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Abstract. An analytical investigation on the buckling and postbuckling behavior of car-
bon nanotube reinforced composite (CNTRC) sandwich cylindrical panels exposed to
thermal environments and subjected to uniform axial compression is presented in this
paper. Beside sandwich model with CNTRC face sheets in the literature, the present work
suggests a sandwich model with CNTRC core layer and homogeneous face sheets. Car-
bon nanotubes (CNTs) are reinforced into matrix phase through uniform or functionally
graded distributions. Effective properties of nanocomposite layers are determined accord-
ing to extended rule of mixture. Formulations are based on the first order shear deforma-
tion theory taking into account Von Karman-Donnell nonlinearity. Approximate solutions
are assumed to satisfy simply supported boundary conditions and Galerkin method is
used to derive the closed-form expression of nonlinear load-deflection relation from which
buckling loads and postbuckling paths are determined. Numerical examples are carried
out and interesting remarks are given.

Keywords: CNT-reinforced composite; cylindrical panel; sandwich models; buckling and
postbuckling.

1. INTRODUCTION

Numerous studies of material scientists have demonstrated unprecedentedly won-
derful mechanical, thermal and electrical properties of carbon nanotubes (CNTs) [1–3].
In addition to these superior properties, CNTs possess extremely large aspect ratio. Ac-
cordingly, CNTs are ideally used as advanced fillers into isotropic matrix phase to form
carbon nanotube reinforced composite (CNTRC) known as a new class of nanocompos-
ites. CNTs and their nanocomposites have huge potential for current and expected appli-
cations in many engineering fields, especially in aerospace science and engineering [4].
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Shen’s propositional work on functionally graded carbon nanotube reinforced compos-
ite (FG-CNTRC) [5] has motived studies on static and dynamic responses of structural
components made of FG-CNTRC. Based on the first order shear deformation theory
(FSDT) and a numerical approach, Liew and co-workers [6–9] investigated linear buck-
ling of FG-CNTRC plates under mechanical loads. Linear buckling of FG-CNTRC plates
under mechanical and thermal loads has been dealt with in works of Kiani and coau-
thor [10–13] employing Ritz method. Based on some approaches, postbuckling behavior
of FG-CNTRC plates have been addressed in works [14–19].

Cylindrical panel is major component in many structural applications, especially in
aerospace engineering. Macias et al. [20, 21] used finite element method to study linear
buckling and postbuckling of FG-CNTRC cylindrical panel under axial compression. Us-
ing asymptotic solutions and a perturbation technique, Shen and his collaborator [22–25]
presented the results of postbuckling analyses for FG-CNTRC cylindrical panels sub-
jected to mechanical and thermal loading conditions. Based on an analytical approach,
Tung and Trang [26–28] examined the nonlinear stability of FG-CNTRC cylindrical pan-
els under mechanical and thermomechanical loads.

Due to advanced characteristics, sandwich structures are widely used in various
fields. Vibration response of CNTRC sandwich plates has been addressed in works
[29–31] using some different methods. Shen and Zhu [32] made use of a perturbation
technique to analyze postbuckling behavior of CNTRC sandwich plates under compres-
sive and thermal loads. Thermal postbuckling analysis for CNTRC sandwich plates
has been carried out by Kiani [33] utilizing Chebyshev-Ritz method. In aforementioned
works [29–33], sandwich plates are constructed from isotropic homogeneous core layer
and CNTRC face sheets. Beside this model of CNTRC sandwich plate, another model
of sandwich plate with CNTRC core layer and homogeneous face sheets has been sug-
gested in recent works of Long and Tung [34, 35]. These works indicated that sandwich
plate model with CNTRC core layer and thin homogeneous face sheets can give high ef-
ficiency of buckling resistance and postbuckling load carrying capabilities. To the best of
authors’ knowledge, there is no investigation on the nonlinear stability of CNTRC sand-
wich cylindrical panels under axial compression.

As an extension of previous works on thin CNTRC cylindrical panel and shell [36,
37], this paper presents an analytical study on the buckling and postbuckling behavior of
shear deformable CNTRC sandwich cylindrical panels subjected to uniform axial com-
pression in thermal environments. Two sandwich models corresponding to CNTRC face
sheets and core layer are considered. Effective elastic moduli of CNTRC layers are esti-
mated according to extended rule of mixture. Formulations are based on the first order
shear deformation theory taking into account Von Karman-Donnell nonlinearity. Ana-
lytical solutions are assumed and Galerkin method is applied to derive the closed-form
expression of load-deflection relation from which buckling loads and postbuckling paths
are determined.

2. TWO MODELS OF CNTRC SANDWICH CYLINDRICAL PANEL

Consider a cylindrical sandwich panel of axial length a, length of arc b, radius of
curvature R and total thickness h. The panel is reinforced by CNTs and defined in a
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coordinate system xyz origin of which is located at a corner on the middle surface, x and
y axes are in axial and circumferential directions, respectively, and z axis is perpendicular
to the middle surface as shown in Fig. 1.
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tem of a cylindrical panel

The sandwich panel is constructed from
two face sheets separated by a thicker core
layer made of homogeneous or CNTRC ma-
terials. It is assumed that core layer and face
sheets are perfectly bonded and thickness of
each face sheet is h f . The present study con-
siders two different models of sandwich panels
corresponding to CNTRC and homogeneous
face sheets and referred to herein as sandwich
panels of type A and type B, respectively.

2.1. Sandwich panel of type A: homogeneous core layer and CNTRC face sheets
In this type of sandwich panel, the core layer is isotropic homogeneous and face

sheets are reinforced by CNTs as shown in Fig. 2 in which h0 = −h/2, h1 = −h/2 + h f ,
h2 = h/2− h f , h3 = h/2. The volume fractions VCNT of CNTs in face sheets correspond-
ing to uniform distribution (UD) and four different types of functionally graded (FG)
distributions named as FG-X, FG-Λ, FG-V and FG-O are given in the works [34, 35] and
omitted here for the sake of brevity.
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Fig. 2. Functionally graded (FG) types of CNT distribution in sandwich panel of type A. 
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Fig. 2. Functionally graded (FG) types of CNT distribution in sandwich panel of type A

2.2. Sandwich panel of type B: CNTRC core layer and homogeneous face sheets
For sandwich panels of type B, the core layer is reinforced by CNTs and face sheets

are isotropic homogeneous as illustrated in Fig. 3.
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Fig. 3. Functionally graded (FG) types of CNT distribution in sandwich panel of type B

The volume fractions VCNT of CNTs in core layer (h1 ≤ z ≤ h2) corresponding to
UD, FG-X, FG-Λ, FG-V and FG-O types of CNT distribution are given as follows

VCNT =



V∗CNT UD

4
|z|

h2 − h1
V∗CNT FG-X

2
z− h1

h2 − h1
V∗CNT FG-Λ

2
h2 − z
h2 − h1

V∗CNT FG-V

2
(

1− 2 |z|
h2 − h1

)
V∗CNT FG-O

(1)

In this study, the properties of constituents are assumed to be temperature dependent
and effective elastic moduli E11, E22, G12 of CNTRC are determined according to extended
rule of mixture as [5, 14]

E11 = η1VCNTECNT
11 + VmEm, (2a)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em , (2b)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm . (2c)

Effective Poisson ratio ν12 of CNTRC is assumed to be position and temperature
independent and is determined as

ν12 = V∗CNTνCNT
12 + (1−V∗CNT)ν

m. (3)
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Subsequently, effective thermal expansion coefficients α11, α22 of CNTRC layers in
the longitudinal and transverse directions have the form as [13, 24, 33]

α11 =
VCNTECNT

11 αCNT
11 + VmEmαm

VCNTECNT
11 + VmEm

, (4a)

α22 =
(

1 + νCNT
12

)
VCNTαCNT

22 + (1 + νm)Vmαm − ν12α11. (4b)

In the Eqs. (1)÷(2c), the specific definitions of V∗CNT, Vm, ECNT
11 , ECNT

22 , GCNT
12 , Em,

Gm,η1, η2, η3, νCNT
12 , νm, αCNT

11 , αCNT
22 and αm have been given in many previous works on

CNTRC structures, for examples [5, 10–15, 23–33], and are omitted here for the sake of
brevity.

3. FORMULATIONS

In the present study, the sandwich panels are assumed to be geometrically perfect
and moderately thick, and the first order shear deformation theory (FSDT) is used to
establish governing equations. Based on the FSDT, strain components are expressed as εx

εy
γxy

 =

 ε0
x

ε0
y

γ0
xy

+ z

 ε1
x

ε1
y

γ1
xy

 ,
(

γxz
γyz

)
=

(
φx + w,x
φy + w,y

)
, (5)

where  ε0
x

ε0
y

γ0
xy

 =

 u,x + w2
,x/2

v,y − w/R + w2
,y/2

u,y + v,x + w,xw,y

 ,

 ε1
x

ε1
y

γ1
xy

 =

 φx,x
φy,y

φx,y + φy,x

 , (6)

in which u, v, w are displacement components of the middle plane in x, y, z directions,
respectively, and φx, φy are rotations of a normal to the middle plane with respect to y, x
axes, respectively.

The CNTRC sandwich panel is assumed to be thermal stress free at room tempera-
ture T0 = 300 K and stress components are expressed as

σx
σy
σxy
σxz
σyz

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55




εx − α11∆T
εy − α22∆T

γxy
γxz
γyz

 , (7)

where ∆T = T − T0 is uniform temperature rise from initial value T0 and

Q11 =
E11

1− ν12ν21
, Q22 =

E22

1− ν12ν21
, Q12 =

ν21E11

1− ν12ν21
, Q44 = G13, Q55 = G23, Q66 = G12,

(8)
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in CNTRC layers (i.e. h0 ≤ z ≤ h1 and h2 ≤ z ≤ h3 for sandwich panel of type A and
h1 ≤ z ≤ h2 for sandwich panel of type B), and

E11 = E22 = EH, α11 = α22 = αH, ν12 = ν21 = νH,

Q11 = Q22 =
EH

1− ν2
H

, Q12 =
νHEH

1− ν2
H

, Q44 = Q55 = Q66 =
EH

2(1 + νH)
,

(9)

in isotropic homogeneous layers (i.e. h0 ≤ z ≤ h1 and h2 ≤ z ≤ h3 for sandwich panel
of type B and h1 ≤ z ≤ h2 for sandwich panel of type A) with EH, αH, νH are Young
modulus, thermal expansion coefficient, Poisson ratio of isotropic homogeneous mate-
rial, respectively.

Force and moment intensities per unit length of the panel are calculated through
stress components as

(
Nx, Ny, Nxy

)
=

h/2∫
−h/2

(
σx, σy, σxy

)
dz,

(
Mx, My, Mxy

)
=

h/2∫
−h/2

(
σx, σy, σxy

)
zdz,

(
Qx, Qy

)
= KS

h/2∫
−h/2

(
σxz, σyz

)
dz,

(10)

in which KS is shear correction coefficient assumed to be 5/6 in the present work.
Based on the FSDT, system of equilibrium equations includes five equations and

compact form of nonlinear equilibrium equation of geometrically perfect CNTRC sand-
wich cylindrical panel without external pressure is

a11φx,xxx + a21φx,xyy + a31φy,xxy + a41φy,yyy + a51 f,xxyy + f,yyw,xx − 2 f,xyw,xy + f,xxw,yy +
f,xx

R
= 0,
(11)

where f (x, y) is a stress function defined such that Nx = f,yy, Ny = f,xx, Nxy = − f,xy, and

a11 = e13 −
e2

12
e11

, a21 = ν12e23 − ν12
e2

22
e21

+ 2e33 − 2
e2

32
e31

,

a31 = ν21e13 − ν21
e2

12
e11

+ 2e33 − 2
e2

32
e31

, a41 = e23 −
e2

22
e21

, a51 =
e12

e11
− 2

e32

e31
+

e22

e21
,

(12)

in which

(e11, e21, e31) =

h/2∫
−h/2

(Q11, Q22, Q66)dz,

(e12, e22, e32) =

h/2∫
−h/2

(Q11, Q22, Q66) zdz,

(e13, e23, e33) =

h/2∫
−h/2

(Q11, Q22, Q66) z2dz.

(13)
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Next, strain compatibility equation of CNTRC sandwich cylindrical panel has the form

a12 f,xxxx + a22 f,xxyy + a32 f,yyyy + a42φx,xxx + a52φy,xxy

+ a62φy,yyy + a72φx,xyy − w2
,xy + w,xxw,yy +

w,xx

R
= 0,

(14)

where coefficients ai2 (i = 1÷ 7) can be found in the work [28].
The CNTRC sandwich cylindrical panel is assumed to be freely simply supported at

all edges and subjected to axial compressive pressure Px uniformly distributed on curved
edges. The associated boundary conditions are expressed as

w = φy = Nxy = Mx = 0, Nx = Nx0 at x = 0, a,
w = φx = Nxy = My = 0, Ny = 0 at y = 0, b,

(15)

where Nx0 = −Pxh is pre-buckling force resultant at movable edges x = 0, a.
To satisfy boundary conditions (15), the following solutions are assumed

w = W sin βmx sin δny, (16a)

f = A1 cos 2βmx + A2 cos 2δny + A3 sin βmx sin δny +
1
2

Nx0y2, (16b)

φx = B1 cos βmx sin δny, φy = B2 sin βmx cos δny, (16c)

where βm = mπ/a, δn = nπ/b(m = 1, 2, . . .), W is the amplitude of deflection, and
A1, A2, A3, B1, B2 are coefficients to be determined. By substituting solutions (16) into the
compatibility equation (14) and two among five equilibrium equations, then following
procedure described in the works [19, 28, 35], the coefficients Ai, Bj are determined as

A1 =
δ2

n
32a12β2

m

(
W2 + 2µhW

)
, A2 =

β2
m

32a32δ2
n

(
W2 + 2µhW

)
,

B1 = B∗1W, B2 = B∗2W, A3 = A∗3W,
(17)

where coefficients A∗3 , B∗1 and B∗2 have their forms as in the work [28].
Now, introduction of the solutions (16) into equilibrium equation (11) and applying

Galerkin method to the resulting equation lead to the following relation

Px =
B2

h
m2B2

aπ2

[
a13 + (a23 − a33)W + a43W2

]
, (18)

where
Bh = b/h, Ba = b/a, W = W/h, (19)

and coefficients ai3 (i = 1 ÷ 4) have their forms similar to those in the work [28] and
omitted here for the sake of brevity.

From Eq. (18), buckling compressive loads of CNTRC sandwich cylindrical panels
are predicted as

Pxb =
B2

ha13

m2B2
aπ2 , (20)

and critical buckling compressive loads Pxcr are determined by minimizing Pxb with re-
spect to numbers of half wave m, n.
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4. RESULTS AND DISCUSSION

This section presents numerical results of buckling and postbuckling analyses for
sandwich cylindrical panels in which nanocomposite layers are made of PMMA (Poly
methyl methacrylate) matrix material and reinforced by (10, 10) single-walled carbon
nanotubes (SWCNTs), and isotropic homogeneous layers are made of Ti-6Al-4V. The
temperature dependent properties of the PMMA are assumed to be νm = 0.34, αm =
45 (1 + 0.0005∆T)× 10−6 K−1 and Em = (3.52− 0.0034T) GPa in which T = T0 + ∆T and
T0 = 300 K (room temperature), whereas those of the Ti-6Al-4V are [33]

EH = 122.56
(

1− 4.586× 10−4T
)

GPa,

αH = 7.5788
(

1 + 6.638× 10−4T − 3.147× 10−7T2
)
× 10−6 K−1,

νH = 0.29.

(21)

The temperature dependent properties of the (10, 10) SWCNTs are given in Tab. 1
and, by mathematical interpolation, as continuous functions of temperature in the works
[13, 23].

Table 1. Temperature-dependent material properties for (10, 10) SWCNT
(LCNT = 9.26 nm, RCNT = 0.68 nm, hCNT = 0.067 nm, νCNT

12 = 0.175) [14, 20]

Temperature (K) ECNT
11 (TPa) ECNT

22 (TPa) GCNT
12 (TPa) αCNT

11 (×10−6/K) αCNT
22 (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682
400 5.5679 6.9814 1.9703 4.1496 5.0905
500 5.5308 6.9348 1.9643 4.5361 5.0189
700 5.4744 6.8641 1.9644 4.6677 4.8943
1000 5.2814 6.6220 1.9451 4.2800 4.7532

Determining CNT efficiency parameters is key work for successful application of
extended rule of mixture. For nanocomposite reinforced by (10, 10) SWCNTs, efficiency
parameters are determined by matching results of effective elastic moduli obtained by
rule of mixture and molecular dynamics simulation, and given in works [14, 22, 25] as
(η1, η2, η3) = (0.137, 1.022, 0.715) for the case of V∗CNT = 0.12, (η1, η2, η3) = (0.142, 1.626,
1.138) for the case of V∗CNT = 0.17 and (η1, η2, η3) = (0.141, 1.585, 1.109) for the case of
V∗CNT = 0.28. In addition, it is assumed that G13 = G12 and G23 = 1.2G12 [14, 33].

There is no result of buckling analysis for CNTRC sandwich cylindrical panels in the
literature. Therefore, buckling behavior of a pure CNTRC cylindrical panel under axial
compression with simply supported edges is considered for the sake of verification. Re-
sults of critical buckling loads of CNTRC cylindrical panels are obtained from Eq. (20)
for a special case of sandwich model of type B as h f = 0 and shown in Tab, 2 in compar-
ison with results of Shen and Xiang [22] using asymptotic solutions and a perturbation
technique. As can be seen, a good agreement is achieved in this comparison.

In what follows, buckling and posbuckling behaviors of CNTRC sandwich cylindri-
cal panels of types A and B with square plan-form (a = b) will be analyzed. Tabs. 3 and 4
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Table 2. Comparison of critical buckling loads Pxcrbh(kN) of perfect CNTRC cylindrical panels
under uniform axial compression [a/b = 0.98, a/R = 0.5, b/h = 20, h = 1 mm, (m, n) = (1, 1)]

V∗CNT Reference UD FG-X FG-V

0.12 Ref. [22] 3.77i (3.45)ii 5.74 (5.34) 3.02 (2.74)
Present 3.66 (3.43) 4.71 (4.38) 2.94 (2.74)

0.17 Ref. [22] 5.79 (5.29) 8.76 (8.14) 4.62 (4.16)
Present 5.63 (5.29) 7.32 (6.84) 4.50 (4.21)

0.28 Ref. [22] 8.17 (7.58) 12.74 (11.94) 6.52 (6.04)
Present 7.95 (7.43) 10.40 (9.65) 6.39 (6.00)

i T = 300 K, ii T = 400 K.

indicate the effects of CNT volume fraction V∗CNT, distribution patterns and curvature ra-
tio a/R on the critical buckling loads of CNTRC sandwich cylindrical panels of types A
and B under axial compression.

Table 3. Critical buckling loads Pxcr (MPa) of sandwich cylindrical panels of type A under uniform
axial compression [a/b = 1, b/h = 25, h f /h = 0.1, (m, n) = (1, 1)]

V∗CNT a/R UD FG-X FG-V FG-Λ

0.12 0.1 376.9 i (358.6 ii) 377.1 (358.7) 381.3 (363.0) 372.5 (354.3)
0.3 548.7 (521.3) 548.8 (521.4) 553.1 (525.7) 544.3 (517.0)

0.17 0.1 407.5 (388.3) 407.8 (388.6) 414.1 (394.8) 401.0 (382.0)
0.3 581.2 (552.9) 581.5 (553.1) 587.8 (559.4) 574.8 (546.5)

0.28 0.1 461.3 (441.5) 462.1 (442.2) 472.5 (452.4) 451.2 (431.4)
0.3 637.4 (608.3) 638.2 (609.0) 648.6 (619.2) 627.3 (598.3)

i T = 300 K, ii T = 400 K.

Table 4. Critical buckling loads Pxcr (MPa) of sandwich cylindrical panels of type B under uniform
axial compression [a/b = 1, b/h = 25, h f /h = 0.1, (m, n) = (1, 1)]

V∗CNT a/R UD FG-X FG-V FG-Λ

0.12 0.1 345.5 i (328.8 ii) 375.6 (358.4) 335.4 (318.5) 327.2 (310.7)
0.3 396.3 (376.6) 426.4 (406.2) 394.4 (374.1) 369.8 (350.8)

0.17 0.1 376.9 (359.3) 421.3 (402.8) 358.8 (341.0) 349.5 (332.1)
0.3 430.8 (409.8) 475.3 (453.5) 422.2 (400.5) 394.1 (373.9)

0.28 0.1 430.9 (412.5) 502.9 (483.0) 396.7 (378.2) 386.4 (368.5)
0.3 486.2 (464.2) 558.6 (535.1) 462.6 (439.9) 431.8 (410.9)

i T = 300 K, ii T = 400 K.
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For sandwich panels of the type A with CNTRC face sheets, Tab. 3 shows that CNT
distribution has slight effects on the critical loads. Specifically, FG-V and FG-Λ panels
have slightly higher and lower values of critical loads, respectively, and critical loads
corresponding to UD and FG-X panels are almost coincided.

For sandwich panels of type B with CNTRC core layer, Tab. 4 demonstrates that CNT
distribution type has significant effects on the critical loads, especially for higher values
of CNT volume fraction. More specifically, FG-X and FG-Λ panels have the highest and
lowest critical loads, respectively, and UD type results in average critical loads of CNTRC
sandwich panels. Furthermore, it is recognized from Tabs. 3 and 4 that, for both types
of sandwich panels, critical loads are pronouncedly increased as CNT volume fraction
and/or curvature of panels are increased, and decreased when the panels are exposed to
elevated temperature.

The postbuckling behavior of CNTRC sandwich cylindrical panels of types A and B
under axial compression are graphically analyzed in Figs. 4–8.

 

Fig. 4. Effects of CNT distribution patterns on the 
postbuckling behavior of sandwich cylindrical 
panel with CNTRC face sheets under axial 
compression. 

 

Fig. 5. Effects of  ratio on the postbuckling 
behavior of sandwich cylindrical panel with 
CNTRC face sheets under axial compression. 

 Figs. 4 and 5 show the effects of CNT distribution patterns, thickness of face sheet-to-total 

thickness  ratio and environment temperature  on the postbuckling behavior of sandwich 

panels of type A with CNTRC face sheets. It is evident from Fig. 4 that FG-V and  panels 

have the strongest and weakest postbuckling strengths, respectively, and UD, FG-X and FG-O 

panels have intermediate and almost identical postbuckling curves. Subsequently, it is realized 

from Fig. 5 that critical loads and postbuckling paths are significantly reduced when  ratio 

is enhanced, especially as  increases from 0.1 to 0.15. In addition, the load carrying capability 

of sandwich panels is decreased at elevated temperature ( K) and detrimental effect of 

temperature is more pronounced for smaller values of  ratio.  
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ling behavior of sandwich cylindrical panel
with CNTRC face sheets under axial compres-

sion

Figs. 4 and 5 show the effects of CNT distribution patterns, thickness of face sheet-to-
total thickness h f /h ratio and environment temperature T on the postbuckling behavior
of sandwich panels of type A with CNTRC face sheets. It is evident from Fig. 4 that FG-V
and FG-Λ panels have the strongest and weakest postbuckling strengths, respectively,
and UD, FG-X and FG-O panels have intermediate and almost identical postbuckling
curves. Subsequently, it is realized from Fig. 5 that critical loads and postbuckling paths
are significantly reduced when h f /h ratio is enhanced, especially as h f /h increases from
0.1 to 0.15. In addition, the load carrying capability of sandwich panels is decreased at
elevated temperature (T = 400 K) and detrimental effect of temperature is more pro-
nounced for smaller values of h f /h ratio.



Buckling and postbuckling of CNT-reinforced composite sandwich cylindrical panels. . . 227

 

Fig. 6. Effects of  and  ratio on the 
postbuckling behavior of sandwich cylindrical 
panel with CNTRC face sheets under axial 
compression. 

 

Fig. 7. Effects of CNT distribution patterns on the 
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panel with CNTRC core layer under axial 
compression. 

As a subsequent example,  the influences of curvature ratio  and CNT volume fraction 

 on the postbuckling behavior of sandwich panels with CNTRC face sheets are examined in 

Fig. 6. Obviously, the critical buckling loads and postbuckling equilibrium paths are considerably 

enhanced when  and/or  are increased. In other words, more curved and CNT-rich panels 

have higher postbuckling paths. However, more curved panels ( ) experience an unstable 

postbuckling response with relatively intense snap-through instability.  

Next, numerical illustrations on the postbuckling behavior of sandwich panels of type B with 
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8.  Fig. 7 indicates that distribution patterns of CNTs in the core layer have significant effects on 

the postbuckling response of sandwich panels of type B. Specifically, among five distribution 
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Fig. 8. Effects of thickness of face sheets on the postbuckling behavior of sandwich cylindrical
panel with CNTRC core layer under axial compression in a thermal environment

As a subsequent example, the influences of curvature ratio a/R and CNT volume
fraction V∗CNT on the postbuckling behavior of sandwich panels with CNTRC face sheets
are examined in Fig. 6. Obviously, the critical buckling loads and postbuckling equilib-
rium paths are considerably enhanced when a/R and/or V∗CNT are increased. In other
words, more curved and CNT-rich panels have higher postbuckling paths. However,
more curved panels (a/R = 0.2) experience an unstable postbuckling response with rel-
atively intense snap-through instability.

Next, numerical illustrations on the postbuckling behavior of sandwich panels of
type B with CNTRC core layer and homogeneous face sheets under axial compression
are given in Figs. 7 and 8. Fig. 7 indicates that distribution patterns of CNTs in the core
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layer have significant effects on the postbuckling response of sandwich panels of type B.
Specifically, among five distribution types, FG-X and FG-O types give the best and worst
postbuckling response, respectively, and UD panel has higher postbuckling strength than
FG-V panel, especially in the deep region of deflection.

Finally, the interactive effects of h f /h ratio and CNT volume fraction V∗CNT on the
postbuckling behavior of sandwich panels of type B in a thermal environment (T = 400
K) are considered in Fig. 8. It is clear that buckling loads and postbuckling paths are
remarkably enhanced due to increase in h f /h ratio. In addition, effects of CNT volume
fraction are more slight for larger values of h f /h ratio, i.e. thicker face sheets.

5. CONCLUDING REMARKS

An analytical investigation on the buckling and postbuckling behaviors of two mod-
els of sandwich cylindrical panels comprising CNTRC and homogeneous layers and sub-
jected to uniform axial compression in thermal environments has been presented. From
the above results, the following remarks are reached:

1. For sandwich panels of type A with CNTRC face sheets, the type of CNT distribu-
tion has relatively slight effects on the critical loads and postbuckling equilibrium paths
of sandwich panels. In this configuration of sandwich panels, FG-V and FG-Λ types give
the highest and lowest postbuckling strengths, respectively, and load carrying capability
of the panel is reduced as thickness of face sheets is increased.

2. For sandwich panels of type B with CNTRC core layer, the type of CNT distri-
bution has significant effects on the critical loads and postbuckling equilibrium paths of
sandwich panels, and FG-X and FG-O distributions give the best and worst postbuckling
responses of sandwich panels, respectively. For this sandwich model, the load carrying
capability of the panel is enhanced when the thickness of face sheets is increased.

3. For both models of sandwich cylindrical panels, postbuckling load-deflection
paths are enhanced and reduced due to increase in the volume fraction of CNTs and
environment temperature, respectively.
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