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Abstract. A thermal buckling analysis of imperfect circular cylindrical shells of func-
tionally graded material is considered. The material properties are assumed varying as
a power form of thickness coordinate variable. The Donnell equilibrium and stability
equations are considered and the Wan-Donnell model for initial geometrical imperfec-
tion is adopted. The thermal loads include the uniform temperature rise and nonlinear
temperature change across the thickness of shell. A closed form solution for the thermal
buckling of simply supported cylindrical FG shell under the described thermal loads is
obtained. The influences of the relative thickness, the imperfection size and the power
law index on buckling thermal loads are all discussed.

1. INTRODUCTION

The initial geometric imperfections are inherent in many real structures. Therefore,
many investigations are conducted on the stability analysis of imperfect structures. Elastic,
plastic, and creep buckling of imperfect cylinders under mechanical and thermal loads is
studied by Eslami and Shariyat [3]. Mossavarali et al. studied the thermoelastic buckling
of isotropic and orthotropic plates with imperfections [8, 9]. Murphy and Ferreira [10]
investigated thermal buckling analysis of clamped rectangular plates based on the energy
consideration. They determined the ratio of the critical temperature for a perfect flat
plate to that one for an imperfect plate as a function of the initial imperfection size. The
study includes experimental results. Eslami and Shahsiah [2] reported thermal buckling
of imperfect circular cylindrical shells made of isotropic materials. They used the Wan-
Donnell and Koiter models to describle initial geometrical imperfection.
The development of new materials with new constitutive models have necessitated more
research in the area of stability analysis. Functionally graded materials (FGMs) are of
these new and high-temperature resistant materials in which material constitution vary
continuously across the thickness of a structure. Some works about the stability of FGM
structures are introduced in the following. Javaheri and Eslami [4, 5, 6] reported mechanical
and thermal buckling of rectangular functionally graded plates. They used energy method
and mainly reached to the closed-form solutions. The research on thermal buckling of
functionally graded cylindrical shells is introduced by Shahsiah and Eslami [12, 13]. Shen
[14] represented thermal postbuckling behavior of functionally graded cylindrical shells
with dependent temperature properties. He considered initial geometrical imperfections
in the analysis. Wu et al. [16] studied the thermoelastic stability of functionally graded
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cylindrical shells by using the Donnell shell theory. They obtained closed-form solutions for
the critical buckling loads with three types of thermal loads being uniform temperature
rise, linear temperature change and nonlinear thermal gradient through the thickness
direction of shell.

In the present article, mainly motivated by Eslami and Shahsiah [2], the influence of
geometrical imperfections on thermal instability of FG shells is investigated. The shell is
graded through the thickness direction according to a power law function. The Donnell
stability equations are considered and the Wan-Donnell model for axisymmetric imperfec-
tion is adopted. The shell is assumed to be simply supported at two ends. The buckling of
shell under two types of thermal loads are obtained. The thermal loads are assumed to be
uniform temperature rise and nonlinear thermal gradient through the thickness direction.
Closed form solutions are given for two types of the assumed thermal loads. The influences
of imperfection size, the relative thickness and the power law index on the critical thermal
loads are considered and discussed.

2. FUNCTIONALLY GRADED SHELL

Functionally graded materials (FGMs) are microscopically inhomogeneous materials
in which the mechanical properties vary smoothly and continuously through the thickness.
This is achieved by gradually changing the volume fraction of the constituent materials.
These materials are made from a mixture of ceramic and metal or a combination of dif-
ferent metals [11]. The ceramic part provides high-temperature resistance due to its low
thermal conductivity and metal part prevents fracture because of thermal loadings. FGMs
are able to withstand ultra high temperature environments and extremly large thermal
gradients while maintaining their structural integrity. FGMs have found diverse engineer-
ing applications in aerospace structures, nuclear reactors, chemical plants, etc.

The functionally graded (FG) cylindrical shell is assumed to be a thin shell of length
L, thickness h and radius R. The x-axis is taken along a generatrix, the circumferential
length subtends an angle θ, and the z-axis is directed radially inwards. We assume that
the modulus of elasticity E, the coefficient of thermal expansion α and conductivity K
change in the thickness direction z, while the Poisson ratio ν is assumed to be constant.
The material properties of FG shell are introduced as [13, 16].

E(z) = Em + Ecm

(

2z + h

2h

)k

,

α(z) = αm + αcm

(

2z + h

2h

)k

,

K(z) = Km + Kcm

(

2z + h

2h

)k

,

ν(z) = ν

(1)

where
Ecm = Ec − Em , αcm = αc − αm , Kcm = Kc − Km , (2)

and subscripts “m” and “c” refer to the metal and ceramic constituents, respectively. The
variable z is the thickness coordinate (−h/2 6 z 6 h/2), where h is the thickness of the
shell and k is the power law index which takes values greater than or equal to zero. The
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variation of the composition of ceramic and metal is linear for k = 1. The value of k equal
to zero represents a fully ceramic shell.

3. ANALYSIS

The constitutive relations are written as [16]

Nx =
E1

1 − ν2
(εxm + νεθm) +

E2

1 − ν2
(kx + νkθ) −

Φ

1− ν
,

Nθ =
E1

1 − ν2
(εθm + νεxm) +

E2

1 − ν2
(kθ + νkx) −

Φ

1− ν
,

Nxθ =
E1

2(1 + ν)
γxθm +

E2

1 + ν
kxθ.

(3)
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E2
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(εxm + νεθm) +

E3

1 − ν2
(kx + νkθ) −

Θ

1 − ν
,

Mθ =
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1 − ν2
(εθm + νεxm) +

E3

1 − ν2
(kθ + νkx) −

Θ

1 − ν
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E2

2(1 + ν)
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(4)

where

E1 = Emh +
Ecmh

k + 1
,
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kEcmh2

2(k + 1)(k + 2)
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(5)

In the above equations, Nij and Mij are force and moment resultants, respectively, εxm, εθm

are the extension strains and γxθm is shear strain at the middle surface of the shell. The
curvature changes are shown by kij.

The strain displacement relations according to Donnell’s assumption [1] as follows.

εxm = u,x + 1

2
w2

,x, εθm = (v,θ + w) /R + w2

,θ/2R2,

γxθm = u,θ/R + v,x + w,xw,θ/R, kx = −w,xx,
kθ = −w,θθ/R2, kxθ = −w,xθ/R,

(6)

where u, v, w are the axial, circumferential, and deflection displacements of the shell and
the comma symbols partial derivative.
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By using Donnell shell theory [1], the equilibrium equations of FG cylindrical shell are
derived as

RNx,x + Nxθ,θ = 0 ,

RNxθ,x + Nθ,θ = 0 ,

D44w +
1

R
Nθ −

[

Nxw,xx +
2

R
Nxθw,xθ +

1

R2
Nθw,θθ

]

= 0 ,

(7)

where
D =

E1E3 − E2

2

E1(1 − ν2)
, 4 =

∂2

∂x2
+

1

R2

∂2

∂θ2
. (8)

For a slightly imperfect shell, let w∗(x, θ) denotes a known small imperfection. This pa-
rameter represents a small deviation of the shell middle plane from a flat shape. According
to [1], equilibrium equations for the imperfect FG shell are as

RNx,x + Nxθ,θ = 0, RNxθ,x + Nθ,θ = 0, D44w +
1

R
Nθ

−
[

Nx

(

w,xx + w∗

,xx

)

+
2

R
Nxθ

(

w,xθ + w∗

,xθ

)

+
1

R2
Nθ

(

w,θθ + w∗

,θθ

) ]

= 0 .

(9)

The stability equations of the shell may be derived by the adjacent equilibrium criterion
[1] as follows

RNx1,x + Nxθ1,θ = 0, RNxθ1,x + Nθ1,θ = 0 ,

D44w1 +
1

R
Nθ1 − Nx0w1,xx −

2

R
Nxθ0w1,xθ −

1

R2
Nθ0w1,θθ−

[

Nx1

(

w0,xx + w∗

,xx

)

+
2

R
Nxθ1

(

w0,xθ + w∗

,xθ

)

+
1

R2
Nθ1

(

w0,θθ + w∗

,θθ

)

]

= 0 .

(10)

In Eqs. (10), terms with the subscript ‘0’ are related to the state of equilibrium and terms
with the subscript ‘1’ are those characterizing the state of stability.

The Wan-Donnell model for the radial imperfection is [1, 2]

w∗ =
K − 1

2
w , (11)

where the coefficient K is a constant value 0 6 K 6 1. The value of K = 1 represents a
perfect shell. The imperfection w∗ is thus defined as a function of w, the lateral deflection of
the FG cylindrical shell. Considering an axisymmetric imperfection, due to the dependency
of w to w∗, the lateral deflection w must be assumed to be axisymmetric. This assumption
results in an axisymmetric buckling mode of the FG cylindrical shell, such that

w∗ = w∗(x) , w0 = w0(x) , w1 = w1(x). (12)
The prebuckling force resultants of FG shell under thermal load are determined as [2, 12]

Nx0 = −
Φ

1 − ν
, Nθ0 = 0 , Nxθ0 = 0. (13)

Putting Eqs. (12), (13) into Eqs. (9) and (10) gives the equilibrium equation
Dw0,xxxx − Nx0

(

w0,xx + w∗

,xx

)

= 0 , (14)
and the stability equation

Dw1,xxxx +
1

R
f,xx − Nx0w1,xx − f,yy

(

w0,xx + w∗

,xx

)

= 0 (15)
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of the axisymmetric imperfect FG cylindrical shell, where a change of variable y = Rθ and
a stress function f(x, y) has been used, such as

Nx1 = f,yy , Ny1 = f,xx , Nxy1 = −f,xy. (16)

Equation (15) is the Wan-Donnell stability equation of an imperfect FG cylindrical shell.
This equation includes two dependent functions, w1 and f . To obtain a second equation
relating the dependent functions w1 and f , the compatibility equation may be used, as
follows

εxm1,yy + εym1,xx − γxym1,xy = 0, (17)
where εxm1, εym1, γxym1 denote parts of the strain components which are linear in stability
state displacements u1, v1, w1. These strains may be written in terms of the displacement
components, using Eqs. (6) with consideration of the imperfection term w∗, as

εxm1 = u1,x + (w0,x + w∗

,x)w1,x ,

εym1 = v1,y + w1/R + (w0,y + w∗

,y)w1,y ,

γxym1 = u1,y + v1,x + (w0,x + w∗

,x)w1,y + (w0,y + w∗

,y)w1,x.

(18)

Moreover, from the constitutive relations (3), one can write for stability state as

εxm1 =
1

E1

(Nx1 − νNy1 − E2kx1 + Φ) ,

εym1 =
1

E1

(Ny1 − νNx1 − E2ky1 + Φ) ,

γxym1 =
2

E1

[

(1 + ν)Nxy1 − E2kxy1

]

.

(19)

From Eqs. (17), (18), (19), taking into consideration Eqs. (12), (16), we obtain equation
1

E1

44f =
1

R
w1,xx. (20)

Equations (14), (15) and (20) are the basic equations used to obtain the critical buckling
loads of imperfect FG cylindrical shells. By putting k = 0, these equations turn into
respective ones in [2] for imperfect isotropic and homogeneous shells.
3.1. Buckling of imperfect functionally graded shells under uniform tempera-

ture rise

Consider a imperfect cylindrical shell of thickness h and length L made of functionally
graded material. The ends are assumed to be simply supported, where the boundary
conditions at x = 0 and x = L are

w = w,xx = 0 (21)

The lateral imperfection of the shell may be assumed to be

w∗ =
(K − 1)ζ

2
sin

mπx

L
, (22)

where ζ is the imperfection size.
Substituting Nx0 from (13) into (14) and assuming a solution in the form

w0 = Asin
mπx

L
, (23)
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which satisfies the simply supported edge conditions at x = 0 and L, the constant A is
obtained and the final approximate solution of Eq. (14) is

w0 =
(K − 1)Φζ

2D(1 − ν)
(mπ

L

)2

− 2Φ
sin

mπx

L
. (24)

Substituting w0 and w∗ into Eqs. (15) and (20) yields

R1 ≡ Dw1,xxxx +
1

R
f,xx +

[ Φ

1 − ν
w1,xx + (A + H)

(mπ

L

)2

f,yy sin
mπx

L

]

= 0

R2 ≡
1

E1

44f −
1

R
w1,xx = 0 ,

(25)

where H ≡
(K − 1)ζ

2
To solve the system of Eqs. (25), with the consideration of the boundary conditions,

the approximate solutions are assumed

w1 = Em sin
mπx

L
,

f = Fm sin
mπx

L
cos

y

R
, 0 6 x 6 L ; 0 6 y 6 2πR ,

(26)

where Em, Fm are constant coefficients. Applying the Galerkin mehtod to the system of
equation (25). The system of Eqs. (25) yields

∫

2πR

0

∫ L

0

R1 sin
mπx

L
cos

y

R
dxdy = 0 ,

∫

2πR

0

∫ L

0

R2 sin
mπx

L
dxdy = 0

(27)

where R1, R2 designate the left sides of Eq. (25) known as the residues of Galerkin method.
The determinant of the system of Eqs. (27) for the coefficients Em and Fm is set to zero,
which yields

Φmin =
D(1− ν)π

L2

(

8H

3R
+ π

)

, (28)

obtained with m = 1. The smallest value of ∆T is obtained using Eqs. (5) and (28)

∆Tcr =
D(1 − ν)π

PL2

(

8H

3R
+ π

)

, (29)

where
P = Emαmh + (Emαcm + Ecmαm)

h

k + 1
+ Ecmαcm

h

2k + 1
. (30)

3.2. Buckling of imperfect FG shell under nonlinear temperature change across

the thickness

The steady state heat conduction equation and the related boundary conditions
d

dz

(

K(z)
dT

dz

)

= 0 , T (z)
∣

∣

∣

z=−h/2

= Tm , T (z)
∣

∣

∣

z=h/2

= Tc , (31)

where Tc and Tm are the temperature of ceramic-rich and metal-rich surfaces, respectively.
The solution of Eq. (31) is obtained by means of polynomial series. Taking the first seven
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terms of the series [16], the solution for temperature distribution across the shell thickness
becomes

T (z) = Tm +
∆T.r.

∑

6

n=0

[

(

−rk.Kcm/Km

)n
/(nk + 1)

]

∑

6

n=0

[

(−Kcm/Km)n/(nk + 1)
] , (32)

where ∆T = Tc − Tm and r = (2z + h)/2h.
Putting (32) into (5) and from (28) we obtain

∆Tcr =
D(1 − ν)π

QL2

(

8H

3R
+ π

)

, (33)

where

Q =

n=6
∑

n=0

[

(−Kcm/Km)n/(nk + 1)
]

h
n=6
∑

n=0

(−Kcm)n

Kn
m(nk + 1)

[Emαm

nk + 2
+

Emαcm + Ecmαm

(n + 1)k + 2
+

Ecmαcm

(n + 2)k + 2

]

(34)

4. RESULTS AND DISCUSSION

The thermal buckling loads of the imperfect functionally graded cylindrical shell are
obtained in closed form solutions for the assumed thermal loadings and represented by Eqs.
(29) and (33). These equations indicate that the critical buckling temperature change of
an imperfect FG shell is decreased in comparision with a perfect one. The decrease in
∆Tcr is expressed by an negative imperfection term 8H/3R, which directly depends on
the imperfection size ζ.
As an example, consider an imperfect ceramic-metal FG shell that consists of aluminum
and alumina with following properties [4, 12, 16]

Em = 70GPa, αm = 23 × 10−6/0C, Km = 204W/mK,

Ec = 380GPa, αc = 7.4× 10−6/0C, Kc = 10.4W/mK, ν = 0.3.
(35)

The shell is assumed to be simply supported on two ends. The variation of ∆Tcr versus the
relative thickness h/R for two types of thermal loadings is shown in Figs. 1 and 2. These
Figs. indicate that the critical thermal loads are increased when the thickness increases.
The pure ceramic shell (k = 0) is remarkably more stable than graded shells, moreover,
the greater power law index k to be, the smaller value of critical thermal loads become
for FG shells. This is expected because ceramic-rich shell withstands temperature better
than metal-rich one. Especially, FG shell under nonlinear thermal gradient is considerably
more stable than under uniform temperature rise.

In Fig. 3, a variation of critical thermal loads versus relative thickness with different
imperfection sizes for uniform temperature rise is plotted. It is observed that the critical
thermal loads decrease when imperfection sizes to be larger. This is good agreement, in
tend, of present result with those reported in [2] for imperfect isotropic circular cylindrical
shell under thermal loads.
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Fig. 1. Critical buckling temperature change of FG shell under uniform temper-
atue rise versus h/R and power law index

Fig. 2. Critical buckling temperature change of FG shell under nonlinear thermal
gradient across the thickness versus h/R and power law index

5. CONCLUSIONS

In the present paper, equilibrium, stability, and compability equations for an imperfect
functionally graded cylindrical shell are derived. Derivations are based on the Donnell shell
theory and the assumption of power law composition for the constituent materials. The
imperfection of the shell is assumed to be axisymmetric and follows Wan-Donnell model.
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Fig. 3. Critical buckling temperature change of FG shell under uniform temper-
atue rise versus h/R and imperfection amplitude

The buckling analysis of such a shell under two types of thermal loadings is investigated.
The shell buckles at first mode and the followings are concluded:

(1) The critical buckling temperature change, ∆Tcr, of an imperfect FG shell is smaller than
a perfect one. This decrease is directly indicated in closed form solutions of critical loads.

(2) ∆Tcr of a FG shell decreases with the increase of imperfection size ζ.
(3) ∆Tcr of an imperfect FG cylindrical shell increases with the increase of the relative thick-

ness h/R. In contrast, ∆Tcr of imperfect FG shell is reduced when the power law index
k increases. The reduction from k = 0 to k = 1 is considerable. However, for k > 1, it is
marginal.

(4) ∆Tcr of the shell subjected to nonlinear temperature change across the thickness is con-
siderably greater than the one subjected to uniform temperature rise.
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ỔN ĐỊNH NHIỆT ĐÀN HỒI CỦA VỎ TRỤ BIẾN ĐỔI CHỨC NĂNG KHI CÓ
IMPERFECT BAN ĐẦU THEO MÔ HÌNH WAN-DONNELL

Bài báo này nghiên cứu ổn định nhiệt đàn hồi của vỏ trụ tròn làm từ vật liệu biến đổi
chức năng khi có imperfect ban đầu. Các phương trình cân bằng và ổn định được thiết
lập dựa trên lý thuyết vỏ Donnell và mô hình Wan-Donnell cho imperfect hình học ban
đầu được xét. Hai trường hợp tải nhiệt được nghiên cứu là sự tăng nhiệt độ đồng nhất
của môi trường chứa vỏ trụ và sự truyền nhiệt qua chiều dày của vỏ trụ. Biểu thức giải
tích cho nhiệt độ tới hạn của hai trường hợp tải nhiệt được đưa ra đối với vỏ trụ tựa bản
lề ở hai đầu. Tính chất của vật liệu chức năng được giả thiết biến đổi theo chiều dày vỏ
theo một hàm mũ. Những ảnh hưởng của độ dày tương đối của vỏ, cỡ imperfect ban đầu
và chỉ số luật mũ lên tải nhiệt tới hạn được nghiên cứu và thảo luận.


