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Abstract. This paper describes the dynamic analysis of prestressed Bernoulli beams resting 
on a two-parameter elastic foundation under a moving harmonic load by the finite element 
method . Using the cubic Hermitian polynomials as interpolation functions for the deflection, 
the stiffness of the Bernoulli beam element augmented by that of the foundation support 
and prestress is formulated . The nodal load vector is derived using the polynomials with the 
abscissa measured from the left-hand node of the current loading element to the position 
of the moving load . Using the formulated element, the dynamic response of the beams 
is computed with the aid of the direct integration Newmark method. The effects of the 
foundation support, prestress as well as excitation frequency, velocity and acceleration on 
the dynamic characteristics of the beams are investigated in detail and highlighted. 

1. INTRODUCTION 

The dynamic analysis of beams under moving loads plays an important role in the 
field of railway and bridge engineering, and has attracted much attention from researchers 
for many years. The early work on the topic has been described by Timoshenko et al. 
in [1], where the governing equation for a uniform Bernoulli beam subjected to moving 
harmonic force with constant velocity was solved by the mode superposition method. In 
[2], Fryba presented a solution for vibration of simply supported beam under moving loads 
and axial forces . Employing the traditional 2D Bernoulli beam element, Thambiratnam 
and Zhuge [3] computed the dynamic amplification factor for beams resting on a Winkler 
elastic foundation subjected to moving loads. Chen et al. [4] invest igated the response 
of infinite Timoshenko beam on a viscoelastic foundation to a moving harmonic load by 
deriving the dynamic stiffness matrix for the beam. The natural frequencies and mode 
shapes of Bernoulli-type beams subjected to moving loads with variable velocity have 
been investigated by Dugush and Eisenberger [5] by both the modal and direct integration 
methods. Using the Fourier transform method, Kim [6] obtained the steady-state response 
to moving loads of axial loaded beams resting on a Winkler elastic foundation. Adopting 
polynomials as trial function for the deflection in the Lagrangian equations, Kocatiirk 
and gim§ek [7] investigated the vibration of viscoelastic beams subjected to an eccentric 
compressive force and a moving harmonic force. 

In the present paper, the dynamic analysis of prestressed Bernoulli beams resting on a 
two-parameter elastic foundation under a moving concentrated harmonic load is conducted 
us ing the finite element method. The prestress is assumed to be resulted from initially 
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loaded by axial forces, and velocity of the moving load is considered variable. To this 
end, a finite element taking the effect of both prestress, foundation support is formulated . 
In the formulation , a two-parameter foundation model taking the interaction between 
springs of the traditional Winkler foundation, previously employed by the first author in 
[8] is adopted . The two-parameter foundat ion model shows some advantage including the 
accuracy in modelling the effect of the foundation support on structures [9, 10]. Using 
the formulated element , the dynamic response of t he beams is computed using the direct 
integration Newmark method. The influence of t he prestress, foundation support , external 
load parameters on the dynamic characterist ics of the beams is investigated in detail. 

2. ELEMENT FORMULATION 

''- Winkler spring, kw 

', fixed base 

Fig . 1. A two-node prestressed Bernoulli beam element resting on two-parameter foundation 

Consider a two-node beam element resting on a two parameter foundation as shown 
in Fig. l . In addition to the conventional Winkler springs, a shear layer is introduced 
in the foundation model to take t he interaction between the springs into account. In the 
figure, l and EI denote the length and t he bending rigidity of t he element , respectively. 
The element is init ially st ressed by an axial force Q. At each node t he element has two 
degrees of freedom, namely a lateral translation and a rotation about an axis normal to 
t he plane of the paper. Thus, t he vector of nodal displacements contains four components 
as 

(2.1 ) 

where and afterwards the superscript T denotes t he transpose of a vector or a matrix. The 
total potential energy of a prismatic beam element is stemming from the beam bending, 
foundation deformation, and t he potent ial of t he axial load as [11 ,12] 

U =Us+ Uw +Uc+ UQ 

= ~ fl EI (a2~)2 dx + ~ fl kww2dx + ~ f l kc ( aw ) 2 dx + ~ f l Q (8w)2 ,(2 2) 
2 J 0 ax 2 J 0 2 J 0 ax 2 J 0 ax 

where kw (unit of force/ lenght2) and kc (unit of force) denote t he stiffness of the Winkler 
springs and the shear layer, respectively. Following standard approach of t he finite element 
method, we adopted here with the Hermit ian polynomials as interpolation scheme for the 
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deflection w 

x3 x2 
Ni= 2- -3- + 1 

w z3 z2 
x3 x2 

N 2 = - -2-+x· 
w z2 z , 

x3 x2 
Nw3 = -2[3 + 3r; 

x3 x2 

Nw4=r--z· 

Substituting (2 .3) into Eq. (2.2), one get 

u = z~ EI [3(wi - wj) 2 + 3l(wi - wj)(Bi + Bj) + z2 (Bz + BiBj +BJ)] 

4~0kw [ 78(wz + wJ) + 54WiWj + 2l2 (Bz +BJ) - 3l 2BiBj + 22l(wiei - WjBj) 

- 13l(wiBj - wjBi)] + 3~l(kc + Q) [18(wi - wj) 2 + 3l(wi - wj)(Bi + Bj) 

+ z2 (wz - BiBj + WJ)] 

(2.3) 

(2.4) 

The element stiffness is obtained by twice differentiating the strain energy respective the 
nodal displacements 

[ a2u] k = ad2 = kB +kw+ kc + kQ , (2.5) 

where 

[ 12 sym. 

4J 

[ 156l sym. 

4l3] 

1 6l 4z2 1 22z2 4z3 

k3=z3EI -12 -6l 12 kw = 420 kw 54l 13z2 156l 
6l 2z2 -6l -13l2 -3l3 -22z2 

(2 .6) 

4l21 
[ 30 

sym. 

4J 

[ 30 
sym. 

1 3l 4z2 1 3l 4z2 

kc= 30l kc -30 -3l 30 kQ = 30lQ -30 -3l 30 
3l _z2 -3l 3l _z 2 - 3l 

For a dynamic analysis, a mass matrix is required, and a consistent mass matrix based 
on the interpolation function (2.3) presented in [13] is adopted in the present paper. The 
formulation of the consistent mass matrix is as follows 

[ 

156 22l 54 -13ll 
m 22l 4l2 13l -3l2 

m = 420 54 13l 156 -22l ' 
-13Z -3Z2 -22z 4z2 

(2.7) 

where m = plA (p is mass density, and A is the cross-sectional area) is the total element 
mass. It is noted that expression for the mass matrix (2. 7) is similar to that of stiffness 
matrix kw in Eq. (2.6) . 
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3. GOVERNING EQUATION AND NUMERICAL ALGORITHM 

Consider a simply supported prestressed beam with t he length of L resting on a 
two-parameter foundation with a moving concentrated harmonic load, F = P cos(Dt), 
travelling along the beam from left to right as shown in Fig. 2. Denoting xp is the current 
position of the moving load, measured from t he left-hand end of the beam. Assuming at 
time t = 0 the load F is at the left-hand support and having a velocity v0 , it then travels 
with a constant acceleration to the right, and its velocity at the right-hand support is VJ· 
Following the standard procedure of the finite element method, t he beam is discretized 
into a number of finite elements. The equation of motion in terms of the finite element 
method when ignoring the damping effect for the beam can be written in the form [13] 

·MD+ KD = P cos(Dt)N, (3 .1) 

where M and K respectively are structural mass and stiffness matrices, obtained by as
sembling the element matrices k and m , formulated in Section 2 in the standard way of the 
finite element method; D and b = 8 2D / 8t2 are the structural nodal displacements and 
accelerations, respectively; N is the vector of shape functions for the beam, and having 
the form 

N = {O 0 0 ... Nw1 Nw2 Nw3 Nw4 0 0 0 .. . 0 0 O}r, (3.2) 

where Nw1, Nw2, Nw3, Nw4 are defined by Eq. (2 .3), in which the abscissa xis measured 
from the left-hand node of the current loading element , and ·for the case of equal-element 
mesh is computed as (see Fig. 2) 

VJ - V 2 
x = Xp - (n - l)l = b. 

0
t + v0 t - (n - l)l, 

2 t 
(3.3) 

with l , as before is the element length, and n denotes the number of the element on which 
the load is acting; t is the current t ime, and bot is the total t ime needed for the load to 
move completely from the left-hand support to the right-hand support . 

F = P cos (nt) 

•·-- - ··xF - - - ·- .. I element number 
n . ........-

'·· Winkler spring, kw 

• .. fixed base 

Fig. 2. Simply supported prestressed beam resting on a two-parameter elastic foundation 
foundation subjected to a moving harmonic load F = P cos(O.t) 

Eq. (3.1) is solved by the step-by-step direct integration Newmark method, in which the 
nodal displacements and velocities at a new time tn+l are implicitly computed as [13] 
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. 2(1 ) .. 2 .. 
Dn+l = Dn + hDn + h 2 - /3 Dn + h /3Dn+l 

(3.4) 

D n+l = Dn + (1 - "f)hDn + "(hDn+l, 

where h = ( tn+ i - tn) is the time step; /3 and 'Y are constants; n = an/ at is the nodal 
velocities. Choosing /3 = ~ and 'Y = ~ (as in this paper), Eq. (3.4) leads to the average 
constant acceleration formula, which unconditional numerically stability. As seen from 
Eq. (3.4), in order to compute Dn+l and Dn+1, the acceleration at time tn+l is needed, 
that is an implicit time-integration method is required. 

4. N UMERICAL RESULTS AND DISCUSSIONS 

Using the finite element formulated in Section 2, a computer code based on the direct 
integration Newmark method is developed for solving Eq. (3.1) . To investigate the dy
namic response of beams to a moving load, a beam employed by Kocatiirk and gim§ek [7] 
with the following geometry and material data is adopted herewith 

L = 20 m· I= 0 08824 m4 · pA = 1000 kg/m· E = 3 x 109 N/m2 · P = 100 kN ' . ' ' ' 
where L denotes the total beam length, and P is the amplitude of the moving load. The 
numerical results reported below are obtained by a mesh of 20-equal elements. 

4.1. Methodology verification 

This Subsection aims to verify the formulation and the developed computer code by 
comparing the numerical results to some published work. To this end, following the work 
in [11] , we introduce herewith the dimensionless parameters 

£4 
k1 = Eikw 

L2 
k _ _ kc, 

2 - 7T2EJ ( 4.1) 

which represented the stiffness of the Winkler springs and shear layer, respectively. We 
also introduce the so-called frequency parameter, defined as 

µ = (pAL4w2)1/4 
EI , (4.2) 

where w is the the fundamental frequency of the beams. 

Table 1. The first three natural frequencies (rad/ s) of simply supported beam without 
foundation support and at various value of axial force 

present work Ref. [7]* 
W1 W2 W3 W1 W2 W3 

Q = O 42.7366 170.9477 384.6428 42.7362 170.9466 354.7235 
Q = -1 x 103 kN 42.4470 170.6587 384 .3540 42.4466 170.6573 384 .4354 
Q = 1x103 kN 43.0244 171.2361 384 .9314 43 .0242 171.2374 385.0123 

* with 10 terms in the trial deflection shape. 
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Table 2. The frequency parameter µ of prestressed simply supported beam at various value 
foundation parameters (k1, k2) 

Q=O Q = -1x103 Q = 1x103 

present work Ref. [11]* (kN) (kN) 
(k1 , k2) = (1, 0) 3.1496 3.1496 3.1390 3.1601 
(k1, k2) = (100, 0) 3.7483 3.7483 3.7421 3.7546 
(k1, k2) = (1, 0.5) 3.4827 3.4826 3.4749 3.4904 
(k1 , k2) = (100 , 0.5) 3.9608 3.9608 3.9555 3.9661 
(k1 , k2) = (1, 1) 3.7408 3.7407 3. 7345 3.7471 
(k1, k2) = (100, 1) 4.1437 4.1437 4.1391 4.1483 
(k1, k2) = (1, 2.5) 4.3002 4.3001 4.2960 4.3043 
(k1, k2) = (100, 2.5) 4.5824 4.5824 4.5789 4.5858 

* available for the case Q = 0 only. 

Table 1 list the first three natural frequencies of the simply supported beam without 
foundat ion support with various values of the axial force. The frequency parameter defined 
by Eq. ( 4.2) at various values of the foundation parameters and axial force is given in 
Table 2. The corresponding frequencies and parameter respectively reported in Refs . [7) 
and [11] are also listed in the tables. It is noted from the tables that the frequencies 
obtained in the present work are in excellent agreement with that reported in Refs . [7] 
and [11] . 
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Fig. 3. Deflection under the moving load for constant velocity v = 15 m/ s and at different 
excitation frequencies 

Fig. 3 shows the deflection under moving load of the simply supported beam with
out foundation support at a constant velocity v = v0 = VJ = 15 m/s, and at different 
excitation frequencies n = 0 and n = 40 rad/s. It is noted that the excitation frequency 
0 = 40 rad/ s is very near the first natural frequency of the beam (confirm Table 1), so 
that the deflection of the beam shown in Fig. 3.b is much larger than that of Fig. 3.a due 
to the resonance phenomenon. For the purpose of comparison, the figure also shows the 
analytical solution obtained from the mode superposition method by Timoshenko et al. 
[1], where the defection of the beam under a moving harmonic load with constant velocity 
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v is given by 

PL3 ~ i7rX 
w = EI7r4 ~sm--y: 

i=l [ 

(
i7rv ) (i7rv ) sin T + o t sin T - o t 

i4 - (,6 + ia)2 + i4 - (,6 - ia)2 

(4.3) 

a sin 0 at sin 0 at 

( 

i27r2 i27r2 ) j 
i - i2a.2 + (i2 - /3)2 + - i2a.2 + (i2 + /3)2 

where a = vL /7ra, (a= PlTP) is the ratio of the period T = 2£2 /7ra of the fundamental 
type of vibration of the beam to twice the total time flt needed for the load completely 
passing the beam; ,6 = T /To is the ratio of the period of the fundamental type of vibration 
of the beam to t he period T0 = 271' /0 of the harmonic load. It is noted that some notations 
in Eq. ( 4.3) have been modified, so that they are in consistent with the notations of t he 
present paper. 

As seen from Fig. 3, the deflection obtained in the present study is in excellent 
agrement with the result of Timoshenko et al. in the case of moving load (0 = 0) and 
in the case of moving harmonic load (0 = 40 rad/s). Even with zoomed parts (shown 
by · small boxes inside the figures), we hardly realize the difference between the curves 
of Timoshenko et al. and that of present work. Thus, from above comparison, we can 
conclude from his Subsection that the element formulation and computer code developed 
in t his study are very accurate in dynamic analysis of beams under the moving load. 

4.2. Response with different parameters 

This Subsection aims to investigate the response of t he prestressed beam at various 
values of the axial force, foundation parameters , frequency and velocity of the moving 
load. The beam with the geometric and material data as in Subsection 4.1 is again 
adopted herewith for the investigation. 
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Fig. 4. Response of simply supported beam without foundation support to moving harmonic 
load at various values of axial force and at a velocity v = 20 m / s 
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Fig. 6 shows the response of the simply supported beam to the moving load with 
constant velocity v = 20 m/s computed with various values of the compressive force Q 
and at excitation frequencies of 20 rad/s and 40 rad/s. It is seen from the figure that 
the response of the beam is not very much affected by the axial forces , regardless of the 
excitation frequencies . The dynamic deflection in Fig. 4.b is much higher t han that in 
Fig. 4.a since Fig. 4.b computed at an excitation frequency near the resonance frequency 
as above remark. 

Fig. 5 shows the response of the prestressed beam to the moving load with different 
velocities, different excitation frequencies and at an axial compressive force Q = -2000 kN. 
The response of the beam is very much influenced by the speed of the moving load, and 
the excitation frequency also. In Fig. 5.a, t he dynamic deflection of the beam gradually 
increases with an increment in the velocity, and it then decreases. The critical velocity 
is governed by the excitation frequency, e.g. Vrnax = 60 m/ s in Fig. 5.a, while in 5.b 
Vrnax = 20 m/s. Again, the dynamic deflection of t he curves in Fig. 5b is much larger 
than that of the corresponding curves in Fig. 5.a. 

The effects of the foundation parameters on t he response of the beam are shown in Fig. 
6 and Fig. 7. The curves shown in the figures are obtained for the case v = 20 m/ s, D = 
20 rad/ sand Q = -2000 kN. As seen from the figures, the foundation support remarkably 
reduces the dynamic deflection of t he beam, and the inclusion of the Winkler spring 
interaction (represented by k2 ) into consideration has a similar effect . 

4.3. Maximum dynamic deflection 

The dependence of the maximum dynamic deflections of simply supported prestressed 
beam on the load velocity and the foundation parameters is shown in Fig. 8 and Fig. 9 
for the cases of excitation frequency D = 20 rad/s and D = 40 rad/s, respectively. It is 
clearly seen from the figures, there is the so-called critical velocity at which the maximum 
dynamic deflection attains a extreme value, and this crit ical velocity depends on the 
foundation stiffness and the excitation frequency as well. The influence of the velocity on 
the maximum dynamic deflection is considerably changed with the presence of the second 
foundation stiffness parameter k2 , as seen in Figs. 8.b and 9.b in comparison with Figs. 
8.a and Fig. 9.a . In addition, the change in the maximum dynamic deflection is much 
sharper for case of the excitation frequency near the resonant frequency than that far from 
the resonant frequency. 

4 .4. Effect of acceleration 

In the above discussion we assume t he velocity of the moving load is constant . This 
assumption is now relieved, and the effect of acceleration on t he dynamic response of the 
beam is investigated in this Subsection. For the sake of simplicity, the acceleration is 
considered constant, and it is represented through the difference between the velocities of 
the moving load at right-hand and left-hand ends of the beam. In t his regard and recalling 
t he notations in Eq. (3.3), the computation is performed with v0 = 10 m/ s, various values 
of v f = 10, 20 , 30 and 40 m/ s, and for different cases of foundation support and excitat ion 
frequency. 

The effect of acceleration on response of prestressed simply supported beams for dif
ferent case of t he foundation stiffness and excitation frequencies is shown in Figs. 10 -
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12. The dynamic deflection of the beam is somehow affected by the acceleration, and 
the increment in the deflection by the acceleration or not is depended on the foundation 
stiffness, regardless of the excitation frequencies. For any case of the foundation support , 
the period of the dynamic response is considerably reduced by the acceleration support, 
regardless of the excitation frequencies. The second foundation parameter k2 also con
tributes to the reduction in the period of the dynamic response of the beam, as clearly 
shown by the difference between Fig. 11 and Fig. 12. 
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5. CONCLUDING REMARKS 

The dynamic analysis of prestressed beams resting on a two-parameter elastic founda
tion under a moving harmonic concentrated load by the finite element method has been 
described on the paper. Using the cubic Hermitian polynomials as interpolation functions 
for the displacement field, the stiffness of the Bernoulli beam element augmented by that 
of the foundation and prestress was formulated and employed in computing the natural 
frequencies and response of the beams. The nodal load vector was derived using the 
polynomials with the abscissa measured from t he element left-hand node to the current 
position of the moving load. Using the formulated element and nodal load vector, the 
dynamic analysis of the beam with different values of the foundation parameters, axial 
force , excitation frequencies and velocities has been performed. The effects of the param
eters on the natural frequencies and dynamic response of the beam were investigated and 
described in detail. ' 

It is noted that the numerical investigations presented in Section 4 are just described 
for the case of simply supported beam, but in regard of the finite element method used in 
the present paper, the extension to other case of boundary conditions is a trivial task. 
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P HAN TICH DONG HOC DAM BERNOULLI DU U NG LUC N AM 
TREN NEN DAN HOI HAI THAM so CH~U TAI

0 

TRQNG DI DQNG 

Bai bao t rlnh bay phan tich d(mg hQC cua da m Bernoulli d\f {mg l\fC nam tren nen 
dan hoi hai t ham so chtu t iti t r9ng di d<)ng bang phm:mg phap pha n tu huu h0n. Ma tri%n 
d9 cung cua pha n tu da m Bernoulli bo xung b&i ma tra n d9 cung cua nen dan hoi va d\f 
{rng h,rc dt.rc;rc xay d11ng t ren CCI s& cac da thuc Hermite. v ec-t CY h,rc nut Gl.rQ'C t hiet la p 
t u cac da thuc Hermite, trong d6 hoanh d9 dt.rc;rc t inh tu nut trai pha n tu c6 Ive tac d(>ng 
t&i vt trf hi~n t0i cua Ive. Su dlJng cong thuc pha n tu , ung XU d(mg hQC cua dam dt.rqc 
t hu nha n bang phmmg phap tich phan trfrc t iep Newmark. Anh hu&ng cua nen dan hoi, 
d11 {m g Ive, ta n so, vi%n tee va gia toe cua 111c ngoai t&i cac d~c trnng d<)ng hQC cua da m 
duqc nghien cuu chi tiet . 
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