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RESPONSES FOR GRADIENT DAMAGE
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Abstract. We propose a method of construction of non homogeneous solutions to the
problem of traction of a bar made of an elastic-damaging material whose softening behav-
ior is regularized by a gradient damage model. We show that, for sufficiently long bars,
localization arises on sets whose length is proportional to the material internal length
and with a profile which is also characteristic of the material. We point out the very
sensitivity of the responses to the parameters of the damage law. All these theoretical
considerations are illustrated by numerical examples.

1. INTRODUCTION

It is possible to give an account of rupture of materials with damage models by the
means of the localization of the damage on zones of small thickness where the strains are
large and the stresses small. However the choice of the type of damage model is essential
to obtain valuable results. Thus, local models of damage are suited for hardening behav-
ior but cease to give meaningful responses for softening behavior. Indeed, in this latter
case the boundary-value problem is mathematically ill-posed (Benallal et al. [1], Lasry
and Belytschko, [5]) in the sense that it admits an infinite number of linearly independent
solutions. In particular damage can concentrate on arbitrarily small zones and thus fail-
ure arises in the material without dissipation energy. Furthermore, numerical simulation
with local models via Finite Element Method are strongly mesh sensitive. Two main reg-
ularization techniques exist to avoid these pathological localizations, namely the integral
(Pijaudier-Cabot and Bažant [10]) or the gradient (Triantafyllidis and Aifantis [11]) dam-
age approaches, see also [6] for an overview. Both consist in introducing non local terms in
the model and hence a characteristic length. We will use gradient models and derive the
damage evolution problem from a variational approach based on an energetic formulation.
The energetic formulations, first introduced by Nguyen [9]and then justified by Marigo
[4]by thermodynamical arguments for a large class of rate independent behavior, consti-
tute a very promising way to treat in a unified framework the questions of bifurcation
and stability of solutions to quasi-static evolution problems. Francfort and Marigo [4] and
Bourdin, Francfort and Marigo [4]have extended this approach to Damage and Fracture
Mechanics.
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Considering the one-dimensional problem of a bar under traction with a particular
gradient damage model, Benallal and Marigo [2]apply the variational formulation and
emphasize the scale effects in the bifurcation and stability analysis: the instability of the
homogeneous response and the localization of damage strongly depend on the ratio between
the size of the body and the internal length of the material. The goal of the present paper
is to extend a part of the results (the questions of stability will no be investigated) of [2]
for a large class of elastic-softening material. Specifically, we propose a general method to
construct localized solutions of the damage evolution problem and we study the influence
of the constitutive parameters on the response. Several scenarii depending on the bar
length and on the material parameters enlighten the size effects induced by the non local
term. The paper is structured as follows. Section 2 is devoted to the statement of the
damage evolution problem. In Section 3 we describe, perform and illustrate the method
of construction of localized solutions and conclude by the different scenarii of responses.

The following notation are used: the prime denotes either the spatial derivative or
the derivative with respect to the damage parameter, the dot the time derivative, e.g.
u′ = ∂u/∂x, E′(α) = dE(α)/dα, α̇ = ∂α/∂t.

2. SETTING OF THE DAMAGE PROBLEM

2.1. The gradient damage model

We consider a one-dimensional gradient damage model in which the damage variable
α is a real number growing from 0 to 1, α = 0 is the undamaged state and α = 1 is the
full damaged state. The behavior of the material is characterized by the state function
W` which gives the energy density at each point x. It depends on the local strain u′(x)
(u denotes the displacement and the prime stands for the spatial derivative), the local
damage value α(x) and the local gradient α′(x) of the damage field at x. Specifically, we
assume that W` takes the following form

W`(u′, α, α′) =
1
2
E(α)u′2 + w(α) +

1
2
E0`

2α′2 (1)

where E0 represents the Young modulus of the undamaged material, E(α) the Young
modulus of the material in the damage state α and w(α) can be interpreted as the density
of the energy dissipated by the material during a homogeneous damage process (i.e. a
process such that α′(x) = 0) where the damage variable of the material point grows
from 0 to α. The last term in the right hand side of (1) is the “non local" part of the
energy which plays, as we will see later, a regularizing role by limiting the possibilities
of localization of the damage field. For obvious reasons of physical dimension, it involves
a material characteristic length ` that will fix the size of the damage localization zone.
The local model associated with the gradient model consists in setting ` = 0 and hence in
replacing W` by W0:

W0(u′, α) :=
1
2
E(α)u′2 + w(α). (2)

The qualitative properties of the (gradient or local) model, in particular its softening or
hardening character, strongly depend on some properties of the stiffness function α 7→
E(α), the dissipation function α 7→ w(α), the compliance function α 7→ S(α) = 1/E(α)
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and their derivatives. From now on we will adopt the following hypothesis, the importance
of which will appear later:

Hypothesis 1 (Constitutive assumptions). α 7→ E(α) and α 7→ w(α) are non negative
and continuously differentiable with E(1) = 0, w(0) = 0, E′(α) < 0 and w′(α) > 0 for all
α ∈ [0, 1). Moreover −w′(α)/E′(α) is increasing to +∞ while w′(α)/S′(α) is decreasing
to 0 when α grows from 0 to 1.

Example 1. A particularly interesting family of models which satisfy the assumptions
above is the following one

E(α) = E0
(1− α)q

(1 + α)p
, w(α) = (p + q)

σ2
0

2E0
α (3)

where p ≥ 1 and q ≥ 1 are two constants playing the role of constitutive parameters and
σ0 represents the critical stress of the material.

2.2. The damage problem of a bar under traction

Let us consider a homogeneous bar whose natural reference configuration is the in-
terval (0, L) and whose cross-sectional area is S. The bar is made of the nonlocal damaging
material characterized by the state function W` given by (1). The end x = 0 of the bar is
fixed, while the displacement of the end x = L is prescribed to a non negative value Ut

ut(0) = 0, ut(L) = Ut ≥ 0, t ≥ 0 (4)

where, in this quasi-static setting, t denotes the loading parameter or shortly the “time",
ut is the displacement field of the bar at time t. The evolution of the displacement and of
the damage in the bar is obtained via a variational formulation, the main ingredients of
which are recalled hereafter, see [2] for details.

Let CUt and D be respectively the kinematically admissible displacement fields at
time t and the convex cone of admissible damage fields:

CUt = {v : v(0) = 0, v(L) = Ut} , C0 = {v : v(0) = 0, v(L) = 0} , D = {β : β(x) ≥ 0,∀x}
(5)

where C0 is the linear space associated with CUt . The precise regularity of these fields is not
specified here, we will simply assume that there are at least continuous and differentiable
everywhere. Then with any admissible pair (u, α) at time t, we associate the total energy
of the bar

P(u, α) :=
∫ L

0
W`(u′(x), α(x), α′(x))Sdx

=
∫ L

0

(
1
2
E(α(x))Su′(x)2 + w(α(x))S +

1
2
E0S`2α′(x)2

)
dx (6)

For a given initial damage field α0, the damage evolution problem reads as:

For each t > 0, find (ut, αt) in CUt ×D such that
For all (v, β) ∈ CU̇(t) ×D, P ′(ut, αt)(v − u̇t, β − α̇t) ≥ 0 (7)
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with the initial condition α0(x) = α0(x). In (7), P ′(u, α)(v, β) denotes the derivative of P
at (u, α) in the direction (v, β) and is given by

P ′(u, α)(v, β) =
∫ L

0

(
E(α)Su′v′ +

(
1
2
E′(α)Su′2 + w′(α)S

)
β + E0S`2α′β′

)
dx

The set of admissible displacement rates u̇ can be identified with CU̇(t), while the set of
admissible damage rates α̇ can be identified with D because the damage can only increase
for irreversibility reasons. Inserting in (7) β = α̇t and v = u̇t + w with w ∈ C0, we obtain
the variational formulation of the equilibrium of the bar,∫ L

0
E(αt(x))u′t(x)w′(x) dx = 0, ∀w ∈ C0 (8)

From (8), we deduce that the stress along the bar is homogeneous and is only a function
of time

σ′t = 0, σt = E(αt(x))u′t(x), ∀x ∈ (0, L) (9)
Dividing (9) by E(αt), integrating over (0, L) and using boundary conditions (4), we find

σt

∫ L

0
S(αt(x))dx = Ut (10)

The damage problem is obtained after inserting (8)–(10) into (7). That leads to the vari-
ational inequality governing the evolution of the damage

−σ2
t

∫ L

0
S′(αt)β dx +

∫ L

0
2w′(αt)β dx +

∫ L

0
2E0`

2α′tβ
′dx ≥ 0 (11)

where the inequality must hold for all β ∈ D and becomes an equality when β = α̇t. After
an integration by parts and using classical tools of the calculus of variations, we find the
strong formulation for the damage evolution problem: For (almost) all t ≥ 0,

Irreversibility condition:

α̇t ≥ 0 (12)

Damage criterion:

−σ2
t S

′(αt) + 2w′(αt)− 2E0`
2α′′t ≥ 0 (13)

Loading/unloading condition:

α̇t

(
− σ2

t S
′(αt) + 2w′(αt)− 2E0`

2α′′t

)
= 0. (14)

Remark 1. We can deduce also from the variational approach natural boundary conditions
and regularity properties for the damage field. In particular, we obtain that α′t must be
continuous everywhere. As boundary conditions at x = 0 and x = L we will simply take
α′t(0) = α′t(L) = 0 although the more general ones induced by the variational principle
correspond to a combination of inequalities and equalities like (13)-(14). These regularity
properties of the damage field (and consequently the boundary conditions) hold only for
the gradient model (` 6= 0) and disappear for the local model (` = 0). As long as the
regularity in time is concerned, we will only consider evolution such that t 7→ αt is at least
continuous.
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2.3. The homogeneous solution and the issue of uniqueness

If we assume that the bar is undamaged at t = 0, i.e. if α0(x) = 0 for all x, then
it is easy to check that the damage evolution problem admits the so-called homogeneous
solution where αt depends on t but not on x. Let us construct this particular solution in
the case where the prescribed displacement is monotonically increasing, i.e. when Ut = tL.
From (10), we get σt = E(αt)t. Inserting this relation into (13) and (14) leads to

t2

2
≤ −w′(αt)

E′(αt)
, α̇t

(
t2

2
+

w′(αt)
E′(αt)

)
= 0. (15)

Since α0 = 0, αt remains equal to 0 as long as t ≤ ε0 =
√
−2w′(0)/E′(0). That corresponds

to the elastic phase. For t > ε0, since −w′/E′ is increasing by virtue of Hypothesis 1, the
first relation of (15) must be an equality. Therefore αt is given by

αt =
(
−w′

E′

)−1 (
t2

2

)
and grows from 0 to 1 when t grows from ε0 to ∞. During this damaging phase, the stress
σt is given by

σt =

√
2w′(αt)
S′(αt)

.

Since w′/S′ is decreasing to 0 by virtue of Hypothesis 1, σt decreases to 0 when t grows from
ε0 to ∞. This last property corresponds to the softening character of the damage model.
Note that σt tends only asymptotically to 0, what means that an infinite displacement is
necessary to break the bar in the case of a homogeneous response.

The non local term has no influence on the homogeneous solution which is solution
both for the gradient and the local damage models. Let us now examine the issue of the
uniqueness of the response. In the case of the local damage model, it is well known that
the evolution problem admits an infinite number of solution. Does the gradient term force
the uniqueness? The answer to this fundamental question essentially depends on the ratio
`/L of the internal length with the bar length, as it is proved in [?] in the case p = 2,
q = 0. Specifically it was shown that the homogeneous solution is the unique solution of
the evolution problem when σ0L ≤ πE0`, i.e. when the bar is small enough, while there
exists an infinite number of solutions otherwise. However, when the bar is long enough,
although the number of solutions is infinite, the fundamental difference between the local
and the gradient models is that the length of the damaged zone is bounded from below
for the gradient model while it can be chosen arbitrarily small for the local model. The
main goal of the next section is to extend these results for a large class of gradient models
and to study the properties of non homogeneous solutions.

Let us remark that any solution of the evolution problem contains the same elastic
phase, i.e. αt = 0 as long as t ≤ ε0. Therefore, localizations can appear only when t > ε0.
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3. NON HOMOGENEOUS SOLUTIONS OF THE DAMAGE PROBLEM

3.1. The method of construction of non homogeneous solutions

Let us consider one solution of the evolution problem. Setting

σ0 :=

√
2w′(0)
S′(0)

= E(0)ε0 (16)

we deduce from (13), that 0 ≤ σt ≤ σ0. Indeed, σt ≥ 0 by virtue of (4) and (10). Then,
integrating (13) over (0, L) and using the boundary conditions α′t(0) = α′t(L) = 0, we
obtain

σ2
t

∫ L

0
S′(αt(x))dx ≤

∫ L

0
2w′(αt(x))dx. (17)

But, since w′/S′ is a decreasing function of α by virtue of Hypothesis 1 and since αt ≥ 0
by virtue of the irreversibility condition, we have

2w′(αt(x)) ≤ σ2
0S

′(αt(x)), ∀x ∈ (0, L).

Integrating over (0, L) and inserting the result into (17) gives σ2
t ≤ σ2

0. Therefore σ0 is the
maximal stress that the material can sustain.

The point of departure in the construction of localized damage solutions is to seek
for solutions for which the equality in (13) holds only in some parts of the bar. For a
given t > ε0, the localized damage field will be characterized by its set St =

⋃
i Si

t of
localization zones Si

t where Si
t is an open interval of [0, L] of the form (xi −Dt, xi + Dt)

(the independence of its length on i will be proved). In [0, L]\St, the material is supposed
to be sound and therefore these parts will correspond to elastic zones where αt = 0. By
sake of simplicity, we will not consider localization zones centered at the boundary of
(0, L), i.e. with xi = 0 or xi = L. Therefore, we force the damage to vanish at x = 0 and
x = L. The successive steps of the construction are as follows:

(1) For a given t, assuming that σt is known, we determine the profile of the damage
field in a localization zone;

(2) For a given t, we obtain the relation between σt and Ut;
(3) We check the irreversibility condition.

3.2. Damage profile in a localization zone

Since t is fixed, we omit the index t in all quantities which are time-dependent.
Let σ ∈ (0, σ0) be the supposed known stress and Si = (xi − D,xi + D) be a putative
localization zone. The damage field α must satisfy

−σ2S′(α) + 2w′(α)− 2E0`
2α′′ = 0 in Si. (18)

Since we assume by construction that the localization zone is matched to an elastic zone
and since α and α′ must be continuous, see Remark 1, the damage field has also to satisfy
the boundary conditions

α(xi ±D) = α′(xi ±D) = 0. (19)
Multiplying (18) by α′ and integrating with respect to x, we obtain the first integral

−σ2S(α) + 2w(α)− E0`
2α′2 = C in Si (20)
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where C is a constant. Using (19) and Hypothesis 1, we get C = −σ2/E0 and (20) can
read as

`2α′(x)2 = H(σ, α(x)) in Si (21)

with

E0H(σ, β) := 2w(β)− σ2

(
S(β)− 1

E0

)
for β ∈ [0, 1). (22)

Since E0
∂H
∂β (σ, β) = 2w′(β)− σ2S′(β) and since, by virtue of Hypothesis 1, w′(β) > 0 and

1 − σ2S′(β)
2w′(β) decreases from 1 − σ2/σ2

0 > 0 to −∞ when β grows from 0 to 1, H is first
increasing from 0, then decreasing to −∞. Hence, there exists a unique positive value of
β, say ᾱ(σ), where H vanishes:

H(σ, ᾱ(σ)) = 0, 0 < ᾱ(σ) < 1. (23)

ᾱ(σ) corresponds to the maximal value of the damage (at the given time), taken at the
center of the localization zone. It depends only on σ and enjoys the following property:

Property 1 (The dependence on the stress of the maximal value of the damage
in the localization zone). When σ decreases from σ0 to 0, ᾱ(σ) increases from 0 to 1.

Proof. Indeed, let 0 < σ1 < σ2 ≤ σ0. Since 0 = H(σ1, ᾱ(σ1)) = H(σ2, ᾱ(σ2)) < H(σ1, ᾱ(σ2)),
and, since H(σ1, β) < 0 when ᾱ(σ1) < β < 1, we have ᾱ(σ1) > ᾱ(σ2). Hence σ 7→ ᾱ(σ)
is decreasing. Since ∂H/∂β(σ0, β) < 0 for β > 0, we have ᾱ(σ0) = 0. Let us prove
that limσ→0 ᾱ(σ) = 1. Let αm = limσ→0 ᾱ(σ) (the limit exists and is positive since
ᾱ(σ) is decreasing). If αm < 1, passing to the limit in (23) when σ goes to 0 gives
0 = H(0, αm) = 2w(αm), a contradiction. Hence αm = 1. �

The size of the localization zone is deduced from (21) by integration. It depends
also on σ and is given by

D(σ) = `

∫ ᾱ(σ)

0

dβ√
H(σ, β)

. (24)

D(σ) is proportional to the internal length and is finite because the integral is convergent.
(Indeed, H(σ, β) behaves like ∂H

∂β (σ, 0)β near β = 0 and like ∂H
∂β (σ, ᾱ(σ))(β − ᾱ(σ)) near

β = ᾱ(σ). Since ∂H
∂β (σ, 0) > 0 and ∂H

∂β (σ, ᾱ(σ)) < 0, the integral is convergent.) Provided
that L ≥ 2D(σ), it is really possible to insert a localization zone of size 2D(σ) inside
the bar. Concerning the dependence of D(σ) on σ, we obtain the following fundamental
property the proof of which is not given here (it is based on a careful study of the behavior
of the integral giving D(σ)):

Property 2 (Dependence on the stress of the size of the localization zone.). The
size D(σ) of the localization zone varies continuously with σ, D(σ0) and D0 = limσ↓0 D(σ)
are finite and given by

D(σ0) = π`

√
2E0

σ2
0S

′′(0)− 2w′′(0)
, D0 = `

∫ 1

0

√
E0

2w(α)
dα. (25)
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The size function σ 7→ D(σ) is not necessarily decreasing. In particular dD
dσ (σ0) < 0 if and

only if the following inequality holds

S′′(0)
(
S′′(0)σ2

0 − 2w′′(0)
)

> S′(0)
(
S′′′(0)σ2

0 − 2w′′′(0)
)
. (26)

The position xi of the center can be chosen arbitrarily in the interval [D(σ), L −
D(σ)]. We finally deduce from (21) that, in the localization zone, the damage field is given
by the following implicit relation between x and α:

|x− xi| = `

∫ ᾱ(σ)

α

dβ√
H(σ, β)

. (27)

It is easy to see that the damage field is symmetric with respect to the center of the
localization zone, decreasing continuously from ᾱ(σ) at the center to 0 at the boundary.

Remark 2. The size of the localization zone and the profile of the damage field inside
depends only on σ. Since σ is a global quantity, all the localization zones have the same
size and the same profile at a given time. The maximal number of localization zones that
can exist at a given time depends on the length of the bar: the longer the bar, the greater
the maximal number of localization zones.

Example 2. In the case of the family of models introduced in Example 1 with q ≥ 1 and
p ≥ 1 the size of the localization zone at σ = σ0 or 0 are given by

D(σ0) =
π`
√

2
ε0

√
(p + q)2 + q − p

, D0 =
2`

ε0
√

p + q
.

The necessary condition (26) of growing of the localization zone when the stress decreases
reads as (q − p)2 > (q + p)2(q − p + 2). It is in particular satisfied for q = 2 and p ≥ 4,
but it is never satisfied when q ≥ 1 and 1 ≤ p ≤ 2.

3.3. The force-displacement relation

The time is fixed and we still omit the index t. Let U be the prescribed displace-
ment, ε = U/L the average strain and σ the stress in the bar which contains n ≥ 1
localization zones. Using (10), recalling that α = 0 outside the localization zones and that
all localization zones have the same size 2D(σ) and the same profile, we get

U = σ

∫ L

0
S(α(x))dx = σ

(
n

∫
S1

S(α(x))dx +
L− 2nD(σ)

E0

)
The integral

∫
S1

S(α(x))dx can be transformed into an integral over the range of
α by using (21). Indeed, by symmetry it can reads as 2

∫ x1

x1−D(σ) S(α(x))dx. Making the

change of variables x → α, since `dα =
√

H(σ, α)dx, we obtain∫
S1

S(α(x))dx = 2`

∫ ᾱ(σ)

0

S(α)dα√
H(σ, α)

.

Recalling (24), we finally obtain the overall stress-strain relation

ε = εe(σ) + n
`

L
εd
1(σ) (28)
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α

ᾱ(σ)

y = x−xi
!1−1 0

1

σ

1

ε0D/!

1

10 σ/σ0

1

Fig. 1. Left: The damage profile for a given σ and its evolution for different σ in
the case of the model of Example 1 with q = 2 and p = 4 (the lower σ, the higher
α). Right: We check numerically that σ 7→ D(σ) is decreasing.

with

εe(σ) =
σ

E0
, εd

1(σ) = 2σ

∫ ᾱ(σ)

0

(
S(β)− 1

E0

)
dβ√

H(σ, β)
. (29)

Remark 3. For a given n, (28) gives the average strain in term of the stress. That
corresponds to a curve in the ε − σ plane, parametrized by σ varying from 0 to σ0. The
curve n = 0 is the segment corresponding to the elastic phase. Thus ε can be decomposed
into two terms, one associated with the elastic part of bar, the other with the localization
zones. Note that σ 7→ εd

1(σ) depends neither on the length of the bar nor on the internal
length of the material.

The properties of monotonicity of the function σ 7→ εd
1(σ) play an important role

on the presence of snap-backs in the overall response of the bar, see the next subsection.
Since εd

1(σ0) = 0 and since εd
1(σ) > 0 for σ < σ0, σ 7→ εd

1(σ) is necessarily decreasing in
the neighborhood of σ0. We have in particular

Property 3 (Behavior of σ 7→ εd
1(σ) near σ0). εd

1(σ0) = 0 and

dεd
1

dσ
(σ0) = − π25/2S′(0)2σ2

0E
1/2
0

(S′′(0)σ2
0 − 2w′′(0))3/2

. (30)
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On the other hand, the behavior of εd
1(σ) when σ/σ0 is small is very sensitive to the

constitutive parameters as it is shown in the following example and on Figure 2.

Example 3. In the case of the family of models of Example 1, we have

σ0
dεd

1

dσ
(σ0) = − π25/2(p + q)2

((p + q)2 + q − p)3/2
, lim

σ↓0
εd
1(σ) =


0 if q < 2
π2p/2 if q = 2
+∞ if q > 2.

(31)

Consequently, when q ≤ 2, the overall strain remains finite when the stress goes to 0,
contrary to the homogeneous response where the strain becomes infinite.

εd
1

4π

0 1 σ/σ0

1

Fig. 2. Graph of the function σ 7→ εd
1(σ) giving the contribution of a localized

zone on the overall strain in the case of the model of Example 1 with p = 4 and
different values of q (dashed: q = 1, thick: q = 2, thin: q = 3).

3.4. Checking of the irreversibility

It remains to check that the localized damage fields that we have constructed at
different values of σ leads to an evolution in time which satisfies the irreversibility condition
α̇ ≥ 0. Let us reintroduce the time and the index t in the notation. Since the center of the
localization zone is fixed, the condition of irreversibility is satisfied only if t 7→ ᾱ(σt) =
αt(xi) is not decreasing. Since σ 7→ ᾱ(σ) is decreasing, it is possible only if t 7→ σt is
not increasing. Since αt(xi, xi + D(σt)) = 0 and since αt(x) > 0 for |x − xi| < D(σt) by
construction, the condition of irreversibility is satisfied only if t 7→ D(σt) is not decreasing.
That requires that σ 7→ D(σ) is not increasing, condition which is not automatically
satisfied by the damage model, see Example 2. When this condition is not satisfied, our
construction of the localized solution is no more valid. We must consider an evolution
of the damage where a part of the localization zone is unloaded and reenters in a non
damaging phase, the size of the still damaging part decreasing with time. To avoid such a
situation we make the following hypothesis

Hypothesis 2. We assume that α 7→ E(α) and α 7→ w(α) are such that σ 7→ D(σ) is
decreasing.
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Note that this hypothesis is satisfied in the class of models of Example 1 when q = 2
and p ≥ 4. Under this condition, it is possible to obtain the following property

Property 4. Under Hypothesis 2, in order that t 7→ αt given by (27) in a localization
zone (and equal to 0 otherwise) is not decreasing it is necessary and sufficient that t 7→ σt

is not increasing.

Proof. We know that it is necessary, it remains to prove that it is sufficient. Let us assume
that t 7→ σt is not increasing. Then t 7→ ᾱ(σt) and t 7→ D(σt) are not decreasing. Let
t1 < t2 and x be such that |x− xi| ≤ D(σt1). It is sufficient to prove that α2 := αt2(x) ≥
αt1(x) =: α1. Owing to (27), since H is a decreasing function of σ and since σt2 ≤ σt1 , we
have

0 ≤ D(σt2)−D(σt1) =
∫ α2

0

` dβ√
H(σt2 , β)

−
∫ α1

0

` dβ√
H(σt1 , β)

≤
∫ α2

α1

` dβ√
H(σt1 , β)

.

Hence α2 ≥ α1. �

By virtue of this last property, our construction of a non homogeneous solution is
valid provided that the bar is sufficiently long so that a localization zone can appear and
grow without reaching the boundary. Since the size of the localization zone increases with
t, that leads to the inequality L ≥ 2nD0. Owing to (25), that gives the following lower
bound for L:

L ≥ n`

∫ 1

0

√
2E0

w(α)
dα := nLm > 2nD(σ0). (32)

Remark 4. Under Hypotheses 1 and 2, we have really obtained a damage evolution t 7→ αt

which satisfies the evolution problem (12)–(14) if the bar is long enough and if we can
control the loading in such a manner that the stress is continuously decreasing. But the
continuity of t 7→ σt is not automatically ensured as we show in the next subsection.

3.5. Size effects and the different scenarii

Let us consider a loading process where Ut = tL, i.e. such that the displacement
of the end x = L is monotonically increasing. Consequently t corresponds to the average
strain of the bar, ε = t, and (28) reads now

t =
σt

E0
+ n

`

L
εd
1(σt).

It remains to study under which condition this relation between t and σ is invertible.
In other words, we have to find when the overall curve ε–σ does not contain snap-backs.
Specifically, in order that there is no snap-back, we must have dε/dσ(σ) ≤ 0,∀σ. By virtue
of (28), that gives an upper bound for L:

L ≤ n` inf
σ∈(0,σ0]

{
−E0

dεd
1

dσ
(σ)

}
:= nLM . (33)

Of course, this condition is never satisfied when σ 7→ εd
1(σ) is not decreasing. (For example,

in the case of the family of models of Example 1, it is never satisfied if q < 2, cf Exam-
ple 3.) Depending on the properties of the model, the length of the bar and the number
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of localization zones, we can obtain different scenarii. Let us consider only the situation
with one localization zone (n = 1), to simplify the presentation. We can distinguish two
cases:

(1) Case Lm > 2D(σ0) ≥ LM . In such a case we have three situations
(a) For very short bars, i.e. L ≤ 2D(σ0), no solution with localization is

possible. The homogeneous solution is the unique solution;
(b) For short bars, i.e. 2D(σ0) < L ≤ Lm, a solution with localization is possi-

ble just after the elastic phase, but the localization zone will progressively
cover all the bar and a snap-back is possible;

(c) For long bars, i.e. L > Lm, a solution with localization is possible, but it
is necessarily discontinuous in time because of the presence of a snap-back
in the overall stress-strain response.

(2) Case Lm < LM . We have then four possibilities, the first two (a) and (b) are
the same as before
(c) For intermediate bars, i.e. Lm < L ≤ LM , a continuous solution with

localization is possible, the damaged zone does not reach the boundary,
there is no snap-back;

(d) For long bars, i.e. L > LM , a solution with localization is possible, but it
is necessarily discontinuous in time because of the presence of a snap-back.

Example 4. In the case of the family of models of Example 1, if q < 2, then LM < 0. It
is not possible to find a non homogeneous solution without snap-back.

If q = 2 and p = 4, then Lm = 4√
6

`
ε0

< 72π
17
√

17
`
ε0

= LM . Therefore, for bars with an
intermediate length we can find a continuous in time localized solution, cf Figure 3 (left),
while for long bars a localized solution is necessarily discontinuous in time just after the
elastic phase, cf Figure 3 (right).

σ/σ0

1−

1

− ε/ε0

1

σ/σ0

1 A

B

−

1

− ε/ε0

1

Fig. 3. Overall stress-strain relations for a law of Example 1 with p = 4 and q = 2
(Thin curve=homogeneous response; Thick curve=localized response). Left: For a
bar of intermediate length; Right: For a long bar.
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4. CONCLUSION AND PERSPECTIVES

We have proposed a method of construction of non homogeneous solutions for the
one-dimensional damage evolution problem of a bar under traction. We have shown that
the properties of such a localized solution is very sensitive to the parameters of the model.
This strong dependence could be very interesting from an experimental viewpoint to iden-
tify the right law. From a theoretical viewpoint, the presence of the gradient of damage in
the model has a regularizing role as expected and limits the possibility of localization of
the damage since the size of a localization zone is necessarily greater than a value fixed by
the internal length of the material and the others parameters of the model. Moreover, this
non local term induces size effects in the response of the bar with in particular a necessar-
ily discontinuous response and even a brutal onset of the damage after the elastic phase
for long bars. When the bar is sufficiently long, our construction gives several solutions
for the evolution problem, the number of localizations zones being only restricted by the
length of the bar. We could probably construct many other solutions as it was made in [?].
This drastic lack of uniqueness that the introduction of a non local term has not removed
needs to add a selection criterion. A good candidate is of course the stability criterion
introduced in [?] and the next challenge is to find which solutions among all those we have
constructed satisfy the stability criterion.
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XÂY DỰNG VÀ PHÂN TÍCH ĐÁP ỨNG ĐỊA PHƯƠNG HÓA CHO CÁC
MÔ HÌNH HƯ HỎNG GRADIENT TRONG BÀI TOÁN 1 CHIỀU

Chúng tôi đề xuất một phương pháp xây dựng lời giải không thuần nhất cho bài
toán kéo thanh làm bằng vật liệu đàn hồi bị hư hỏng mà ứng xử mềm hóa được cân đối
hóa bằng một mô hình hư hỏng gradient. Chúng tôi chỉ ra rằng, với những thanh đủ dài,
sự địa phương hóa tăng lên trên các lớp mà chiều dài của nó tỷ lệ với độ dài vật liệu bên
trong và với phân bố cũng là một đặc trưng của vật liệu. Chúng tôi chỉ ra tính rất nhạy
cảm của đáp ứng đối với các tham số trong quy luật hư hỏng. Tất cả những nghiên cứu
lý thuyết này được minh họa bằng các ví dụ số.


