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Abstract. In this paper the spreading of a contaminant accompanied with natural con-
vection in a box is numerically simulated. The box may be considered as a cooking room
or a working place where some sources of heat and contaminant are in the simultane-
ous action. The box floor is supposed to be divided into several domains with different
boundary conditions for temperature or heat flux. Here the purpose of the simulation
is to understand the contaminant spreading process in the box under the influence of a
convective motion. The model can be also applied for an enclosure with separated parts
differentially heated by the sunlight on its boundaries. A good knowledge of this process
is very useful for setting an efficient ventilation scheme. In this paper the finite difference
method based on the Samarski scheme with ADI technique is applied for numerical sim-
ulation. Here the box floor is divided into two domains of equal sizes but with different
temperature or heat flux. The contaminant source locates in the middle of the box bottom.
The simulation shows that over the part of the floor where temperature or heat flux is
greater the contaminant concentration is lager. That result is in the accordance with the
experiment done in the framework of this investigation.

Keywords: Box, three-dimensional, natural convection, contaminant spreading, numerical
simulation, finite difference method, Samarski scheme, ADI, multigrid.

1. INTRODUCTION

The spreading process of a contaminant accompanied by a convective motion in
the air is a much known phenomenon that often occurs almost everywhere. The con-
taminant source may be “independent” on the heat source or they are merged together.
Combustion reactions are often of the second case. In an industrial enclosure heat sources
usually also issue one or several contaminant matters simultaneously. The heat convec-
tive motion as expected always makes the contaminant spreading more quick. But it is
not its unique effect. In the case when the temperature or heat flux is not homogeneous

c© 2016 Vietnam Academy of Science and Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/235210408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.15625/0866-7136/38/2/7521
mailto: trantv@vnu.edu.vn


142 Tran Van Tran, Nguyen Ngoc Thang, Nguyen Thi Thuy

on boundaries, in our case on the floor of the box, the contaminant distribution in the
enclosure is strongly influenced too. This issue is the primary interest of this paper.

Natural convection in an enclosure caused by heating from below or the difference
in temperature of the side walls has been theoretically and experimentally investigated
intensively from several decades ago. This problem has been attractive for the theoreti-
cal investigation as well as application. One of the earliest studies of three-dimensional
natural convection in a box with differential side heating by numerical simulation was
carried out by Millinson and De Vahl Davis [1]. They revealed the steady air motion for
moderate Rayleigh number (Ra). And the motion is essentially three-dimensional. In [2]
the same problem was considered for Ra ranged from 103 to 2.1016. The laminar flow was
observed again at not very large Ra. This problem was also solved experimentally in [3]
for Ra from 104 to 2.107, and numerically by finite difference method in [4] for Ra not
exceeded 106. It is interesting to note that in [5] the transition from the steady flow to the
time-periodical natural convective motion in a box was observed. The natural convection
considered in [6] is different from that of [1–5] by the heating way. Namely, in [6]the box
is heated from below and the Rayleigh number is from 3500 to 104. Four different stable
convective structures were recognized. Orhan Aydin and Wen-jei Yang [7] studied nat-
ural convection in a two-dimensional rectangular enclosure with localized heating from
below and symmetrical cooling from the sides. Four dimensionless heat source length of
1/5, 2/5, 3/5, 4/5 were taken for numerical simulation at Ra from 103 to 106. Recently
natural convection of nanofluids has been investigated [8].

In this paper we consider the natural convection in a box caused by the non-
homogeneity of the temperature or heat flux applied to different parts of the box bottom.
And the way a contaminant spreads in the box in the presence of this convective motion
is our main interest.

2. THE PROBLEM FORMULATION

The numerical simulation in this investigation will be carried out on the base of
the Boussinesq approximation of the Navier-Stokes equations. The reason for this choice
is that, first we want to understand the influence of the temperature non-homogeneity
at the floor on the contaminant spreading process at moderate Rayleigh number. Sec-
ond, our computational facilities are beneath computing the solution of the full three-
dimensional turbulent problem. So with this assumption the system of equations of our
problem consists of the following [9, 10]

∂~V
∂t

+
(
~V.∇

)
~V = − 1

ρ0
∇p + ν∆~V + (gβT′ + gβcC′)~k

div~V = 0
∂T′

∂t
+
(
~V.∇

)
T′ = χ∆T′

∂C′

∂t
+
(
~V.∇

)
C′ = χc∆C′

where ρ0, ν are the air density and viscosity respectively at a referenced temperature T0.
T′, C′ are the deflections of the temperature and contaminant from their referenced value
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respectively, and β, βc are the temperature and contaminant coefficients of the expan-
sion whilst χ, χc are their diffusivity coefficients respectively. Making the usual non-
dimensionalizing procedure for the natural convection problem [10] we have

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −∂p
∂x

+
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 , (1)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −∂p
∂y

+
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 , (2)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −∂p
∂z

+
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2 + Gr T + Grc C, (3)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (4)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
1
Pr

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
, (5)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

=
1
Sc

(
∂2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

)
, (6)

where Gr, Pr are the Grashof and Prandtl number for the temperature effect respectively
whilst Grc, Sc are the similar numbers for the contaminant. The boundary conditions
for Eqs. (1)-(6) will be discussed later. Here for saving the computer memory as well as
reducing the computation time the finite difference method is applied. To do this, first
we rewrite the governing equations (1), (2) and (3) in the vorticity variable introducing
the vorticity vector by the form

~Ω (Ωx, Ωy, Ωz) = rot~V, Ωx =
∂w
∂y
− ∂v

∂z
, Ωy =

∂u
∂z
− ∂w

∂x
, Ωz =

∂v
∂x
− ∂u

∂y
. (7)

By differentiating (1), (2) and (3) in respect to appropriate spatial variables and taking
account of (4) we have

Ωx
t +uΩx

x+vΩx
y+wΩx

z−Ωxux−Ωyuy−Ωzuz−
(

Ωx
xx+Ωx

yy+Ωx
zz

)
=GrTy + GrcCy, (8)

Ωy
t +uΩy

x+vΩy
y+wΩy

z−Ωxvx−Ωyvy−Ωzvz−
(
Ωy

xx+Ωy
yy+Ωy

zz
)
=−GrTx−GrcCx, (9)

Ωz
t + uΩz

x + vΩz
y + wΩz

z −Ωxwx −Ωywy −Ωzwz −
(

Ωz
xx + Ωz

yy + Ωz
zz

)
= 0. (10)

Next by the differentiation and transformation of (4) one can get the following
equations for the velocity components

uxx + uyy + uzz = Ωy
z −Ωz

y, (11)

vxx + vyy + vzz = Ωz
x −Ωx

z , (12)

wxx + wyy + wzz = Ωx
y −Ωy

x. (13)

Note that in Eqs. (8)-(13) the subscript letter means the derivative in respect to the
corresponding variable. These equations will be integrated for determining the vector of
vorticity and velocity of our problem. In Fig. 1 shown the enclosure considered in this
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paper. It is a box of length L, so after the non-dimensionlizing procedure it becomes the
unit box. We denote the sides of the box by ST, SB, SL, SR, SF, SK for top, bottom, left, right,
front and back respectively. Now the boundary conditions for the system of Eqs. (5)-(13)
are set as follows.

x 

y 

z 

S1

S2

S3

S4 S4 

Fig. 1. The box and its base divided into domains with different boundary
conditions for temperature and contaminant

u = v = w|all sides = 0, (14)

Ωx|Sl ,SR
= 0, Ωx|SF ,SB

= wy, Ωx|SB,ST
= −vz, (15)

Ωy|SF,SK
= 0, Ωy|SL,SR

= −wx, Ωy|SB,ST
= uz, (16)

Ωz|SB,ST
= 0, Ωz|SL,SR

= vx, Ωz|SF,SK
= −uy, (17)

Tn = Cn|SF,SK ,SL,SR,ST
= 0. (18)

To study the influence of the heat non-homogeneity at the bottom side on the con-
taminant spreading we divide the box base into several parts along the axis 0x (Fig. 1).
The area ratio of S1, S2, S3, and S4 to the base are 1/16, 3/8, 3/8 and 3/16, respectively.

The contaminant source occupies whole central part S1. On the other parts we
impose the following conditions

Tn|S2
= −1, T|S3,S4

= 0, (19)

Cn|S2,S3,S4
= 0, Cn|S1

= −1, (20)

T|S1
= 1, (21)

T|S1
= 0. (22)

Now we denote the problem that consists of (5)-(20) and (21) by A-problem whilst
the problem consists of (5)-(20) and (22) by B-problem. Condition (19) shows that S2 is
the hot domain while S3, and S4 are relatively cool ones. Condition (20) means that the
contaminant is issued only from domain S1. Condition (21) indicates that S1 is a dual
source i.e. heat and contaminant simultaneously originate from this domain while (22)
shows that S1 is a monotonous source of contaminant only.
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3. THE NUMERICAL METHOD

To integrate the transport equations for vortices (9)-(11) here we apply the ADI and
time splitting technique for the finite difference method based on the Samarski scheme.
We describe this numerical procedure in detail for Eq. (9) as follows. We split every time
step of the integration (τ) into three substeps. At the first substep we integrate Eq. (9)
with all derivatives of Ωx in respect to variable x in the left part (x-direction)

(Ωx)n+1/3−(Ωx)n

τ/3
+u (Ωx)n+1/3

x̃ −0.5 |u| k1{Ωx
x −Ωx

x̄}
n+1/3−a (Ωx)n+1/3

xx̄ −ux(Ωx)n+1/3=

= −v (Ωx)n
ỹ − w (Ωx)n

z̃ + uy (Ωy)n + uz (Ωz)n +
{

Ωx
yȳ + Ωx

zz̄

}n
+ GrTn

y + GrcCn
y , (23)

At the second substep the equation in y-direction is integrated

(Ωx)n+2/3−(Ωx)n+1/3

τ/3
+v (Ωx)n+2/3

ỹ −0.5 |v| k1

{
Ωx
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ȳ

}n+2/3
−b(Ωx)n+2/3

yȳ −ux(Ωx)n+2/3=

=−u (Ωx)n+1/3
x̃ −w (Ωx)n+1/3

z̃ +uy (Ωy)n+uz(Ωz)n+{Ωx
xx̄+Ωx

zz̄}
n+1/3+GrTn

y +GrcCn
y ,

(24)
And finally, at the third substep the equation in z-direction is solved

(Ωx)n+1−(Ωx)n+2/3

τ/3
+w (Ωx)n+1

z̃ −0.5 |w| k1{Ωx
z−Ωx

z̄}
n+1−c (Ωx)n+1

zz̄ −ux(Ωx)n+1=

=−u (Ωx)n+2/3
x̃ −v (Ωx)n+2/3

ỹ +uy (Ωy)n+uz(Ωz)n+
{

Ωx
xx̄+Ωx

yȳ

}n+2/3
+GrTn

y +GrcCn
y ,

(25)
In (23)-(25) we denote

(ux)ijk =
(
ui+1,jk − uijk

)
/hi, (ux̄)ijk =

(
uijk − ui−1,jk

)
/hi−1,

(ux̃)ijk = 0.5 (ux + ux̄) , (uxx̄)ijk = 2 (ux − ux̄) / (hi−1 + hi) ,

hi = xi+1 − xx, a = 1/
(
1 +

∣∣uijk
∣∣ k2hiRe

)
,

b = 1/
(
1 +

∣∣vijk
∣∣ k2hiRe

)
, 1/

(
1 +

∣∣wijk
∣∣ k2hiRe

)
.

(26)

The analogous procedure is applied for integrating equations (10) and (11). It is
obviously from (26) that the central scheme for both the first and second derivatives re-
sults in the case when k1 = k2 = 0 while in the case with k1 = 1, k2 = 0 one has the so
called upwind scheme. Finally we have the Samarski scheme [10, 11] taking k1 = k2 = 1.
In this paper the last scheme is applied.

To calculate the solution of (11)-(13) the second order central finite difference scheme
is used for the Laplace operator and the multigrid method [12–14] is applied to solve the
system of finite difference equations. The multigrid method extremely reduces the com-
putational time of our numerical simulation.
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4. NUMERICAL RESULTS AND DISCUSSION

The numerical simulation in this paper is carried out for the case when the
contaminant-carbon dioxide spreads by the natural convection in a box filled with the
air. The Grashof number (Gr) is from 104 to 5.105, and Grc is fixed at value 105. The
common fixture that our simulation shares with the other studies mentioned in Section
1 of this paper is the existence of the steady air flow at moderate Rayleigh number de-
spite the fact that the boundary condition for heat in our case is much different from that
imposed in the mentioned works. Moreover the natural convective motion in our study
is also interacted with the contaminant spreading process. The recording flow param-
eters at a series of time moments in three points P1(0.5, 0.5, 0.175), P2(0.5, 0.5, 0.5) and
P3(0.5, 0.5, 0.875) helps to determine the kind of the motion: steady or unsteady. In Fig. 2
shown the change in time of the velocity, temperature and contaminant concentration
in these points. It is obviously that the flow in both cases becomes stationary after a
relatively short time interval.
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Fig. 2. The evolution of velocity components u, v, w, temperature T and contaminant C
in points P1, P2 and P3 at Gr = 2. 104, Grc = 105

The effect of the boundary condition (21) and (22) on the amount of the contami-
nant released from the source S1 are clearly shown in Fig. 2. This amount in case of the
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A-problem (S1 is the source of heat and contaminant simultaneously) is nearly ten times
bigger than that of the B-case when no heat issued from S1. This is naturally reasonable
because heat always assists the emission and spreading contaminant. Next, in the A-case
on the axis of the symmetry of the box the temperature decreases from point P1 to point
P3 while in the B-case we have T2 > T1 > T3. This result is correct too because in the first
case the hot air rises directly from S1 domain while in the second the air layer adjacent to
S1 is always relatively cool due to the effect of the Rayleigh-Taylor stability. The bound-
ary condition (21) and (22) also strongly effect on the structure of the air flow in the box.
This can be seen in Fig. 3 where shown the velocity field on the middle horizontal section
of the cube.

(a) A-problem (b) B-problem

Fig. 3. The velocity field on section z = 0.5 at Gr = 2.104, Grc = 105

The flow type changes when Gr increases to 2.105. Fig. 4 shows that at Gr = 2.105

and Grc = 105 the flow in the A-case is clearly unsteady while a time-periodic motion
is resulted in the B-case. The existence of the time-periodic flow in the B-case is more
clearly indicated in Fig. 5 where the complex structure of this motion is shown also. As
seen in Fig. 5 at every point of P1, P2 and P3 each of the flow variables such as u, v, w, T
and C has its characteristic phase that is different from that of the other parameters. This
phase also changes from point to point.

When the Grashof number increases the unsteady air flow appears. In Fig. 6 shown
a flow of that kind for the B-case at Gr = 3.105 and Grc = 105 . The simulations indicate
that when the Grashof number increases the frequency of the oscillation increases too.

The complex structure of the natural convection in the box caused by a complicated
boundary condition for heat on the cube base can be demonstrated by Fig. 7. As shown
in [6] for the natural convection in a box heated from below there are four different stable
structures. In our case the convective structure is more complex because of the non-
homogeneity of heat boundary condition on the box bottom.
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Fig. 4. The evolution of velocity components, temperature and contaminant
concentration in P1 for Gr = 2.105, Grc = 105
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(a)

(b)

(c)

Fig. 7. The vector field on: (a) x-sections, x = 0.125, x = 0.5, x = 0.875; (b) y-section,
y = 0.125, y = 0.5, y = 0.875; (c) z-section, z = 0.125, z = 0.5, z = 0.875 for the B-case,

Gr = 3.105, Grc = 105

Our next concern is the distribution of the contaminant over the box base in the
presence of the non-homogeneous heating from below expressed by conditions (19), (21)
and (22). The simulation here indicates that if the contaminant issue from the central
source S1 is continuous then at any moment the amount of the contaminant over a high-
temperature region of the bottom is lager than that over a relatively lower-temperature
one. In Fig. 7 presented the distribution of temperature and contaminant on three sections
x = 0.875, z = 0.125 and z = 0.875. It is necessary to remind that the hot region is
0 ≤ x ≤ 1, 0.625 ≤ y ≤ 1 while the cooler domain is 0 ≤ x ≤ 1, 0 ≤ y ≤ 0.625. The
temperature distribution on any horizontal section, as seen in Fig. 8, is very reasonable
namely temperature of the air over the hot region is higher than that over the cooler one.
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And the temperature gradient in y-direction decreases with z-increasing owing to the
convective motion in the box. Fig. 8 also shows that the contaminant distribution has the
same characteristics as the temperature.

Fig. 8. A-case: isolines of temperature (three first pictures) and contaminant on sections:
x = 0.875, z = 0.125 and z = 0.875 respectively for Gr = 2.105, Grc = 105

(a)

(b)

(c)

Fig. 9. B-case: isolines of temperature (two first pictures of each line) and contaminant on
sections: z = 0.125 and z = 0.875 respectively for (a) steady, (b) periodic, (c) unsteady flow
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For the B-problem these characteristics of the temperature and contaminant remain
the same. And this is correct for all three types of the flow: steady, periodic and unsteady.
This conclusion is demonstrated in Fig. 9.

Fig. 10. The experimental illustration of contaminant spreading in a natural convection in a box

Fig. 10 shows pictures that illustrates the above conclusion on the way of contam-
inant spreading in a box in the presence of a natural convective flow. In this experiment
the box bottom is divided into two equal parts. The left part surface is kept cool by ice
below while the right part one is heated by a lamp. In the middle picture the contami-
nant source locates at the center of the box base (close to our model). In the left and right
picture the source is lain in the cool or hot region respectively. As seen in the pictures the
smoke always tends to spread more into the hot region of the air.

5. CONCLUSION

At moderate Grashof number the three-dimensional natural convection with spread-
ing contaminant in an enclosure can be modeled by Navier-Stokes equation in the Boussi-
nesq approximation. Using the finite difference method based on the Samarski scheme
to calculate the solution of the transport-type equations of vorticity, energy and contami-
nant and the multigrid method to compute the velocity shows to be efficient for numeri-
cal simulation. The simulation indicates that the mentioned above motion can be steady,
time-periodic or unsteady. The transition from one type of the motion to the other de-
pends on the Grashof number value as well as the boundary condition on the bottom
of the box. The method applied in this study may be applicable to problems with very
difficult setting the boundary condition.

REFERENCES

[1] G. D. Mallinson and G. D. V. Davis. Three-dimensional natural convection in a box: a nu-
merical study. Journal of Fluid Mechanics, 83, (01), (1977), pp. 1–31.

[2] N. C. Markatos and K. A. Pericleous. Laminar and turbulent natural convection in an en-
closed cavity. International Journal of Heat and Mass Transfer, 27, (5), (1984), pp. 755–772.



152 Tran Van Tran, Nguyen Ngoc Thang, Nguyen Thi Thuy

[3] W. J. Hiller, S. Koch, and T. A. Kowalewski. Three-dimensional structures in laminar natural
convection in a cubic enclosure. Experimental Thermal and Fluid Science, 2, (1), (1989), pp. 34–
44.

[4] T. Fusegi, J. Hyun, K. Kuwahara, and B. Farouk. A numerical study of three-dimensional
natural convection in a differentially heated cubical enclosure. International Journal of Heat
and Mass Transfer, 34, (6), (1991), pp. 1543–1557.

[5] R. J. A. Janssen, R. A. W. M. Henkes, and C. J. Hoogendoorn. Transition to time-periodicity
of a natural-convection flow in a 3D differentially heated cavity. International Journal of Heat
and Mass Transfer, 36, (11), (1993), pp. 2927–2940.

[6] J. Pallares, I. Cuesta, F. X. Grau, and F. Giralt. Natural convection in a cubical cavity heated
from below at low Rayleigh numbers. International journal of heat and mass transfer, 39, (15),
(1996), pp. 3233–3247.

[7] O. Aydin and W.-J. Yang. Natural convection in enclosures with localized heating from below
and symmetrical cooling from sides. International Journal of Numerical Methods for Heat & Fluid
Flow, 10, (5), (2000), pp. 518–529.

[8] H. F. Oztop and E. Abu-Nada. Numerical study of natural convection in partially heated
rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29,
(5), (2008), pp. 1326–1336.

[9] L. D. Landau and E. M. Lifshitz. Mechanics of continous mediums. Nauka, Moscow, (1986). (in
Russian).

[10] V. I. Polezaev, A. V. Bune, N. A. Verezub, G. S. Glusco, V. I. Griaznov, K. G. Dubovic, S. A.
Nikitin, A. I. Prostomolotov, A. I. Fedoseev, and S. G. Cherkasov. Mathematical modeling of
convective heat and mass transfer on the base of Navier-Stokes equation. Nauka, Moscow, (1987).
(in Russian).

[11] A. A. Samarski. Introduction to the theory of finite difference method. Nauka, Moscow, (1971). (in
Russian).

[12] W. Hackbusch. Multi-grid methods and applications. Springer-Verlag, Berlin/New York, (1985).
[13] V. John and L. Tobiska. Numerical performance of smoothers in coupled multigrid methods

for the parallel solution of the incompressible Navier-Stokes equations. International Journal
for Numerical Methods in Fluids, 33, (4), (2000), pp. 453–473.

[14] U. K. N. G. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, (3),
(1982), pp. 387–411.


	1. INTRODUCTION
	2. THE PROBLEM FORMULATION
	3. THE NUMERICAL METHOD 
	4. NUMERICAL RESULTS AND DISCUSSION
	5. CONCLUSION
	REFERENCES

