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Abstract. This paper is concerned with the propagation of Rayleigh waves in an incom-
pressible orthotropic elastic half-space coated with a thin incompressible orthotropic elas-
tic layer. The main purpose of the paper is to establish an approximate formula for the
Rayleigh wave H/V ratio (the ratio between the amplitudes of the horizontal and verti-
cal displacements of Rayleigh waves at the traction-free surface of the layer). First, the
relations between the traction amplitude vector and the displacement amplitude vector
of Rayleigh waves at two sides of the interface between the layer and the half-space are
created using the Stroh formalism and the effective boundary condition method. Then, an
approximate formula for the Rayleigh wave H/V ratio of third-order in terms of dimen-
sionless thickness of the layer has been derived by using these relations along with the
Taylor expansion of the displacement amplitude vector of the thin layer at its traction-free
surface. It is shown numerically that the obtained formula is a good approximate one. It
can be used for extracting mechanical properties of thin films from measured values of the
Rayleigh wave H/V ratio.

Keywords: Rayleigh waves, the Rayleigh wave H/V ratio, incompressible orthotropic elas-
tic half-space, thin incompressible orthotropic elastic layer, approximate formula for the
Rayleigh wave H/V ratio.

1. INTRODUCTION

As addressed by Junge et al. [1], the H/V ratio (the ratio between the amplitudes of
the horizontal and vertical displacements of Rayleigh waves at the traction-free surface
of half-spaces) is more sensitive than the Rayleigh wave velocity as an indicator of the
state of stress, and, in contrast to the Rayleigh wave velocity, it is reference free. There-
fore, formulas for the Rayleigh wave H/V ratio are a powerful tool for nondestructively
evaluating prestress of structures before and during loading. The Rayleigh wave H/V
ratio is also an important parameter which reflects fundamental properties of the elastic
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material [2]. It can be thus used for the nondestructive evaluation of the elastic constants
of material [3], besides its well-known applications in seismology [4, 5].

While a large number of formulas for the Rayleigh wave velocity have been de-
rived, see for examples, [6–16], only few formulas for the Rayleigh wave H/V ratio have
been obtained. They are, for example, the exact Rayleigh wave H/V ratio formula for a
compressible layered half-space with traction-free surface [2], the exact and an approxi-
mate formula for that model of incompressible media [17]. However, these formulas are
only for the isotropic media.

In this paper, an approximate formula of third order for the Rayleigh wave H/V
ratio has been established for an incompressible orthotropic elastic half-space coated by
a thin incompressible orthotropic elastic layer. This formula is derived by using the re-
lations between the traction and displacement amplitude vectors of Rayleigh waves at
two sides of the welded interface between the layer and the half-space, along with the
Taylor expansion of the displacement amplitude vector of the thin layer at its traction-
free surface. It is shown numerically that the obtained approximate formula is a good
approximation.

2. RELATIONS BETWEEN THE TRACTION AND DISPLACEMENT AMPLITUDE
VECTORS AT TWO SIDES OF THE INTERFACE

2.1. Basic equations for an incompressible orthotropic elastic layer in matrix form
Consider an elastic half-space x2 ≥ 0 coated by a thin elastic layer −h ≤ x2 ≤ 0.

Both the layer and half-space are assumed to be incompressible, orthotropic and they are
in welded contact with each other. Note that same quantities related to the half-space and
the layer have the same symbol but are systematically distinguished by a bar if pertaining
to the layer. We are interested in the plain strain so that

ui = ui(x1, x2, t), ūi = ūi(x1, x2, t), i = 1, 2, u3 = ū3 ≡ 0, (1)

where t is the time. Since the material of the layer is incompressible and orthotropic, the
strain-stress relations are [8]

σ̄11 = − p̄ + c̄11ū1,1 + c̄12ū2,2, σ̄22 = − p̄ + c̄12ū1,1 + c̄22ū2,2, σ̄12 = c̄66(ū1,2 + ū2,1), (2)

where σ̄ij, p̄ and c̄ij are respectively the stress, the hydrostatic pressure associated with the
incompressibility constraint and the material constants, commas indicate differentiation
with respect to the spatial variables xk. In the absence of body forces, the equations of
motion are

σ̄11,1 + σ̄12,2 = ρ̄ ¨̄u1, σ̄12,1 + σ̄22,2 = ρ̄ ¨̄u2, (3)

where ρ̄ is the mass density, a dot signifies differentiation with respect to the time t. The
incompressibility gives

ū1,1 + ū2,2 = 0. (4)

From (1)–(4) we have [
ū′

t̄′

]
=

[
M1 M2
M3 M1

] [
ū
t̄

]
, (5)
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where ū =
[
ū1 ū2

]T , t̄ =
[
σ̄12 σ̄22

]T, the symbol “T” indicates the transpose of a matrix,
the prime signifies the derivative with respect to x2 and

M1 =

[
0 −∂1
−∂1 0

]
, M2 =

 1
c̄66

0

0 0

 , M3 =

[
−δ̄∂2

1 + ρ̄∂2
t 0

0 ρ̄∂2
t

]
, (6)

here we use the notations ∂1 = ∂/∂x1, ∂2
1 = ∂2/∂x2

1, ∂2
t = ∂2/∂x2

t . Eq. (5) is called the
matrix equation for an incompressible orthotropic elastic layer in plane strain.

2.2. Stroh formalism for an incompressible orthotropic elastic layer
Now we consider the propagation of a plane wave traveling in the x1-direction

with velocity c (> 0) and wave number k (> 0). Then, displacement components of the
wave are sought in the form

ūn = Ūn(y)eik(x1−ct), σ̄n2 = ikΣ̄n(y)eik(x1−ct), n = 1, 2, y = k x2. (7)

Substituting (7) into (5) yields

ξ ′ = iNξ, y ∈ [−ε, 0], ε = kh, (8)

where the prime signifies differentiation with respect to y and

ξ =

[
Ū
Σ̄

]
, Ū =

[
Ū1
Ū2

]
, Σ̄ =

[
Σ̄1
Σ̄2

]
, N =

[
N1 N2
N3 N4

]
, (9)

in which the matrices Nk are given by

N1 =

[
0 −1
−1 0

]
, N2 =

 1
c̄66

0

0 0

 , N3 =

[
−δ̄ + ρ̄c2 0

0 ρ̄c2

]
, N4 = N1, (10)

where δ̄ = c̄11 + c̄22− 2c̄12. Eq. (8) is called the Stroh formalism [18] for an incompressible
orthotropic elastic layer. From (8) it follows

ξ(n) = inNnξ, Nn :=

[
N(n)

1 N(n)
2

N(n)
3 N(n)

4

]
, y ∈ [−ε, 0]. (11)

2.3. Relations between the traction and displacement amplitude vectors at two sides
of the interface

Let ε := kh be small (i.e., the layer is thin) and the surface x2 = −h of the layer
is free of traction: Σ̄(−ε) = 0. By expanding into Taylor series Σ̄(−ε) at y = 0 up to
the third-order and using (11) along with Σ̄(−ε) = 0 we arrive at the relation between
the traction and displacement amplitude vectors at the layer-side of the interface y = 0,
namely

AŪ(0) + BΣ̄(0) = 0, (12)
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where matrices A and B are given by

A =


−i

ε(ρ̄c2−δ̄)−
ε3

6

r2+r3ρ̄c2+
ρ̄2c4

c̄66

 ε2

2
[2ρ̄c2−δ̄]

ε2

2
[2ρ̄c2−δ̄] −i

ερ̄c2−
ε3

6 {3ρ̄c2−δ̄}


 ,

B =

1− ε2

2

(
r1 +

ρ̄c2

c̄66

)
iε

iε 1− ε2

2

 ,

(13)

where

r1 = 1− δ̄

c̄66
, r2 = δ̄

(
δ̄

c̄66
− 2
)

, r3 = 2r1 + 1. (14)

According to Ogden and Vinh [8], the displacement components of Rayleigh waves in
the half-space are given by

un = Un(y)eik(x1−ct), σn2 = ikΣn(y)eik(x1−ct), n = 1, 2 (15)

where
U1(y) = α1B1e−b1y + α2B2e−b2y, U2(y) = i(B1e−b1y + B2e−b2y), (16)

Σ1(y) = i(β1B1e−b1y + β2B2e−b2y), Σ2(y) = γ1B1e−b1y + γ2B2e−b2y, (17)

here αk, βk, γk are defined by

αk = bk, βk = c66(1 + α2
k), γk = (X− δ + βk)αk, k = 1, 2

X = ρc2, δ = c11 + c22 − 2c12,
(18)

and b1, b2 are to with positive real parts roots of the equation

c66b4 − (δ− 2c66 − X)b2 + (c66 − X) = 0. (19)

From (19) we have

b2
1 + b2

2 =
δ− 2c66 − X

c66
:= S,

b2
1.b2

2 =
c66 − X

c66
:= P.

(20)

It is not difficult to verify that if a Rayleigh wave exists ( → b1, b2 having positive real
parts), then

0 < X < c66, P > 0, S + 2
√

P > 0, b1.b2 =
√

P, b1 + b2 =

√
S + 2

√
P. (21)

Taking x2 = 0 in (16) and (17) gives

U1(0) = α1B1 + α2B2, U2(0) = i(B1 + B2),

Σ1(0) = i(β1B1 + β2B2), Σ2(0) = γ1B1 + γ2B2.
(22)
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Eliminating B1, B2 from Eqs. (22) we have

Σ(0) = HU(0), H =

[
ih11 h12
−h12 −ih22

]
, (23)

where
h11 = c66(b1 + b2), h12 = c66(1− b1b2), h22 = −c66b1b2(b1 + b2), (24)

and b1b2, b1 + b2 are defined by (21). Eq. (23) is the relation between the traction and
displacement amplitude vectors at the half-space-side of the interface y = 0.

3. AN APPROXIMATE FORMULAS FOR THE RAYLEIGH WAVE H/V RATIO

Suppose the layer and the half-space are perfectly bonded at the interface y = 0,
then we have

Ū(0) = U(0), Σ̄(0) = Σ(0). (25)
Expanding into Taylor series Ū(−ε) at y = 0 up to the third order yields

Ū(−ε) = Ū(0)− εŪ′(0) +
ε2

2
Ū′′(0)− ε3

6
Ū′′′(0). (26)

From (11), (25) and the relation between the traction and displacement amplitude vectors
at the half-space-side of the interface (23), it follows

Ū′(0) = i(N1 + N2H)U(0), Ū′′(0) = i2(N(2)
1 + N(2)

2 H)U(0),

Ū′′′(0) = i3(N(3)
1 + N(3)

2 H)U(0).
(27)

Substituting (27) into (26) leads to

Ū(−ε) = QU(0). (28)

Elements of matrix Q in (28) are defined by

Q11 = 1 + ε

{
h11

c̄66

}
− ε2

2

{
r1 +

ρ̄c2

c̄66
+

h12

c̄66

}
− ε3

6

{(
1 + r1

c̄66
+

ρ̄c2

c̄2
66

)
h11

}
,

Q12 = i
[
ε

{
1− h12

c̄66

}
− ε2

2

{
h22

c̄66

}
− ε3

6

{
r1 +

2ρ̄c2

c̄66
−
(

1 + r1

c̄66
+

ρ̄c2

c̄2
66

)
h12

} ]
,

Q21 = i
[
ε +

ε2

2

{
h11

c̄66

}
− ε3

6

{
r1 +

ρ̄c2

c̄66
+

h12

c̄66

} ]
,

Q22 = 1 +
ε2

2

{
−1 +

h12

c̄66

}
+

ε3

6

{
h22

c̄66

}
.

(29)

On the other hand, using (12), (23), and taking into account (25) yield

ZU(0) = 0, Z = A + BH. (30)
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Elements of matrix Z in (30) are defined by

Z11 = i
[

h11 + ε
{

δ̄− ρ̄c2 − h12
}
− ε2

2

{(
r1 +

ρ̄c2

c̄66

)
h11

}
+

ε3

6

{
r2 + r3ρ̄c2 +

ρ̄2c4

c̄66

}
,

Z12 = h12 + εh22 +
ε2

2

{
2ρ̄c2 − δ̄−

(
r1 +

ρ̄c2

c̄66

)
h12

}
,

Z21 = − h12 − εh11 +
ε2

2
{

2ρ̄c2 − δ̄ + h12
}

,

Z22 = i
[
− h22 + ε

{
−ρ̄c2 + h12

}
+

ε2

2
h22 +

ε3

6
{
−δ̄ + 3ρ̄c2} ].

(31)

From (28) and (30), it follows

χ :=
∣∣∣∣ ū1(−h)
ū2(−h)

∣∣∣∣ = ∣∣∣∣ Ū1(−ε)

Ū2(−ε)

∣∣∣∣ = ∣∣∣∣Q12Z11 −Q11Z12

Q22Z11 −Q21Z12

∣∣∣∣ , (32)

where Z11, Z12 are defined by (31), elements of matrix Q are defined by (29). Note that,
due to |Z| = 0, therefore χ can be given by an alternative formula

χ :=
∣∣∣∣Q12Z21 −Q11Z22

Q22Z21 −Q21Z22

∣∣∣∣ . (33)

After some manipulations, we arrive at the desired approximate formula of third order
for the H/V ratio, namely

χ =

∣∣∣∣∣∣∣∣
A0 + A1ε + A2

ε2

2
+ A3

ε3

6
+ O(ε4)

B0 + B1ε + B2
ε2

2
+ B3

ε3

6
+ O(ε4)

∣∣∣∣∣∣∣∣ , (34)

where
A0 = −h12, A1 = −h11 − h22,

A2 = −δ̄ + 2
(

1 + r1 +
δ̄

c̄66

)
h12 −

1
c̄66

(h2
12 + h11h22),

A3 = 3
(

r1 +
δ̄

c̄66

)
h22 +

(
4r1 +

3δ̄

c̄66
− ρ̄c2

c̄66

)
h11,

(35)

and
B0 =h11, B1 = δ̄− ρ̄c2 − 2h12,

B2 =− 2h22 −
(

1 + r1 +
ρ̄c2

c̄66

)
h11,

B3 =r2 + (r3 − 3)ρ̄c2 +
ρ̄2c4

c̄66
+

(
3 + 4r1 +

3δ̄

c̄66
+

ρ̄c2

c̄66

)
h12

− 2
c̄66

(h2
12 + h11h22).

(36)
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In the dimensionless form Eq. (34) is of the form

χ =

∣∣∣∣∣∣∣∣
Ā0 + Ā1ε + Ā2

ε2

2
+ Ā3

ε3

6
+ O(ε4)

B̄0 + B̄1ε + B̄2
ε2

2
+ B̄3

ε3

6
+ O(ε4)

∣∣∣∣∣∣∣∣ , (37)

in which the coefficients Āk, B̄k(k = 0, 1, 2, 3) are given by (47) in Appendix A and they
depend on the following dimensionless parameters

eδ =
δ

c66
, ēδ =

δ̄

c̄66
, rµ =

c̄66

c66
, rv =

c2

c̄2
, x =

X
c66

, (38)

where c2 =
√

c66/ρ, c̄2 =
√

c̄66/ρ̄. It is clear that the H/V ratio χ depends on 5 dimen-
sionless parameters: eδ, ēδ, rµ, rv and ε which are subjected the inequalities [19]

rµ > 0, rv > 0, eδ > 0, ēδ > 0, ε > 0. (39)

Note that the Rayleigh wave H/V ratio χ depends on the dimensionless Rayleigh wave
velocity x that is a solution of the secular equation (3.14) in [19] and it depends also on 5
dimensionless parameters mentioned above.
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0.25
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0.4
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0.55

0.6

ε

χ exact
approximate

Fig. 1. Dependence of the H/V ratio on ε ∈
[0, 1] that is calculated by the exact formula
(dashed line), by the third-order approximate

formula (37) (solid line). Here we take:
eδ = ēδ = 4, rµ = 1, rv = 3
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Fig. 2. Dependence of the H/V ratio on ε ∈
[0, 1] that is calculated by the exact formula
(dashed line), by the third-order approximate

formula (37) (solid line). Here we take:
eδ = 3.8, ēδ = 3.7, rµ = 1, rv = 2.5

Figs. 1, 2 present the third-order approximate curves and the exact curves of the
Rayleigh wave H/V ratio χ depending on ε in the interval [0, 1]. The approximate curves
(solid lines) are calculated by Eq. (37) and the exact curves (dashed lines) are computed by
using the exact secular equation (66) in Ref. [20], the exact expressions of displacements
in Ref. [21] and the incompressible limit method [20]. It is shown from Figs. 1, 2 that the
the third-order approximate formula (37) is a good approximation. Note that, an elegant
approximate formula of H/V ratio was obtained in [17] for the incompressible media.
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However, this formula is only good for high frequency, not for small frequency as shown
in Fig. 5 of [2].
Special cases:

When ε = 0, from (34) we have

χ =

∣∣∣∣ Ā0

B̄0

∣∣∣∣ = ∣∣∣∣h12

h11

∣∣∣∣ . (40)

On the other hand, from (23) and Σ(0) = 0 we have |H| = 0, i.e.,

h2
12 + h11h22 = 0. (41)

From (40) and (41) it follows

χ2 =
h2

12

h2
11

= −h22

h11
= b1b2 =

√
1− x. (42)

When the layer and the half-space are both isotropic

c11 = c22, c66 = µ, c̄11 = c̄22, c̄66 = µ̄, c11 − c12 = 2c66, c̄11 − c̄12 = 2c̄66. (43)

With the help of (43) and (38) one can see that

x =
ρc2

µ
, eδ = ēδ = 4, c2 =

√
µ

ρ
, c̄2 =

√
µ̄

ρ̄
, rv =

c2

c̄2
, rµ =

µ̄

µ
,

x̄ = r2
vx, S = 2− x, P = 1− x, b1 = 1, b2 =

√
1− x.

(44)

Then, the Rayleigh wave H/V ratio is defined by Eq. (37) with Āi and B̄i (i = 0, 1, 2, 3) are
given by

Ā0 =

√
1− x− 1

rµ
, Ā1 = − x

rµ
,

Ā2 = −4 +
4(1−

√
1− x)

rµ
− x + (x− 4)

√
1− x

r2
µ

,

Ā3 = −1 +
√

1− x
rµ

(r2
vx + 3

√
1− x),

(45)

and

B̄0 =
1 +
√

1− x
rµ

, B̄1 = 4− r2
vx− 2(1−

√
1− x)

rµ
,

B̄2 =
1 +
√

1− x
rµ

(2− r2
vx + 2

√
1− x),

B̄3 = 8− 8r2
vx + r4

vx2 +
(3 + r2

v)(1−
√

1− x)
rµ

− 2(x + (x− 4)
√

1− x)
r2

µ

.

(46)
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4. CONCLUSIONS

In this paper, the propagation of Rayleigh waves in an incompressible orthotropic
elastic half-space coated by a thin incompressible orthotropic elastic layer is investigated.
An approximate formula for the Rayleigh wave H/V ratio of third-order in terms of di-
mensionless thickness of the layer has been established by using the relations between
the traction and displacement amplitude vectors of Rayleigh waves at two sides of the
welded interface between the layer and the half-space. It is shown numerically that the
obtained approximate formula is a good approximation. The obtained approximate for-
mula can be employed as theoretical base for evaluating mechanical properties of thin
films from measured values of the Rayleigh wave H/V ratio.
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APPENDIX A
The expressions of Āk, B̄k (k = 0, 1, 2, 3)

Ā0 =
b1b2 − 1

rµ
, Ā1 =

(b1 + b2)(b1b2 − 1)
rµ

,

Ā2 = −ēδ +
4(1− b1b2)

rµ
− (1− b1b2)2 − b1b2(b1 + b2)2

r2
µ

,

Ā3 =
(b1 + b2)(4− ēδ − r2

vx− 3b1b2)

rµ
,

B̄0 =
b1 + b2

rµ
, B̄1 = ēδ − r2

vx− 2(1− b1b2)

rµ
,

B̄2 =
(b1 + b2)(2b1b2 − 2 + ēδ − r2

vx)
rµ

,

B̄3 = ē2
δ − 2ēδ − 2ēδr2

vx + r4
vx2 +

(7− ēδ + r2
vx)(1− b1b2)

rµ

− 2
(1− b1b2)2 − b1b2(b1 + b2)2

r2
µ

.
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