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Abstract. In recent years, one of the new applications of the coherent state method was to con-
struct representation of superalgebras and quantum superalgebras. Following this stream, we had
a contribution to working out explicit representation of Uq[gl(2|1)]. Up to now, Uq[gl(2|1) is still
the biggest quantum superalgebra representations in coherent state basis of which can be built. In
this article, we will show some detailed techniques used in our previous work but useful for our
further investigations. The newest results on building representations in a coherent state basis of
Uq[osp(2|2)], which has the same rank as Uq[gl(2|1)], are also briefly exposed.

I. INTRODUCTION

In the late 1920’s, the concept of coherent states (CS’s) was introduced by E.
Schrödinger [1] while searching for a classical analog of quantum states of quantum har-
monic oscillators. For more than 80 years, the concept of CS’s has been developed by
many people, especially, a crutial step was made by A. Perelomov who generalized the CS
concept for arbitrary Lie algebras [2–4]. This concept was also extended to that of vector
coherent states (VCS’s) [5–9]. In 1970’s, the formation of supersymmetry (SUSY) led to
the creation of a new research trend in physics and mathematics (although, presently, the
SUSY phenomenological models are in a difficult time when the latest results of the LHC
have not been able to confirm them). Combining with the SUSY idea, the concept of CS’s
was developed to those of super coherent states (SCS’s) and supervector coherent states
(SVCS’s) [10–14].

With special characteristics, CS’s are quantum states having a direct relation to
classical states (see [15] and references therein). Therefore, it has been applied to a wide
range of various fields from quantum optics [16], quantum information [17], condensed
matter physics [4], string theories [18,19] and cosmology [20]. The coherent state method
is also very useful when we utilize them to construct representations of Lie (super) groups
and algebras (see, for example, [24] and refereces therein).

For the last time, some authors have started exploiting the CS method to build
finite dimensional representations of superalgebras and quantum superalgebras. However,
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they have succeeded with only a few low-rank superalgebras and the simplest quantum
superalgebra Uq[osp(1|2)] (see [21, 22]). To use this method for higher rank quantum
superalgebras, e.g., Uq[gl(2|1)], we developed calculating procedure that concerns high
order commutator expressions and q-calculus [24]. In this paper, we show them in details
with a new application to the construction of boson-fermion representations of Uq[osp(2|2)].
For the convenience of the reader, nonetheless, we recall first the results obtained in
the case of Uq[gl(2|1)] before considering Uq[osp(2|2)]. Some of the present results were
reported at the recent national meeting in theoretical physics [25].

II. SOME IMPORTANT TECHNIQUE OF CONSTRUCTING
REPRESENTATIONS OF QUANTUM GROUP BY COHERENT

STATE METHOD

When we work with quantum (super) algebras, most of transformations are related
with deformation parameters. In this paper, to be simple, we only mention quantum (su-
per) algebras with one deformation parameter which will be denoted here by q.

Suppose X is an arbitrary number or an operator, we define the q-deformation [X]q
and the q-expression {X}q:

[X]q =
qX − q−X

q − q−1
,

{X}q = qX + q−X . (1)

and q-exponent:

eXq =
∞∑
n=0

Xn

[n]q!
. (2)

with n is an integer and [n]q! = [1]q[2]q . . . [n]q. Basically, other trancendental functions
that includes q-parameter can be represented through normal polynomials by Taylor’s ex-
pansion.

Now, with operators X and Y , we can define deformed (anti) commutators:

[X,Y ]q = XY − qY X,
{X,Y }q = XY + qY X. (3)

Here we list some expressions,

[X + 2]q − [X]q = {X + 1}q,
{X + Y }q + {X − Y }q = {X}q{Y }q,

{X + Y }q − {X − Y }q =
(
q − q−1

)2
[X]q [Y ]q ,

[X + Y ]q + [X − Y ]q = [X]q{Y }q,
[X + Y ]q − [X − Y ]q = [Y ]q{X}q. (4)
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n−1∑
i=0

q2i = qn−1[n]q,

n−1∑
i=0

q−2i = q1−n[n]q,

n−1∑
i=0

q4i = q2n−2 [n]q
{n}q
{1}q

,

n−1∑
i=0

q−4i = q−2n+2 [n]q
{n}q
{1}q

,

n−1∑
i=0

{X − 2i}q = {X − n+ 1}q [n]q ,

n−1∑
i=0

[X − 2i]q {Y − 2i}q = [X + Y − 2n+ 2]q[n]q
{n}q
{1}q

+ n[X − Y ]q,

n−1∑
i=0

{X − i}q[i]q{Y − 2i}q =

(
[X + Y − n+ 1]q + [X − Y + n− 1]q

− [X + Y − 2n+ 2]
{n}q
{1}q
− n

[n]q
[X − Y ]q

)
[n]q, (5)

which are often used.

III. REPRESENTATION OF Uq[osp(2|2)] IN A COHERENT STATE BASIS

In this section, we recall some elements of the algebraic structure and representations
in a CS basis of Uq[gl(2|1)] (see [24]), a quantum superalgebra which has been invetigated
in details by both physicists and mathematicians. Next, we will show how to establish
the Uq[gl(2|1)] coherent states that will be used to construct its representations of this
quantum superalgebra.

III.1. Quantum superalgebra Uq[gl(2|1)]

The quantum super algebra Uq[gl(2|1)] can be defined through its Weyl-Chevalley
generators E12, E21, E23, E32 and Eii (i = 1, 2, 3) satisfying the following defining rela-
tions (see, for example, [23, 24]):

a) the (anti-)commutation relations (1 ≤ i, j, i+ 1, j + 1 ≤ 3):

[Eii, Ejj ] = 0, (6a)

[Eii, Ej,j+1] = (δij − δi,j+1)Ej,j+1, (6b)

[Eii, Ej+1,j ] = (δi,j+1 − δi,j)Ej+1,j , (6c)

[E12, E21] = [H1]q, (6d)

{E23, E32} = [H2]q, (6e)

Hi = (Eii −
di+1

di
Ei+1,i+1), H3 ≡ E33, (6f)
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where d1 = d2 = −d3 = 1, and
b) the Serre relations:

E2
23 = E2

32 = 0, (7a)

[E12, E13]q = [E21, E31]q = 0, (7b)

with E13 and E31,

E13 = [E12, E23]q−1 , E31 = −[E21, E32]q−1 . (8)

The generators Eij , i, j = 1, 2, 3, are q-deformations (q-analogs) of the corresponding Weyl
generators eij of classical super-algebra gl(2|1) obeying the (anti) commutation relations

[eij , ekl} = δjkeil − (−1)([i]+[j])([k]+[l])δilekj , (9)

with [eij , ekl} ≡ eijekl−(−1)([i]+[j])([k]+[l])ekleij , and [i] being a parity defined by [1] = [2] =
0, [3] = 1. It is easy to see that Hi and the even Chevalley generators E12 and E21 form
a subalgebra called the even subalgebra of Uq[gl(2|1)] and denoted by Uq[gl(2|1)0̄]. The
latter is a quantum deformation of U [gl(2|1)0̄] which is the universal enveloping algebra
of the even subalgebra gl(2|1)0̄ of gl(2|1).

III.2. Coherent states of Uq[gl(2|1)]

Now, we elaborate the vector coherent states of Uq[gl(2|1)] in a basis of an elementary
representation and the Fock-space of the corresponding quantum superalgebra Heisenberg.

Let |J〉 be a state of Uq[gl(2|1)] defined by

H1 |J〉 = 2J1 |J〉 , H2 |J〉 = 2J2 |J〉 , H3 |J〉 = 2J3 |J〉 ,

E12 |J〉 = E13 |J〉 = E23 |J〉 = 0. (10)

It is called the the highest weight state characterized by a set of three numbers J1, J2 and
J3 called the highest weight:

|J〉 ≡ |J1, J2, J3〉 . (11)

If we want an elementary reprenstation of Uq[gl(2|1)] finite dimensional, J1 must be an
integer or a half-integer and in this case the representation space (module), we denote
by W , has the dimension 8J1 + 4. In particular, it contains four sub-spaces, say Vi,
i = 1, 2, 3, 4, which are finite-dimensional modules of the even subalgebra Uq[gl(2|1)0̄] and
respectively spanned on the following basis vectors:

|J1, J2, J3,M〉 = C
(1)
M .EJ1−M21 |J〉 ∈ V1,

|J1 − 1/2, J2 + 1/2, J3 + 1/2, P 〉 = C
(2)
P .
{
qJ1+P+1/2E32E

J1−P+1/2
21 |J〉

+[J1 + P + 1/2]qE31E
J1−P−1/2
21 |J〉

}
∈ V2,

|J1 + 1/2, J2, J3 + 1/2, R〉 = C
(3)
R .

{
1

qJ1−R+1/2
E32E

J1−R+1/2
21 |J〉

−[J1 −R+ 1/2]qE31E
J1−R−1/2
21 |J〉

}
∈ V3,

|J1, J2 + 1/2, J3 + 1, S〉 = C
(4)
S .E32E31E

J1−S
21 |J〉 ∈ V4, (12)
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where C
(i)
K are normalization coefficients which can be fixed by addtional, for example,

Hermitian conditions, and −J1 ≤M,S ≤ J1, −(J1−1/2) ≤ P ≤ (J1−1/2), −(J1 +1/2) ≤
R ≤ (J1 +1/2) such that (J1−M), (J1−P −1/2), (J1−R+1/2) and (J1−S) are integers.
These four finite-dimensional irreducible modules of the even subalgebra Uq[gl(2|1)0̄] are
built on the Uq[gl(2|1)0̄]-highest weight states

|J1, J2, J3; J1〉 ≡ |J1, J2, J3〉 = |J〉 ,

|J1 − 1/2, J2 + 1/2, J3 + 1/2; J1 − 1/2〉 ≡ |J1 − 1/2, J2 + 1/2, J3 + 1/2〉,

|J1 + 1/2, J2, J3 + 1/2; J1 + 1/2〉 ≡ |J1 + 1/2, J2, J3 + 1/2〉,

|J1, J2 + 1/2, J3 + 1; J1〉 ≡ |J1, J2 + 1/2, J3 + 1〉, (13)

via the formula

|L1, L2, L3; k〉 = C
(i)
k .(E21)L1−k|L1, L2, L3;L1〉, i = 1, 2, 3, 4, (14)

where C
(i)
k are normalization coefficients in (12), L1 = J1, J1 ± 1/2; L2 = J2, J2 + 1/2;

L3 = J3, J3 ± 1/2, J3 + 1 and −L1 ≤ k ≤ L1 such that L1 − k are integers. For simplicity,

we can choose C
(i)
k = 1 and work with vectors (12) non-normalized. The odd generators

of Uq[gl(2|1) intertwine these Uq[gl(2|1)0̄]–modules.
Now, the generalized coherent states of Uq[gl(2|1)] can be defined as (cf. [3, 4, 21],

[10]– [14])

ea12E21+α23E32+α13E31
q |J〉 , (15)

where α†ij (αij) are q-analogs of the fermion creating (annihilating) operators with the

number operator Nαij , and a†12 (a12) is a q-analog of the boson creating (annihilating)
operator with the number operator Na12 . This operators form the quantum Heisenberg
superalgebra Uq[h(2|1)]:

{αij , α†ij} = 1, Nαij = α†ijαij , [Nαij , α
†
ij ] = α†ij , [Nαij , αij ] = −αij[

a12, a
†
12

]
q

= q−Na12 , [Na12 ]q = a†12a12, [Na12 + 1]q = a12a
†
12,[

Na12 , a
†
12

]
= a†12, [Na12 , a12] = −a12.

This quantum Heisenberg superalgebra Uq[h(2|1)] super-commutes with Uq[gl(2|1)], that
is, if E is an operator of Uq[gl(2|1)] and X is an operator of Uq[h(2|1)] they super-commute
with each other:

EX = (−1)deg(E).deg(X)XE, (16)

where deg(X) is the parity of X.
Let |ψ〉 be a state vector in a (e.g., finite-dimensional) module of Uq[gl(2|1)]. Then

the mapping [24] (note the difference between the notations here and [21])

|ψ〉 → |ψ〉J = 〈J | ea
†
12E12+α†23E23+α†13E13
q |ψ〉 |0〉 , (17)
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induces the mapping

A→ Γ(A) |ψ〉J = 〈J | ea
†
12E12+α†23E23+α†13E13
q A |ψ〉 |0〉 , (18)

of an operator A defined in a space, which here is a Uq[gl(2|1)] module, containing |ψ〉,
where |0〉 is a vacuum state of the quantum Heisenberg superalgebra Uq[h(2|1):

a12|0〉 = αij |0〉 = 0. (19)

The main purpose of coherent state method is to find |ψ〉J and explicit forms of Γ(A).
The explicit results can be found in [24].

IV. REPRESENTATION OF Uq[osp(2|2)] IN A COHERENT STATE BASIS

Here, we consider Uq[osp(2|2)] and first see how its algebraic structure is broken
in the deformation process from osp(2|2). The rest part is to construct boson-fermion
realizations (finite-dimensional representations) of Uq[osp(2|2)].

IV.1. Quantum superalgebra Uq[osp(2|2)]

Quantum superalgebra Uq[osp(2|2)] can be defined via its Weyl-Chevalley generators
E, F, e, ē, f, f̄ which satisfy the following defining relations (see, for example, [26]):

{e, f} = −1

2
[H1 −H2]q , {ē, f̄} = −1

2
[H1 +H2]q

[H1, e] = e, [H1, f ] = −f, [H2, e] = e, [H2, f ] = −f,
[H1, ē] = ē,

[
H1, f̄

]
= −f̄ , [H2, ē] = −ē

[
H2, f̄

]
= f̄

{e, ē} = E,
{
ff̄
}

= −F, [H1, E] = 2E, [H1, F ] = −2F,

[E,F ] = −1

2
e {H1 +H2 − 1}q −

1

2
fe {H1 +H2+}q

−1

2
ēf̄ {H1 −H2 − 1}q −

1

2
f̄ ē {H1 −H2+}q

[E, f ] = −1

2
ē {H1 −H2 + 1}q ,

[
E, f̄

]
= −1

2
e{H1 +H2 + 1}q

[F, e] = −1

2
f̄ {H1 −H2 − 1}q , [F, ē] = −1

2
f {H1 +H2 − 1}q . (20)

Let us note a feature related to a quantum deformation of an orthosymplectic superalger-
bra. In classical case, algebraically, three generators H1, E, and F generate a subagebra
su(2) of osp(2|2). However when we deform this superalgebra to get its quantum version
– Uq[osp(2|2)], as above, the subalgebra structure is broken. In orther words, now H1, E
and F do not form a quantum algebra Uq[su(2)].

IV.2. q–boson-fermion realization of Uq[osp(2|2)]

In this sub-section, we deal with q–boson-fermion realizations of Uq[osp(2|2)]. As
shown above, Uq[osp(2|2)] does not contain a subalgebra Uq[su(2)], therefore, building
finite-dimensional represenations of Uq[osp(2|2)] based on an even subalgebra is impossible.
To solve this problem, we start from a state, say |J〉, defined by the conditions

H1 |J〉 = 2J1 |J〉 , H2 |J〉 = 2J2 |J〉 , E |J〉 = e |J〉 = ē |J〉 = 0. (21)
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We call it the highest weight state of Uq[osp(2|2)]. We can also define its lowest weight
state, |J ′〉:

H1

∣∣J ′〉 = 2J ′1
∣∣J ′〉 , H2

∣∣J ′〉 = 2J ′2
∣∣J ′〉 , F ∣∣J ′〉 = f

∣∣J ′〉 = f̄
∣∣J ′〉 = 0. (22)

The lowest weight and the highest one are related to each other through the formula

F d |J〉 =
∣∣J ′〉 , (23)

with n is an integer depending on the choice of Ji and J ′i . Because the subalgebra structure
is broken J1, J ′1,J2 and J ′2 can be arbitrary compex numbers. Using the notation

|J〉 ≡ |J1, J2〉 (24)

the basis vectors on which a representation of Uq[osp(2|2)] can be spanned can be expressed
as

∣∣v1(n)

〉
= Fn |J〉 ,∣∣v2(n)

〉
= fFn |J〉 ,∣∣v3(n)

〉
= f̄Fn |J〉 ,∣∣v4(n)

〉
= f̄fFn |J〉 . (25)

Now, generalized coherent states of Uq[osp(2|2)] can be defined as (cf. [3,4,21], [10]–
[14])

eaF+α1f+α2f̄
q |J〉 , (26)

with α†i (αi) are q-analogs of the fermion creating (annihilating) operators with the number

operator Nαi , and a† (a) is a q-analog of the boson creating (annihilating) operator with
the number operator Na. They form the quantum Heisenberg superalgebra Uq[h(2|1)]:

{αi, α†i} = 1, Nαi = α†iαi, [Nαi , α
†
i ] = α†i , [Nαi , αi] = −αi[

a, a†
]
q

= q−Na , [Na]q = a†a, [Na + 1]q = aa†,[
Na, a

†
]

= a†, [Na, a] = −a.

Furthermore, the same as in the case of Uq[gl(2|1), if A is an operator of Uq[osp(2|2)] and
X is an operator of Uq[h(2|1)], then:

AX = (−1)deg(A).deg(X)XA, (27)

Let |ψ〉 be a state vector in an elementary representation space of Uq[osp(2|2)] then
the mapping

|ψ〉 → |ψ〉J = 〈J | ea
†E+α†1e+α

†
2ē

q |ψ〉 |0〉 , (28)

induces the mapping acts on an operator A in elementary representation space

A→ Γ(A) |ψ〉J = 〈J | ea
†E+α†1e+α

†
2ē

q A |ψ〉 |0〉 , (29)

where |0〉 is the vacuum state of the quantum Heisenberg superalgebra Uq[h(2|1):

a|0〉 = αi|0〉 = 0. (30)
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Using (29), we get the following explicit forms of the generators in the coherent
state space:

Γ(H1) = 2J1 − 2Na −N1 −N2,

Γ(H2) = 2J2 +N2 −N1,

Γ(e) = α1 +
1

2
α†2a,

Γ(ē) = α2 +
1

2
α†1a,

Γ(f) =
1

2
{2J1 − 2J2 −Na}q a

†α2

−1

4

(
[2J1 − 2J2]q + [2J1 − 2J2 − 2Na]q

)
α†1

+
1

4
{2J1 − 2J2 − 2Na − 1}q α

†
1N2,

Γ(f̄) =
1

2
{2J1 + 2J2 −Na}q a

†α1

−1

4

(
[2J1 + 2J2]q + [2J1 + 2J2 − 2Na]q

)
α†2

+
1

4
{2J1 + 2J2 − 2Na − 1}q α

†
2N1,

Γ(E) = a,

Γ (F ) =
1

4

(
q − q−1

)2
[4J2]q

(
a†
)2
α1α2

+
1

4

(
[4J1 − 3Na + 2]q + [4J1 −Na]q

)
a† +

1

8
{4J2}q{Na − 1}qa

†

−1

4
{4J1 − 3Na + 1}qa

†N1 −
1

8
{4J2}q{Na − 1}qa

†N1

−1

4
{4J1 − 3Na + 1}qa

†N2 −
1

8
{4J2}q{Na − 1}qa

†N2

−1

8

(
{4J2 −Na − 1}q + {4J2 +Na + 1}q

−{4J2 −Na + 1}q − {4J2 +Na − 1}q
)
N1N2a

†

−1

4

(
{4J1 − 3Na − 1}q − {4J1 − 3Na + 1}q

)
N1N2a

†

+
1

16

(
[4J2 − 2Na − 1]q + [4J2 + 2Na + 1]q + [4J2 − 1]q + [4J2 + 1]q

)
α†1α

†
2.

Using expression in Section I, we prove that operators in (31) also satisfy super commu-
atation relations as in (20). It means that mapping (29) does perform a boson-fermion
realization of quantum super group Uq[osp(2/2)]. Basically, we can derive basis vector in
representation space via (28). However, this selection is not optimal to create physical
system and thus we will show possible solution in separated works.



NGUYEN CONG KIEN AND NGUYEN ANH KY 37

V. CONCLUSION

This work is still far from being finished but the present results give us a good star
to a more complete construction of representations in a coherent state basis of important
quantum superalgebras, in particular, Uq[osp(2/2)] which is a quantum deformation ana-
log of the superalgebra osp(2/2) which has been intensively investigated and applied to
different physics models.
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