High-k Dielectric Thickness and Halo Implant on Threshold Voltage Control

S.K. Mah^{1, 2}, I. Ahmad², P. J. Ker² and Noor Faizah Z. A.²

¹Department of Electrical Engineering, Faculty of Engineering, Nilai University 71800 Nilai, Negeri Sembilan, Malaysia ²Electronics Research Group, Institute of Power Engineering, Universiti Tenaga Nasional (UNITEN) 43000 Kajang, Selangor, Malaysia

Aibrahim@uniten.edu.my

Abstract—High-k dielectric oxides have been used to replace the widely used silicon dioxide (SiO₂) gate dielectrics to overcome physical limits of transistor scaling. The thickness of high-k gate dielectric influences the threshold voltage (V_{TH}) and off-state leakage current (I_{OFF}). A device with high drive current (I_{ON}) and low I_{OFF} gives a high on-off current ratio (I_{ON}/I_{OFF}), which leads to a faster switching speed for the Ntype Metal Oxide Semiconductor Field Effect Transistor (NMOS). In order to achieve the best I_{ON}/I_{OFF} ratio for a predetermined range of V_{TH}, halo implant was used to adjust the threshold voltage. The finding shows that optimum V_{TH} and I_{ON}/I_{OFF} ratio can be achieved by selecting the most suitable halo implant dose in a virtually fabricated 14nm gate-length La₂O₃-based NMOS device with varying high-k dielectric oxide thickness.

Index Terms-High-k dielectric; La2O3; metal gate; NMOS.

I. INTRODUCTION

The semiconductor industry continuously develops new technologies to maintain its competitive edge. The downsizing of transistors has been the way forward to fuel the continued performance enhancement for the past few decades. The desire to have the smaller device is not without its benefits. A smaller device cost less to manufacture, comes with fewer defects and furthermore, size and speed have a strong correlation. Smaller transistors demonstrate faster switching speeds. As the size shrinks, gate oxide thickness and power supply voltage are the two major parameters that are affecting the on-current of the transistor, which comes with scaling.

The need to further miniaturize the transistors comes with many advantages such as smaller components, increased energy efficiency and modern integrated powerful processors. However, the major disadvantage is the challenging, complicated and complex fabrication process that is required to produce reliable products. Most of the advanced CMOS products have been using hafnium dioxide (HfO₂) as the high-k material to replace silicon dioxide (SiO₂) in the effort of continuing the historical progress of scaling [1, 2].

The thicker high-k dielectric is used to eliminate the effect of having high tunneling current that causes increased power consumption and reliability issues. It was observed that thicker high-k gate dielectric exhibits higher fringing field effect from gate to source/drain regions, and thus has weaker gate control. As a consequence, it showed reduced subthreshold performance and degradation of short channel performance [3]. Further reducing the Equivalent Oxide Thickness (EOT) but maintaining a low leakage current has been the focus of many researchers in the usage of high-k material in the gate oxide. Various high-k materials such as Aluminum Oxide $(Al_2O_3),$ Lanthanum Oxide (La₂O₃), Zirconium Oxide (ZrO₂), Tantalum Oxide (Ta₂O₅), Praseodymium Oxide (Pr₂O₃) and HfO₂ have the potential to replace SiO₂ [4, 5, 6] because of their high dielectric constants and wide band gaps. The incompatibility between the high-k material and the polysilicon gate resulted in the research on the other alternative gate materials to suppress the depletion effect, to minimize dopant penetration and to decrease gate sheet resistance. The metal gate is most commonly chosen as the alternative material to replace polysilicon gate.

The reduction of EOT below 1nm remains a challenging task even with the introduction of high-k dielectric with appropriate metal gates in order to continue the aggressive device scaling. The elimination of SiO₂-high-k interface has been demonstrated to achieve lower EOT [7]. Direct deposition of a high-k material such as lanthanum aluminate [8], HfO₂ [9], and Y₂O₃ [10] on silicon without a layer of SiO₂ on top of silicon have been reported. La₂O₃, which has a dielectric constant of 27, forms a silicate layer that has relatively high dielectric constant ($k = 8 \sim 14$) with silicon substrate upon annealing. SiO₂ interfacial layer that was reported to be formed on Hf-based oxides at the silicon substrate interface was not observed [11].

In this paper, NMOS with direct high-k/Si without SiO₂ interfacial layer has been realized on a La₂O₃-based 14nm (NMOS) device through simulation using SILVACO software. Both the EOT and physical gate oxide thickness affect the short channel effects (SCEs) [12, 13]. Thus it is important to pay attention to both parameters in order to reduce the gate leakage to an acceptable level.

La₂O₃ gate dielectrics have gained increased attention and much research has been conducted to investigate its properties due to the fact that La₂O₃ could make direct contact with Si substrate by forming a La-silicate layer without the need of SiO₂ as the interfacial layer. In addition, La₂O₃ exhibits good thermal stability, high dielectric constant (~27), wide band gap (~5.6 eV) and large conduction band offset (~2.4 eV) that make it the right candidate for gate dielectric and to meet its goal of reducing leakage current.

The contribution of the I_{OFF} , which consists of various sources of leakage current to the speed and power tradeoff of NMOS, can be observed from the I_{ON}/I_{OFF} . Therefore, apart from concentrating on the I_{OFF} , the I_{ON}/I_{OFF} ratio is also

important. However, I_{ON}/I_{OFF} decreases significantly with a decrease in supply voltage. Thus, the ability to suppress I_{OFF} but at the same time increase, I_{ON} would improve gate controllability and overall device performance. The importance of having the correct V_{TH} and acceptable I_{ON}/I_{OFF} ratio are necessary to prevent short-circuit currents during switching, high power dissipation, slow output transitions or low output swings, in fulfilling design demands for high-performance NMOS.

The paper aims to investigate the effect of different high-k dielectric thickness [14], namely thickness of La₂O₃ on the ION/IOFF ratio for the 14nm NMOS. Halo implant was adopted near the source and drain to prevent punch-through operation and reduce the effect on threshold voltage [15, 16]. Although halo implantation was implemented to reduce channel effect, it caused the short a threshold voltage shift due to dopant channeling [17]. The process also affected I_{OFF} and then directly impacted on the I_{ON}/I_{OFF} ratio. According to International Technology Roadmap for Semiconductors (ITRS) 2013, V_{TH} must be 0.230V±12.7% while I_{ON} must be more than 1267 μ A/ μ m and I_{OFF} must be below 100nA/µm for a device with good performance.

II. MATERIALS AND METHODS

A 14nm La₂O₃-based NMOS was fabricated virtually using advanced process simulation tools from SILVACO TCAD software. The design of NMOS with high-k metal gate (HKMG) technology was modeled based on previous design simulated using the ATHENA process simulator [18-21]. La₂O₃ was identified to be the high-k oxide and tungsten as the metal gate for the fabricated NMOS. A schematic structure of the NMOS is given in Figure 1. Different thicknesses of La₂O₃, which were 2nm, 3nm, 4nm and 5nm, were deposited directly on top of silicon in separate experiments to fabricate four NMOS devices with different high-k oxide thicknesses. Tungsten with a fixed thickness of 38nm was then deposited on top of the high-k oxide on the devices [19]. It was followed by halo implantation to adjust the value of threshold voltage to meet the ITRS requirement [21].

Figure 1: Structure of 14nm NMOS

The data used in the design of 14nm NMOS fabrication recipes are summarized in Table 1. Four HKMG NMOS with 2nm, 3nm, 4 nm and 5nm La_2O_3 thicknesses and 38nm tungsten thickness were fabricated respectively. The design parameters used in the design are summarized in Table 2.

Throughout the four different device fabrication steps, all the parameters were kept the same except for halo implantation doses [22]. Halo implantation dose was varied in order to keep the V_{TH} within the ITRS value as the thickness of La₂O₃ were varied from 2nm to 5nm.

Table 1 HKMG NMOS Fabrication Recipes

$ \begin{array}{ccccc} 1 & \text{Silicon substrate} & <100> \text{ orientation} \\ 2 & \text{Retrograde well} & 200 \text{Å oxide screen by }970^\circ\text{C}, 20 \\ & \text{min of dry } \text{O}_2 \\ & 4.5 \times 10^{11} \text{cm}^{-3} \text{ Phosphorus} \\ & 30 & \text{min, }900^\circ\text{C} & \text{diffused in} \\ & & \text{nitrogen} \\ & 36 & \text{min, dry } \text{O}_2 \\ & & 36 & \text{min, dry } \text{O}_2 \\ & & 130 \text{Å stress buffer by }900^\circ\text{C}, 25 \\ & & \text{min of dry } \text{O}_2 \\ & & 130 \text{Å stress buffer by }900^\circ\text{C}, 25 \\ & & \text{min of dry } \text{O}_2 \\ & & 1500 \text{\AA Si}_3 \text{N}_4, \text{ applying LPCVD} \\ & & & & \mu \text{ photoresist deposition} \\ & & 15 & \text{min annealing at }900^\circ\text{C} \\ & & & 2.75 \times 10^{12} \text{cm}^{-3} \text{ Boron difluoride} \\ & & & \text{SkeV implant energy, }7^\circ \text{ tilt} \\ & & 20 & \text{min annealing at }800^\circ\text{C} \\ & & & & 2 & \text{mm/3nm/4mm/5nm La}_2 \text{O}_3 \\ \end{array} $	No	Process Step	NMOS Parameters		
 Retrograde well implantation 200Å oxide screen by 970°C, 20 min of dry O₂ 4.5 x 10¹¹cm⁻³ Phosphorus 30 min, 900°C diffused in nitrogen 36 min, dry O₂ STI Isolation 3 STI Isolation 130Å stress buffer by 900°C, 25 min of dry O₂ 1500 Å Si₃N₄, applying LPCVD µm photoresist deposition 15 min annealing at 900°C V_{TH} adjust implant 2.75 x 10¹²cm⁻³ Boron difluoride 5keV implant energy, 7° tilt 20 min annealing at 800°C High-k/Metal gate 2 mm/3nm/4mm/5nm La₂O₃ 	1	Silicon substrate	<100> orientation		
 implantation min of dry O₂ 4.5 x 10¹¹ cm⁻³ Phosphorus 30 min, 900°C diffused in nitrogen 36 min, dry O₂ 33 STI Isolation 130Å stress buffer by 900°C, 25 min of dry O₂ 1500 Å Si₃N₄, applying LPCVD µm photoresist deposition 15 min annealing at 900°C V_{TH} adjust implant 2.75 x 10¹²cm⁻³ Boron difluoride 5 High-k/Metal gate 2 mm/3nm/4nm/5nm La₂O₃ 	2	Retrograde well	200Å oxide screen by 970°C, 20		
 4.5 x 10¹¹ cm⁻³ Phosphorus 30 min, 900°C diffused in nitrogen 36 min, dry O₂ 3 STI Isolation 4 V_{TH} adjust implant 4 V_{TH} adjust implant 5 High-k/Metal gate 4 A Transformation 4 Stransformation 4 Stransfor		implantation	min of dry O ₂		
 30 min, 900°C diffused in nitrogen 36 min, dry O₂ 3 STI Isolation 30Å stress buffer by 900°C, 25 min of dry O₂ 1500 Å Si₃N₄, applying LPCVD μm photoresist deposition 15 min annealing at 900°C 2.75 x 10¹² cm⁻³ Boron difluoride 5keV implant energy, 7° tilt 20 min annealing at 800°C 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La₂O₃ 			4.5 x 10 ¹¹ cm ⁻³ Phosphorus		
 3 STI Isolation 3 Stress buffer by 900°C, 25 min of dry O₂ 1 500 Å Si₃N₄, applying LPCVD µm photoresist deposition 15 min annealing at 900°C 2.75 x 10¹² cm⁻³ Boron difluoride 5 KeV implant energy, 7° tilt 20 min annealing at 800°C 2 mm/3nm/4nm/5nm La₂O₃ 			30 min, 900°C diffused in		
 3 STI Isolation 36 min, dry O₂ 130Å stress buffer by 900°C, 25 min of dry O₂ 1500 Å Si₃N₄, applying LPCVD μm photoresist deposition 15 min annealing at 900°C 4 V_{TH} adjust implant 2.75 x 10¹² cm⁻³ Boron difluoride 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La₂O₃ 			nitrogen		
 3 STI Isolation 130Å stress buffer by 900°C, 25 min of dry O₂ 1500 Å Si₃N₄, applying LPCVD μm photoresist deposition 15 min annealing at 900°C 4 V_{TH} adjust implant 2.75 x 10¹² cm⁻³ Boron difluoride 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La₂O₃ 			36 min, dry O ₂		
 min of dry O₂ 1500 Å Si₃N₄, applying LPCVD µm photoresist deposition 15 min annealing at 900°C 2.75 x 10¹² cm⁻³ Boron difluoride 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La₂O₃ 	3	STI Isolation	130Å stress buffer by 900°C, 25		
 4 V_{TH} adjust implant 5 High-k/Metal gate 1500 Å Si₃N₄, applying LPCVD μm photoresist deposition 15 min annealing at 900°C 2.75 x 10¹² cm⁻³ Boron difluoride 5 keV implant energy, 7° tilt 20 min annealing at 800°C 2 nm/3nm/4nm/5nm La₂O₃ 			min of dry O ₂		
 μm photoresist deposition 15 min annealing at 900°C 2.75 x 10¹² cm⁻³ Boron difluoride 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La₂O₃ 			1500 Å Si ₃ N ₄ , applying LPCVD		
4 V _{TH} adjust implant 15 min annealing at 900°C 4 V _{TH} adjust implant 2.75 x 10 ¹² cm ⁻³ Boron difluoride 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La ₂ O ₃			µm photoresist deposition		
 4 V_{TH} adjust implant 2.75 x 10¹² cm⁻³ Boron difluoride 5keV implant energy, 7° tilt 20 min annealing at 800°C 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La₂O₃ 			15 min annealing at 900°C		
5 High-k/Metal gate 5keV implant energy, 7° tilt 20 min annealing at 800°C 5 High-k/Metal gate 2 nm/3nm/4nm/5nm La ₂ O ₃	4	V _{TH} adjust implant	2.75 x 10 ¹² cm ⁻³ Boron difluoride		
5High-k/Metal gate20 min annealing at 800°C2nm/3nm/4nm/5nm La2O3			5keV implant energy, 7° tilt		
5 High-k/Metal gate $2 \text{ nm}/3\text{nm}/4\text{nm}/5\text{nm} \text{ La}_2\text{O}_3$			20 min annealing at 800°C		
1	5	High-k/Metal gate	2 nm/3nm/4nm/5nm La ₂ O ₃		
deposition 38 nm tungsten		deposition	38 nm tungsten		
30 min, 900°C annealing			30 min, 900°C annealing		
6 LDD Implantation $1.5 \times 10^{12} \text{cm}^{-3}$ Phosphor	6	LDD Implantation	1.5 x 10 ¹² cm ⁻³ Phosphor		
7° tilt			7° tilt		
7 Sidewall spacer deposition $0.008 \ \mu m \ Si_3N_4$	7	Sidewall spacer deposition	0.008 µm Si ₃ N ₄		

Table 2 Design Parameters for NMOS

No	Process Parameter	Units	Best Value	
1	V _{TH} Implantation Dose	atom/cm ³	2.75×10 ¹²	
2	V_{TH} Implantation Energy	keV	5	
3	V _{TH} Implantation Tilt Angle	0	7	
4	Halo Implantation Dose	atom/cm3	6.80×10 ¹³ (2nm)	
			6.73×10 ¹³ (3nm)	
			6.40×10 ¹³ (4nm)	
			6.25×10 ¹³ (5nm)	
5	Halo Implantation Energy	keV	140	
6	Halo Implantation Tilt Angle	0	30	
7	S/D Implantation Dose	atom/cm ³	1.0×10^{14}	
8	S/D Implantation Energy	keV	12	
9	S/D Implantation Tilt	0	7	
	Angle			
10	Compensation	atom/cm3	0.61×10^{14}	
	Implantation Dose			
11	Compensation	keV	60	
	Implantation Energy			
12	Compensation	0	7	
	Implantation Tilt Angle			

III. RESULTS AND DISCUSSION

The fabricated HKMG NMOS devices were simulated for its electrical behavior using ATLAS module of SILVACO. Figure 2 shows the NMOS load profile with net doping concentrations of the input parameters. Figure 3 shows the characteristic curve between drain current (I_D) and drain voltage (V_D) at gate voltage (V_G) of 1.0V, 1.5V, 2.0V and 2.5V, while Figure 4 and Figure 5 show the plot of I_D versus V_G and sub-threshold I_D versus V_G at $V_D = 0.5V$ and 1.0V respectively for the 14nm NMOS with 2nm-La₂O₃ thickness. I_{ON} and I_{OFF} values are extracted from the subthreshold graph as shown in Figure 5. The ratio of I_{ON}/I_{OFF} was then calculated from the values extracted from Figure 5. A good I_{ON}/I_{OFF} ratio is essential for a good signal to noise ratio in circuit operation. Table III shows the comparison of simulated results for V_{TH} , I_{ON} , I_{OFF} and I_{ON}/I_{OFF} ratio of NMOS with 2nm, 3nm, 4nm and 5nm La₂O₃ thickness with ITRS2013 predicted values.

Figure 2: Load profile of 14nm NMOS

Figure 3: Graph of Drain Current(I_D) versus Drain Voltage(V_D)

Figure 5: Graph of Sub-threshold Drain current(I_D) versus Gate Voltage(V_G)

Table 3 Simulated Results of Various High-k Thickness with ITRS 2013 Prediction

	Thickness of La ₂ O ₃					
	2nm	3nm	4nm	5nm	Prediction	
V _{TH} (V)	0.216024	0.217559	0.213721	0.215406	0.20079- 0.25921	
I _{ON} (A/μm)	133	117	108	97.9	1267	
I _{OFF} (A/nm)	12.1	19.5	32.7	49.7	100	
$I_{\text{ON}}/I_{\text{OFF}}$	1.10×10^{4}	6.01×10 ³	3.29×10 ³	1.97×10 ³	1.3×10^{4}	
V _{TH} (V)	0.216024	0.217559	0.213721	0.215406	0.20079 0.25921	

Figure 6: Graph of threshold voltage (V_{TH}) and on/off current ratio (I_{ON}/I_{OFF}) for different La₂O₃ thicknesses

According to ITRS2013, I_{OFF} must be below 100nA/µm as high I_{OFF} degrades the sub-threshold swing and as a consequence, the I_{ON} as well. As the channel length was fixed in the experiment, La_2O_3 thickness and halo implantation are the dominant components in determining the V_{TH} in the NMOS. Halo implantation dose was reduced to keep the V_{TH} at ITRS value as the La_2O_3 thickness was increased.

Figure 6 shows that thinner La_2O_3 are required to achieve better I_{ON}/I_{OFF} ratio while maintaining V_{TH} at a fixed value. The variations of I_{ON} and I_{OFF} with respect to the different La_2O_3 thicknesses are shown in Figure 7. It was observed that I_{ON} reduced while I_{OFF} increased as the La_2O_3 thickness increased. The thickness control of ultrathin high-k dielectric below 2nm to produce the smooth film is considered very challenging with the current technology. It is observed that I_{ON} and I_{ON}/I_{OFF} ratio increases with the decrease in La_2O_3 thickness.

A higher I_{ON}/I_{OFF} ratio means faster switching for the NMOS. Figure 8 shows that the reduction of halo implantation dose is required to keep the V_{TH} at the required level as the thickness of La_2O_3 increases. However, non-linear relationship between the two variables was observed. Figure 9 shows the effect of variation of La_2O_3 thickness on halo implantation dose and I_{OFF} . Halo implant was adopted to suppress the SCE and control the leakage current. It was observed that I_{OFF} was minimized by having thicker La_2O_3 layer as shown in Figure 9.

Figure 7: Graph of on-current $(I_{\rm ON})$ and off current $(I_{\rm OFF})$ for different La_2O_3 thickness

Figure 8: Graph of Halo Implantation dose and threshold voltage (V_{TH}) for different La₂O₃ thicknesses

 $\label{eq:Figure 9: Graph of Halo Implantation dose and off-current (I_{OFF}) \\for different La_2O_3 thickness$

IV. CONCLUSION

In this study, the effect of adjusting halo implant dose to maintain the V_{TH} for various high-k material thicknesses on 14nm NMOS were comprehensively investigated. It was observed that I_{ON}/I_{OFF} ratio increased with reduced thickness of La₂O₃ dielectric. The dependence of I_{ON}/I_{OFF} ratio on the high-k thickness can be observed.

ACKNOWLEDGMENT

The authors would like to express sincere gratitude to the Ministry of Higher Education (MOHE) and Centre for Micro and Nano Engineering (CeMNE) College of Engineering (COE), Universiti Tenaga Nasional (UNITEN) for the moral, facilities and support throughout the project.

REFERENCES

- Ando, T., Kwon, U., Krishnan, S., Frank, M.M. and Narayanan, V., 2016. High-oxides on Si: MOSFET gate dielectrics,". *Thin Films on Silicon: Electronic And Photonic Applications*, pp.323-367.
- [2] Gritsenko, V.A., Perevalov, T.V. and Islamov, D.R., 2016. Electronic properties of hafnium oxide: A contribution from defects and traps. *Physics Reports*, 613, pp.1-20.
- [3] Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P.V., Greene, W.M., Stork, J.M., Yu, Z., Zeitzoff, P.M. and Woo, J.C., 1999. The impact of high-/spl kappa/gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. *IEEE Transactions on Electron Devices*, 46(7), pp.1537-1544.
- [4] In, L.S., 2001, September. Recent Progress in High-k Dielectric Films for ULSIs. In *Extended abstracts of the... Conference on Solid State Devices and Materials* (Vol. 2001, pp. 8-9).
- [5] Robertson, J. and Wallace, R.M., 2015. High-K materials and metal gates for CMOS applications. *Materials Science and Engineering: R: Reports*, 88, pp.1-41.
- [6] Osten, H.J., Bugiel, E. and Fissel, A., 2002. Epitaxial praseodymium oxide: a new high-K dielectric. MRS Online Proceedings Library Archive, 744.
- [7] Lichtenwalner, D.J., Jur, J.S., Kingon, A.I., Agustin, M.P., Yang, Y., Stemmer, S., Goncharova, L.V., Gustafsson, T. and Garfunkel, E., 2005. Lanthanum silicate gate dielectric stacks with subnanometer equivalent oxide thickness utilizing an interfacial silica consumption reaction. *Journal of applied physics*, 98(2), p.024314.
- [8] Edge, L.F., Schlom, D.G., Brewer, R.T., Chabal, Y.J., Williams, J.R., Chambers, S.A., Hinkle, C., Lucovsky, G., Yang, Y., Stemmer, S. and Copel, M., 2004. Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon. *Applied physics letters*, 84(23), pp.4629-4631.
- [9] Copel, M. and Reuter, M.C., 2003. Decomposition of interfacial SiO 2 during HfO 2 deposition. *Applied physics letters*, 83(16), pp.3398-3400.
- [10] Copel, M., 2003. Selective desorption of interfacial SiO 2. Applied physics letters, 82(10), pp.1580-1582.
- [11] Ng, J.A., Sugii, N., Kakushima, K., Ahmet, P., Tsutsui, K., Hattori, T. and Iwai, H., 2006. Effective mobility and interface-state density of La2O3 nMISFETs after post deposition annealing. *IEICE Electronics Express*, 3(13), pp.316-321.
- [12] Salehuddin, F., Ahmad, I., Hamid, F.A. and Zaharim, A., 2010, June. Analyze and optimize the silicide thickness in 45nm CMOS technology using Taguchi method. In *Semiconductor Electronics* (*ICSE*), 2010 IEEE International Conference on (pp. 19-24). IEEE.
- [13] Elgomati, H.A., Majlis, B.Y., Salehuddin, F., Ahmad, I., Zaharim, A. and Hamid, F.A., 2011, September. Cobalt silicide and titanium silicide effects on nano devices. In *Micro and Nanoelectronics (RSM)*, 2011 IEEE Regional Symposium on (pp. 282-285). IEEE.
- [14] Atan, N.B., Ahmad, I.B. and Majlis, B.B.Y., 2014, August. Effects of high-K dielectrics with metal gate for electrical characteristics of 18nm NMOS device. In *Semiconductor Electronics (ICSE)*, 2014 *IEEE International Conference on* (pp. 56-59). IEEE.
- [15] Redder, M., Hong, Q.Z., Nandakumar, M., Aur, S., Hu, J.C. and Chen, I.C., 1996, December. A sub-0.1/spl mu/m gate length CMOS technology for high performance (1.5 V) and low power (1.0 V). In *Electron Devices Meeting*, 1996. *IEDM'96.*, *International* (pp. 563-566). IEEE.

- [16] Hwang, H., Lee, D.H. and Hwang, J.M., 1996, December. Degradation of MOSFETs drive current due to halo ion implantation. In *Electron Devices Meeting*, 1996. *IEDM*'96., *International* (pp. 567-570). IEEE.
- [17] Salehuddin, F., Ahmad, I., Hamid, F.A., Zaharim, A., Elgomati, H.A., Majlis, B.Y. and Apte, P.R., 2012. Influence of HALO and source/Drain Implantation Variations on threshold Voltage in 45nm CMOS Technology. International Journal of Electronics, Computer and Communications Technologies, 2(3), pp.27-33.
- [18] Maheran, A.A., Faizah, Z.N., Menon, P.S., Ahmad, I., Apte, P.R., Kalaivani, T. and Salehuddin, F., 2014, August. Statistical process modelling for 32nm high-K/metal gate PMOS device. In Semiconductor Electronics (ICSE), 2014 IEEE International Conference on (pp. 232-235). IEEE.
- [19] ZA, N.F., Ahmad, I., Ker, P.J. and Menon, P.S., 2015. Modelling and Characterization of a 14 nm Planar p-Type MOSFET Device. *International Journal of Integrated Engineering*, 7(3).
- [20] Faizah, Z.N., Ahmad, I., Ker, P.J., Roslan, P.A. and Maheran, A.A., 2015, August. Modeling of 14 nm gate length n-Type MOSFET. In *Micro and Nanoelectronics (RSM)*, 2015 IEEE Regional Symposium on (pp. 1-4). IEEE.
- [21] ITRS 2013 Report; http://www.itrs.net.
- [22] Fauziyah, S., 2011. Influence of halo and source/drain implantation on threshold voltage in 45nm pmos device. Australian Journal of Basic and Applied Sciences, 5(1), pp.55-61.