
ON MONOTONE ILL-POSED PROBLEMS IN 

HILBERT SPACES
N g u y e n  B u o n g

S u m m a r y .  T he m ain aim  of th is p ap er is to  s tu d y  convergence ra tes  for an o p e ra to r m ethod  of regu larization  
to  solve nonlinear ill-posed problem s involving m onotone o p erato rs in infin ite-d im ensional H ilbert space 
w ith o u t needing closeness conditions. T hen  these results are p resented  in form  of com bination  w ith  finite
dim ensional approxim ations of th e  space. An ite ra tive  m ethod  for solving regularized  equation  is given and 
an  exam ple in th e  theo ry  of singular in tegral equations is considered for illu stra tio n .

I. IN T R O D U C T IO N

*&■
Let H  be a real H ilbert space w ith norm  and scalar product denoted by ||.|| and .), 

respectively. Let A be a nonlinear operator in H  w ith dom ain of definition D{A) = H  and 

range i?(.4) C H, and /0 be an elem ent of R(A). ^  _ __- ^

Consider the nonlinear ill-posed problem   ̂ A ~

; .

A{x) = f 0. ' v. __ ji1*1)

By this we m ean th a t solu ons of (1.1) do not depend continuously on the d a ta  / 0. Various 

aspects about regularization of (1.1) were studied in detail when A is com pact (see, for 

instance, [6], [13]-[15], [18], [19] and their bibliographies). Here to  study convergence rates 

of variational m ethod of Tikhonov regularization m inimizing the functional

F*a {x) =  ||.4(x) — f t  ||2 +  a | | i | |2, (1.2)

where a > 0 is the param eter of regularization and f t  are the approxim ations of f 0 w ith 

the wellknown informations

||/i -  /oil < 6, 8 ^ 0 ,

one needs to  have the following conditions (see [6]): (i) A is Frechet differentiable, (ii) 

there exists a constant L > 0 such th a t ||^4'(z) -  A'(y)|| < L ||x — y||, x, y e  D(A) (iii) there 

exists an elem ent w e  H  such th a t A'*[x0)w = x0, where ^ ' ‘ (xq) denotes the adjoint of 

derivative of A a t x0 and x0 is a norm -m inim al solution of (1.1), and (iv) L||w|| < e

(=  1) which is called the closeness condition. In [15] A. Neubauer estim ated e < 1 for a 

modification of (1 .2).



In [5], when A is a m onotone operator, the author obtained e=2 for the operator 

version of Tikhonov regularization

A { x )+ a x  -  fs, (1.3)

b u t convergence rates are a b it weaker. It is clear th a t the equation in condition (iii) 

is not defined explicitly because the operator A'*(x0) and the right-hand side x0 are not 

known. Therefore, the verification of (iv) is alm ost too difficult to  realize. So, it is na tu ra l 

to  propose the question if there exists a some way excepting condition (iv). In [13] A. 

N eubauer developed an approach of [ll]  in the linear case for problems involving compact 

operators. A big advantage of this approach is th a t rates are obtained by merely requiring 

sm oothness conditions for the exact solution as in the linear case. In this paper, we shall 

show th a t  by using a m odification of (1.3) th a t is the regularized equation (see [18])

A(x) + ad<p(x) = f s , (1.4)

where dtp is the subdifferential of the uniformly convex functional <p on H, and replacing

the smoothness condition (iii) by another one we can exclude condition (iv). M ain results 

about convergence rates are presented in Section 2. An iterative process for (1.4) is given 

in Section 3 and an numerical example is considered in Section 4 for illustration.

II. M A IN  RESU LTS

Consider the uniformly convex functional <p(x) =  ||a: 2 < (i < 3. Then (see [7], 

Lemma 2)

(d< p(x)-d< p(y) ,x-y)  > 22_#x||a: -  y)jM, Vs, y& H .

Since ||z — y|| > ||z|| — ||y|| it is wellknown in [18] th a t  Eq. (1.4) has a unique solution xa6

for every fixed a > 0 and f 6 €  H  and the sequence {za i} converges in norm  of H  to  x0 if

S /a  and a  tend to  zero, where

(%>(x0), x -  x0) > 0, V ie  S0, } .

S0 is the set of sulutions of (1.1).

We shall prove the following result.

T heorem  2.1. Let the following conditions hold:

(i) A is twice-Frechet differentiable in some neighbourhood of xo,



(ii) there exists a constant L > 0 such that

for x, z 6  S (xo, r), where S (xo, r) is a ball with center xq and radius r, and

(m) the equation

(A'*(x0) -  ^A"*(x0)y)v =  d<p(x0)

has a bounded solution w(y), y £  S (xo, r).

Then for the choice ot = 0(5P), 0 < p < 1 we obtain

\\xa6 -  loll =  0(<59), q =  m i n ( ( l - p ) / ( n - l ) , p / p ) .

Proof. By v irtue of Eqs (1.1) and (1.4) and the m onotone property  of A  we have

a 2 2 ^ ||x a6 -  loll" ^  &\\xa6 ~  io || +  a(w(t/), (A ' ( x 0) -  iA " (x 0)y)(*o -  s««)), y  €  5 (x 0,r) . 

Using Taylor expression (see [20]) and taking y =  x as we can w rite

A  (x0)(x0 - A  (x0)(x0 Xa$) A(xo) A [ x afi} -h faSt H^aill — - '̂ll '̂ai *o|| /^*

Therefore,

a2 2_M||xa4 -  x o ir < 5||xai -  xq|| +  a||w (xai  -  x0)|| ( S +  a | |x a i || +  I | |x a5 -  x0||3/ 6 )- (2.1)

^22_M -  ^ M x ai -  x0)||||*„i -  xoll3“ '1)  ||*«i -  lo ir  < [(* + -  *o)||)/a]||*ai -  *o||

R em ark  1 . If j4"(xo) =  0 condition (iii) of Theorem  will be w ritten  in the common form 

(iii) in In troduction w ith the righ-hand side d<p{x0). We shall see th is in an example in 

Section 4.

a 22 |̂|xas -  x0|r < ¿Hiatf ~ *o|| -  a(d<p(xo),Xa6 ~ so)- 

From  this inequality and condition (iii) of the theorem  ft follows

Hence

Since xas —► x0 and n < 3, for sufficiently small a and 6, we have

11*0« -  xoir < (S/a  +  a||w(x„ 5 -  *o)||) +  ||u(xaS -  io)||(<5 +  a ||x0||)). 

Using the relation in [12]:

a, b, c > 0, p > q, ap < baq +  c =>■ ap = 0(bp^ p~9̂  +  c)

we obtain

||*ai -  *o|| =  0(6q), q = min ((1 -  p)/(n — l) ,p /p )



For num erical approxim ations one has to  approxim ate the infinite dimensional H ilbert 

space H  by a sequence of finite-dimensional subspaces Hn:

Hi  c  #2 c  ... C Hn ••• c  H, Pnx —► x, n —► + 00, Vx €  H,

where Pn denotes the  orthogonal projections from H  onto Hn. Now, in place of (1.4), 

consider the finite-dim ensional problems

A n(x) +  ad<pn{x) = x & H n (2.2)

where A n = P*APn , d<pn =  P*d<pPn and / "  =  P *fs• It is easy to  verify th a t An and d p n 

are m onotone and continuous in Hn. Hence Eq. (2.2) has a unique solution x^s for a  > 0 

and, for a rb itra ry  a > 0 and fg €  H, the sequence {x"6} converges to  xas , as n —► 00 (see

[17])-

T heorem  2.2. Let the following conditions hold: "

(i) A is twice-Frechet differentiable at some neighbourhood U0 of So,

(ii) there exists a constant L > 0 such that ^

\ \A " ( x ) - A " ( y ) < L \ \x - y \ \ ,  x, y €  Uq,

and
(iii) a  =  a{n,6) is such that a ,S /a  —+ 0 and

^7rl( x ) | | ( / - P rl)x|| +  L | | ( J - P n)x||3/ 6 ) / a  - 0 ,  V x e S 0

as n —► 00, where 7n (z) is denoted- by

7„(x) =  m a x { P ' ( x ) ( / - P rl) | | , | |A " ( x ) ( / - P n)||| |x||},

I  is the identity operator in H . Then the sequence {x"A-} converges to Xo.

Proof. From  (2.2) we have

(.An(x2s) -  A n (xn) + a(dPn(xnaS) -  d<pn(xn)), xna6 -  xn) = ( f?  -  An(xn) ,x naS -  xn)

+ a {d(Pn{xn) ,x n -  x^6), xn = Pnx, x e S o .  (2.3)

As

A(Pnx) = A(x) + A'(x)(Pnx - x )  + ±A"{x){Pnx -  x)2 +  r“ , ||r»|| < L\\(I -  P „ )i) ||3/ 6, * €  So,



from (2.3) it implies

22-/iiii ai -  *n i r  < (s +  i.57»(*)ik/ -  p m  +  m i  -  P n M W i K s  -  *n iiA* (2.4)

+(d<p(xn) ,x n - x naS).

Consequently, the sequence {x*s } is bounded. Let x ^  —■1 xj as a , 6 /a  —* 0 and n -* oo.

Then ^ „ ( 1 ^ )  —* /0 follows from (2.2). We w rite the m onotone property for A n\
i

<AB(x2i) -  ¿n(xn), < s  -  *” > > 0, V X  e  H, xn = Pnx.

Therefore,

( A „ ( x ^ ) - A ( x " ) , x ^ - x “ ) > 0.

From the last inequality and the continuity of A it follows

(/0 — A(x), x\  — x) > 0, V x € H,

i.e. xi 6  S0. Replacing xn by x" (= Pnx 1) in (2.4) we can conclude th a t  the sequence 

{xj4} converges strongly to  xi and

22_M||xCi -  < (« +  l-57n(x)||(/ -  Pn)x\\ + L\\(I -  Pn) x f /6 ^ j  ||x", -  xn \\/a

-  + ( ^ ( x " ) , x " - x " i ).

After passing a, 8 —* 0 and n —► 00 in the last inequality we obtain

(d<p(x), x — x i) > 0, V ie  So.

The last variational inequality is equivalent to  (c?£>(xi),x — x i)  > 0, Vx €  Sq. Then x\ = xo 

and the entire sequence {x"6} converges strongly to  x0. ® .

R em ark  2 . From the above froof we can see th a t  Theorem  is still true  if condition (iii) is 

replaced by

i i i x ) / a -*■ T'iUz) =  IK7 -  -P«)2)!!. x e  s o■ (****)

We prove the following theorem  in this case.

Theorem  2.3. Assume that the following conditions hold:

(i) conditions (i) - (Hi) of Theorem 2.1 with u>(y) = u i ,  Vy S S ( x q , r) and (iii*)



(ii) there exist two constants V  > 0, 7 ' > 0 such that

(9<p[y) -  d<p(x0) ,z )  < L ' \ \ y -  zo||7 '||z ||, Vy, 2 e tf (x 0,r).

If we choose a = 0 (<* +  *£) 1, and denote

In  =  ma* { |IU - Pn)x0\\, | | ( / -  -PnVlll. IK7 “  Pn)fo\\}-

Then

II2"« -  soli =  o ( s Vl +  (7¿), , ^ ) qx =  m in{(l  -  p)/{fi -  1 ),p/fi} and q2 = -  1), gi>.

Proof. From (2.3) (w ith x — xo),

\\A(Pnx0) - f s \ \< 6  + l . ^ 0\ \ ( I - P n)x0\\ + L \ \ ( I - P n)x0\\3/6  ,

where

7 0 =  max {||A'(x0)||, ||A"(*0)||}, “

and the m onotonicity of A n it follows

a 22_M||x” i -  * » |r  < <*(d<p(xn0) ,x l  -  xna6) +  ||/ ,  -  A ( x " ) | | | | x ^  -  x£||

< (<5 +  l o l l  +  (7 i)3) IK i  “  II +  <*(dp(x0), xS ~  xnaS) +  a{d<p(xl) -  d<p{x0), x£ ~ xas) 

< ( S  +  l o l l  +  [ in )3 +  aJ ' , {‘lk)~'')\\Xa6 - Xo\\ +  a (“ U A(x0) ~  +  a  || || || r " 5 ||,

where

raS =  M x as) -  +  A ’ (xo)(xo ~ X^s) ~ \ A " ( x 0) (x " 6 -  X0) 2,

IICII < L h l s  - x o f /6 < L\\xls -* ? | | 3/6 +  0 (7 i)

and

<Wl> A(x  0) -  A(xna6)) < |K ||(5  +  7^ + | | / i  -  ^ ( x ^ ) | | )  +  ((Pn -  J)o,i, A(x2f )).

Because of locally bounded property of every hemicontinuous and monotone operator (see 

[20])

(wli -A(xo) — ^ ( 2a i))  ^  ||« l ||( i  +  In  +  C la  +  C'a|| (J  — P ,)wi ||, Cl, C2 > 0.



Consequently

a  ( 2*-» -  4 N L | | ^  -  11*2,  -  * s i r  < ( 5 + 1 0 1k + u r + a L ' u r ' )

11*2« -  *0II +  <* ( |K  II((! +  C2 ) l l  +  6 + •

Using, again, the relation in [12] we have

l l ^ - 2oll =  0 (5 9l + ( 7 i D

and

IK li-* o ll  =  0 ( f “  +  (7 i) " )  ®

m, -¿fr
III. IT E R A T IV E  M E T H O D

Now consider an iterative m ethod to  solve the equation

F{x) = A{x) + dp(x) =  / ,  ./  6  R(A  +  d<p), (3.1)

where A and d<p are defined as above. In the case dtp = I ,  the unique solution x of (3.1)

can be found by iterative m ethods in [2], [3] and [4] since in th is cases n  =  2 .

Let x1 be an arb itrary  element of H. The sequence of iterations xk is constructed by 

the formula

= _  [3k (F(xk) -  f ) / \ \F (xk) -  / | | .  (3.2)

T heorem  3.1. If the real numbers /3* satisfy the conditions

1 > 0n > 0, Pn \  0, ^  =  + 0O, "Yi Pn < + °°.
n =  1 n = l

then the sequence {xfc} converges to x, as k —* + 00.

Proof. P u t

Afc := ||xfc -  x f .

It is easy to  see th a t

A*+i‘< A* +  2<xfc+1 -  xk, xk -  x) +  ||xfc+1 -  **||2.



From this inequality, the uniformly monotone property of F ( th a t is caused by th a t one 

of dip) and (3.2) we get

Afc+1 < Afc -  23- ^ fcA /̂2/ ||F (x fc) -  /II +  P i  (3.3)

Therefore, the sequence {A*} is bounded. Consequently, the sequences {xfc} and { F ( ifc)} 

are bounded, too. Hence there exist constants Gi, G2 > 0 such th a t

Afc < G1 and ||jP(xfc) -  /II < G2.

We can w rite (3.3) in the form

o3 — 1
Afc+1 < Afc---- ----  — — /3fcA£ + p ị /G  1, Afc =  Afc/Gi.

U2

Repeating the proof of Lemma 3 in [17] to  the last inequality w ith Sk =

afcA^ 2-1 we can conclude th a t  the sequence {Afc} tends to  zero, as k —* +oo. Theorem  is

proved.

IV . A P P L IC A T IO N  "

We now apply the obtained results of the previous sections to  study the singular 

integral equation in form  (see [8])

i  |s — t |_Ax(s)ds + P (i( i))  =  f o [ t ) ,  0 < A < 1, (4.1)
Jo

where fo(t) €  ¿ 2([0,1]) and F(t) satisfies the following conditions:

(i) F{t) is a differentiable function,

(ii)|F (t)| < Co +  c i|i|;ci > 0; F(ti) < F(t2), t i < t 2.

Let the operators K  and F  define by

Ky(t) = f  k(t,s)x(s)ds, (Px)(t) =  F(x(t)),
Jo

where k(t, s) =  0 if t > s and k{t,s) = (t -  s)-A if s < t. Then K  and F  are the m onotone 

operators in H — L2([0,l]). In addition, suppose F  is com pact, therefore (4.1) is an ill- 

posed problem , because K  also is com pact (see [10]). It is easy to  see th a t A — K  + F 

is m onotone and Frechet differentiable. In this case the condition (iii) of Theorem  2.1 is 

described by



and if F" is Lipschitz continuous A" also is Lipschitz continuous. If F"(x0) =  0, for istance, 

F is linear on the set of solutions of (4.1) , then (4.2) has a simple form

(K * +  F'*(x0))w =  d<p(x0).

And, in particu lar, if F'(x0) =  0 th a t condition has a very simple form K*u  =  dip(x0). 

Consider a concrete example, when

P(i) =
t, t < 0,
0, 0 <  i <  1, (4.3)
2 ( t - l ) ,  t >  1,

w ith io(i) =  c0tP, /3 > 0, where co is a constant satisfying the condition

H Izoll^do.iuM /3 +  ^ /2) =  !•

Then
fo{t) = c0 [  |i -  s |_As^+ 1/2ds, dip(x0)(t) = t0+1/2.

Jo
In th is case, u[t) =  r(/3 + 3/2)t0/T{^  +  1) (see [7]).

W ithout loss of generality, consider x0(t) =  x0(t)/c0 and f 0(t) =  }o{t)/c0 w ith A = /? =

0.5 and n =  2.5.

' The values of /¿(f) are chosen as perturbations of the values f 0(t) according to 

^ /«(0 =  fo(t) + 8.

We compute the regularized solution x”á for this problem  using the iterative m ethod (3.2) 

w ith error estim ate 0.001 and approxim ating the H ilbert space ¿ 2(0, l] by the sequence of 

linear subspaces Hn, where

Hn = L{i¡i

,  _  Í 1) t 6  [ty-i, ij],
3 I  0. t $  [ty—1, ty], j  =

It is wellknow th a t

| | ( / - P n)y0|| =  0{n 2), where Pny =  ^  s/(tj)lM 0-
i= i

Now we apply Theorem  2.3 for a(n) =  0 (n-1 ) and S =  0 (n ~ 2). We should obtain  the 

convergence rates en = ||x0 -



All num erical results are obtained w ith FORTRAN program s on an IBM 3031.

n Calc.Results

points a(n) en
15 0.007143 0.115264
21 0.005000 0.097654
33 0.003125 0.083582
65 0.001563 0.067732
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