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Abstract. We study magnetic properties of ordered phases in the Heisenberg model on a non-
Bravais lattice by means of a Popov - Fedotov trick, which takes into account a rigorous constraint
of a single occupancy. We derive the magnetization and the free energy using sadle point approx-
imation in the functional integral formalism. We illustrate the application of the Popov – Fedotov
approach to the Heisenberg antiferromagnet on a honeycomb lattice.
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I. INTRODUCTION

It is impossible to use the Wick’s theorem for the spin operators because they are neither
bosonic nor fermionic [1]. Therefore, the powerful methods of many body theory such as dia-
grammatic techniques and functional integral representations for spin systems are substantially
more complicated than those for boson or fermion systems. Many versions of the functional inte-
gral formalism have been developed. Some of them are dealing directly with spin operators [2].
However, the corresponding rules for summation of series in high orders contain the combinatoric
rules and in many cases are very complicated [2]. Another method is based on coherent states
for spins which is applicable only at low temperatures (no-linear σ model) [3]. Other techniques
based on expressing the spin operators in terms of fermionic or bosonic operators [4] are faced
to the problem of the local constraint. The representation of spins as a bilinear combination of
auxiliary canonical operators increases the dimensionality of Hilbert space where these operators
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act. As a result, the unphysical states should be removed from the consideration by some local
constraint conditions, where the number of auxiliary particles on each site is fixed. Due to the
constraint requirement standard many-body methods cannot be applied. There are several ways
of circumventing this difficulty. In the most simple approach the exclusion of the spurious un-
physical states is cured by a replacement of the local constraint by a so called global constraint
where the number of auxiliary particles is fixed merely on the thermal average. It may be done
by introducing a Lagrange multiplier and the conventional many-body technique can be used. But
such a replacement makes approximations for quantum spin systems to be uncontrolled.

In 1988, Popov and Fedotov proposed [5] a simple approach for quantum spin-1/2 and spin-
1 systems that is free of the local constraint. They found that the partition function for spin systems
can be reformulated in terms of Fermi operators, where an imaginary chemical potential was in-
troduced to eliminate statistical contributions from unphysical states. Latter the extension of the
Popov-Fedotov method was derived for arbitrary spin [6,7]. Recently, the Popov-Fedotov trick has
been successfully combined with the bold diagrammatic Monte-Carlo method to study frustrated
quantum systems [8]. The Popov-Fedotov fermionization technique has been also generalized for
strongly correlated systems [9,10]. For specific magnetic Heisenberg systems, the Popov-Fedotov
approach has been applied to study magnetic properties of spin-1/2 systems on Bravais lattices
such as ferromagnet [11], antiferromagnet on hypercubic and square lattices [12, 13], antiferro-
magnet on triangular lattice [14]. The Popov-Fedotov method has been applied successfully also
to the negative-U Hubbard model [15], spin glass model [16], Kondo lattice model [17]. . .

In this paper we apply the Popov-Fedotov procedure to the problem of ordered phases
in Heisenberg models on non-Bravais lattices. It is motivated by the fact that magnets on non-
Bravais lattices have been extensively investigated from both the theoretical and experimental
viewpoints in recent years because such systems display rich and interesting behaviors due to the
strong interplay between quantum fluctuations and frustration [18]. New and fascinating phase
structures have been studied for the Heisenberg model on an Union Jack lattice [19], a cross-
striped square lattice [20], a planar pyrochlore lattice [21], a chevron-square lattice [22]. Particular
interest has been focused on the honeycomb [23,24] and Kagome lattices [25], because the magnon
dispersions in these lattices show similar features to topological insulators in electronic systems
leading to topological magnon effect.

The paper is organized as follows. In Sec. II, we present general model on non-Bravais
lattice and the Popov-Fedotov formalism. In Sec. III, we explicate details of the calculation pro-
cedure in mean-field and one-loop approximations for the case of a lattice with two sites per unit
cell. In Sec. IV, the results for a particular model on the honeycomb lattice are derived. We end
with a brief summary and discussions in Sec. V.

II. THE FORMALISM

We consider a Heisenberg model on a general non-Bravais lattice with n-sites per unit cell.
The Hamiltonian of the system reads:

H = ∑
i j

Ji j~Si ·~S j (1)

We start by determining the classical ground state with assuming coplanar magnetic struc-
ture, which can be shown for the case of isotropic exchange interactions Ji j. In the classical limit
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the spins on site i may be parameterized as:

~Si = S
[
cos
(
~Q~ri +φi

)
~u+ sin

(
~Q~ri +φi

)
~v
]

(2)

with ~u and ~v being two orthogonal unit vectors in the spin plane. Vertor ~Q is the ordering vector
and φi is the angle between i-spin vector and some fixed direction in the spin plane. The parameter
~Q and φi should be found by minimizing the classical energy, which in term of the ordering vector
~Q and the angle φi has the following form:

Ecl =
1
2

S2
∑
i j

Ji j cos∆i j (3)

where
∆i j = ~Q~δi j +(φ j−φi) (4)

and~δi j being a vector connecting a site i with a site j. Note that the classical energy depends on the
angle between the spins in the unit cell only through (φ j−φi) so one can choose one angle φi to be
zero. As a result the classical state may be defined by n parameters. Depending on the exchange
interaction and lattice structure there may exist different sets of parameters

{
~Q,φi

}
corresponding

to different ordered phases.
When we represent the spin operators in terms of auxiliary fermion or boson ones we should

choose some spin quantization axis, say Oz-axis. In order to take into account the fluctuation con-
tribution it is convenient to choose the spin quantization axis along the classical spin orientation.
In general, the spin direction may be different from site to site. Following Miyake [26], we trans-
form the spin components

{
Sx

i ,S
y
i ,S

z
i

}
from the laboratory reference frame to the local reference

frame
{

Sx′
i ,S

y′
i ,S

z′
i

}
at each site in such a way that the spin quantization axis represents the local

classical spin orientation: 
Sz

i = Sz′
i cosθi−Sx′

i sinθi,

Sx
i = Sz′

i sinθi−Sx′
i cosθi,

Sy
i = Sy′

i .

(5)

Due to the transformation (5) in the following one needs to introduce only one kind of
auxiliary fermions for all sites

Substituting (5) in (1), we get:

H =−1
2 ∑

i, j
α,β = x,y,z

Jαβ

i j Sα
i Sβ

j (6)

The exchange couplings in the local reference frame have the following form:
Jxx

i j = Jzz
i j = Xi j =−Ji j cos(∆i j) ,

Jyy
i j = Yi j =−Ji j,

Jzx
i j =−Jzx

i j =Wi j = Ji j sin(∆i j) ,

Jxy
i j = Jyx

i j = Jyz
i j = Jzy

i j = 0.

(7)
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According to Popov and Fedotov [5] we use the following the representation for the spin-
1/2 operator:

Sα
i =

1
2 ∑

σσ ′
a+iσ σ

α

σσ ′aiσ ′ , (8)

where σ = (σ x,σ y,σ z) are the Pauli matrices, and σ ,σ ′ =↑,↓ are the spin indices. The Fock state
of the fermion aiσ is spanned by four states. Among them the unphysical states |0〉 ; |2〉= a+i↑a

+
i↓ |0〉

where |0〉 is the vacuum should be excluded by the constraint at each site:

N̂i = ∑
σ

aiσ +aiσ = 1. (9)

The constraint may be enforced by introducing the projection operator P̂ = 1
iN e

i π

2 ∑
i

N̂i
to the

partition function

Z = Tr
[
e−β Ĥ P̂

]
(10)

with Ĥ being Hamiltonian (6), written in terms of the auxiliary operators (8). Because the trace
over unphysical states at each site vanishes, the contributions of the unphysical states to the par-
tition function cancel out one with others. Therefore, the partition function describing the Hamil-
tonian (6) with exactly one spin per site is given by

Z =

(
1
iN

)
Tre−β(Ĥ−µN̂), (11)

where N denotes the site number and µ = iπ
2β

is the purely imaginary Lagrange multiplier play-
ing the role of imaginary chemical potential of the auxiliary fermion system. As a result, after
performing Fourier transformation over imaginary time, the fermionic Matsubara frequences are
modified to have the following form

ω̃F = ωF −
π

2β
=

2π

β

(
n+

1
4

)
. (12)

The further calculation may be carried out following the main steps as in Ref. [14]. First
we represent the partition function as a functional integral over the coherent state Grassmann
variables. Then we perform a Hubbard-Stratonovich transformation introducing the Bose auxiliary
vector field ~φi (Ω) to get rid of the 4-fermion terms. Next we integrate out the Grassmann variables
to get the partition function in terms of the Bose auxiliary vector field ~φi (Ω) only. In order to apply
a perturbation technique, we decompose the auxiliary Bose field as follows

~φi (Ω) = ~φi0 (Ω = 0)+δ~φi (Ω) , (13)

where ~φi0 (Ω = 0)≡ ~φi0 is the mean field part defined from the least action principle and is related
to the classical ground states magnetization per site ~mi0 as follows

φ
α
i0 = ∑

jβ
mβ

j0Jβα

i j . (14)
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Because only the z-components of ~mi0 and ~φi0 are non-zero in the above chosen local refer-
ence frame, mα

i0 = mi0δα,z;φ α
i0 = φi0δα,z, then the mean-field equation of the magnetization reads

mi0 =
1
2

tanh
β

2 ∑
j

Jzz
i j m j0. (15)

Correspondingly, the mean-field free energy is given by

FMF =
1
2 ∑

i j
Jzz

i j mi0m j0 +∑
i

ln
(

2cosh
(

1
2

βφi0

))
. (16)

To separate the transverse and longitudinal fluctuations we set δφ
±
i (Ω)= δφ x

i (Ω)±iδφ
y
i (Ω).

Then the fluctuation contribution in the one loop approximation to the free energy has the follow-
ing form

δFf l =
1

2β
lndet D̂i j (Ω) , (17)

where
D̂i j (Ω) = Î + Ĵi jK̂i j (Ω) . (18)

In the basics (+,−,z) the elements of the coupling matrix Ĵi j are defined as follows
J++

i j =J−−i j = Xi j−Yi j,

J+−i j =J−+i j = Xi j +Yi j,

Jzz
i j =Xi j,

J+z
i j =J−z

i j =−Jz+
i j =−Jz−

i j =−Wi j.

(19)

The none-zero elements of the matrix K̂i j (Ω) are given as{
K+−

i j (Ω) =
(

K−+i j (Ω)
)∗

= δi jkT (Ω) ; kT (Ω) = β

2
mi0

φi0+iΩ ,

Kzz
i j (Ω) = δi jδΩ,0kz; kz = m2

i0− 1
4 .

(20)

It is convenient to perform the Fourier transformation over the coordinates~ri and~r j of D̂i j

before calculating det D̂i j. In the case of a Bravais lattice all sites are equivalent so D̂(~p) is a
3× 3 matrix. In a non-Bravais lattice with n site in a unit cell the matrix D̂(~p) is 3n× 3n block
matrix. In this case det D̂(~p) be calculated following Silvester [27] and Powell [28], who show
the determinant of a matrix with k2 blocks can be reduced to the product of the determinants of k
distinct combinations of single block.

For example, for a matrix M̂ having 4 blocks

detM̂ = det
(

Â B̂
Ĉ D̂

)
= det

(
ÂD̂− B̂D̂−1ĈD̂

)
, (21)

if D̂ is invertibe. If different blocks of M̂ commute, the Eq. (21) takes a simple form. For example,
if ĈD̂ = D̂Ĉ then

detM̂ = det
(
ÂD̂− B̂Ĉ

)
. (22)

In what follows in the next section we shall use the formula (21) for the case of non-Bravais
lattice with two sites in a unit cell.
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III. LATTICE WITH TWO SITES PER UNIT CELL

Let A and B refer to the two lattice points in the unit cell. We can choose the angle φA = 0
and φB = φ . Hence the classical ground state is determined by two parameters ~Q and φ . We define
the Fourier transformation of the coupling Ji j along the ij-bond

J (~p) =
2
N ∑

i j
Ji je−i~p(~ri−~r j). (23)

Because the sites i and j may belong to A or B sublattice, then from (23) we have

Jαα ′ (~p) = ∑
~δ

αα ′

Jαα ′e−i~p~δ
αα ′ , (24)

where α,α ′ = A,B.
From (7) and (24) one derives

X(~p) =− 1
2

(
J
(
~p− ~Q

)
+ J
(
~p+ ~Q

))
,

XAB(~p) = X∗BA(~p) =−
1
2

(
JAB

(
~p− ~Q

)
eiφ + JBA

(
~p+ ~Q

)
e−iφ

)
,

Yαα ′(~p) =− Jαα ′(~p),

Wαα(~p) =−
i
2

(
Jαα

(
~p− ~Q

)
− Jαα

(
~p+ ~Q

))
,

WAB(~p) =−W ∗BA(~p) =−
i
2

(
JAB

(
~Q−~p

)
e−iφ − JAB

(
−~Q−~p

)
eiφ
)
.

(25)

The Fourier transformation of the matrix D̂i j (Ω) has the following block form

D̂(~p,Ω) =

(
D̂AA (~p,Ω) D̂AB (~p,Ω)
D̂BA (~p,Ω) D̂BB (~p,Ω)

)
. (26)

Here the components D̂αα ′ (~p,Ω) are 3×3 matrix given by

D̂αα ′ (~p,Ω) = Iδαα ′−Rαα ′ (~p,Ω) , (27)

Rαα ′ =

 (Xαα ′ (~p)+Yαα ′ (~p))k∗T (Ω) (Xαα ′ (~p)−Yαα ′ (~p))kT (Ω) −Wαα ′ (~p)δΩ,0kz
(Xαα ′ (~p)−Yαα ′ (~p))k∗T (Ω) (Xαα ′ (~p)+Yαα ′ (~p))kT (Ω) −Wαα ′ (~p)δΩ,0kz

Wαα ′ (~p)k∗T (Ω) Wαα ′ (~p)kT (Ω) Xαα ′ (~p)δΩ,0kz

 ·
(28)

Now we can use the formula (21) to calculate the 6×6 matrix D̂(~p,Ω) (27). For simplicity
we consider the case of nearest - neighbor bonding, which means Jαα = 0. As a result the matrices
D̂αα (~p,Ω) are 3×3 unit matrices. Then Eq. (21) hold and together with Eq. (25) and (28) leads
to a simple expression for the determinant of the matrix D̂(~p,Ω)

det D̂(~p,Ω) = det
(
Î + R̂AB (~p,Ω) R̂BA (~p,Ω)

)
. (29)

From (28) and (29) we derive

det D̂(~p,Ω) = ∏
~p

∏
Ω

(Q(~p,Ω)+P(~p)δΩ,0), (30)
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where

Q(~p,Ω) =1+4(X∗AB(~p)YAB(~p)+XAB(~p)Y ∗AB(~p)) |kT (Ω)|2

+16 |XAB(~p)|2 |YAB(~p)|2 |kT (Ω)|4

−|XAB(~p)+YAB(~p)|2 (k∗T + kT )
2 ,

(31)

P(~p) =
(
1−4k2

T (0)
)
|YAB(~p)|

×
[

4k2
T (0)k2

z
(
X2

AB(~p)+W 2
AB(~p)

)(
X∗2AB(~p)+W ∗2AB(~p)

)
−|XAB(~p)|2 k2

z −4 |WAB(~p)|2 kT (0)kz

]
·

(32)

Substituting (20) into (31), one rewrites (31) in the following form

Q(~p,Ω) =

(
(iΩ)2−E2

1 (~p)
)(

(iΩ)2−E2
2 (~p)

)
(
(iΩ)2−φ 2

0

)2 (33)

where the magnon energies are given by
E1,2 (~p) = φ0ω1,2 (~p) ,

ω
2
1,2 (~p) =1+

1
2

(
m0

φ0

)2

(X∗AB(~p)YAB(~p)+XAB(~p)Y ∗AB(~p))

± m0

φ0

[
X∗AB(~p)YAB(~p)−XAB(~p)Y ∗AB(~p)+ |XAB(~p)+YAB(~p)|2

]1/2
.

(34)

The mean-field sublattice magnetization mA0 = mB0 = m0 and auxiliary boson field φA0 =
φB0 = φ0 are defined by Eqs. (15) and (14), respectively.

The product over bosonic Matsubara frequencies may be found through the Gamma func-
tion [29]

∏
Ω

Q(~p,Ω) =
1
2 ∏

λ=1,2

sinh
(

β

2 Eλ (~p)
)

sinh
(

β |φ0|
2

) . (35)

Then the fluctuation contribution to the free energy in the one-loop approximation is given
as follows

δF =
1

2β
∑

α = 1,2
~p ∈ RBZ

ln
sinh

(
β

2 Eλ (~p)
)

sinh
(

β |φ0|
2

) +
1

2β
∑

~p∈RBZ
lnA0 (~p) , (36)

where

A0 (~p) =1+
4k2

T (0)k2
z
(
X2

AB(~p)+W 2
AB(~p)

)(
X∗2AB(~p)+W ∗2AB(~p)

)(
1−4k2

T (0)
)
|XAB(~p)|2

−
|XAB(~p)|2 k2

z −4 |WAB(~p)|2 kT (0)kz(
1−4k2

T (0)
)
|XAB(~p)|2

·
(37)

Derivation of explicit expressions for the fluctuation contribution to the magnetization, in-
ternal energy, specific heat may be found from the free energy (35) in standard way. Note that
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the above result is derived for case of nearest-neighbor interaction, even when the magnetic order
may be canted or spiral. The calculations for the case beyond the nearest-neighbor coupling are
similar if the spins at the same sublattice are parallel, because the off-diagonal elements of the
3×3 matrix D̂αα (~p,Ω) vanish and the formula (22) still holds.

IV. HEISENBERG MODEL ON THE HONEYCOMB LATTICE

As an illustration we consider the Heisenberg model on the honeycomb lattice, which is of
great interest in recent years. The Hamiltonian reads:

H = J ∑
〈i j〉

~Si.~S j, (38)

where i and j run over pairs of nearest-neighbors. The coupling constant may be ferromagnetic
(J < 0)or antiferromagnetic (J > 0). The lattice structure is depicted in Fig. 1.

A

A A

AA B

d2

d1

d3

a1

a2

Fig. 1. The honeycomb lattice is defined by the basic vectors ~a1, ~a2 and two sublattices
A and B.

Setting the lattice constant a = 1, the nearest neighbor vectors are given by:

~δ1 =

(
1
2
,

√
3

2

)
, ~δ2 =

(
1
2
, -

√
3

2

)
, ~δ3 = (−1,0) (39)

Putting (39) into (3), after minimizing (3) with respect to ~Q and φ one obtains:

~Q =(0,0) , φ = 0 for ferromagnetic coupling J < 0, (40)
~Q =(0,0) , φ = π for antiferromagnetic coupling J > 0. (41)

Paying attention to Eqs. (40) and (41), one derive from Eqs. (25): XAB(~p) = YAB(~p) =−3Jγ(~p) for J < 0
XAB(~p) =−YAB(~p) =−3Jγ(~p) for J > 0
WAB(~p) = 0

(42)
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Taking into account the above Eq. (44), from (14) and (33) we get the magnon spectrum:

E1,2 (~p) =3Jm0

(
1±|γ(~p)|2

)
for J < 0, (43)

E1,2 (~p) =±3Jm0

(
1−|γ(~p)|2

)
for J > 0. (44)

From Eqs. (43), (44) we can see the emergence of Dirac magnons in the honeycomb lattice.
First we consider the ferromagnetic case. Expanding γ (~p) near the Dirac points

~K± =
(

2π

3 ,± 2π

3
√

3

)
, from (43) we obtain the linear dispersion of the so-called Dirac magnon

that is similar to the spinless Dirac fermion of Bloch graphene model [24, 25]:

E1,2 (~q) =
3
2
|J|m0 (σxqx− τσyqy) (45)

where the τ =±1 correspond to the states near ~K±, and~q = ~p−~K±.
Next, we consider the magnon bands around the Γ- point, ~Γ = (0,0), in the antiferromag-

netic honeycomb lattice. From (44) we find the linear dispersion relation [24, 25]:

E1,2 (~q) =±
3
2
|J|m0 |~q| . (46)

The results (45) and (46) are almost the same as the results obtained by applying the
Holstein-Primakoff transformation of spin operators [24, 25], except the fact that in (45) and (46)
the magnetization m0 depends on temperature (15) instead of m0 = s = 1

2 . The free energy in the
one loop approximation is a sum of the mean field (16) and the fluctuation contributions (36):

F =−
3N |J|m2

0
2

+
N
β

lncosh
3 |J|m0

2
+

1
2β

∑
λ = 1,2
~p ∈ RBZ

ln
sinh

(
β

2 Eλ (~p)
)

sinh
(

3β |J|m0
2

)
+

1
2β

∑
~p∈RBZ

lnA0 (~p) ,

(47)

where

A0 (~p) = 1− 9
16

J2 |γ (~p)|2
(
1−4m2

0
)
. (48)

The magnon energy Eλ (~p)is defined by Eq. (43) for the ferromagnetic phase and by Eq. (44)
for the antiferromagnetic phase. The first two terms are the same for both phases because it is from
the mean field contribution. The magnon does not contribute to the longitudinal fluctuation, so the
last term also is the same for two phases.

V. DISCUSSIONS

We have applied the Popov–Fedotov approach to study Heisenberg models on a non- Bra-
vais lattice, taking into account the exac local single occupancy constraint. Parameterizing a clas-
sical ordered phase by an ordering vector and angles of spins in a unit cell and working in local
coordinates we show how to derive the fluctuation contributions to the free energy for the general
case of n sites per unit cell. We have obtained the general analytical expressions for the non-
Bravais lattices with two sites in a unit cell in nearest-neighbor approximation. We have presented
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the results for the Heisenberg model on the honeycomb lattice in both cases: ferromagnetic and
antiferromagnetic nearest-neighbor bondings. Taking the limit of zero temperature T → 0K for
Eq. (47) we obtain the same ground state energy derived on the linear spin wave approximation by
means of the olstein-Primakoff transformation. At finite temperature the exact constraint reduces
the number of states where an auxiliary fermion may thermally fluctuate into in comparizon with
the case of global constraint. As a result, the free energy and, accordingly, other dynamic quan-
tites such as the internal energy, the magnetization, the specific heat differ considerably from the
corresponding quantities obtained by means of the other methods with relaxed constraint.

The results of this paper may be applied to Heisenberg models on other non-Bravais such
as the Kagome, Union-Jack, checkboard, frustrated honeycomb. . . lattices.
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