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Abstract. Using density-matrix theory, an analytical expression of the self-Kerr nonlinear coefficient of a three-level
lambda EIT medium for a weak probe light is derived. Influences of the coupling light and Doppler broadening on
the self-Kerr coefficient are investigated and compared to experimental observation with a good agreement. The self-
Kerr nonlinearity of the medium is modified and greatly enhanced in the spectral region of EIT window. Furthermore,
sign, slope, and magnitude of the self-Kerr coefficient can be controlled with frequency and intensity of the coupling
light and temperature of the medium. Specially, for a given set of fixed values of the parameters of coupling and
probe lights, it could be able to choose an optimized temperature to have largest magnitude of the self-Kerr coefficient.
Such controllable Kerr nonlinearity can find interesting applications in optoelectronic devices working with low-light
intensity at various temperature conditions.
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I. INTRODUCTION

The Kerr nonlinear materials are used widely in photonic devices and multi-wave mixing
converters. In most cases, a strong nonlinear response is often needed to gain conversion effi-
ciency. However, due to weakness of Kerr nonlinearity of traditional optical materials, several
theoretical proposals have not yet been experimentally observed. Finding materials having large
Kerr nonlinearity is therefore of interest to realize nonlinear processes at low-light intensities. A
proposal to achieve this goal is to use lights having frequencies matched with atomic resonances
under electromagnetically induced transparency (EIT) [1, 2]. As have been shown in literatures,
in addition to the reduction of absorption, the behavior of steeper dispersion that leads to greatly
lengthen interaction time, EIT media therefore become ideal for the applications needed materials
having large nonlinear response [2, 3].

In the recent years, we have seen a tremendous progress of study related to EIT enhanced
Kerr nonlinearity due to it concerns several interesting and potential applications. Some typical
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applications among of these are cross-phase modulation for optical shutters [4], self-phase modu-
lation for generating optical solitons [5], four-wave mixing processes for frequency conversion [6],
and entangled states for quantum information processing [7]. The basic configuration for EIT en-
hanced Kerr nonlinearity is three-level systems that induces large nonlinear response in a narrow
spectral region [2, 8, 9].

Of particular interest to the present work, Wang et al., [8] performed, for the first time,
a direct measurement of self-Kerr coefficient in a three-level lambda EIT medium in the present
of Doppler broadening by using the ring cavity scanning technique. The measurement showed
a great enhancement of the Kerr nonlinear coefficient, and explained with numerical simulations
by the same authors. Although the numerical simulations were helpful to explain experimental
observation but there still lack of analytical representation of the self-Kerr nonlinear coefficient.
Such shortage of analytical result has hampered implementation of further studies of nonlinear
processes, for example, optimizing temperature at a certain set of values of parameters of the
coupling and probe lights to have largest nonlinear efficiency. As in several applications related to
such Kerr medium [9], a precise knowledge of the third-order susceptibility or the Kerr nonlinear
coefficient n2 as a function of coupling light and temperature is needed to optimize nonlinear
optical processes. Up to date, to our best knowledge, nevertheless, the Kerr nonlinear coefficient
of the three-level EIT medium in the present of Doppler broadening has not yet been derived in
any analytical form.

In this work, using dipole and rotating approximations, we derive the third-order nonlinear
susceptibility and the self-Kerr coefficient of the three-level lambda EIT medium in the present
of Doppler broadening by using an iterative perturbation method. The influences of Doppler
broadening and coupling light on magnitude, sign, and slope of the Kerr coefficient are investigated
and compared to the recent experimental observation.

II. THEORETICAL MODEL

We consider a three-level lambda system as shown in Fig. 1, as in Ref. [8]. A weak probe
laser beam, with frequency ωp, drives the transition |1〉→ |2〉with Rabi frequency Ωp, whereas an
intense coupling laser beam (with frequency ωc and Rabi frequency Ωc) couples a transition be-
tween the state |2〉 and |3〉. The frequency detuning of the coupling and probe laser is respectively
defined as:

∆p = ωp−ω21, ∆c = ωc−ω23. (1)

In the framework of the semiclassical theory, using the dipole and rotating wave approxi-
mations, evolution of the system can be represented by the following density-matrix equations [8]
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where γ ik is represented with the decay rates Γik from |i〉 to |k〉 as follows
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and
γ =

γ21 + γ31 + γ23

2
. (9)

In the Eqs.(2) – (7), the diagonal matrix elements ρii (i = 1÷3) represent population in the
state|i〉, whereas the off-diagonal matrix elements ρi j(i 6= j) represent the coherence between the
states |i〉 and | j〉; the matrix-elements are hermitic, namely, ρi j = ρ∗ji.

Using perturbation theory, density-matrix elements are represented by [8]

ρij = ρ
(0)
ij +ρ

(1)
ij + · · ·ρ(n)

ij , (10)

where, each successive approximation is calculated using the density-matrix elements of one order
less than the one being calculated. On the other hand, due to the conservation of probability, we
assume

ρ
(0)
11 +ρ

(0)
22 +ρ

(0)
33 = 1. (11)

In the weak-field limit of the probe light, most of the initial population is assumed in the
ground state |1〉, namely:

ρ
(0)
11 ≈ 1, ρ

(0)
22 ≈ 0, ρ

(0)
33 ≈ 0. (12)

Following above assumptions, we obtain ρ21 from Eqs. (5) and (7), to the first-order as
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In a similar way, the third-order of ρ21is derived as
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By inserting Eq.(16) into Eq.(15) we obtain the third-order matrix element ρ
(3)
21 as:
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Having ρ
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21 , the matrix element ρ21 is determined to third-order as
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where, F∗ is the complex conjugation of F .
The total susceptibility χ for the probe light is represented by

χ =−2
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In order to extract the third-order nonlinear susceptibility we interpret the total susceptibil-
ity in Eq.(19) in an alternative form

χ = χ
(1)+3E2

pχ
(3). (20)

From Eqs.(19) and (20) we can derived the linear susceptibility χ(1) and the third-order
nonlinear susceptibility χ(3)as
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For a vapor medium, it is necessary taken into account Doppler broadening. As in several
experimental conditions for this type of configuration, we consider the co-propagation of the probe
and coupling beams in the medium. Therefore, a particle moving with velocity v towards the
propagation direction of the probe beam will see an up-shift frequencies of the probe and coupling
laser as ωp + (v/c)ωp and ωc + (v/c)ωc, respectively. In such case, the linear and third-order
nonlinear susceptibilities must be modified to
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where, u =
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Since ωp is close to ωc so term i v
c(ωp−ωc) in Eq.(25) can be neglected. By integrating

Eqs. (23) and (24) over velocity distribution, we obtain:
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and z∗ represents the complex conjugation of z, and erf is error function.
Having the linear and third-order nonlinear susceptibilities, the nonlinear Kerr index of

refraction n2 is determined according to the following relations [9]:

n2 =
3Re(χ(3))

4ε0n2
0c

, n0 =
√

1+Re(χ(1)). (29)

The first expression in (29) represents the self-Kerr nonlinear coefficient for the probe light
as a function of controllable parameters, intensity and frequency detuning of the coupling light.

III. ANALYSIS OF KERR NONLINEARITY

The expression of n2 obtained above provides an overall view to see continuous variation of
the self-Kerr nonlinear coefficient of the three-level lambda system with respect to controllable pa-
rameters of the coupling light and Doppler broadening. In principle, the expression can generally
be applied to atomic and/or molecular systems having spectroscopic structure similar to that pre-
sented in Fig. 1. As a simple illustration, we visualize the analytical result to the medium of 87Rb
atomic vapor. In this case, the states|1〉 , |2〉, and |3〉 are chosen as 5S1/2(F = 1), 5P1/2(F = 2), and
5S1/2(F = 2), respectively. We choose the atomic parameters by [8]: N = 4.5× 1017atoms/m3;
γ21 = 2π×3 MHz, γ31 = 2π×1.1 MHz, and γ = 2π×3.5 MHz d21 = 1.6×10−29C.m [10].

The first step, we consider influence of EIT on Kerr nonlinearity by comparing the value of
n2 between the present and absent of EIT. The later is simply obtained by setting Rabi frequency
Ωc = 0 in Eq. (29). Fig. 2(a) shows variation of the Kerr nonlinear coefficient n2 in both cases
versus the probe frequency detuning. It is apparently to see a fundamental modification and a great
enhancement of the self-Kerr nonlinear coefficient in the three-level system under the present
of the EIT effect. Such behavior of the obtained analytical result is tested by comparing with
experimental observation in Ref. [8] as shown in Fig. 2(b). The comparison confirms a good
quality of the theoretical derivation.
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the coupling light, respectively.  
 
 
In order to study influence the coupling light intensity on the Kerr coefficient, we consider the 
case where the coupling light is on resonance, and probe frequency is fixed at ∆p = ±7 MHz, 
which correspond the maximum and minimum points (locate in the spectral region of the EIT 
window, represent by the dotted line in Fig.2a) on the profile of n2 (solid line in Fig.2a). The 
variation of the Kerr nonlinear coefficient versus the Rabi frequency of the coupling light is 
shown in Fig. 3. Such variation shows that one may control magnitude of the Kerr nonlinear 
coefficient by tuning intensity of the coupling light.  
 

Fig. 2. (a) The variation of Kerr nonlinear coefficient n2 versus probe detuning ∆p for
∆c = 0 in the present (dashed curve) and absent (solid curve) of the EIT effect at tempera-
ture 336 K. The dotted line represents EIT spectrum of the three-level system determined
by the imaginary part of Eq. (26). (b) Experimental measurement of n2 in the Ref. [8]
for ∆c = 0 and Ωc = 2π×72 MHz, where the square- and circular- curves stand for the
present and absent of the coupling light, respectively.

In order to study influence the coupling light intensity on the Kerr coefficient, we consider
the case where the coupling light is on resonance, and probe frequency is fixed at ∆p =±7 MHz,
which correspond the maximum and minimum points (locate in the spectral region of the EIT
window, represent by the dotted line in Fig.2a) on the profile of n2 (solid line in Fig.2a). The
variation of the Kerr nonlinear coefficient versus the Rabi frequency of the coupling light is shown
in Fig. 3. Such variation shows that one may control magnitude of the Kerr nonlinear coefficient
by tuning intensity of the coupling light.
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Fig. 3. Variation of the Kerr nonlinear coefficient n2 versus the coupling intensity Ωc when ∆c 
= 0 for the cases of ∆p = -7MHz (a) and ∆p = +7MHz (b). 
 
 
In addition to the influence of the intensity, the influence of frequency of the coupling light on 
the Kerr nonlinear coefficient is considered by investigation the variation of n2 with respect to 
frequency detuning ∆c. We choose a zero value of n2 corresponding to ∆p = 0 and Ωc = 2π×72 
MHz as in Fig.2(a). Variation of the Kerr coefficient with respect to frequency detuning of the 
coupling light is shown in Fig.4a. The behavior shows that the Kerr coefficient can be 
changed not only in magnitude but also in its sign.  
 

 
Fig. 4. Change of sign and magnitude of the Kerr nonlinear coefficient n2 with respect to the 
frequency detuning of the coupling light for the case where 0p∆ =  and Ωc = 2π×72 MHz. 

Figures (a) and (b) represent theoretical calculation in this work and experimental 
measurement in Ref. [8], respectively.  
 
Finally, we study influence of temperature on magnitude of the Kerr coefficient. We choose 
the maximum point of n2 corresponding to parameters ∆c = 0, ∆p = -7 MHz, and Ωc = 2π×72 
MHz, as indicated by the solid line in Fig. 2a. Variation of n2 with respect to absolute 
temperature at the fixed parameters is shown in Fig. 5.  

Fig. 3. Variation of the Kerr nonlinear coefficient n2 versus the coupling intensity Ωc
when ∆c = 0 for the cases of ∆p = -7MHz (a) and ∆p = +7MHz (b).
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In addition to the influence of the intensity, the influence of frequency of the coupling light
on the Kerr nonlinear coefficient is considered by investigation the variation of n2 with respect to
frequency detuning ∆c. We choose a zero value of n2 corresponding to ∆p = 0 and Ωc = 2π×72
MHz as in Fig.2(a). Variation of the Kerr coefficient with respect to frequency detuning of the
coupling light is shown in Fig.4a. The behavior shows that the Kerr coefficient can be changed not
only in magnitude but also in its sign.
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Fig. 5. Variation of the Kerr nonlinear coefficient versus absolute temperature in the case of 
∆p = -7 MHz, ∆p = 0, and Ωc = 2π×72 MHz. 
 
The Fig.5 shows that, for a given set of fixed values of the parameters ∆c, ∆p, and Ωc it could 
be able to choose an optimized temperature to have largest value of the self-Kerr coefficient 
n2. For the set of values indicated in Fig.5, the absolute temperature for largest value of n2 is 
approximately 57 K. The maximum value of n2 in this case is 28× 10-6 cm2/W that is much 
larger than the case in Fig.2a where n2 = 8× 10-6 cm2/W at 336 K. 
 
4. Conclusion 
We have derived the analytical expression of the self-Kerr nonlinear coefficient n2 of the 
three-level lambda system under Doppler broadening as function of controlling parameters of 
the coupling light, which is in good agreement with previous experimental observation. The 
analytical result obtained in this work not only gives sufficient knowledge on the Kerr 
nonlinearity but is also convenient to perform future studies relating such Kerr medium. It is 
shown that the Kerr nonlinearity of the three-level lambda EIT medium is greatly enhanced 
and depended on temperature of the medium. Furthermore, the magnitude, slop, and sign of 
the Kerr coefficient can be controlled by tuning frequency and/or intensity of the coupling 
light, or by changing temperature of the medium. Such greatly enhanced and controllable self-
Kerr nonlinearity can be used to construct photonic devices working with low-light intensity 
at various temperature conditions. 
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IV. CONCLUSION

We have derived the analytical expression of the self-Kerr nonlinear coefficient n2 of the
three-level lambda system under Doppler broadening as function of controlling parameters of the
coupling light, which is in good agreement with previous experimental observation. The analyt-
ical result obtained in this work not only gives sufficient knowledge on the Kerr nonlinearity but
is also convenient to perform future studies relating such Kerr medium. It is shown that the Kerr
nonlinearity of the three-level lambda EIT medium is greatly enhanced and depended on temper-
ature of the medium. Furthermore, the magnitude, slop, and sign of the Kerr coefficient can be
controlled by tuning frequency and/or intensity of the coupling light, or by changing tempera-
ture of the medium. Such greatly enhanced and controllable self-Kerr nonlinearity can be used to
construct photonic devices working with low-light intensity at various temperature conditions.

ACKNOWLEDGMENT

The financial supports from the Vietnam’s Ministry of Science and Technology (code
07/2012/HD-NDT) and the Vietnam’s Ministry of Education and Training (code 08/2012/HD-
HTSP) are acknowledged.

REFERENCES
[1] K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66 (1991) 2593.
[2] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64 (1990) 1107.
[3] S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82 (1999) 4611.
[4] H. Schmidt and A. Imamogdlu, Opt. Lett. 21 (1996) 1936.
[5] V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys. Rev. Lett., 76 (1996) 2698.
[6] Y. Li, and M. Xiao, Opt. Lett. 21 (1996) 1064.
[7] M. D. Lukin, S.F. Yelin, and M. Fleischhauer, Phys. Rev. Lett. 84 (2000) 4232.
[8] H. Wang, D. Goorskey, and M. Xiao, Phys.Rev.Lett. 87 (2001) 073601.
[9] A. Joshi and Min Xiao, Progress in Optics, Ed. E. Wolf, 49 (2006) 97-175.

[10] Daniel Adam Steck, Rb87 D Line Data: http://steck.us/alkalidata.

http://steck.us/alkalidata

	I. Introduction
	II. Theoretical model
	III. Analysis of Kerr nonlinearity
	IV. Conclusion
	Acknowledgment
	REFERENCES

