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Abstract. This paper addresses the kinematic and dynamic modelling and analysis for a
robot arm consisting of two hydraulic cylinders driving two revolute joints of the arm. The
two cylinders and relevant links of the robot constitute two local closed kinematic chains
added to the main robot mechanism. Therefore, the number of the generalized coordinates
of the mechanical system is increased, and the mathematical modelling is more complex
that requires a formulation of constraint equations with respect to the local closed chains.
By using the Lagrangian formulation with Lagrangian Multipliers, the dynamic equations
are first derived with respect to all extended generalized coordinates. Then a compact
form of the dynamic equations is yielded by canceling the Multipliers. Since the obtained
dynamic equations are expressed in terms of independent generalized coordinates which
are selected according to active joint variables of the arm, the equations could be best
suitable for control law design and implementation. The simulation of the forward and
inverse kinematics and dynamics of the arm demonstrates the motion behavior of the
robot system.

Keywords: hydraulic robot; robot kinematics; robot dynamics; local closed mechanism.

1. INTRODUCTION

Most of industrial manipulators commonly used in industries are usually actuated
by electric motors, such as the welding robots, the assembly robots, etc. The use of elec-
tric motors actuating active robot joints possesses several advantages: easy to control,
high positioning accuracy, and high flexibility. However, if a manipulator is designed to
operate in a large workspace with high loading capability, the use of electric motors for
the design could lead to a very heavy architecture of the robot. Counterweights could
be added to balance to shaking forces. In that case, hydraulic cylinders driving robot
joints is often used for the design. The presence of hydraulic cylinders increases the stiff-
ness of robot structure so that the robot is capable of handling heavy parts in a larger
operational space. Moreover, the counterweights could be avoided since the cylinders
actuating revolute joints play a role of auxiliary links appended to the main structure.
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Though there will be advantages when using hydraulic cylinders for robot designs, the
presence of cylinders in a robot architecture involves complex procedures for the math-
ematical modelling, analysis and control. The addition of cylinders to the conventional
serial kinematic chain of robot arm architecture could constitute local closed kinematic
chains within the entire robot mechanism. Issues related to the hybrid serial–parallel fea-
ture of the robot structure, the geometry, the mass and the inertia of cylinders must be
taken into account.

In the literature, numerous works have been carried out to investigate several as-
pects related to the dynamic modeling and analysis of serial manipulators and paral-
lel robots [1–21]. The fundamentals of kinematic and dynamic modelling and analysis
of serial manipulators can be found in [1, 2], where Denavit-Hartenberg approach was
mostly used for the kinematic modelling and D’Alembert–Lagrange Formulation for the
dynamic modelling. As for more complex robotic systems, there has been a number of
researches dealing with different issues related to the kinematics and the dynamics as
well. The research presented in [3] studied the kinematic and dynamic modelling for
closed chain manipulators, [4] addressed algorithms for the dynamic analysis of serial
robots having a large number of joints, [5] investigated the inverse kinematics and dy-
namics of the redundant robots, [6] studied the dynamics of mobile serial manipulators.
In parallel with researches concerning with the serial robot dynamics, a massive number
of researches related to the dynamics and control of parallel robots has been addressed
as well such as publications [7–21]. The researches [8,10,13] investigated methods for the
inverse and forward dynamic modelling and analysis of the 3-PRS type parallel manipu-
lators. The Screw theory was used in [9], and the matrix approach was employed in [11]
for the dynamics and control of the parallel robots. A general solution to the problem of
dynamic modelling and analysis of parallel robots was presented in [12]. For the issue of
control law design and development, [14] investigated a model-based technique, [15–17]
addressed the robust control algorithms, whereas the sliding mode control was designed
in [18]. The earlier foundation for control law designed for the parallel robots one can find
in [19], in which the computed torque technique was used as for those of the common
serial manipulators. The control law design for a 6-DOF hexapod robot was presented
in [20], and a technique to improve the control quality for parallel robots was investigated
in [21].

In recent years, there have been several attempts to investigate the dynamic mod-
elling and analysis of the hybrid serial–parallel robots [22–31]. Ibrahim & Khalil [22]
studied recursive solutions for obtaining the inverse and direct dynamic models of hy-
brid robots that are constructed by serially connected non-redundant parallel modules.
Pisla et al. [23] addressed geometric and kinematic models of a surgical hybrid robot used
for camera and active instruments positioning. Tanev [24] investigated a kinematic analy-
sis of a hybrid parallel–serial robot manipulator which consists of two serially connected
parallel mechanisms. Each mechanism has three degrees of freedom. Xu et al. [25] pre-
sented a particular hybrid manipulator for computer controlled ultra-precision freeform
polishing. This hybrid manipulator is composed of a 3-DOF parallel module, a 2-DOF
serial module and a turntable providing a redundant DOF. Zeng & Fang [26] studied a
method of structural synthesis and analysis of serial–parallel hybrid mechanisms with
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spatial multi-loop kinematic chains based on the displacement group theory. Zeng &
Ehmann [27] presented a design method for parallel hybrid-loop manipulators, which is
based on the constrained motion properties of related spatial over constrained linkages
and general parallel mechanisms. Zhang & Gao [28] investigated a method for perfor-
mance optimization of a 5-DOF compliant hybrid parallel robot micromanipulator. The
issues related to kinematics modelling and analysis for the robots were also addressed
in [29–31].

Though there has been a number of researches dealing with the dynamic modelling
and analysis of different robot architectures, little attention has been paid to robots actu-
ated by hydraulic actuators. Issues related to the mathematical modelling of manipula-
tors which have local closed kinematic chains constituted by adding hydraulic cylinders
seem to be overlooked.

In this paper, the dynamic modelling and analysis of such a robot arm having two
hydraulic cylinders constituting two local closed chains appended to a conventional arm
mechanism are addressed. First, the kinematic equations and constraints equations are
derived, by using the notation of Denavit–Hartenberg. Second, Lagrange’s formulation
is used to establish differential equations of motion, with the use of Lagrangian multipli-
ers. Finally, based on the formulated DAEs, a technique of Lagrangian multipliers can-
cellation is employed to obtain ODEs describing the dynamics of the entire robot system.
Finally, the dynamic analysis is carried out with the help of the symbolic and numeric
computing Maple and Matlab softwares. As a result, the proposed investigation could
be used further for the purposes of dynamic simulation and control law design for a class
of hydraulic architecture robots.

2. KINEMATICS

Let’s consider a robot in Fig 1. Different from the conventional robot arm architec-
ture, the considering manipulator has two hydraulic cylinders. The first cylinder AC is
to drive the revolute joint B (joint variable θ2), and the second one EG drives the joint
F (joint variable θ5). Due to the use of the cylinders, two closed kinematic chains are
constituted: ABCD and EFGH. The robot have three DOFs and three active joints. The
first active joint is a revolute joint (joint 1) with joint variable θ1. The second and the
last active joints are prismatic joints (with the joint variables d4 and d7) because of the
relative motion of the two parts of the hydraulic cylinders. Therefore, among eight joint
variables θ1, d4, d7, θ2, θ3, θ4, θ5 and θ6 (see Fig. 1), only three joint variables θ1, d4 and d7
are independent.

In Fig. 1, Oxyz is defined as a reference frame, and OExEyEzE as an end effector
frame, of which the origin locates at point E. Other local coordinate systems attached
to links are defined by using Denavit–Hartenberg (DH) notations. l1, l10, l11, l2, l21, l22, l23,
l3, l5, l51, l6 are geometric parameters of links. The main mechanism of the arm includes
three links: link 1, link 2, and link 5. The first local closed chain (ABCDA) involves link
1, link 2, link 3 and link 4. The second local closed chain (KFGHK) relates to link 2, link
5, link 6 and link 7. Based on all the coordinates in Fig. 1 which are defined with respect
to the DH convention, the parameters of the robot links are presented in the following
tables.
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Table 3.  The DH parameters related the local closed chain KFGHK 

Fig. 1. A hybrid serial-parallel robot arm

Table 1. The DH parameters re-
lated to the main mechanism

i θi di ai αi

1 θ1 l1 0 π/2
2 θ2 0 l2 0
5 θ5 0 l5 0

Table 2. The DH parameters related to the main mecha-
nism

i θi di ai αi i θi di ai αi

3’ θ3 0 l3 0 1’ 0 0 0 −π/2
3 π/2 0 0 π/2 1 0 l11 0 π/2
4 0 d4 0 −π/2 2 θ2 0 l22 0

Table 3. The DH parameters related the local closed chain KFGHK

i θi di ai αi i θi di ai αi

6’ θ6 0 l6 0 2 0 0 l21 0
6 π/2 0 0 π/2 5 θ5 0 l51 0
7 0 d7 0 −π/2

Based on the parameters in Tabs. 1–3, the transformation matrices describing the
motion of any two successive coordinate systems can be derived accordingly. For the
main mechanism, the cumulative matrix H0E is computed as follows

H0E =


cos θ1 cos (θ2 + θ5) − cos θ1 sin (θ2 + θ5) sin θ1 − cos θ1 (l5 sin θ2 sin θ5 − l5 cos θ5 cos θ2 − l2 cos θ2)

sin θ1 cos (θ2 + θ5) − sin θ1 sin (θ2 + θ5) − cos θ1 − sin θ1 (l5 sin θ2 sin θ5 − l5 cos θ5 cos θ2 − l2 cos θ2)

sin (θ2 + θ5) cos (θ2 + θ5) 0 l5 sin θ2 cos θ5 + l5 cos θ2 sin θ5 + l2 sin θ2 + l1
0 0 0 1

 .

(1)
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The matrix H0E describes the kinematics of motion of one active joint and two pas-
sive joints. In other words, H0E characterizes the kinematic relationship of the end link of
the arm with the use of only one independent joint variable θ1 and other two dependent
joint variables θ2 and θ5.

In order to determine the kinematic relationship with all independent joint variables,
the constraints raised due to the local closed chains need to be taken into account.

2.1. Constraint equations
Consider the first local closed chain (ABCDA). In order to write constraint equations

regarding of this closed feature of the mechanism, a virtual cut at the joint C is made, so
that transformation matrices written with respect to two routines ABC and ADC, respec-
tively, are yielded as

HABC =


cos θ2 − sin θ2 0 l22 cos θ2
sin θ2 cos θ2 0 l22 sin θ2 + l11

0 0 1 0
0 0 0 1

 , (2)

HADC =


− sin θ3 − cos θ3 0 d4 cos θ3 + l3 cos θ3
cos θ3 − sin θ3 0 d4 sin θ3 + l3 sin θ3

0 0 1 0
0 0 0 1

 . (3)

In the first routine, the position C1 of the point C is C1 =

 l22 cos θ2
l22 sin θ2 + l11

0

, and in

the second one, the point C is calculated as C2 =

 d4 cos θ3 + l3 cos θ3
d4 sin θ3 + l3 sin θ3

0

. Therefore, two

independent constraint equations involved in this closed chain are determined as

f1 = l22cosθ2 − (d4 + l3) cosθ3 = 0,

f2 = l22sinθ2 − (d4 + l3) sinθ3 + l11 = 0,
(4)

sin (θ3) =
(l3 + d4)

2 + (l11)
2 − (l22)

2

2 (l3 + d4) l11
,

sin (θ2) =
(l3 + d4)

2 − l2
11 − l2

22
2l11l22

.

(5)

Similarly, the other two constraint equations involved in the second local closed
chain KFGHK are obtained as

f3 = l51 cos θ5 + l21 − d7 cos θ6 − l6 cos θ6 = 0,
f4 = l51 sin θ5 − d7 sin θ6 − l6 sin θ6 = 0,

(6)
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cos (θ5) =
(l6 + d7)

2 − (l51)
2 − (l21)

2

2 (l51) (l21)
,

cos (θ6) =
(l6 + d7)

2 − (l51)
2 + (l21)

2

2 (l21) (l6 + d7)
.

(7)

2.2. Forward kinematics simulation

Based on Eqs. (1), (5) and (7), with the inputs given as θ1 (t) =
π

18
× t, d4 (t) = 0.1 +

0.005× t and d7 (t) = 0.1+ 0.02× t, the position of the end effector E = [xE (t) yE (t) zE (t)]
T

and the velocity Ė = [ẋE (t) ẏE (t) żE (t)]
T can be numerically computed and shown in the

following Figs. 2, 3 and 4, respectively .
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Fig 3. A trajectory of E in the workspace
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Fig. 2. E = [xE (t) yE (t) zE (t)]T
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Fig 4.      
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Fig. 4. Ė = [ẋE (t) ẏE (t) żE (t)]T
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2.3. Inverse kinematics simulation
Given a trajectory of the end-effector in the work space, E = [xE (t) yE (t) zE (t)]

T, the
joint variables are calculated as follows

θ1 = arcsin
(

A/
(
1 + A2)1/2

)
,

d4 =
√

2l11l22 sin θ2 + l2
11 + l2

22 − l3,

d7 =
√

2l51l21 cos θ5 + l2
51 + l2

21 − l6,

(8)

cos(θ5) =
y2

M
2l2l5B2 +

(zM − l1)
2 − l2

2 − l2
5

2l2l5
= C,

sin(θ2) =
mn±

√
∆′

(n2 + p2)
; ∆′ = m2n2 −

(
n2 + p2) (m2 − p2) ,

(9)

where A =
yE

xE
; B =

√
A2

1 + A2 ; m = (zE − l1) ; n = (l5C + l2); p = l5
√

1− C2.

Figs. 5 and 6 show the values of θ1 (t) , d4 (t) , d7 (t), θ2 (t) and θ5 (t) computed with
respect to a trajectory given as
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(
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)√
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(
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)2
,

yE =
1
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(
1
2
+

(
t2
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+

t
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))
sin
(
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18

)√
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(
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− t (t + 200)
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sin
(
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)√
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(
(t + 25)2 − 2000

)2
,

zE =
1

12800000

√
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(
(t + 25)2 − 2000

)2
√

92160000−
(
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Fig. 6. The curves θ2 (t) and θ5 (t)

To validate the inverse kinematic computation, a numerical experiment is carried
out. The robot configurations at t = 0 sec and t = 10 sec are shown in Figs. 7 and 8. In
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Fig. 7. The robot configuration at t = 0
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Fig. 8. The robot configuration at t = 10 sec

Figs. 7 and 8, the two revolute joints θ2 and θ5 are driven with two hydraulic cylinders
which represent the active joints d4 and d7. All the parameters of the robot are shown in
Figs. 7 and 8 as well.

3. DYNAMICS

Let’s denote
s = [θ1d4d7θ2θ3θ5θ6]

T is the vector of redundant generalized coordinates;
q = [θ1d4d7]

T is the vector of independent generalized coordinates;
z = [θ2θ3θ5θ6]

T is the vector of dependent generalized coordinates;
f =

[
f1 f2 f3 f4

]T is the vector of constraint equations;

Φs =
∂f
∂s

is the Jacobian matrix of constraint equations;

λ =
[

λ1 λ2 λ3 λ4
]T is the vector of Lagrangian Multipliers;

τ =
[

τ1 F4 F7 0 0 0 0
]T is the vector of applied torque/forces.

By using the Lagrangian formulation, the system of equations of motion including
constraint equations for the robot can be written as

M (s, t) s̈ + C (s, ṡ, t) ṡ + g (s, t) + ΦT
s λ = τ (t) , (10)

f (s, t) = 0. (11)

The global mass matrix can be computed as [1]

M (s, t) =
7

∑
i=1

(
miJT

Ti
JTi + JT

Ri
AiIiAT

i JRi

)
, (12)

where mi and Ii are the mass and the inertia of body i, respectively; JTi and JRi are trans-
lational and rotational Jacobian matrices of body i, accordingly.
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The angular velocity of the links are calculated as follows:

ω1 =

 0
0
θ̇1

 , ω2 =

 θ̇2sinθ1

−θ̇2cosθ1

θ̇1

 , ω3 = ω4 =

 θ̇3sinθ1

−θ̇3cosθ1

θ̇1

 ,

ω5 =

 sin θ1
(
θ̇2 + θ̇5

)
− cos θ1

(
θ̇2 + θ̇5

)
θ̇1

 , ω6 = ω7 =

 sin θ1
(
θ̇2 + θ̇6

)
− cos θ1

(
θ̇2 + θ̇6

)
θ̇1

 .

The vectors of the mass center of the links are determined as follows:

rC1 =

 0
0

l1/2

, rC2 =


1
2

l2 cos θ1 cos θ2

1
2

l2 sin θ1 cos θ2

1
2

l2 sin θ2 + l1

, rC3 =


1
2

l3 cos θ1 cos θ3

1
2

l3 sin θ1 cos θ3

1
2

l3 sin θ3 + l10

,

rC4 =



(
l3 + d4 −

l4
2

)
cos θ1 cos θ3(

l3 + d4 −
l4
2

)
sin θ1 cos θ3(

l3 + d4 −
l4
2

)
sin θ3 + l10


, rC5 =


1
2

l5 cos θ1 cos (θ2 + θ5) + l2 cos θ1 cos θ2

1
2

l5 sin θ1 cos (θ2 + θ5) + l2 sin θ1 cos θ2

1
2

l5 sin (θ2 + θ5) + l2 sin θ2 + l1

,

rC6 =


1
2

l6 cos θ1 cos (θ2 + θ6) + l23 cos θ1 cos θ2

1
2

l6 sin θ1 cos (θ2 + θ6) + l23 sin θ1 cos θ2

1
2

l6 sin (θ2 + θ6) + l23 sin θ2 + l1

,

rC7 =



(
l6 + d7 −

l7
2

)
cos θ1 cos (θ2 + θ6) + l23 cos θ1 cos θ2(

l6 + d7 −
l7
2

)
sin θ1 cos (θ2 + θ6) + l23 sin θ1 cos θ2(

l6 + d7 −
l7
2

)
sin (θ2 + θ6) + l23 sin θ2 + l1


.

The matrix of Coriolis and Centrifugal terms is calculated as [1]

C (s, ṡ, t) =
∂M (s, t)

∂s
(En ⊗ ṡ)− 1

2

(
∂M (s, t)

∂s
(ṡ⊗ En)

)T

, (13)
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The potential energy of the system can be calculated as follows

∏ =
1
2

m1gl1 + m2g
(

1
2

l2 sin θ2 + l1

)
+ m3g

(
1
2

l3 sin θ3 + l10

)
+ m4g

(
l10 +

(
l3 + d4 −

l4
2

)
sin θ3

)
+ m5g

(
l1 + l2 sin θ2 +

1
2

l5 sin (θ2 + θ5)

)
+ m6g

(
l1 + l23 sin θ2 +

1
2

l6 sin (θ2 + θ6)

)
+ m7g

(
l1 + l23 sin θ2 +

(
l6 + d7 −

l7
2

)
sin (θ2 + θ6)

)
.

Based on the calculation of the total potential energy of the entire system, the terms
related to the gravity effect is calculated as

g (s, t) =
[

∂Π
∂s

]T

. (14)

In order to analyze the dynamic behavior of the robot system, the DAEs (10, 11) need
to be transformed in a way that the Multipliers are cancelled.

Rewrite Φs =
∂f
∂s

in the following form

Φs =
[

Φq Φz
]
=

[
∂f
∂q

∂f
∂z

]
. (15)

Let’s consider the following expression

RT =

[
E,−ΦT

q

(
Φ−1

z

)T
]

. (16)

Hence

RTΦT
s = 0. (17)

Note that

ΦT
s =



0 0 0 0
− cos θ3 − sin θ3 0 0

0 0 − cos θ6 − sin θ6

−l22 sin θ2 l22 cos θ2 0 0
l3 sin θ3 + d4 sin θ3 −l3 cos θ3 − d4 cos θ3 0 0

0 0 −l51 sin θ5 l51 cos θ5

0 0 l6 sin θ6 + d7 sin θ6 −l6 cos θ6 − d7 cos θ6


,

(18)
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R =



1 0 0
0 1 0
0 0 1

0 − 1
l22 sin (θ2 − θ3)

0

0 − cos (θ2 − θ3)

(d4 + l3) sin (θ2 − θ3)
0

0 0
1

l51 sin (θ6 − θ5)

0 0
cos (θ6 − θ5)

(d7 + l6) sin (θ6 − θ5)



, (19)

ṡ = Rq̇, (20)

s̈ = Rq̈ + Ṙq̇. (21)
Substituting (17), (20), (21) into (10) yields

M̄q̈ + C̄q̇ + Ḡq = τq, (22)

where M̄ = RTM (s, t)R, C̄ = RT (M (s, t) Ṙ + C (s, ṡ, t)R
)

, Ḡ = RTg (s, t) , and τq =

RTτ (t).
Eq. (22) is expressed in term of independent generalized coordinates, q = [θ1d4d7]

T.
Notice that all the formulations above are implemented and demonstrated in Maple envi-
ronment. The following section shows the numeric solutions of the forward and inverse
dynamic issues.

3.1. Forward dynamics simulation
The dynamical parameters of the robot system are given in Tab. 4

Table 4. The parameters of the robot

Link
Center of gravity

Mass
Inertia

xC yC zC Ixx Iyy Izz Ixy Iyz Izx

1 0 lC1 0 m1 I1x I1y I1z 0 0 0
2 lC2 0 0 m2 I2x I2y I2z 0 0 0
3 0 0 lC3 m3 I3x I3y I3z 0 0 0
4 0 lC4 0 m4 I4x I4y I4z 0 0 0
5 lC5 0 0 m5 I5x I5y I5z 0 0 0
6 0 0 lC6 m6 I6x I6y I6z 0 0 0
7 0 lC7 0 m7 I7x I7y I7z 0 0 0

l1 = 0.7 m; l10 = 0.4 m; l11 = 0.3 m; l2 = 0.6 m; l20 = 0.2 m; l21 = 0.4 m; l22 = 0.4 m; l23 =
0.2 m; l3 = 0.4 m; l4 = 0.4 m; l5 = 1.2 m; l51 = 0.8 m; l52 = 0.4 m; l6 = 0.4 m; l7 = 0.4 m.
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We assume that lC1 = l1/2 = 0.35 m; lC2 = l2/2 = 0.3 m; lC3 = l3/2 = 0.2 m; lC5 = l5/2

= 0.6 m; lC6 = l6/2 = 0.2 m; lC4 = l4/2 = 0.2 m; lC7 = l7/2 = 0.2 m; −5π

6
≤ θ1 ≤

5π

6
;

0.1 ≤ d4 < l4; 0.1 ≤ d7 < l7, m1 = 80 kg; m2 = 60 kg; m3 = 20 kg; m4 = 10 kg; m5 = 50 kg;
m6 = 20 kg; m7 = 10 kg.

I1x = m1l2
1/12; I1z = m1l2

1/12; I2x = 0; I2y = m2l2
2/12; I2z = m2l2

2/12; I3x = m3l2
3/12;

I3y = m3l2
3/12; I3z = 0; I4x = m4l2

4/12; I4y = 0; I4z = m4l2
4/12; I5x = 0; I5y = m5l2

5/12; I5z =

m5l2
5/12; I6x = m6l2

6/12; I6y = m6l2
6/12; I6z = 0; I7x = m7l2

7/12; I7y = 0; I7z = m7l2
7/12.

The applied torque/forces are given as

τ1 (t) = 1.5× sin (2t) , F4 (t) = 50 (20 + t) , F7 (t) = 30 (20− t) .

Fig. 9 shows the time evolution of θ1 (t), d4 (t) and d7 (t).
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Fig. 9. The time evolution of θ1 (t), d4 (t) and d7 (t)

3.2. Inverse dynamics simulation
To demonstrate the inverse dynamic analysis, two cases of simulation are consid-

ered. The inputs of the simulation are given as

θ1 (t) =
π × t

18
, d4(t) = 0.1 + 0.005× t, and d7(t) = 0.1 + 0.02× t.

For the first case, the mass of the link 3, 4, 6 and 7 equals to zero. In the second case,
the mass of the link 3, 4, 6 and 7 are given as m3 = 20 kg, m4 = 10 kg, m6 = 20 kg and m7 =
10 kg.

Figs. 10–12 show the results of the inverse dynamic analysis. The “black” curves are
the time evolution of the computed torque/forces corresponding to the first case, while
the “gray” ones are for the second case.
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Fig 12. 4( )F t  

It can be seen that there is a considerable change of the computed torque/forces when considering the 
mass of the hydraulic cylinders in the dynamic model of the robot system.  

4. CONCLUSION

The kinematic and dynamic equations for a particular type of robot have been formulated. It has shown 
that when the mass and inertia of a hydraulic cylinder driving a revolution joint of a robot are considered, 
such the cylinder and relevant links of the robot constitute a local closed mechanism appended to the 
main robot architecture. By taking into account this particular feature of the hydraulic robot, the 
kinematic and dynamic modelling and analysis of the robot are more accurate. This could help to design 
more efficient and more effective control laws for the arm. 
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It can be seen that there is a considerable change of the computed torque/forces
when considering the mass of the hydraulic cylinders in the dynamic model of the robot
system.

4. CONCLUSION

The kinematic and dynamic equations for a particular type of robot have been for-
mulated. It has shown that when the mass and inertia of a hydraulic cylinder driving
a revolution joint of a robot are considered, such the cylinder and relevant links of the
robot constitute a local closed mechanism appended to the main robot architecture. By
taking into account this particular feature of the hydraulic robot, the kinematic and dy-
namic modelling and analysis of the robot are more accurate. This could help to design
more efficient and more effective control laws for the arm.
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