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Abstract—Cooperative spectrum sensing has been proposed

as a solution to increase the sensing function accuracy in cog-

nitive radio networks, but the research has, so far, mainly

focused on static scenarios, all but neglecting the impact of

mobility on spectrum sensing. In this work a novel coopera-

tive spectrum sensing scheme for mobile cognitive networks,

based on a correlation-based, mobility-aware node selection

algorithm is proposed. Correlation among sensing decisions

is used to divide nodes into groups, and mobility is taken into

account in the group leaders selection by means of a node

selection metric that considers both sensing performance and

mobility. Performance of the proposed algorithm is evalu-

ated by computer simulations taking into account mobility and

a detailed modeling of temporal and spatial correlation of fad-

ing and shadowing components in the channel path loss, going

way beyond the performance evaluation carried out in previ-

ous works on correlation-based cooperative sensing schemes.

Simulation results highlight that the proposed metric leads to

a significant increase of the update period required to main-

tain acceptable sensing performance, and correspondingly to

a strong reduction in the overhead caused by the grouping and

node selection procedure.

Keywords—cognitive radio, cooperative spectrum sensing, mo-

bility, node grouping, node selection.

1. Introduction

Cognitive radio technology has been proposed as a potential

solution to increase efficiency in spectrum utilization as it

enables opportunistic temporarily unused frequency bands

access once the presence of the so called primary user (PU)

is excluded. Spectrum sensing was initially adopted as the

solution for determining whether a band is available. How-

ever, due to longstanding open research issues in the im-

plementation of reliable sensing solutions, FCC suggested

to use databases for detection of PUs presence especially

in the so-called spectrum white spaces, whose occupancy

is relatively stable [1]. Research on spectrum sensing is

still highly encouraged by FCC itself, as sensing can com-

plement and extend the information provided by databases

and guarantee reliable and efficient cognitive access in all

situations. Under current FCC rules, in fact, databases will

only store PUs’ locations, thus not guaranteeing effective

secondary-to-secondary coexistence. In this context spec-

trum sensing can provide additional awareness and, as a re-

sult, support the construction of dynamic, secondary-aware

radio environment maps.

Spectrum sensing can however only be adopted if reliable

information can be gathered. Several investigations pointed

out that sensing carried out locally by single devices is

not accurate enough for safe coexistence between primary

and secondary users [2]. Thus, reliable spectrum sensing

requires cooperation between nodes. In a widely adopted

scenario, also considered in this work, every node in a cog-

nitive network senses the spectrum, and sends information

to the fusion centre where a global decision is taken. One

can find many papers tackling the problem of optimal de-

cision making in a fusion centre [3]–[6].

In cooperative spectrum sensing the fusion centre combines

the decisions from N secondary sensing users (SUs). As-

suming the k-out-of-N rule the global false alarm proba-

bility Qf and the global probability of detection Qd can be

obtained as follows [7]:

Qf =
N

∑
i=k

(
N
i

)
Pi

f (1−Pf)
N−i, (1)

Qd =
N

∑
i=k

(
N
i

)
Pi

d(1−Pd)
N−i, (2)

where Pf and Pd are the false alarm and detection probabil-

ity, respectively, averaged over the statistics of N nodes.

Equations (1) and (2) may simplify in the case of the AND-

rule, which is in fact the N-out-of-N rule, and in the case

of the OR-rule (known as 1-out-of-N rule). In the latter

case the Eqs. (1) and (2) are simplified to:

Qf = 1−
N

∏
i=1

(1−Pf), (3)

Qd = 1−
N

∏
i=1

(1−Pd). (4)

Under the Constant False Alarm Rate (CFAR) requirement

the desired Qf is set for the whole secondary network. The

corresponding value of Pf,i, assumed identical for every

node, can be thus obtained as:

Pf,i = 1− N
√

1−Qf for i = 1 . . . N . (5)
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This implies an identical sensing threshold ε for every sen-

sor given by [8]:

ε = [(Q-1(Pf,i)/
√

Ns)+1]σ 2
SU, (6)

where Ns is the number of sensing samples per node taken

to decision making, Q-1(·) is the inverse Q-function and

σ2
SU is the noise power at SU.

Cooperative spectrum sensing requires explicit information

exchanges between nodes. Minimizing the overhead intro-

duced by such exchanges, so to guarantee energy efficiency

and low complexity, is an important aspect to be considered

in the design of a cooperative spectrum sensing algorithm.

To this aim, selection of nodes subset to take care of sens-

ing has been proposed, in order to limit the number of

nodes reporting their sensing results to the fusion centre.

This is typically achieved by grouping the nodes according

to a given criterion, and selecting a node in each group

as representative/leader for that group. The identification

of criteria for node grouping and group leader selection is

thus a fundamental step in the definition of such sensing

algorithm. A detailed analysis of the literature related to

node grouping for sensing purposes is presented in Sec-

tion 2. A solution that received significant interest in the

last few years relies on the measure of the correlation be-

tween sensing measurements taken by the nodes. Since this

is the approach also considered in this work, previous work

on this specific topic is discussed in Section 3.

An aspect that was seldom considered in the definition and

performance evaluation of cooperative sensing schemes is

mobility. There are in fact only a few papers tackling

the role and impact of mobility in cooperative spectrum

sensing. In [9], the authors present a theoretical analysis

confirming that node mobility increases spatial diversity

and as a consequence improves the sensing performance.

The results presented in that work highlight the trade-off

between the number of sensors and the number of mea-

surements taken by each sensor. The authors in [10] base

their work on [9] but introduce more accurate assumptions

and provide more detailed results. Moreover, the expres-

sion for the number of measurement required for a given

velocity, detection and false alarm probability is derived.

The work in [11] compares results obtained on the basis

of the aforementioned works and presents results obtained

by simulation under more realistic conditions, showing that

relaxation or removal of some of the assumptions taken in

previous work has a significant influence on performance.

However, the above-mentioned works focused on analyzing

the impact of mobility on network performance rather than

on proposing an approach towards the design of an optimal

CSS scheme in presence of mobility.

In the above context, this work proposes a cooperative sens-

ing scheme aiming at grouping nodes and selecting a leader

for each group to be involved in the sensing process. The

scheme relies on the measure of correlation in sensing deci-

sions for node grouping, and adopts a mobility and sensing

aware metric for the group leaders selection. The con-

cept of node grouping based on correlation is leveraged

from [12], and combined with a novel metric for group

leader selection that takes into account mobility and sensing

performance, so to guarantee adequate sensing performance

for extended periods of times. The proposed approach is

then compared with previous solutions by computer simu-

lations, implementing accurate models for the mobile radio

channel, taking into account spatial and temporal correla-

tion for both fading and shadowing components.

The original contributions introduced in this work can be

thus summarized as follows:

• a novel solution for cooperative spectrum sensing tak-

ing into account sensing performance and mobility;

• an extensive performance evaluation of correlation-

based cooperative spectrum sensing under realistic

conditions that foresee accurate modeling for spatial

and temporal correlation of channel parameters and

take into account the impact of such parameters on

sensing performance of nodes;

• the analysis of the node mobility impact on correla-

tion-based cooperative spectrum sensing.

The impact of channel correlation and mobility, in partic-

ular, are aspects all but neglected in previous works on

correlation-based cooperative spectrum sensing [12].

The paper is organized as follows. In Section 2, previ-

ous work on node grouping and selection algorithms in

cooperative spectrum sensing is reviewed. In Section 3,

correlation-based selection schemes are analyzed in detail.

In Section 4, the considered system model is described,

while in Section 5 the proposed cooperative spectrum sens-

ing scheme, based on a novel mobility-aware leader selec-

tion metric is presented. Simulation results for the analysis

of the proposed approach and its comparison with previ-

ous work are presented in Section 6, while Section 7 draws

conclusions and identifies future research lines.

2. Node Grouping in Cooperative

Spectrum Sensing

A large number of cooperating SUs guarantees high global

probability PUs detection. However, proper independent

nodes selection for cooperation can improve the robustness

of cooperative sensing [13], [14]. Moreover, global false

alarm probability may be significantly reduced [8]. Node

selection reduces also the overhead related to unnecessary

sensing information transmission as well as provides sig-

nificant energy savings.

Several different approaches to node selection have been

proposed in the literature, and are briefly reviewed in the

following.

2.1. Best-SNR Selection Algorithm

Best-SNR selection algorithms are based on selecting the

nodes with the highest signal-to-noise ratio for coopera-
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tion [8]. Under the Constant Detection Rate (CDR) re-

quirement, every node maintains a constant local detection

probability by adapting the detection threshold on the basis

of expected SNR. Hence, the false alarm probability de-

pends on the expected SNR: the higher the SNR, the lower

false alarm probability. Therefore, selection of the cooper-

ation nodes with the highest SNR lowers the global false

alarm probability in the network (Qf).

Under CFAR requirement, the nodes with the highest SNR

have the highest detection probability. Thus, the SUs with

the highest SNR should always be chosen for cooperation.

However, this requires the nodes to be aware of their own

SNR and deliver it to the fusion centre, while the fusion

centre has to receive the information from every SU in the

network. Variable channel conditions induce SNR varia-

tions, that must be dealt with, for example with periodic

updates of the estimates of the SNR for each node.

The best-SNR selection approach has been investigated by

Peh and Liang in [8]. The authors proved that through

selection of a reduced number of nodes significant per-

formance improvement can be obtained. For example, by

using only 19 out of 200 nodes for cooperative sensing the

Qf decrease from 6.02% to 0.06% under the CDR require-

ment with OR-rule as well as an Qd increase from 92.04%

to 99.88% under the CFAR requirement with AND-rule is

achieved.

Another algorithm based on the best-SNR selection has

been described in [15]. In this work the secondary user

with the highest SNR is chosen in the first iteration. Next,

every other node compares its link quality to the fusion

centre with its link quality to the formerly selected node

and from the formerly selected node to the fusion centre.

If a node determines that its own link is less reliable, then it

joins the best-SNR node group. Otherwise, the next best-

SNR node among ungrouped nodes is selected and then

the procedure of comparing links and grouping is repeated

until all of the nodes are grouped.

An interesting algorithm relying on best-SNR selection has

been proposed in [16]. In this work nodes are classified

either as leaders or followers based on the received SNR.

Leading nodes have good detection performance and are

allowed to sense the PU signal and broadcast their sensing

information. Following nodes are considered unreliable due

to low SNR, so they do not broadcast their decisions, but

rather wait for broadcasted packets from leaders. Thus,

only the reliable information is broadcasted. In addition,

the information sent by the leaders is rather limited, only

consisting in the PU presence information. As a result,

the approach proposed in [16] leads to low overhead infor-

mation. The identification of nodes with highest SNR is

however challenging, as it must rely on the presence of the

PU during training/measurement periods.

2.2. Best Detection Performance Selection

Algorithms belonging to this family rely on nodes with the

highest probability of detection being selected [17]. How-

ever, the correct identification of such nodes is an open

issue, as algorithms based on best detection performance

selection are typically analyzed under the assumption that

the PU is always present and thus can identify the best

nodes as those that obtain the highest number of the “PU

present” positive decisions. These algorithms, similarly to

the best-SNR ones seen before, are thus only easily applica-

ble when there are known periods where the PU is always

present, allowing to evaluate the probability of detection of

the nodes.

2.3. Voting Schemes

The first representative of the voting schemes class is the

so-called Confidence Voting [18], in which nodes build

reliability-related measures. The idea is to limit unreliable

decision transmissions. Every node is obliged to compute a

confidence metric. In the hard decision scenario the local

and global decisions are collated - in the case of coinci-

dence the confidence metric is incremented, otherwise it

is decremented. After the training period, in which the

metrics are computed, only the nodes with the highest con-

fidence metrics are allowed to report their decisions to the

fusion centre.

The Collision Detection scheme [19] is based on node se-

lection with the highest correctness measure. The measure

notifies the number of node’s correct decisions when the

global false decision is that the PU is not present. The

nodes with the highest correctness are selected and involved

in cooperative sensing.

The schemes based on voting have the advantage of being

applicable in scenarios where there are no periods in which

the presence of the PU is known in advance, but they are not

without drawbacks. As they rely on the majority opinion, if

most of the secondary users faces bad channel conditions,

then more confidence goes to unreliable nodes. As a result,

the decision obtained in confidence voting may be worse

than in a traditional scheme. As a side comment, the voting

schemes are not robust enough in the case of malicious SU.

2.4. Other Approaches

A few approaches not falling in the abovementioned fam-

ilies have been proposed in the literature and are briefly

discussed below.

A similarity-based algorithm has been described in [20].

In this case, the similarity measures for pairs of nodes have

to be computed. The similarity measure indicates how well

node k can serve as the reporting node for node i [20]. The

similarity is determined on the two metrics basis: respon-

sibility and availability. The responsibility is derived for

checking how well node k can be a reporting node for node

i in comparison with other nodes. The availability coeffi-

cient measures appropriateness of being a reporting node

to exclude situations when only a small number of nodes

is grouped.

Selen et al. in [21] proposed a solution for the problem

of node selection which does not involve nodes’ SNRs nor
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their performance knowledge. The only required informa-

tion is the distance from coordinating sensor to the other

nodes. The selection is in fact based on such radius in-

formation exchanged between nodes. The algorithm finds

k sensors within the radius separation under the constraint

not to exceed the desired correlation probability between

selected nodes.

The sensors may be selected also according to power

consumption constraints. The maximum power scheme

chooses the set of nodes with the least power consumption

in order to guarantee minimal power usage [22]. The max-

imum lifetime scheme chooses a set which has the longest

minimum lifetime. In this algorithm a tiebreaker is also

needed to switch between sets of nodes [22].

Najimi et al. in the work [23] propose a scheme that com-

bines energy efficiency and sensing performance in node

selection. The scheme introduces a cost function that fa-

vors nodes with lowest sensing and decision-transmission

energy usage among those satisfying the quality of detec-

tion constraint. Furthermore, energy efficiency is increased

by introducing decision nodes, each acting as collector of

sensing results from a set of selected nodes, determining

a common decision and sending it to the fusion centre.

The scheme requires however full knowledge about nodes

signal-to-noise ratios and distances between each node and

fusion centre in order to operate, leading to a significant

control overhead.

2.5. Correlation-Based Selection

Finally, a few works investigated correlation-based selec-

tion schemes. These are based only on node decisions,

which are used for finding correlations between nodes.

This approach relies on the assumption that finding corre-

lations between sensing nodes and selecting only uncorre-

lated ones should result in good sensing performance while

minimizing transmission overhead associated with report-

ing the sensing results to the fusion centre. Since the al-

gorithm proposed in this work falls into this category, cor-

relation-based node selection algorithms are analyzed in

Section 3.

3. Correlation-Based Node Selection

Correlation-based node selection has been introduced in the

aforementioned work [21], where a network consisting of

N nodes is considered. All nodes are grouped in an active

set at the algorithm beginning, while after selection only X
nodes may remain in the active set while the rest is moved

to the passive set, that includes all nodes that are not al-

lowed to vote. In order to make a proper selection, the

correlation measure is computed for pairs of nodes in the

network. Then, the node with the highest summed correla-

tion with the remaining sensors is removed from the active

set and moved to passive set. The correlation measure used

in [21] is based on the nodes positions and associated po-

sitioning uncertainty. An example of correlation measure

is the following correlation function (7):

R(d) = e−ad, (7)

where a is a decay constant related to the environment

and d is the distance between sensors.

A distributed correlation-based selection approach was pre-

sented in [24], where a node is randomly selected to start

the procedure by broadcasting sensing information to the

other nodes, in the form of the received signal during the

last sensing phase. The remaining nodes listen to this in-

formation and estimate their correlation coefficients. Each

node compares its coefficient with a correlation threshold,

and if it is above the threshold the node does not take part

further in the procedure. Nodes that have a correlation coef-

ficient below threshold randomly select a delay and the one

that picked the shortest delay transmits its received signal,

starting the next iteration of the procedure. The procedure

completes when there is no remaining uncorrelated node.

Since as part of the procedure all nodes share their received

signal, when it is completed each node is capable of tak-

ing the same sensing decision according to a soft fusion

of the received signals. The work is rather interesting, but

the role of noise in the results of the correlation procedure

is not completely addressed in the work, as the presence

of a denoiser is assumed but its impact is not thoroughly

described in the paper.

Pratas et al. in the work [25] proposed the Adaptive Count-

ing Rule. In the solution cooperative network of n SUs

is considered. The adaptive rule is adopted in the hard-

decision fusion scheme. It optimizes the minimal number

of SUs declaring the presence of primary signal derived

as k. It was shown that optimal value of k depends on the

amount of correlation experienced by nodes as well as the

number of detectors in the set and their performance. The

authors proposed also continuous mechanism of selection

optimal k value.

Another correlation-based approach was described in the

paper written by Y. Sun et al. [12]. In this approach the

correlation measure is computed based on the node deci-

sions only. Thus, no additional information, such as posi-

tion of nodes, is needed. Correlation-based node selection

presented in [12] is based on similarity in decision making.

The performance evaluation that supports the approach

in [12] is however quite preliminary, as it relies on sev-

eral simplifying assumptions. For example, authors state

that sensing information was “generated randomly accord-

ing to the probability of correct detection between 70

and 90%” [12], implying that the radio channel model was

not taken into account in the results. The authors also as-

sume that by putting the value of correlation threshold α
to 0.96 the nodes can be divided into 10 groups. This as-

sumption would not hold in general in the real world, as

the selected number of nodes resulting from the approach

in [12] constantly changes and depends on several param-

eters, e.g. on actual propagation conditions or nodes posi-

tions. Finally, the simulation results in [12] were obtained
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in a low-correlation scenario for an average signal-to-noise

ratio equal to 10 dB, while one would reasonably expect

a CSS scheme to be tested in a low SNR regime, where

its improvement over local sensing is expected to be most

relevant.

Despite the lack of thorough experimental verification, the

approach proposed in [12] is appealing, since it inherently

takes into account the role of spatial positions of nodes and

channel conditions in determining the best set of nodes.

A solution inspired by this approach, but also taking into

account the role of mobility, is introduced in Section 5, and

its performance is evaluated in Section 6.

4. System Model

The model adopted in this work foresees N nodes randomly

distributed in a square area of side equal to R meters. Ev-

ery node is assumed to have the same desired probability

of false alarm and therefore the same sensing threshold

computed according to Eq. (6).

The generic node moves with a randomly selected direction

of movement θi and velocity vi. Angles of movement and

velocities are uniformly distributed, with θ taking values

between 0 and 2π radians, and velocities v between vmin
and vmax m/s. Whenever a node hits the border of the

square area it bounces back from it according to a total

reflection model, while keeping the same velocity.

The following power attenuation model is assumed for the

mobile radio channel between a mobile node and the Pri-

mary User:

channel|dB = pathloss|dB + f ading|dB + shadowing|dB.
(8)

The path loss depends on carrier frequency fc and on the

distance d between node and PU according to the well-

known Friis’ formula. The carrier frequency is assumed

to be constant for all nodes, while the distance changes in

time proportionally to the node velocity. However, it is as-

sumed that during the sensing phase the path loss does not

change due to relatively small possible variation of nodes’

locations.

Fading coefficients are modelled according to Rayleigh fad-

ing channel. Doppler shift is proportional to the node ve-

locity and in the presented model varies according to the

following equation:

∆ f = 3 · vi. (9)

In the model every node experiences independent fading

channel (as suggested in [26]), resulting in uncorrelated

fading between different nodes, but correlated channel co-

efficients in time for a given node.

As regards shadowing modelling, the decorrelation distance

dcorr has been set according to Gudmundson model [27]

and Min and Shin work [9]. Hence, the square area of side

R meters was divided into q smaller (pixel) squares contain-

ing different values for shadowing. The values are constant

in time for a given location according to [28], so during the

observation time the shadowing value for every shadowing

centre does not change. The values are randomized with

the normal distribution N ∼ (0,σs). However, one can find

more sophisticated shadowing models. Kasiri and Cai in

the work [29] applied NeSh (Network Shadowing) model

taken from the work [30]. The model allows to determine

correlation values between links of different users while in

Gudmundson case it is possible only for links coming from

one node. Since however the scenario considered in this

paper focuses on correlation between measurements involv-

ing the same primary transmitter, the Gudmundson model

was deemed sufficient to the purpose of this work.

In the considered system every node takes M sensing de-

cisions and sends them to the fusion centre, under the as-

sumption that radio coverage between the nodes and fusion

centre is always guaranteed. One can reasonably expect

that mobility will also significantly impact the topology

of the secondary network and thus the radio coverage be-

tween nodes and fusion centre. For the sake of simplicity

the analysis of such impact is left for future work, while in

the present paper the impact of mobility is restricted to the

sensing results.

Nodes in the network share a common time reference, and

time is organized in frames of duration Tf. The sensing

information is gathered and exchanged during a sensing

phase of duration Tse that takes place at the beginning of

each frame. The remaining time in the frame, equal to

Tf −Tse is dedicated to transmission if the presence of PU

is excluded.

The frame duration Tf is also used as the reference pe-

riod for updating the nodes positions and determining the

new values for shadowing. Note that a smaller update

period could easily be adopted, but this would have no

impact on sensing performance, as sensing is also per-

formed with period Tf and network wide synchronization is

assumed.

5. Mobility-Aware Correlation-Based

Spectrum Sensing

The proposed sensing scheme organizes network operation

in two states: a training state, used for node grouping and

selection, and an activity state, during which nodes selected

in the training state perform sensing, and all nodes trans-

mit data packets whenever the network sensing decision

excludes the presence of the PU.

While in training state each node takes M signal sam-

ples during the sensing phase, with a sampling period ts =
Tse/M seconds. The samples are compared with the sensing

threshold, with M decisions taken at each sensing node.

Each node sends the M decisions to a fusion centre, that

uses them to compute the correlation measure. The num-

ber of decisions M should be thus large enough in order to

allow for a reliable estimation of the correlation between

different nodes.
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As a result of the selection procedure detailed later in this

section, a set of active nodes is determined, and the network

switches to the activity state, during which the active nodes

perform sensing and report their decisions to the fusion

centre, where a network decision on the presence of the

PU is taken.

The selection procedure used during the training phase is

the following one.

Let’s indicate with Si(k) the k-th decision out of M taken

by the i-th node, and define it as follows:

Si(k) =

{
1, when H1 is declared

−1, when H0 is declared
, (10)

where H1 and H0 are the hypotheses of the presence and the

absence of a PU, respectively. Given the decisions taken

by two SUs, i and j, the γi, j correlation measure for the

two nodes is defined as [12]:

γi, j = 1− ∑M
k=1 |Si(k)−S j(k)|

2M
, (11)

where γi, j ∈ 〈0,1〉. If all decisions for the i-th and j-th
nodes are identical γi, j is equal to 1: in general, the higher

the number of common decisions, the greater the value of

correlation measure.

After computing correlation measures between all pairs of

nodes, the Γ matrix of size N ×N is built:

Γ =




γ1,1 γ1,2 . . . γ1,N
γ2,1 γ2,2 . . . γ2,N

...
...

. . .
...

γN,1 γN,2 . . . γN,N


 . (12)

It is assumed that correlation coefficients are reciprocal, so

Γ is a symmetric matrix. The diagonal elements of matrix

are the auto-correlation coefficients. Therefore, Γ can be

represented as upper triangular matrix Γ̃ (13):

Γ̃ =




0 γ1,2 . . . γ1,N
0 0 . . . γ2,N
...

...
. . .

...

0 0 . . . 0


 . (13)

After evaluating the correlation measures for all possible

pairs of nodes the grouping procedure is executed. First,

the value of a correlation threshold α is defined. Next,

γi, j coefficients above α threshold are determined. If more

than one γ coefficient is higher than α , then two cases may

occur:

• the pairs of correlated nodes are disjoint. In this case

nodes are grouped by correlated pairs;

• one node is correlated with more than one node. In

this case three or more nodes are grouped together

only if all mutual correlation measures are larger

than α . Nodes that do not meet this condition are

not included in the group.

The procedure is performed repeatedly until there are no

further nodes that can be grouped together.

Let’s consider a simple example of a network consisting

of three nodes: A, B and C. The correlation coefficients

and correlation threshold are given as follows: γA,B = 0.96,

γA,C = 0.97 and γB,C = 0.94, α = 0.95. At first nodes A
and B are grouped (γA,B > α), then node C becomes a can-

didate to join group. Although correlation between A and

C is sufficiently high, the node C is not allowed to join the

group due to a correlation with node B below the required

threshold. As a result, a group including nodes A and B is

formed, while node C remains ungrouped.

When the grouping procedure is complete, some groups are

formed while the rest of nodes remain uncorrelated. Note

that the above algorithm, first described in [12], does not

require a predetermined number of nodes and groups to

be selected as an input parameter. The output number of

groups and the total number of selected nodes depend on

the correlation environment.

Following the division of nodes into groups, a group leader

for each group is selected according to the Leader Suitabil-

ity (LS) parameter, defined as follows for the generic group

member i:

LSi = c1Pd,i + c2e
vi−vmin
vi−vmax , (14)

where c1 and c2 are weight coefficients that can be used to

adjust the relative importance of the two terms that form

the LS parameter. The first term is the detection probability

of node i, while the second term models the stability of

the node, defined as its ability to stay as long as possible

at a given location. The stability coefficient is equal to 1

when vi is equal to minimal velocity and 0 if vi = vmax. The

behavior of the stability parameter is presented in Fig. 1 for

vmin = 1 m/s, vmax = 5 m/s.
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Fig. 1. Behavior of the term related to node velocity used in the

Leader Suitability formula.

The goal of the proposed metric is to ensure that selected

group leaders are able to guarantee good sensing perfor-

mance not only at present time, but also in foreseeable

future, thanks to their low mobility.
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As a result of the selection procedure, the set of active

nodes allowed to participate in sensing is determined, and

is composed by one group leader from every group and all

the uncorrelated nodes. The network switches then to the

activity state for a predetermined amount of time, before

switching back to the training state for updating the set of

active nodes.

6. Simulation Results

The performance of the mobility-aware correlation-based

cooperative sensing scheme introduced in Section 5 has

been investigated by means of computer simulations carried

out in the Matlab environment.

In the simulations a square area of 200 m side was divided

into 16 pixels of dcorr = 50 m side [9] and N = 100 sec-

ondary nodes were randomly distributed in the area. The

same area was covered by the transmission of a PU. The

PU signal was characterized by a carrier frequency of

300 MHz, transmit power of 1 W, and distance to SUs

in the range 1.41–1.86 km. In order to observe the benefit

of the grouping algorithm, it was assumed that the PU is

always present. A complete list of simulation parameters

and corresponding values is presented in Table 1.

Table 1

Simulation parameters

Parameter Description Value

R Area Side 200 m

q Number of pixel squares 16

N Number of nodes 100

fc Carrier frequency 300 MHz

Tse Sensing phase duration 0.1 s

Tf Frame duration 1 s

ts Sample time 0.1 ms

M
Number of samples used for

1000correlation approximation

SNR Averaged signal-to-noise ratio 2 dB

σSU Noise power at SU 3.01e−13 W

PPU PU Signal Power 1 W

d Distance to Primary User 1.41–1.86 km

dcorr Decorrelation distance 50 m

Qf Global probability of false alarm 0.095

Pf Local probability of false alarm 0.001

θi Direction of movement of nodes 0–2π rad

vmin Minimal velocity of nodes 1 m/s

vmax Maximal velocity of nodes 5-50 m/s

I Number of iterations 20000

σs Shadowing variance 4.6 dB

∆ f Doppler shift 3–150 Hz

n Periodic selection time 13 or 18 s

α Minimal correlation coefficient 0.95

According to Ofcom rules the sensing should be executed

at least once a second and occupy no more than 10%

of the total frame length [31]. Thus, in the simulations

a frame of duration Tf = 1 s was divided in Tse = 0.1 s and

Tf −Tse = 0.9 s. During the sensing part every node col-

lected M = 1000 samples, corresponding to a sample time

equal to 0.1 ms. The decisions were generated by com-

paring the power of each sample to a constant sensing

threshold.

Such decisions were then provided as an input to the CSS

algorithm for group formation and leader selection. As

mentioned in Section 5, any fusion rule could be adopted

to take the network decision; in the performance eval-

uation presented in this section an OR fusion rule was

adopted.

The CFAR requirement was adopted in the system, with

a global probability of false alarm equal to 0.095, imply-

ing thus local probabilities of false alarm equal to 0.001,

assuming that all nodes participate in the sensing process.

Identical Pf and noise power at SUs imply, as a result, con-

stant sensing threshold in every node (see Eq. 6).

All of the simulations were done under the assumption of

an average SNR between the PU signal received at an SU

and the noise at the same SU equal to 2 dB. The results

were averaged over 20,000 iterations, and in each iteration

the state of the system was recorded every second for a 70 s

observing time.

As already pointed out, mobility is expected to play an

important role in sensing performance. As a consequence

all simulations were performed in mobility presence.

200

150

100

50

0

0 50 100 150 200

x [m]

y
[m

]

Fig. 2. Exemplary state of the system after node selection pro-

cedure.

An example of the state of the system after node grouping

and group leaders selection is presented in Fig. 2 (node

velocities in the range 1–20 m/s). In the figure different

markers correspond to different groups, while filled mark-

ers identify the leader of the corresponding group. It shows

that from every group, only one node is selected as a group

leader except for a group marked by circles. These are

uncorrelated nodes – the nodes which are not correlated

enough to join another group. Therefore, all of these nodes

are allowed to vote. In the situation presented in Fig. 2,

11 nodes out of 100 are selected to vote: 6 uncorrelated

nodes and 5 group leaders. In general, it can be observed

that in the low-SNR-scenario, the received power is of-
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ten below the sensing threshold, due to strong shadowing

and/or fading. Thus, in such scenario many nodes with

bad channel conditions take the decision that the PU is not

present. As a result, these nodes are associated to the same,

large, group. Therefore, only a few groups are eventually

formed. This effect may prove a significant advantage of

correlation-based sensing when AND or majority rules are

adopted, as it significantly reduces the impact of individual

missed detections by grouping all nodes likely to generate

such missed detections in a single group. This result was

not observed in previous works on correlation-based sens-

ing, most probably due to the lack of detailed modeling for

channel correlation.

1

0.9998

0.9996

0.9994

0.9992

0.999
0 10 20 30 40 50 60 70

Time [s]

Q
d

all nodes

ideal selection

Fig. 3. Qd for N nodes and selected one.

Results also highlighted that the number of selected nodes

influences the value of Qd. In general, the lower the num-

ber of selected nodes, the smaller Qd, with actual value

depending on average SNR, as expected from the adoption

of an OR decision rule. Figure 3 shows the loss in global

probability of detection Qd due to the reduction of the num-

ber of group leaders. The upper curve is the Qd when all

nodes in the system are allowed to send their decisions to

fusion centre. The second case, referred to as optimal se-

lection, corresponds to executing the grouping procedure at

the beginning of each sensing phase, so at every second.

The Qd for all nodes is equal to 1, while for the optimally

selected set of nodes it is around 0.9992. So, the smaller

number selection of nodes introduces a penalty in terms of

the global detection probability slight reduction, mainly as

a selected fusion rule result. On the other hand, the global

probability of false alarm was also significantly reduced,

which is a strong advantage from the point of secondary

network view. In fact, as under the CFAR requirement

the local probability of false alarm for every node is kept

constant, the global probability of false alarm depends on

the actual number of nodes taking part in decision making

process. Figure 4 shows the relation between Qf and the

number of active nodes. One can see that e.g. selection of

10 out of 100 nodes lowers the Qf from 0.095 to 0.01. This

implies that for the SNR used in experiments, the proper

node grouping causes barely visible fall of Qd and sensible

fall of Qf.
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Fig. 4. Qf in the function of number of selected nodes.

The above results prove that correlation-based node group-

ing can improve performance under realistic channel con-

ditions and go beyond the results in [12] since, as already

discussed in Section 3, in that work performance evaluation

of the correlation based solution was limited to a scenario

with randomly generated local detection probabilities with

no connection to relative positions and channel correlation

responses between secondary nodes.

The analysis focused next on the impact of the new leader

selection metric. Three strategies for the group leader se-

lection were investigated, corresponding to three coefficient

sets for the metric. The first strategy selected the node with

the highest local probability of detection to act as a group

leader (corresponding to weight coefficients for Eq. (14):

c1 = 1, c2 = 0), as proposed in [12], referred to in the fol-

lowing as maxPd strategy. The second strategy aimed to

select the group leader on the basis of both the local Pd and

the stability coefficient (c1 = 0.5, c2 = 0.5), and is referred

to as the mixed strategy. Finally, the third strategy, maxST ,

only rewards stability (c1 = 0, c2 = 1).

The results for maxPd, maxST and mixed strategies are

shown in Figures 5, 6 and 7, respectively. In every figure

one can find three plots: the top curve is the optimal selec-

tion update strategy previously defined; the bottom curve

corresponds to an update strategy named starting selection

in which the grouping and selection procedure is executed

only once, in the first second of simulation. Finally, the

middle plot corresponds to the periodic selection update

strategy, in which grouping is carried out every n seconds

where n is selected so to keep the 0.95 threshold.

One can see that when adopting the optimal selection up-

date strategy, the best result is guaranteed by the maxPd
strategy. In the mixed strategy Qd value is slightly lower

while the maxST strategy leads to the worst result (see

Table 2). The optimal selection values (Table 2) are

matched exactly by the starting selection at the beginning of

each simulation, and by the periodic selection immediately

after each update.
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Fig. 5. Qd vs. time for maxPd strategy, n = 13 s.
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Fig. 6. Qd vs. time for maxST strategy, n = 13 s.
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Fig. 7. Qd vs. time for mixed strategy, n = 18 s.

Maximum Qd values are doubtless relevant for evaluating

the performance of grouping and selection algorithms, but

the stability of received measures is important as well.

Figure 8 presents results for the starting selection update

Table 2

Qd values for optimal selection

Leader selection method Qd value

maxPd 0.9992

mixed 0.9975

maxST 0.9925

strategy for the three leader selection strategies introduced

above. One can see that in the maxPd strategy, which

guarantees the highest Qd value for optimal selection, the

Qd value decreases quickly in time, while for the stability-

involved strategies the slope is significantly less steep. The

least steep slope and the highest values of Qd after two sec-

onds were obtained for the strategy involving both stability

and Pd in the selection of the group leader.

maxST

mixed

maxPd

1

0.975

0.95

0.925

0.9

Time [s]

Q
d

0 10 20 30 40 50 60 70

Fig. 8. Qd for starting selection for terminal velocities from 1 to

5 m/s.

Figure 8 shows that the global detection probability might

be acceptable not only immediately after the leader selec-

tion, but also some time after the grouping and selection

procedure. Since grouping and leader selection require sig-

nificant information exchanges between nodes and thus in-

troduce significant overhead in the network, one might want

to perform such procedure as seldom as possible while

guaranteeing the desired detection probability.

The beneficial effect of taking into account stability in

group leader selection can be observed by comparing the

periodic selection curves in Figs. 5, 6 and 7, that show

results assuming a minimum acceptable Qd equal to 0.95.

One can in fact observe that the periodic update time dif-

fers in the three cases, with the mixed strategy requiring

an update only every n = 18 s, while the other strategies

require an update at most every n = 13 s. The combina-

tion of node’s Pd and stability introduced in the proposed

leader selection strategy guarantees thus an increase of the

minimum update time from 13 to 18 s corresponding to

38% gain. The price paid to get such an improvement is

a slightly lower Qd value in the very first seconds after

each selection procedure. Although further studies are re-

quired to quantify the overall impact of the two phenomena
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on overall performance in the secondary network (e.g. in

terms of throughput), the results strongly suggest that the

proposed strategy may provide a significant advantage.

The trend of Qd as a function of time strongly depends

on the mobility of SUs. In Fig. 9 one can observe results

for nodes velocities in the range of 1–20 m/s. The results

in Figs. 8 and 9 show that the floor value in the start-

ing selection update strategy is significantly higher in the

vmax = 20 m/s case. Min and Shin in [9] pointed out that

the sensing scheduling gain rises proportionally as node’s

velocity increases. One could thus predict that wider range

of nodes velocities lowers correlation between nodes and

thus improves global sensing results.
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Fig. 9. Qd for starting selection for terminal velocities from 1 to

20 m/s.
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Fig. 10. Floor value of Qd vs. maximum node velocity for three

leader selection strategies.

In order to verify this assumption, the floor value of global

detection probability was evaluated as a SU maximum ve-

locity vmax function, with minimum velocity vmin set at

1 m/s (Fig. 10). One can see that the higher the node’s

maximum velocity, the higher floor value of Qd. This is

determined by correlation between the sensors. In low-ve-

locity scenarios, decisions of nodes are highly correlated so

there are a few large nodes groups. Therefore, only a few

nodes are selected and allowed to vote. In a high-velocity
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scenario the correlation between nodes’ decisions is small.

As a result, there are more nodes groups and more uncor-

related nodes. The higher the number of active nodes and

the higher the average velocity, the higher the probability

that one or a few nodes experience reliable channel condi-

tions. This is confirmed by Fig. 11, showing the number

of active nodes: the higher the nodes mobility, the higher

active nodes number. Moreover, the active nodes higher

number provide lower overhead reduction. In Fig. 12 one

can observe the percentage of sleeping nodes which were

not selected by the procedure. These nodes may sleep and

thus lower the overhead information exchange as well as re-

duce energy consumption. For high-correlated scenario the

reduction in the number of updates and the corresponding

overhead is the most significant. Even in the low-correlated

scenario, the reduction of active nodes number is however

still prominent (75% for vmax = 50 m/s) thus justifying the

adoption of a grouping and selection procedure even at rel-

atively high speeds.

7. Conclusion and Future Work

In this work a novel correlation-based node grouping and

selection algorithms has been proposed, that takes into ac-

count both sensing performance and mobility of secondary

nodes by introducing a leader selection metric that com-

bines node’s Pd and its stability. The performance of the
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proposed algorithm was evaluated and compared with pre-

vious work by computer simulations.

Simulation results show that by including stability in the

group leader selection criteria correlation-based sensing

can operate for longer time periods with acceptable per-

formance before an update is needed. In particular, the

proposed scheme led to a 38% decrease in the number of

updates while guaranteeing a network detection probability

above the required 0.95 threshold, at the price of a slight

reduction in the maximum value of the same probability.

It was also proven that the proposed selection procedure

guarantees the involvement of only 9% vs. 25% of nodes

in high vs. low-correlated scenario, respectively, achieving

in both cases a strong overhead reduction and energy con-

sumption by allowing most of the nodes to enter a power

saving mode.

The proposed algorithm requires the availability of informa-

tion about the nodes velocities. It should be noted however

that this information can be derived by means of outdoor

(GPS) and indoor positioning systems based on technolo-

gies like Wi-Fi or RFID. Furthermore, the algorithm can

equally operate on relative comparison between the nodes

mobility, rather than on their absolute speed. This rela-

tive information can be obtained by monitoring the rate of

topological change observed by a node (e.g. average num-

ber of neighbors varied per second). One could thus argue

that this assumption is overall more realistic than the one

of knowing exactly the local detection probability of each

node, shared by the algorithm proposed in this work with

most of the solutions for cooperative spectrum sensing pre-

viously proposed in the literature.

Future avenues for further research include the determina-

tion of the optimum balance between the nodes’ detection

probability and stability so to maximize the global detec-

tion probability and at the same time maximize the inter-

val between two grouping procedure updates. In addition,

the proposed scheme is currently being implemented in

a network simulator to better determine its impact on both

primary receivers and secondary network throughput.
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