
Journal of Computer Science and Cybernetics, V.34, N.2 (2018), 97–111

DOI 10.15625/1813-9663/34/2/12667

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING
PROBLEM IN AVAILABLE TIME-WINDOWS WITH SPLIT-MIN

AND SETUP-TIME CONSTRAINTS*

TRANG HONG SON1,2, TRAN VAN LANG3, NGUYEN HUYNH-TUONG1

1Ho Chi Minh City University of Technology, Vietnam
2Hoa Sen University, Vietnam

3Institute of Applied Mechanics and Informatics, VAST
2son.tranghong@hoasen.edu.vn

�

Abstract. This paper deals with personal scheduling problem in available time-windows with split-

min and setup-time constraints. The jobs are splittable into sub-jobs and a common lower bound

on the size of each sub-job is imposed. The objective function aims to find a feasible schedule that

minimizes the total completion time of all jobs. The proposed scheduling problem was proved to

be strongly NP -hard by a reduction to previous problem in the preliminary results. We propose in

this paper an exact method based on MILP model to find optimal solution, some heuristics to find

feasible solution and a meta-heuristic based on tabu search algorithm to find good solution. The

computational results show the performance of proposed exact method, some heuristics and tabu

search algorithm.

Keywords. Splitting-job, available time-window, setup-time, assignment approach, SPT/LPT rule,

tabu search algorithm.

1. INTRODUCTION

In everyday life, there are many things that people need to carry out (called job), for

instance, writing up the lesson plan, teaching, checking and correcting students’ homework,

writing tests, doing research and so on are jobs of a teacher. Each job has a processing-time

and a preparation time (or setup-time in literature). The preparation time presents the

period to recuperate the job status from the last execution while this job can be split in

several sub-jobs. For example, when the teacher wants to evaluate the student works from

examination, they cannot do marking for hundreds of students at once. In order to fairly

mark a group of students for each evaluation time interval (sub-job), once the teacher wants

to continue the marking, he should read the test details carefully, check the scoring in the

answer keys and then match for each work of students. We all have available time-windows to

do work and unavailable time-windows not to do work. For simplicity of modeling problem,

unavailable time-windows are reduced to milestones (called break-time).

∗This paper is selected from the reports presented at the 11th National Conference on Fundamental and Applied

Information Technology Research (FAIR’11), Thang Long University, 09 - 10/08/2018.

c© 2018 Vietnam Academy of Science & Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/235211569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:son.tranghong@hoasen.edu.vn

98 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

The personal scheduling problem is arranging jobs depending on the available time-

windows and basing on different criteria so as to maximize their productivity. The constraints

in this problem are that the jobs can be splittable into some sub-jobs which can not be less

than a threshold called splitmin (note that if we divide the job into as many parts as we can,

setup-time for broken sections), and jobs are not assigned into unavailable time-windows

(i.e., jobs are not scheduled through break-times). The main goal of this problem is to find

the solution so that all jobs are completed as soon as possible.

According to classical scheduling notations [5], this scheduling problem with Cmax is the

time when all jobs are completed, which is denoted as follows:

1|splitting − job, splitmin, setup− time, time− window|Cmax

The other notations used in the problem are:

• n: number of jobs

• m: number of windows

• Ji: the ith job

• pi: processing-time for job Ji

• si: setup-time for job Ji

• Wt: the tth window

• wt: size of window Wt

• bt: the tth break-time.

Consider a simple example to understand this problem, the input data is presented in

Tables 1 and 2 with n = 3 jobs (J1, J2, J3) with the corresponding processing-time of each

job is 12, 7, 13 and the setup-time is 2, 1, 2; and m = 4 windows (W1,W2,W3,W4) with

corresponding available time [0, 8], [8, 18], [18, 33], [33, +∞); and 3 break-times at times

t = 8, t = 18, t = 33 as Figure 1.

Table 1. Jobs

Jobs Processing time Setup time
J1 12 2
J2 7 1
J3 13 2

Table 2. Windows

Windows Available time Size
W1 [0,8] 8
W2 [8,18] 10
W3 [18,33] 15
W4 [33, +∞) +∞

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 99

0 8 18 33 43 t

time window

Figure 1. Demonstration of available time-windows

With splitmin = 5, a feasible solution has Cmax = 43 with an idle-time at [16, 18] as

Figure 2.

0 8 18 33 43 t

s1 J1 = 6 s1 J1 = 6 idle s2 J2 = 7 s3 J3 = 5 s3 J3 = 8

Figure 2. A feasible solution has Cmax = 43

And an optimal solution has Cmax = 40 with an idle-time at [32, 33] as Figure 3.

0 8 18 33 43 t

s2 J2 = 7 s3 J3 = 8 s1 J1 = 12 idle s3 J3 = 5

Figure 3. An optimal solution has Cmax = 40

The previous personal scheduling problem in [7] is a special case of this considered pro-

blem with setup-time = 0, in other words, this problem is a generalization of the previous

problem. Since the previous problem was proved to be strongly NP -hard by a reduction

from 3-PARTITION problem in [7], this problem is also strongly NP -hard. The properties

of the optimal solution are also presented in [8], that is there exists an optimal solution such

that in an available time window:

a) Each job does not have to be executed or has only one sub-job; and each job Ji is split

up into Si sub-jobs, with Si = min{
⌊

pi
splitmin

⌋
;m}.

b) The order of sub-jobs is optional.

c) If exiting, the size of idle-time is smaller than 2× splitmin and should be at the end of

the time-window.

Based on the above optimal properties, one must answer two questions to solve the

problem:

100 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

1. Is job or sub-job assigned to an available time-window?

2. If so, what is the size of this job or sub-job?

The map of related scheduling problem is presented as in Figure 4.

Scheduling problem

Task allocation problem Virtual machine allocation problem ...

Jobs scheduling problem Resource-constrained project scheduling problem

General shop problem Scheduling with splitting-job constraint ...

Preemption scheduling problem Lot-sizing scheduling problem ...

Capacitated machine scheduling problem Resumable scheduling problem

Personal scheduling problem

split-min cstr. time-window cstr. setup-time cstr. deadline cstr. ...

Figure 4. The map of related scheduling problem

The kind of scheduling problem is being very popular in many areas like:

• Jobs scheduling problem (JSP): consists of determining the best processing sequence

of jobs to minimize total costs [1].

– General shop problem (GSP): job shops, flow shops, open shops, and mixed shops

are special cases of the general shop [2].

– Scheduling with splitting-job constraint (SwSJC):

∗ Preemption scheduling problem (PrSP): a job is interrupted solely by anot-

her job having higher priority if preemption is allowed [2].

∗ Lot-sizing scheduling problem (LSP): focused in the context where several

customer orders share production capacity and finite planning situation from

production to inventory status depends on fluctuating demands [3].

∗ Capacitated machine scheduling problem (CSP): scheduling with the avai-

lability on working machine has been limited [9].

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 101

∗ Resumable scheduling problem (RSP): a special case of the capacitated sche-

duling problem, in which jobs do not need to be restarted in the case when

it has been interrupted by the starting time of a non-availability period [4].

∗ Personal scheduling problem (PSP): personal plan is always changeable, has

to be flexible, may break a large task into many small ones, but each split

part of the task cannot last less than a specified minimum duration [10].

• Resource-constrained project scheduling problem (RCPSP): consists of activities that

must be scheduled subject to precedence and resource constraints such that the make-

span is minimized [6].

• Task allocation problem (TAP): aims to minimize total execution cost and inter-node

communication cost in traditional parallel computing systems [11].

• Virtual machine allocation problem (VMAP): considers allocating the VM instances

for one unit of time [12].

This paper is organized as follows. The next section presents the proposed approaches for

solving this scheduling problem. The results of the experiment are demonstrated in Section

3. And the final section is discussion and conclusion of the study.

2. PROPOSED APPROACHES

2.1. Exact method - MILP model

In this problem, some decision variables are:

• xi,t ∈ {0, 1} is 1 if the sub-job of Ji is assigned to the window Wt, otherwise is 0.

• yi,t is integer, is processing-time of the sub-job of Ji in the the window Wt corresponding

to xi,t.

And intermediate variables are:

• αt =
⌈∑n

i=1 xi,t

n

⌉
, αt ∈ {0, 1} is 0 if there does not exist sub-job of Ji is assigned to the

window Wt, otherwise is 1.

• βt = αt × bt−1 is integer, is the start of the window Wt.

• γt = βt +
∑n

i=1(si × xi,t + yi,t) is integer, is the end of sub-job in the window Wt.

• Cmax = maxt=1,...,m(γt) is integer, is the maximum of the end of sub-job in all windows.

MILP model formulation is presented as:

Objective function

min(Cmax)

102 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

Subject to
m∑
t=1

yi,t = pi; ∀i = 1, . . . , n, (1)

n∑
i=1

(si × xi,t + yi,t) ≤ wt; ∀t = 1, . . . ,m, (2)

splitmin × xi,t ≤ yi,t ≤ pi × xi,t; ∀i = 1, . . . , n, ∀t = 1, . . . ,m, (3)

γt ≤ Cmax; ∀t = 1, . . . ,m. (4)

These constraints are described below:

• Constraint (1): the total processing-time of all sub-jobs of a job is equal to the com-

pletion time of that job.

• Constraint (2): the total processing-time and setup-time of sub-jobs in a window should

not exceed the size of that window.

• Constraint (3): if a sub-job is assigned to a window, the processing-time of that sub-job

must be greater than splitmin; in addition, this constraint also ensures that if xi,t = 0

then yi,t = 0.

• Constraint (4): linearization of max function.

2.2. Assignment (ASS)

Some notations are used in this algorithm:

• rji is remaining time for job Ji, after any sub-job of Ji is assigned into the window.

• rwt is remaining size of window Wt, after any sub-job or job is assigned into this

window.

Main idea: traverse each window from LEFT to RIGHT, at each window, the job is

considered one of three cases, see more details in Algorithm 1:

• If (rji + si) ≤ rwt, then assign job Ji with the size of rji into window Wt.

• If (rji+si) ≥ (rwt+splitmin), then assign job Ji with the size of (rwt−si) into window

Wt, after that the remaining job is pushed back into list jobs.

• If rji ≥ (2× splitmin), then assign job Ji with the size of (rji − splitmin) into window

Wt, after that the remaining job is pushed back into list jobs.

With the above input data in Table 1, 2, the solution from ASS algorithm presents as

Figure 5.

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 103

0 8 18 33 43 t

J1 = 6 J1 = 6 idle J2 = 7 J3 = 5 J3 = 8

Figure 5. ASS algorithm has Cmax = 43

Algorithm 1: ASS, with O(m× n)

input: Jobs: list jobs;
Wins: list windows

1 begin
2 foreach window Wt ∈Wins do
3 foreach job Ji ∈ Jobs do
4 if rji ≥ splitmin and rwt ≥ splitmin then
5 if (rji + si) ≤ rwt then
6 Assign job Ji with the size of rji into window Wt;
7 else
8 if (rji + si)− rwt ≥ splitmin then
9 Assign job Ji with the size of (rwt − si) into window Wt;

10 else if rji − splitmin ≥ splitmin then
11 Assign job Ji with the size of (rji − splitmin) into window Wt;

12 end

13 end

14 end

15 end

16 end

2.3. Shortest setup processing time (SPT) and longest setup processing time
(LPT)

Main idea: improved from the Assignment algorithm, at each window, the jobs are sorted

according to the total setup-time and processing-time by ascending (SPT) or descending

(LPT), see more details in Algorithm 2. With the above input data in Tables 1 and 2, the

solution from SPT algorithm presents as Figure 6.

0 8 18 33 43 t

J2 = 7 J1 = 7 idle J1 = 5 J3 = 6 J3 = 7

Figure 6. SPT algorithm has Cmax = 42

104 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

Algorithm 2: SPT/LPT, with O(m× n× log n)

input: Jobs: list jobs;
Wins: list windows

1 begin
2 foreach window Wt ∈Wins do
3 List jobs sorted in SPT/LPT order;
4 foreach job Ji ∈ Jobs do
5 if rji ≥ splitmin and rwt ≥ splitmin then
6 if (rji + si) ≤ rwt then
7 Assign job Ji with the size of rji into window Wt;
8 else
9 if (rji + si)− rwt ≥ splitmin then

10 Assign job Ji with the size of (rwt − si) into window Wt;
11 else if rji − splitmin ≥ splitmin then
12 Assign job Ji with the size of (rji − splitmin) into window Wt;

13 end

14 end

15 end

16 end

17 end

2.4. Tabu search on Assignment (TSASS)

Note that, in the Assignment algorithm shown in subsection 2.2, the order of jobs will

affect the result Cmax, for example with input data in Tables 1 and 2 presents as Figure

8. Because combining ordering works better, the Tabu search algorithm is applied to this

problem such as the combinatorial optimization problem. Tabu search uses a local or neig-

hborhood search procedure to iteratively move from one potential solution x to an improved

solution x′ in the neighborhood of x, until some stopping criterion has been satisfied (gene-

rally, an attempt limit or a score threshold). Local search procedures often become stuck in

poor-scoring areas or areas where scores plateau. In order to avoid these pitfalls and explore

regions of the search space that would be left unexplored by other local search procedures,

Tabu search carefully explores the neighborhood of each solution as the search progresses.

• Encoding solution related to each solution represents a list of job orders, for example

at Figure 7, S1 = J2|J3|J5|J4|J1 and S2 = J3|J2|J4|J1|J5.

Solution 1 2 3 5 4 1

Solution 2 3 2 4 1 5

Figure 7. Encoding presentation

• Creating neighbor solutions from initial solution S = J1|Ji|J2|Jj |J3 by using the follo-

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 105

wing operators:

– SWAP: a neighbor of S is created by interchanging the jobs in position i and j,

leading to sequence S′ = J1|Jj |J2|Ji|J3.

– EBSR (extraction and backward shifted re-insertion): a neighbor of S is created

by extracting Jj and re-inserting it backward just before Ji, leading to sequence

S′ = J1|Jj |Ji|J2|J3.

– EFSR (extraction and forward shifted re-insertion): a neighbor of S is created by

extracting Ji and re-inserting it forward immediately after Jj , leading to sequence

S′ = J1|J2|Jj |Ji|J3.

• Evaluate the fitness of neighbor solutions by using the Assignment algorithm at sub-

section 2.2 to find the Cmax.

Jobs: {J1 = 12, J2 = 7, J3 = 13} ⇒ Cmax = 43

0 8 18 33 43 t

J1 = 6 J1 = 6 idle J2 = 7 J3 = 5 J3 = 8

Jobs: {J1 = 12, J3 = 13, J2 = 7} ⇒ Cmax = 41

0 8 18 33 43 t

J1 = 6 J1 = 6 idle J3 = 13 J2 = 7

Jobs: {J2 = 7, J1 = 12, J3 = 13} ⇒ Cmax = 42

0 8 18 33 43 t

J2 = 7 J1 = 7 idle J1 = 5 J3 = 6 J3 = 7

Figure 8. The value Cmax is different when ordering different jobs

3. EXPERIMENTAL RESULTS

3.1. Dataset

There are two datasets, DS1 and DS2, which are used to evaluate the methods. In

particular, DS1 contains small sample sizes of 10 to 20 jobs, which are used to compare the

106 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

exact method with the heuristic methods; and DS2 contains large sample sizes of 100 to

200 jobs (scale up to 10 times), which are used to compare between heuristic methods. In

each dataset, 18 tuples (n,m, splitmin) are considered, and for each such tuple, there are 10

sample instances generated according to the following rules:

• splitmin = {5, 6, 7},

• pi is randomly generated by integer uniform distribution in [splitmin, 30],

• wt is randomly generated by integer uniform distribution in [1.5× splitmin, 1.5× 30],

• si = pi ÷ 10.

In the education context, the unit time is often 45 minutes, so it can be flexibly scaled

from 30 minutes to 1 hour. If the time unit is equivalent to 0.5 hours, jobs will be processed

continuously from 2.5 hours to 3.5 hours, and any job is split too low below this threshold

then the effect of the job will not be high. The size of the window will be 1.5 times the

processing-time of the job. And the setup-time of a job is about 1/10 the processing-time of

that job.

3.2. Evaluate of the exact method

All experimental results for the evaluation were conducted on a computer configured with

Intel(R) Core(TM) i7-4650U 1.70GHz, 8GB memory with Windows 8.1 professional OS. The

MILP model was implemented on the CPLEX 12.7.1 solver, which was tested on the dataset

DS1 and evaluated on two criteria:

• Percentage gap (%) between the optimal solution Z∗ and the lower bound LB =∑n
i=1(si + pi), as follows

%LB =
(Z∗ − LB)

LB
× 100.

• Runtime (t) finds the optimal solution.

Table 3 shows that the average gap (%) between the optimal Z∗ and the lower bound

LB is very small (about 0.98%), which proves that the proposed lower bound is pretty good.

And the Figure 9 also presents that when the number of jobs (n) and the number of window

frames (m) are large, the runtime (t) increases rapidly. Within the time limit for finding an

acceptable solution (less than 10 minutes), n = 20,m = 15 are the maximum values that

CPLEX can find the optimal solution.

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 107

Table 3. CPLEX for dataset DS1

ID n m splitmin %LB t

1 10 5 5 0.85 0.4
2 10 5 6 0.92 0.36
3 10 5 7 0.99 0.38

4 10 7 5 1.35 1.2
5 10 7 6 1.69 1.07
6 10 7 7 1.77 1.34

7 15 7 5 0.58 3.97
8 15 7 6 0.48 4.05
9 15 7 7 0.67 3.64

10 15 10 5 0.97 20.72
11 15 10 6 1.41 22.74
12 15 10 7 1.46 20.75

13 20 10 5 0.5 35.31
14 20 10 6 0.32 32.26
15 20 10 7 0.45 36.49

16 20 15 5 0.83 250.68
17 20 15 6 0.98 248.7
18 20 15 7 1.49 198.25

Average 0.98 -

Notes: each case is the average results of 10
different instances

Figure 9. Runtime on CPLEX for dataset DS1

108 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

3.3. Evaluate of the heuristic methods

These heuristic methods such as ASS, SPT/LPT and TSASS were conducted experimen-

tally on a small dataset DS1 with three criteria:

• Percentage gap (%) between the found solution Z# and the lower bound LB, as follows

%LB =
(Z# − LB)

LB
× 100.

• Percentage gap (%) between the found solution Z# and the optimal solution Z∗ (found

by solver CPLEX in the evaluate subsection 3.2), as follows

%OPT =
(Z# − Z∗)

Z∗
× 100.

• Runtime (t) in seconds.

Experiment results in Table 4 and Figure 10 showed that the ASS algorithm yielded the

highest (7.07% compared to the lower bound and 6.03% versus optimal) because ASS is a

very simple heuristic algorithm. The SPT/LPT algorithms result in a (%) gap less than

the ASS algorithm because these algorithms apply the SPT/LPT rule before proceeding to

assign to windows, however the improvement is not much (only about 1%). The TSASS

algorithm yields the smallest (%) gap because the strategy of the Tabu search algorithm

is trying to find the best solution in the set of neighbor solutions to the current solution,

but TSASS has to undergo many iterations, leading to higher runtime (t) costs than other

heuristics.

Table 4. Summary of experimental results for dataset DS1

ID n m splitmin ASS LPT SPT TSASS
%LB %OPT t %LB %OPT t %LB %OPT t %LB %OPT t

1 10 5 5 4.55 3.67 0 4.98 4.1 0 4.26 3.38 0 1.89 1.04 0.01
2 10 5 6 5.47 4.52 0 5.55 4.6 0 5.15 4.2 0 1.52 0.59 0.01
3 10 5 7 6.55 5.51 0 6.53 5.49 0 6.14 5.1 0 1.39 0.4 0.01

4 10 7 5 6.42 5.01 0 6.55 5.14 0 7.36 5.93 0 3.13 1.76 0.02
5 10 7 6 8.58 6.78 0 7.24 5.47 0 7.04 5.27 0 3.28 1.57 0.01
6 10 7 7 9.05 7.16 0 8.58 6.67 0 7.78 5.91 0 2.99 1.2 0.01

7 15 7 5 4.79 4.19 0 4.82 4.22 0 4.18 3.58 0 1.53 0.94 0.04
8 15 7 6 5.29 4.79 0 5.29 4.78 0 5.48 4.98 0 1.82 1.34 0.04
9 15 7 7 6.09 5.39 0 5 4.31 0 5.68 4.98 0 1.65 0.97 0.04

10 15 10 5 6.73 5.71 0 7.07 6.04 0 6.87 5.84 0 3 2.01 0.05
11 15 10 6 7.76 6.25 0 8.8 7.29 0 8.76 7.25 0 3.57 2.13 0.05
12 15 10 7 9.44 7.87 0 8.88 7.31 0 9.07 7.5 0 3.92 2.43 0.05

13 20 10 5 5.52 5 0 5.47 4.95 0 5.3 4.78 0 1.91 1.41 0.11
14 20 10 6 5.42 5.08 0 5.78 5.44 0 5.39 5.05 0 1.94 1.61 0.11
15 20 10 7 7 6.52 0 6.37 5.9 0 7.05 6.58 0 2.34 1.88 0.11

16 20 15 5 8.5 7.61 0 7.94 7.05 0 8.12 7.23 0 4.56 3.69 0.15
17 20 15 6 9.62 8.56 0 8.67 7.61 0 8.94 7.87 0 4.19 3.18 0.14
18 20 15 7 10.49 8.87 0 9.42 7.82 0 9.97 8.36 0 5.1 3.56 0.15

Average 7.07 6.03 - 6.83 5.79 - 6.81 5.77 - 2.76 1.76 -

Notes: each case is the average results of 10 different instances

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 109

Figure 10. The chart compares the methods on the dataset DS1

Experimenting on the large dataset DS2, due to the lack of optimal solution results,

only two criteria (%LB) were the results found Z# with lower bound LB and runtime (t).

Experiment results on the large dataset DS2 are similar to the small data set DS1 (see details

at Table 5 and Figure 11), in which the ASS algorithm yields the highest gap, followed by

the SPT/LPT algorithms, and the lowest is the TSASS algorithm. However, the runtime

(t) cost of the TSASS algorithm is high, especially for the case of n = 200,m = 150, the

computation time is very high (about 8 minutes) but still acceptable for large data.

Figure 11. The chart compares the methods on the dataset DS2

110 TRANG HONG SON, TRAN VAN LANG, NGUYEN HUYNH TUONG

Table 5. Summary of experimental results for dataset DS2

ID n m splitmin ASS LPT SPT TSASS
%LB t %LB t %LB t %LB t

1 100 50 5 5.78 0 6.12 0 5.53 0 3.36 19.14
2 100 50 6 6.61 0 6.47 0 6.41 0 3.27 18.83
3 100 50 7 7.06 0 7.49 0 6.99 0 3.47 18.95

4 100 70 5 8.3 0 8.29 0 7.51 0 5.3 26.16
5 100 70 6 9.76 0 8.86 0 9.04 0 5.3 26.5
6 100 70 7 10.01 0 10.23 0 10.25 0 5.75 26.61

7 150 70 5 5.39 0 5.66 0 5.15 0 3.21 83.91
8 150 70 6 6.22 0 6.45 0 5.81 0 3.51 81.5
9 150 70 7 6.75 0 7.37 0 6.67 0 3.7 81.38

10 150 100 5 8.08 0 8.32 0 7.69 0 5.34 117.84
11 150 100 6 8.93 0 8.66 0 8.62 0 5.62 148.66
12 150 100 7 10.21 0 9.66 0 9.68 0 5.87 182.11

13 200 100 5 6.12 0 6.25 0 5.53 0 4.03 346.84
14 200 100 6 6.28 0 6.62 0 6.28 0 4.02 324.6
15 200 100 7 7.45 0 7.68 0 7.48 0 4.48 321.95

16 200 150 5 8.89 0 8.53 0 8.51 0 6.48 486.97
17 200 150 6 10.16 0 9.09 0 9.84 0 6.88 487.95
18 200 150 7 10.92 0 10.12 0 10.6 0 7.67 477.01

Average 7.94 - 7.88 - 7.64 - 4.85 -

Notes: each case is the average results of 10 different instances

4. CONCLUSION

In this paper, the personal scheduling problem in available time-windows with splitmin

and setup-time constraints has been proposed. The MILP model was introduced and imple-

mented using the CPLEX solver to find the optimal solution for the problem. In addition,

some heuristic algorithms such as ASS, SPT/LPT as well as the TSASS based on Tabu search

algorithm have been proposed to solve this problem. Experiments to evaluate the methods

have also been carried out and the results showed that the TSASS algorithm achieves a good

compromise between solution quality and acceptable execution time in both small and large

dataset.

Adding more constraints to this personal scheduling problem is an issue that needs to be

considered in the future, such as the deadline constraint for each job or the parallel machine

constraints.

REFERENCES

[1] M. Almeida and M. Centeno, “A composite heuristic for the single machine early/tardy job
scheduling problem,” Computers & Operations Research, vol. 25, no. 7-8, pp. 625–635, 1998.

[2] P. Brucker, Scheduling Algorithms - Fifth Edition. Springer, 2007.

MINIMIZING MAKESPAN OF PERSONAL SCHEDULING PROBLEM 111

[3] B. Fleischmann and H. Meyr, “The general lotsizing and scheduling problem,” OR Spektrum,
vol. 19, no. 1, pp. 11–21, 1997.

[4] S. Gawiejnowicz and A. Kononov, “Complexity and approximability of scheduling resumable
proportionally deteriorating jobs,” European Journal of Operational Research, vol. 200, pp. 305–
308, 2010.

[5] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan, “Optimization and approximation in de-
terministic sequencing and scheduling: a survey,” Annals of Discrete Mathematics, vol. 5, pp.
287–326, 1979.

[6] S. Hartmann and D. Briskorn, “A survey of variants and extensions of the resource-constrained
project scheduling problem,” European Journal of Operational Research, vol. 207, pp. 1–14, 2010.

[7] V. Nguyen, N. H. Tuong, H. Nguyen, and T. Nguyen, “Single-machine scheduling with splitable
jobs and availability constraints,” REV Journal on Electronics and Communications, vol. 3, no.
1-2, pp. 21–27, 2013.

[8] V. Nguyen, N. H. Tuong, V. Tran, and N. Thoai, “An milp-based makespan minimization
model for single-machine scheduling problem with splitable jobs and availability constraints,” in
International Conference on Computing, Management and Telecommunications (ComManTel),
Ho Chi Minh, Vietnam, 2013, pp. 397–400.

[9] S. Raut, S. Swami, and J. Gupta, “Scheduling a capacitated single machine with time dete-
riorating job values,” International Journal of Production Economics, vol. 114, pp. 769–780,
2008.

[10] D. Tran, N. H. Tuong, G. H. Ngoc, T. Mai, T. Tran, Q. Mai, and T. Quan, “A personal scheduling
system using genetic algorithm and simple natural language processing for usability,” in Multi-
disciplinary International Workshop on Artificial Intelligence (MIWAI’2010), Mahasarakham,
Thailand, 2010.

[11] J. Yang, “Complexity analysis of new task allocation problem using network flow method on
multicore clusters,” Mathematical Problems in Engineering, Hindawi Publishing Corporation,
vol. 2014, pp. 1–7, 2014.

[12] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of virtual machine instances
in clouds,” Journal of Parallel and Distributed Computing, vol. 73, no. 4, pp. 495–508, 2013.

Received on September 09, 2018

Revised on September 18, 2018

	INTRODUCTION
	Proposed Approaches
	Exact method - MILP model
	Assignment (ASS)
	Shortest setup processing time (SPT) and longest setup processing time (LPT)
	Tabu search on Assignment (TSASS)

	Experimental Results
	Dataset
	Evaluate of the exact method
	Evaluate of the heuristic methods

	Conclusion

