 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016 33

A Model Based Approach on Multi-Agent System

and Genetic Algorithm to Improve the Process

Management in Service Oriented Architecture

Behnaz Nahvi1, Jafar Habibi2
1Islamic Azad University, Science and research Branch, Tehran, Iran.

2Sharif University of Technology, Department of Computer Engineering, Tehran, Iran.

jhabibi@sharif.edu

Abstract—Service oriented architecture is based on the

provision of services. To enhance the performance of the systems

by providing a better combination of services, it is necessary to

extract more information compared to the one in the service

registry. In this regard, the accomplished works have been

focusing on the basic concepts of service-oriented architecture.

The service composition is based on the information in service

registry, provided by the service provider. Further, centralized

combination with insufficient information does not meet the

system performance requirements. This solution helps to

facilitate resource distribution and reduces tasks of the central

unit. In this paper, efforts have been made to use the agents in

the proposed model to enhance the processes of a system. In the

proposed model, agents have been used in order to extract and

manage the essential information in service registry table. This

information forms the basis of monitoring and selection of

services. Agents are used for selecting and making efficient

composite services. Finally, different communications and

configuration mechanisms are implemented using multi-agent

systems that can perform service-oriented architecture.

Moreover, genetic algorithm is used to enhance architectural

processes. In the proposed model, the genetic algorithm and

multi-agent system has enhanced productivity of the system and

its important quality attributes. The system runs in the

international conference of computer society of Iran (ICCSI).

Implementation of this model in the real environment and its

comparison with its implementation on the prototype could be

helpful to justify better efficiency and accuracy for future

applications.

Index Terms—Multi Agent System; Service Oriented; Process

Management; Genetic Algorithm.

I. INTRODUCTION

Service-oriented architecture provides a flexible and

dynamic platform for the implementation of distributed

systems. Considering the centralized management and control

of systems reduces the performance of a system, taking the

advantage of distributed methods can have significant positive

effects onto its performance [1, 2]. Therefore, a model of

multi-agent systems with service-oriented architecture has

been proposed. The ability to manage processes, for

distributed and decentralized can be added to the previous

models. In this domain, managing processes within the

structure is one of the existing challenges, which can

significantly increase costs, decrease performance and

productivity of the environment.

In service-oriented architecture, services cannot be inter-

operated by themselves. Without automating services,

negotiations, consistencies, arrangements, compositions, rules,

and intense inspection of data and protocols, service-oriented

architecture cannot do anything [3]. The concepts of service-

oriented architecture have not been able to cover all these

issues on its own without using other methods. Additionally,

methods that have been used to overcome the existing service

interaction problems using semantics have not been able to

resolve it completely. Thus, this paper proposed a model of

autonomous agents according to the rules of service-oriented

architecture that can perform these functions and interact with

other agents.

Process management can be done under the process of

optimization [4]:It creates the relevant subject to service

composition [5, 6]. From this perspective, various works have

been reported [7-11], and they are still being done in order to

resolve the problem and optimize the process management:

Each work has its own specific features. Most of the work

performed in the field of service composition focused on the

problem of identification [12, 13], choosing services. There

has been less attention to the fact that composed services are

divided into two reusable and disposable groups. It is not

necessary to assess and store the composed disposable

services after execution. Storing the sequence of composed

services, used for several times can substantially increase the

performance of the system.

Related works performed in this domain recognize that

designers tend to save the sequence during the design time in

the system registry table. However there is a possibility that a

large number of composed services re not to be known at the

start of the usage. The main problem is the lack of some

criteria to distinguish these two composed services from each

other. Thus, in the proposed model, an agent that is

responsible for the assessment and storage-composed service

is generated at the run time.

On the other hand, the ever-increasing growth in the number

of services [14-16], which provide the same function that have

the solutions to validate, verify, describe, register and monitor

the services based on their quality parameters is inevitable.

Using a combination of agents and intelligence methods, such

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/235220812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jhabibi@sharif.edu
http://dictionary.reference.com/browse/implemented

Journal of Telecommunication, Electronic and Computer Engineering

34 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016

as genetic algorithms to solve these problems is a strategy that

we have chosen.

In order to achieve high performance, a lot of methods have

ignored the concepts of service-orientation, which results in

the existing of new problems. Hence, protecting the service-

oriented concepts has always been among one of the

challenges that we are currently facing.

The use of multi-agent systems is one of the methods that

allow the distribution of management and control in

distributed systems [1, 7, 17-25]. Agent-based processing is an

approach which develops complex systems by independent

agents and eases their design [15, 26]. The attributes of agents

make them flexible and robust entities. The flexibility is the

result of agents’ ability in response to environmental changes.

Following the goals and work improvement leads to agents’

robustness. Because of such quality, making use of agents in

complex, dynamic, and open systems and error prone

environments will result in improving the performance of

systems.

The proposed method includes ten groups of agents.

Necessary data is extracted by the agents and stored in a meta-

data repository. It is updated and managed in service registry

table and will be used during the runtime. Genetic algorithm is

used to choose and prioritize the services. Scenario-based

methods are used for evaluation; hence, in addition to

feasibility study, the satisfaction level of quality attributes is

studied.

The paper is organized as follows: in the second section,

previous works are reviewed, and the concepts used in

proposed framework are described in the third section. In the

fourth section, a system that gives reservations plane tickets

and hotel for persons is used to evaluate the proposed model,

and the last section is devoted to the conclusions and future

work.

II. RELATED WORK

 Service composition is divided into two general groups:

one of them is the time based composition, which is divided

into static composition in design time and dynamic

composition in runtime, and the other one is composition with

human intervention, which is performed manually or

automatically [27]. In the proposed model, services are

composed dynamically at runtime leading to composite

services. Automated compositions are usually based on a

semantic approach in which both the data processing and the

generation of the service composition scheme are performed

using semantic approaches. In these methods, well-defined

information models are usually used and are converted into a

processable machine; ontologies are used to provide

descriptions of functional and non-functional attributes of

services in order to automatically perform discovery,

selection, and composition of services [28, 29]. A new

algorithm based on binary tree is proposed [30] for service

composition which selects services, according to user’s

preferences and services quality issues, among composite

services that are responsive to user’s needs.

Maintaining history of service composition is one of the

most important issues that should be considered in the

proposed model. If the history is not recorded after each

usage, the composition time will decrease the performance of

the system in similar usages. Extended service-oriented

architecture has been provided [31] in which it focuses on

service composition for software development, especially on

the data related to the composition and makes use of the

dependency-aware service management and composition to

extend services. Existing relations in the process model consist

of controlling the systems flow, input and output. Service

dependency seems to be considered from service composition

management point of view in [33] log file, which is the

available in service oriented architecture audit files have been

used to determine the relations and dependency among

services.

In [32], Service dependency graph, which is dynamically

generated drawing is shown. Then an intelligent discovery

algorithm has been used to find the minimum composition,

which can meet the user's requirements.

In [33], a framework is presented to make composite web

services. The environment implanted in the service-oriented

architecture is a dynamic environment, in which the services

are regularly changed, added, and updated. Thus, the web

service composition at the initial stage should be performed

based on the updated data. In this framework, semantic data

are used to compose the services. Composition process in this

framework is started through modeling service composition

flow structure and limitations in graphical modeling interface.

The graphical flow, limitations, and service patterns are

translated and saved in composite web service language.

In [34], it has been tried to implement the service

recognition framework using three groups of agents and three

groups of data. Service recognition agents are:

i) User agent: start to discover and save the result in

service directory.

ii) Service agent: it registers or deletes the services.

iii) Directory agent: it is responsible for replying to user

agent by searching in the directory.

Intelligent service discovery can be upgraded by increasing

the amount of provided data. Here are some of the mentioned

data in [35] which lead to system upgrade:

i) User profile: the user identity is registered and

authorizations are determined.

ii) Terminal profile: the terminal static data is saved.

iii) Context: it is the dynamic data of user and terminal like

user status, place of residence, etc.

In [36], interactions between services are studied. Processes

in the service-oriented architecture are done due to different

purposes and one of them is processes which are registered

and discovered to compose the services.

A lot of researches in the domain of services registry and

discovery have presented different methods to deploy UDDI.

In [37], services have been registered based on domain and in

this way it has been tried to improve the usage of repository.

One of the issues discussed in this research is not maintaining

the relations between services and in order to solve this

problem, the characteristics scheme of the service have been

introduced and registry process has been done based on this

scheme. In this way, the assortment of services using this

scheme has been possible. In [7], the solution to services

discovery in a dynamic way has been discussed. Further, the

possibility of services replacement has been brought up.

A Model Based Approach on Multi-Agent System and Genetic Algorithm to Improve the Process Management in Service Oriented Architecture

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016 35

Services re-registry at certain times show the services

availability, which is a disadvantage to this method and

increases the system overhead. Each service shows its

availability in certain intervals. Instead of that, the agents

could be used and in this way the processes, which are done to

achieve this purpose are improved.

In the service-oriented architecture, agents have been used

for different purposes agents and different roles. The

composition agent is responsible for composing and executive

coordination in a composed service and executive

management agent is responsible for global controlling of

other agents tasks. Management agent is responsible for global

control of the composition of other components, which are

called composer agent. The presented method to compose web

services is based on the composition of the logical programs.

In [19], a framework based on agents has been used to

implement and deploy the service oriented architecture.

As shown in Figure 1, FUSION (Flexible and User Services

Oriented Multi-agent Architecture) [38] is a modular multi-

agent architecture, which services and application programs

are controlled and managed by consulting BDI agents. They

follow THOMAS architecture principles [39]. In FUSION,

four fundamental blocks, which ease the architecture abilities

are:

Application program: It represents all programs, which can

be used to exploit the features of the system.

Agent platform: It is responsible for integration of a group

of agents, which each has special features and attitude. Agents

in this architecture are served as the controller and manager of

all application programs and services.

Service: It is the system’s ability to process and obtain data.

Communication protocol: It allows the services and

application programs to communicate directly with agent’s

platform. This protocol is completely open and independent of

any programming.

application services User defined

Communication protocol
FUSION@Framework

Agents platform

Operating system User defined

Figure 1: FUSION framework [38]

III. PROPOSED FRAMEWORK

In our proposed model, we try to improve the performance

by adopting optimization methods, as it was reported in [40]

that the genetic algorithm is used to improve the architecture

performance.

The objective of the proposed model is to achieve optimized

processes of service oriented architecture. Positive and

negative effects of the provided model in the fundamental

concepts of service-oriented architecture are shown in Table 1.

Advisory BDI agents are capable of collaboration and

proposing a solution in the dynamic environment and they can

encounter a real problem, even when there are restrictions on

the issue and they have access to limited resources. For this

reason, it is used in the proposed model.

Communication protocol allows services and applications to

communicate directly with the agent's platform. The protocol

is completely open and independent of any programming

language. This protocol is based on SOAP standards to record

all messages between the platforms and the services and

applications. All external communications follow the same

protocol. The relationship between agents in the platform is

done by ACL which is the agents' communication language

based on FIPA. We used agent platform for direct

communication with agents; hence, the communication

protocols are not required to be used in all cases. Nonetheless,

we will require it to communicate with all the services.

Table 1

Impact of use of the proposed model in fundamental principle of service

oriented architecture

Fundamental principle
of service oriented

architecture

Positive Negative

Standardized Service

Contract

The agent-based
systems also will

use this contract.
-

Loose Coupling

Factors use

independent of
location of services

and coding in the

whole system.

-

Service Abstraction -

Part of the information

that is available for

agents beyond
information that is

available in the standard

service contract

Service Reusability -

Lower abstraction may
limit reusability

Service Autonomy - -

Service Statelessness -

The only case that will
be kept last

performances is

response time and
quality and number of

run

Service

Discoverability

dynamics of agents
optimal

Discoverability

-

Service Compos
ability

Use of agents will
optimum the

combination

-

As shown in Figure 6, the presented model used ten

categories, which include:

User interface agent: It is placed in layer of consumer and

organizes a piece of the information needed in the model. In

the layering of the reference of service-oriented architecture

[18], information about the provided services is stored in layer

of consumer by a building block (Figure 2). User interface

agent is responsible for connecting agents, system and the

applications. By benefiting from this agent, there is no need to

use communication protocol and FIPA, ACL. The system also

has a request for analysis sent to security agent, which is then

given to the manager agent.

Journal of Telecommunication, Electronic and Computer Engineering

36 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016

Figure 2: Use case diagram of a user interface agent to manage registration
and service discovery

Applications agent: It is an agent that is responsible for

communication between platform and application and

manages incoming requests and service responds to the

application. Application agent is always in standby mode.

Directory agent: It manages a list of services used by the

system. Applications agent can utilize services that are listed

in the platform. The Manager agent and the Directory agent

commands discover the service in the system. Using the

algorithm, agent directory select the best and most appropriate

service or group of services (

Figure 3). Service can be added, removed or dynamically

changed in this list. The efficiency of service, ES (average

time to respond to the request), run number, RN and the

Quality factor (QF) are information that is constantly

changing. Quality factor is a very important information. First,

for all services, QF is set at 1. When the service cannot work,

(fail or cannot be found, or when performance is reduced

compared to his previous performances) QF is reduced. The

value of QF increases when a job is correctly done and the

basis for selection of the service is correct.

Figure 3: Use case diagram of the directory agent, the model proposed

Communication agent: It is responsible for the communication

between applications, services, users and all components of

the architecture. This agent is also responsible for the control

of messages. Agent communications send a ping message

according to a certain order for all the services. If a service

does not respond to this message, the director says to find the

same service and the agent directory says to reduce the

amount of quality factor (QF).

Security agent: All messages are sent to the security agent and

the agent’s duty is to assess messages in terms of syntactic and

semantic.

Administrator agent: It is responsible to monitor agent’s

function in the system and periodically confirms registered

agent’s status by sending ping messages. Administrator agent

kills this agent in cases when it does not receive any response,

hence it produces a new case of agent. In this case, there is an

ever-present agent in the system.

If a message is a false information, the security agent

informs the relevant agent (the applications agent and services

agent) that the message is not delivered. Further, this message

is sent to the directory agent to change the value of QF if

needed.

With regard to the quality of service and user preferences,

the administrator agent decides which agent should be called.

User can explicitly request a service or allows a directory

agent to decide which service is the best for the application.

Directory agent also checks whether the service is working

correctly or not, as shown in

Figure 4.

For any requests received, the communication agent sends

the ping message according to a particular order to all

services. When the service is not responding, the administrator

agent tells to find a similar service and informs directory agent

to change the amount of QF.

Figure 4: Sequence diagram when user allows a Directory agent to decide

which service is best for the application

Service agent: It is responsible for all communication between

the server and the platform (Figure 5).

Figure 5: Service agent function, the model proposed

A Model Based Approach on Multi-Agent System and Genetic Algorithm to Improve the Process Management in Service Oriented Architecture

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016 37

Manager agent: It is the reasoning unit in the administrator

agent that detects that this service is available as atomic or

between a combinations of the registered services in the

directory or not available in the directory. It also detects

whether there is a service for a responsible agent and which

service must be invoked in the absence of a desired

application to compound agent.

Secure agent checks all messages in terms of semantically

and syntactically. It also periodically checks the locations and

operating modes and monitors whether they are unemployed

(pending), corrupted or vice versa.

Composition agent: If the desired service is not found in the

directory, this agent is responsible for the selection and

composition of atomic services to build the desired service. In

short, the performance of these agent include:

Divergence in flow: The current composition of services

into several sub-streams, in which each of them should be

implemented by the service agent. The duty of composition

agent is to refer it to the manager agent that sends the service

to the responsible agent.

Performance agent: This agent is responsible for the control

and regulation of service composition.

Collecting the results: The agent component is responsible

for gathering the results of the combined service and returns

the results to the manager agent.

Grouping agent: To speed up the search and selection

services, the same services are placed in groups. In the case of

error or the need to restore a particular service, it refers to a

group that can be easily detected in the corresponding service.

Grouping agent puts the same services in the same category.

This classification can be done according to various criteria.

For example, a consistent style for each of the subsystems

should be considered as a parameter for classification. The

diagram of the proposed model is shown in Figure 8.

Manager agent chooses a mechanism that consists of a set of

methods that allows the architecture to achieve the most

appropriate service at the time of requests. The mechanism for

selecting the best service to answer the request when the work

starts and when the new request is received is by considering

the following parameters:

 The amount of quality factor (QF)

 User preferences

 Estimated delivery time

 The defined value of the fitness function

The first two parameters (QF and User preferences) are

preset and they are not required to be calculated by the

manager agent. The runtime must be computed by the method.

Using predictive techniques, such as neural networks are one

of the ways that the value can be obtained.

Using optimization methods in selecting the service helps

the whole process to be performed with better speed and

quality. One method that can be used to choose and give

priority to services positioned in common groups is the genetic

algorithm.

Chromosomes are made up of six genes services, such as

service name, address service, the efficiency, performance and

quality of service of Chromosomes genes.

The Fitness function was calculated according to Equation

(1) and a value in the last genes was assigned as the basis for

the priority selection.

Figure 6: Proposed Model

Fitness function = (∑ Num of run + 1) ∗ (QF)

∗ Response time−n
(1)

0.0001 ≪ 𝑄𝐹 ≪ 1

0.1 ≪ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 ≪ max of response time

Max of response time set by manager agent

1 ≪ 𝑛 ≪ 5

0 ≪ 𝑁𝑢𝑚 𝑜𝑓 𝑟𝑢𝑛 ≪ end of service lifecycle

For the evaluation of the model, each service is stored in the

QF. The combined services that is the value of QF is

calculated by Equation (2).

𝑄𝐹𝐶𝑆 =
∑ 𝑄𝐹𝑖

𝑛
𝑖=1

𝑛
 (2)

QF is the extent to which the initial value = 1 is given for all

services. After each inappropriate execution or lack of

response, it is reduced to the (0.001) amount. n is the number

of services that is presented in a combined service.

Num of run is a symbol of satisfaction rate of performing

the desired service, in which zero is the value at the beginning

of pilot phase. Efficiency is defined as the time spent

answering the response: Lesser responses are more suitable for

us (For this, fitness function is given in the denominator).

An example made from the chromosomes is shown in

User

Interface

agent

Directory agent

Manager agent Application

agent

Service

agent

Connection

agent

Security

agent Administrator

agent

Grouping

agent

Composition agent

Control of all message

Servic

Application

Application

Service

registered

table

manage

call

Servic

Servic

Servic

Journal of Telecommunication, Electronic and Computer Engineering

38 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016

Figure 7.

name address number of run QF performance Fitness function

Figure 7: Example of chromosome

In the optimum optimization and building of composite web

service, genetic algorithm was applied through MATLAB

programming language (Table 2). Each chromosome entails

as many tasks as genes, where the equivalent service carries

out the task. The framework was implemented through a real-

life database, where the basic information concerning web

services are available in conference's site.

Table 2
Elements of GA

P
o

p
u

la
ti

o
n

si
ze

In
it

ia
l

p
o
p
u

la
ti

o
n

S
el

ec
ti

o
n

fu
n
ct

io
n

C
ro

ss
o

v
er

fu
n
ct

io
n

 0

M
u
ta

ti
o
n

fu
n
ct

io
n

C
ro

ss
o

v
er

50 20 Roulette 0.8 Gaussian
Scale

= 1

Shrink

= 1
Scattered

Figure 8: State diagram of the proposed model

IV. EVALUATION

To evaluate the proposed model, we consider a system that

gives reservations plane tickets and hotel for persons whose

paper has been accepted at the conference. This system was

implemented in a distributed manner that will choose the best

suggested among the different services. For example, a person

living in Iran and his article accepted in the United States is

required to get the best suggested in terms of schedule and

cost to participate at the conference.

The directory agents, after receiving information about each

flight of the service provider airline, provide the required

specifications and put in the service in the registration table.

 With acceptance articles, the stimulus source starts and the

user requests a stimulus by enter the system to receive a

service that facilitates his attendance in a conference. User

interface agent received this request from the application of

conference and sends to a security agent. After reviewing the

request and ensure the security and integrity of syntactic and

lexical by security agent, it refers to the administrator agent.

The Administrator agent searches between services in the

directory table. Table 3 shows the existing data in the table

directory.

Table 3

Available service at the service registration table.

N
am

e
o

f
S

er
v

ic
e

S
o

u
rc

e

D
es

ti
n

at
io

n

C
o

st

F
ly

in
g

 d
u

ra
ti

o
n

 (
h

o
u

rs
)

S
to

p
 d

u
ra

ti
o
n

 t
o
 n

ex
t

fl
ig

h
t

S1 Iran Netherlands 300 4 1

S2 Iran Germany 420 5.5 3
S3 Dubai America 2850 20 2

S4 Netherlands America 1260 14 1

S5 Germany America 1100 12 3
S6 Iran Dubai 130 2 2

The absence of desirable service means that the flight from

the United States to Iran refers to the combination of the

request agent. The combination agent search between the

existing services declared the proposed options to the

administrator agent. With the confirmation of the combined

service, administrator agent registered the composite service

in the directory and dictated the desired method directory

agent. The directory agent was responsible for implementing

this approach in one of existing services and selected one of

them. At this stage, the genetic algorithm started and declared

the best result to the agent administrator.

Manager agent then informed the user interface agent, and

the possible results were declared to ensure the best flight for

the user.

In the proposed framework, the chromosomes are formed

simultaneously with the agent duties. The initial population of

chromosomes is composed of 50 chromosomes and the initial

values of required data were randomly initialized according to

expert opinion. As mentioned, the efficiency is the required

time to system accountability to certain number of events.

This time is considered from the moment that the user log into

the application and request the flight information to attend the

conference to the time of issuance the flight ticket. The time

value that lowers the efficiency of the system would be better.

User : .User : . User Interface
Agent : ..

User Interface
Agent : ..

Manager
Agent : ..
Manager
Agent : ..

Registery
Agent : ..
Registery
Agent : ..

Registery

Service

Registery

Service
Service
Agent : ..
Service
Agent : ..

Gouping
Agent : ..
Gouping
Agent : ..

Composer
Agent : ..

Composer
Agent : ..

1: Request

WorkFlow+Selected Domain

Select Candidate Service in Selected Domain

Apply Genetic Algorithm with New QF

4: Atomic service Or Composite service in Solution Repository available?

Update QF

Construction of combined service

Result

Requested service

Implementation services

Result

Reply

2: Register request in standard format

3: Send request

Manage and Register Services

5: Ack

6:1: If yes - send request

6:1: Call servic(es)

6:2: If no

Group services

Compose services

A Model Based Approach on Multi-Agent System and Genetic Algorithm to Improve the Process Management in Service Oriented Architecture

 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016 39

At the beginning of the pilot phase, random values between

zero and six hundred seconds to each service will be given.

The number of runs represents the efficiency of the service;

hence, the more runs indicate that the service has more

capability to respond to user’s needs.

Prior to using the system, value of service quality for all

services is set at 1. In each time, when it is implemented

unsuccessfully, the value is calculated according to the

following equation:

𝑄𝑓(𝑡 + 1) = 𝑄𝐹(𝑡) − 0.001 ∗ 𝛼
 0 < 𝑄𝐹 ≪ 10

 0 ≪ 𝛼 < 10
(3)

Directory agent is responsible for calculating and updating

this value. If the value of QF is less than or equal to zero, the

combined service will be deleted.

Table 4 represents the initial values that are randomly

assigned. The results of applying the values of application

after 1000 iterations are shown in Table 5.

The results in the proposed model show that the

performance increased after the training phase. QF is the result

of evaluating the proposed model at runtime. After every

unsuccessful execution, its value is reduced according to the

Equation (3). The values are shown in Table 2. In this case,

the application performance, the system response time plus

0.01 multiplied by cost are considered. The ultimate goal of

the system is to reduce the amount of performance for the

consumer that increases user’s satisfaction.

Table 4

 Information of application used in the proposed model

C
o

m
b

in
ed

se
rv

ic
e

n
am

e

P
er

fo
rm

an
ce

T
h

e
n
u

m
b

er

o
f

ru
n

Q
u

al
it

y

F
ac

to
r

F
it

n
es

s

fu
n
ct

io
n

S1 270 0 1 0.0400

S2 50 0 1 0.0400

S3 137 0 1 0.0146

S4 548 0 1 0.0036

S5 91 0 1 0.0220
S6 495 0 1 0.0040

S7 323 0 1 0.0062

S8 598 0 1 0.0033
S9 47 0 1 0.0426

S10 266 0 1 0.0075

When the number of running services is higher, it suggests

that the service is more effective and win the best service in

the selection process when it is executed. The selected service

also has the lowest response time in the same services. The

updates of these values by agents in the proposed model

showed that intelligence has increased and the selection

prevents poor services. Combined services were made in the

experimental phase and the results show that it has a much

better performance than the previous combined services.

Table 5

 Information of application used in the proposed model after 1000 iteration

with α =2

C
o

m
b

in
ed

se
rv

ic
e

n
am

e

P
er

fo
rm

an
ce

T
h

e
n
u

m
b

er

o
f

ru
n

Q
u

al
it

y

F
ac

to
r

F
it

n
es

s

fu
n
ct

io
n

S19 15 11 0.904 0.493

S40 20 14 0.992 0.744

S31 15 12 0.992 0.859
S10 19 18 0.99 0.99

S12 18 20 0.984 1.148

S2 30 41 0.96 1.344

S42 22 18 0.984 1.558

S16 6 9 0.996 1.66

S41 17 32 0.98 1.9023
S7 16 45 0.958 2.754

V. CONCLUSIONS AND FUTURE WORK

Processes management of service-oriented architecture to

invoke the service and use them in combination with the

services is one of the important issues in service-oriented

architecture. Much research has been done in this field.

In this paper, a method was proposed, that is using multi-

agent systems, which can help to distribute resources and

reduce tasks of the central unit in service-oriented architecture.

It also helps to implement the functions of service-oriented

architecture as distributed. The proposed model was evaluated

based on scenario based compromise evaluation method. The

main scenarios of this problem and the balance parameters

were measured according to expert opinion. Finally, a

selection of services was optimized by the genetic algorithm

that results in the implementation of the application sample

showed that there is an overall increased productivity of the

system.

A practical usage of the proposed model in a practical

environment was investigated and obtained results are

reported. The results indicated that more time is needed to

evaluate a system that runs in the international conference of

computer society of Iran (ICCSI). Implementation of this

model in real environment, and its comparison with its

implementation on the prototype could be helpful to justify

better efficiency and accuracy for future applications.

ACKNOWLEDGMENT

This article was kindly supported by Islamic Azad

University, Science and research Branch, Tehran, Iran.

REFERENCES

[1] S. Pan and Q. Mao, "Case Study on Web Service Composition Based on

Multi-Agent System," Journal of Software, vol. 8, pp. 900-907, 2013.

[2] D. I. Tapia, J. Bajo, and J. M. Corchado, "Distributing functionalities in
a SOA-based multi-agent architecture," in 7th International Conference

on Practical Applications of Agents and Multi-Agent Systems (PAAMS

2009), 2009, pp. 20-29.
[3] T. Erl, "Service-oriented architecture (SOA): concepts, technology, and

design," 2005.

Journal of Telecommunication, Electronic and Computer Engineering

40 ISSN: 2180 – 1843 e-ISSN: 2289-8131 Vol. 8 No. 5 May – August 2016

[4] J. H. Behnaz Nahvi "Adoption of Runtime Quality of Service in Genetic

Algorithm on Memory-equipped Service-Oriented Architecture,"

Advanced Science Letters, 2016.

[5] P. Bartalos, "Effective automatic dynamic semantic web service

composition," Inf. Sci. and Technol. Bulletin ACM Slovakia, vol. 3, pp.
61-72, 2011.

[6] M. Korotkiy and J. Top, "Blackboard-style Service Composition with

Onto⇔ SOA," in International Conference WWW/Internet, Portugal,
2007.

[7] O. Hioual and Z. Boufaida, "An Agent Based Architecture

(Usingplanning) For Dynamic And Semantic Web Services Composition

In An Ebxml Context," International Journal of Database Management
Systems (IJDMS), vol. 3, pp. 111-131, 2011.

[8] M. Alrifai, T. Risse, and W. Nejdl, "A hybrid approach for efficient Web

service composition with end-to-end QoS constraints," ACM
Transactions on the Web (TWEB), vol. 6, p. 7, 2012.

[9] E. Pejman, Y. Rastegari, P. M. Esfahani, and A. Salajegheh, "Web

service composition methods: A survey," in Proceedings of the
International MultiConference of Engineers and Computer Scientists,

2012.

[10] J. Hoffmann and I. Weber, "Web Service Composition," in
Encyclopedia of Social Network Analysis and Mining, ed: Springer,

2014, pp. 2389-2399.

[11] D. Mallayya, B. Ramachandran, and S. Viswanathan, "An Automatic
Web Service Composition Framework Using QoS-Based Web Service

Ranking Algorithm," The Scientific World Journal, vol. 2015, 2015.

[12] A. Kazemi, A. Rostampour, P. Jamshidi, E. Nazemi, F. Shams, and A.
N. Azizkandi, "A genetic algorithm based approach to service

identification," in Services (SERVICES), 2011 IEEE World Congress on,

2011, pp. 339-346.
[13] A. V. Dastjerdi and R. Buyya, "A taxonomy of qos management and

service selection methodologies for cloud computing," Cloud

Computing: Methodology, Systems, and Applications, pp. 109-131,

2011.

[14] H. Jiang, X. Yang, K. Yin, S. Zhang, and J. A. Cristoforo, "Multi-path

QoS-aware web service composition using variable length chromosome
genetic algorithm," Information Technology Journal, vol. 10, pp. 113-

119, 2011.

[15] G. Amirthayogam, M. Rathinraj, A. Gayathri, K. V. Reddy, T.
Vijayalakshmi, M. Hemalatha, et al., "Web service discovery with qos-

an agent-based approach," Int. J. Futuristic Sci. Eng. Technol, vol. 1, pp.

1-5, 2013.
[16] S. Usmani, N. Azeem, and A. Samreen, "Dynamic service composition

in SOA and QoS related issues," International Journal of Computer

Technology and Applications, vol. 2, pp. 1315-1321, 2011.
[17] Z. Balfagih and M. F. B. Hassan, "Agent based monitoring framework

for SOA applications quality," in Information Technology (ITSim), 2010

International Symposium in, 2010, pp. 1124-1129.

[18] T. Konnerth, "An Agent-Based Approach to Service-Oriented

Architectures," Universitätsbibliothek der Technischen Universität

Berlin, 2012.
[19] A. Butoi, G. A. Morar, and A. Ilea, "Agent-Based Framework for

Implementing and Deploying of SOA," Journal of Mobile, Embedded
and Distributed Systems, vol. 4, pp. 107-113, 2012.

[20] F. Brazier, V. Dignum, M. N. Huhns, C. Derksen, F. Dignum, T.

Lessner, et al., "Agent-based organisational governance of services,"
Multiagent and Grid Systems, vol. 8, pp. 3-18, 2012.

[21] S. Kumar, "Agent-Based Semantic Web Service Selection and

Composition," in Agent-Based Semantic Web Service Composition, ed:
Springer, 2012, pp. 15-25.

[22] P. Novak, P. Kadera, P. Vrba, and R. Sindelar, "Architecture of a multi-

agent system for SCADA level in smart distributed environments," in

Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th

Conference on, 2013, pp. 1-8.

[23] P. Papadopoulos, H. Tianfield, D. Moffat, and P. Barrie, "Decentralized

multi-agent service composition," Multiagent and Grid Systems, vol. 9,

pp. 45-100, 2013.
[24] J. A. García Coria, J. A. Castellanos-Garzón, and J. M. Corchado,

"Intelligent business processes composition based on multi-agent

systems," Expert Systems with Applications, vol. 41, pp. 1189-1205,
2014.

[25] A. Latrache, E. H. Nfaoui, and J. Boumhidi, "Multi agent based incident

management system according to ITIL," in Intelligent Systems and
Computer Vision (ISCV), 2015, 2015, pp. 1-7.

[26] L. Pang, R. Y. Zhong, and G. Q. Huang, "Agent-Based Service-Oriented

Architecture for Heterogeneous Data Sources Management in
Ubiquitous Enterprise," in Advances in Sustainable and Competitive

Manufacturing Systems, ed: Springer, 2013, pp. 367-378.

[27] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,

"Web services composition: A decade’s overview," Information

Sciences, vol. 280, pp. 218-238, 2014.

[28] Q.-m. YU, W. Lan, and D.-m. HUANG, "Fishery web service
composition method based on ontology," Journal of Integrative

Agriculture, vol. 11, pp. 792-799, 2012.

[29] X. Zhou, G. Xu, and L. Liu, "An approach for ontology construction
based on relational database," International Journal of Research and

Reviews in Artificial Intelligence, vol. 1, pp. 16-19, 2011.

[30] H. Tang, F. Zhong, and C. Yang, "A tree-based method of web service
composition," in Pervasive Computing and Applications, 2008. ICPCA

2008. Third International Conference on, 2008, pp. 204-209.
[31] J. Zhou, D. Pakkala, J. Perala, E. Niemela, J. Riekki, and M. Ylianttila,

"Dependency-aware service oriented architecture and service

composition," in Web Services, 2007. ICWS 2007. IEEE International
Conference on, 2007, pp. 1146-1149.

[32] A. M. Omer and A. Schill, "A Framework for Dependency Based

Automatic Service Composition," in Business Process Management
Workshops, 2009, pp. 535-541.

[33] E. Karakoc and P. Senkul, "Composing semantic Web services under

constraints," Expert Systems with Applications, vol. 36, pp. 11021-
11029, 2009.

[34] V. Suraci, T. Inzerilli, and S. Mignanti, "Design and Implementation of

a Service Discovery Architecture in Pervasive Systems," IST Mobile
Wireless Summit, Dresden, Germany, 2005.

[35] B. Benatallah, H. Reza, H. R. M. Nezhad, F. Casati, F. Toumani, and J.

Ponge, "Service mosaic: A model-driven framework for web services
life-cycle management," Internet Computing, IEEE, vol. 10, pp. 55-63,

2006.

[36] J. Liu, N. Gu, Y. Zong, Z. Ding, S. Zhang, and Q. Zhang, "Service
registration and discovery in a domain-oriented UDDI registry," in

Computer and Information Technology, 2005. CIT 2005. The Fifth

International Conference on, 2005, pp. 276-283.
[37] H. Samset and R. Bræk, "Dynamic service discovery using active

lookup and registration," in Services-Part I, 2008. IEEE Congress on,

2008, pp. 545-552.
[38] C. I. Pinzón, J. F. De Paz, D. I. Tapia, J. Bajo, and J. M. Corchado,

"Improving the security level of the FUSION@ multi-agent

architecture," Expert Systems with Applications, vol. 39, pp. 7536-7545,
2012.

[39] E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo,

"An abstract architecture for virtual organizations: The THOMAS
approach," Knowledge and Information Systems, vol. 29, pp. 379-403,

2011.

[40] R. Kazman, P. Clements, and L. Bass, "Software architecture in
Practice," Addison Wesley Abril, vol. 11, 2003.

