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Abstract—In this paper a comparative study, restricted to

one-dimensional stationary case, between several Direction of

Arrival (DOA) estimation algorithms of narrowband signals is

presented. The informative signals are corrupted by an Addi-

tive White Gaussian Noise (AWGN), to show the performance

of each method by applying directly the algorithms without

pre-processing techniques such as forward-backward averag-

ing or spatial smoothing.

Keywords—array processing, Direction of Arrival, geolocaliza-

tion, propagation, smart antenna, spectral analysis.

1. Introduction

In array signal processing Direction of Arrival estimation

(DOA) [1], [2] stands for estimating the angles of arrivals

of received signals by an array of antennas. It is considered

an important processing step in many sensors systems, i.e.,

radar, sonar, Measure Electronic Surveillance (MSE), sub-

marine acoustics, geodesic location, optical interferometry,

etc.

There are many types of DOA algorithms that have been

proposed during the past four decades such as conven-

tional spectral-based, subspace spectral-based and statisti-

cal methods. Beamforming techniques [3]–[7] are straight-

forward and require low computational power but these

methods have low resolution [8]. That leads to introduction

of subspace-based algorithms [9]–[11] that use the eigen-

decomposition of output data covariance matrix in order

to obtain the so-called signal subspace or noise subspace.

However these methods become limited in case of larger

number of array sensors, many fast algorithms for DOA

have been proposed in recent years such as the propagator

method (PM) [12]–[14] without eigendecomposition with

low computational load. Unfortunately, this method is only

suitable to the presence of white Gaussian noise, and its per-

formance will be degraded in spatial nonuniform colored

noise. To overcome this problem, a modified PM algorithm

has been proposed with different computation method for

the propagation operator [15]. It is only obtained by the

partially cross-correlation of array output data which makes

it suitable for the case of spatially nonuniform colored noise

due to using the off-diagonal elements of array covariance

matrix.

This paper presents a comparative study that is restricted to

one-dimensional stationary case (azimuth) between several

DOA estimation algorithms of narrowband signals [16] that

are corrupted by uniform Additive White Gaussian Noise

(AWGN). The performance of each method is evaluated by

applying directly the algorithms on Uniform Linear Array

(ULA) without pre-processing techniques such as forward-

backward averaging of the cross correlation of array output

data R or spatial smoothing. The authors choose the key

factor for this evaluation to be the Signal to Noise Ratio

(SNR) of the environment surrounding the ULA and the

radiating sources while the number of snapshots constant

is maintained.

1.1. Problem Statement

Typical smart antenna architecture of base station can be

divided into the following functional blocks as shown in

Fig. 1 [16]. Radio signals arriving at the array antennas

are conversed from analog to digital form by downconver-

sion and sampling operations, next summation of the digi-

tized signals over all array elements produces single stream

output for further processing.
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Fig. 1. Typical front-end architecture of base station receiver.

Let’s consider an array of N elements receiving P signals

such that each element of the array contains zero mean

Gaussian noise, the output array is given by:

y[t] =
N

∑
k=1

wkxk[t] , (1)
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where:

x(t) = A(θ )s(t)+ N(t) (2)

x[t] = [x1(t), . . . , xN(t)]T , A(θ ) = [a(θ1), . . . , a(θp)] are

the received array data and the array manifold ma-

trix respectively, s(t) = [s1(t), . . . , sp(t)]
T and N(t) =

[n1(t), . . . , nN(t)]T stand for the source waveform vector and

sensor noise vector, respectively. In Eq. (2)

a(θi) =
[

1, e
j2πd

λ
sin(θi), . . . , e

j2πd(N−1)
λ

sin(θi)
]T

is the steering vector, and d is the distance between ele-

ments of the Uniform Linear Array (ULA), λ is the wave-

length of the propagating signals, θi is the angle of arrival

of the ith source and (.)T denotes the transposition of ma-

trix.

The array signal waveform is considered as stationary pro-

cess therefore the N ×N correlation matrix can be defined

as:

R = E
[

(X(t)−mx(t)).(X(t)−mx(t))
H
]

, (3)

where (.)H denotes the conjugate transposition of matrix.

In this study it is assumed that:

– the signals and the additive Gaussian noise are sta-

tionary and ergodic zero mean complex valued ran-

dom processes,

– the signals sources are not correlated,

– the set of P steering vectors is linearly independent

and the P signal sources are statistically independent

of each other,

– the number of sources P is known and the number

of sensors N satisfies the condition N ≥ 2P+ 2.

Under those assumptions the cross correlation matrix is

given by:

R = E
[

A(θ )S(t)SH(t)AH(θ )
]

+ E
[

(N(t)).NH(t)
]

= A(θ )RssA
H(θ )+ σ2IN , (4)

where Rss = E
[

S(t)SH(t)
]

is P×P source signal covariance

matrix, σ2 is the noise variance and IN stands for an N×N

identity matrix.

In practice, the exact covariance matrix R is unavailable and

must be estimated from the received data. The forward-only

estimate of covariance matrix is given by:

R̂xx =
1

K

K

∑
k=1

XXH
. (5)

In the Section 2 different algorithms for DOA estimation

are presented.

2. DOA Algorithms

2.1. Beamforming Techniques

The beamforming techniques are based on scanning all pos-

sible angles in the range [− π
2
,

π
2
] and measuring the output

power of the array such that the power spectrum has peak

when the given angle is the direction of arrival of one of

the incoming signal. The output signal y(t) is computed

using a weight vector w with the received data x:

y(t) = wHx(t) . (6)

Given N spanshots, the total output power of an array is:

P(w) =
1

N

N

∑
n=1

|y(tn)|
2 =

1

N

N

∑
n=1

wHx(tn)x
H(tn)w

= wH R̂xxw . (7)

Based on the Eq. (7) two main techniques have been de-

veloped.

2.2. Bartlett Method

Also known as method of averaged periodograms [3],

Bartlett method computes the power spectrum as follows.

Let w = a(θ ) be the steering vector with arbitrary scanning

angle:

a(θ ) =
[

1, e jµ
, . . . , e j(N−1)µ

]

,

µ =
−2π fc

c
d sinθ ,

where fc is the carrier frequency of the incoming narrow-

band signals, c is the speed propagation of the wave signals

and d stands for distance between array sensors.

The weight vector is normalized as the following:

w =
a(θ )

√

aH(θ )a(θ )
, (8)

and the spatial spectrum is then given by:

P(θ ) = Pbart(θ ) =
aH(θ )R̂xxa(θ )

aH(θ )a(θ )
. (9)

The weight vector w can be considered as spatial filter,

which has been matched to the incoming signal, the array

weighting equalizes the delays experienced by the signal on

various sensors to combine their respective contributions.

2.3. Capon Beamformer

Capon beamformer is an enhanced version of the Bartlett

method, when the sources to be located are closer than

the beamwidth, The Bartlett method fails in separating the

sources, for this purpose Capon in [4] proposed the maxi-

mum likelihood method to solve the for Minimum Variance
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Distortion Response (MVDR) of an array such that it max-

imizes the signal to interference ratio:

min
(

P(w)
)

subject to wHa(θ ) = 1 .

The resulting weight vector is given by:

w = wCapon =
R̂−1

xx a(θ )

aH(θ )R̂−1
xx a(θ )

(10)

Replacing the weight vector w in the Eq. (7) yields to the

power spectrum:

P(θ ) = PCapon(θ ) =
1

aH(θ )R̂−1
xx a(θ )

. (11)

2.4. Linear Prediction

The linear prediction method [5] is widely used in spectral

analysis and speech processing. It is based on the concept

of minimizing the mean output signal power of the array

elements subject to constraint that the weight on a selected

element in ULA is unity. The array weight vector is given

by:

w =
R̂−1

xx u

uH R̂−1
xx u

,

where u is the mth column vector of the identity matrix

INxN such that the index m represents the mth element

of the ULA. No optimized criterion is proposed for the

choice of this element.

The power spectrum can be computed as:

P(θ ) = PLP(θ ) =
uH R̂−1

xx u

|uH R̂−1
xx a(θ )|2

. (12)

The choice of the mth element affects the resolution capa-

bility of this method which is dependent on the SNR, and

the minimum angle separating the sources.

2.5. Maximum Entropy

Maximum entropy technique [9] is an improvement of the

beamforming approach, based on extrapolation the covari-

ance matrix. The extrapolation should be selected with

maximized signal entropy where its maximum is achieved

by searching for the coefficients of an auto-regressive (AR)

model that minimize the expected prediction error:

a = argmin
{

aH R̂xx

}

,

subject to the constraint that the first AR coefficient satisfies

aHe1 = 1 where a = [a1,a2, . . . , aN ]T and e1 is the first

column of the identity matrix IN . Applying the Lagrange

multiplier technique yields to

a =
R̂−1

xx e1

eT
1 R̂−1

xx e1

.

Next the spatial spectrum can be computed as

P(θ ) = PME(θ ) =
1

|a(θ )HC j|
2
, (13)

where C j represents the jth column of the inverse cross

correlation matrix R̂−1
xx .

The quality of the resolution of the maximum entropy

method depends on the choice of column C j.

2.6. Pisarenko Harmonic Decomposition

Pisarenko harmonic decomposition method [9] minimizes

the Mean Square Error (MSE) of the array output under the

constraint that the norm weight vector to be equal to unity.

The eigenvector that minimizes the MSE corresponds to the

smallest eigenvalue of the cross-correlation of array output

data, the output power is given by:

P(θ ) = PPHD(θ ) =
1

|a(θ )H ē1|2
, (14)

where ē1 is the eigenvector associated with the smallest

eigenvalue σ1.

2.7. Minimum Norm

The minimum norm technique [1], [9] is generally consid-

ered to be a high-resolution method which assumes a ULA

structure.

The algorithm is described as the following. After esti-

mating the cross correlation matrix R̂xx, a Singular Value

Decomposition (SVD) is performed to extract the matri-

ces U , S and V such that R̂xx = USV ′. Next, a noise

subspace is constructed by selecting the set of vectors

EN = U(:,P + 1 : N) where P and N denotes the number

of radiating sources and the number of elements in the

ULA respectively. Constructing the spectrum is based on

minimum norm vector lying in the noise subspace whose

first element equals 1 and having minimum norm, this con-

dition is satisfied by using the first column of the identity

matrix u = [1 0 0 . . . 0]T to compute the following spatial

spectrum:

PMN(θ ) =
1

|a(θ )ENEH
N u|2

, (15)

where a(θ ) is the array steering vector and EN is the

noise subspace with columns representing the eigenvectors

[e1,e2, . . . , ,eN−P].

2.8. MUSIC Algorithm

Multiple Signal Classification (MUSIC) method [10] is

widely used in signal processing applications for estimating

and tracking the frequency and emitter location.

This method is considered as a generalization of the Pisa-

renko’s one [9]. It is based on spectral estimation which

exploits the orthogonality of the noise subspace with the

signal subspace.
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Assume that R̂xx is NxN matrix with rank P, therefore it

has N −P eigenvectors corresponding to the zeros/smallest

eigenvalues in the absence/presence of noise. The eigende-

composition of R̂xx is given by:

R̂xx =
N

∑
i=1

λiqiq
H
i = Qs∆sQ

H
s + Qn∆nQH

n , (16)

where

∆s = diag[λ1,λ2, . . . ,λP] ,

∆n = diag[λP+1,λP+2, . . . ,λN ] ,

λ1 > λ2 > . . . > λP > λP+1 = λP+2 = . . . = σ2
N ,

Qs = [q1,q2, . . . ,qP, ] is the signal subspace corresponding

to ∆s and Qn = [qP+1,qP+2, . . . ,qN ] is the noise subspace

corresponding to ∆n.

The MUSIC spectrum is given by:

PMUSIC(θ ) =
1

aH(θ )QnQH
n a(θ )

. (17)

When scanning the angles in range [− π
2
,

π
2
], if θ is DOA of

one of signals, so a(θ )⊥ Qn the denominator is identically

zero and the spectrum identifies the angle as a peak.

2.9. Propagator Method

Unlike the MUSIC algorithm, the propagator method

[12]–[14] is computationally low complex because it does

not need eigendecomposition of the covariance matrix, but

it uses the whole of it, to obtain the propagation operator.

Therefore, this algorithm is only suitable to the presence of

white Gaussian noise and its performance will be degraded

in spatial non-uniform colored noise. The propagator is

constructed as the following. The covariance matrix can

defined as:

R̂xx =
[

R1 R2

]T
,

where R1 and R2 are PxN, (N−P)xN matrices respectively.

In noiseless system:

R2 = PHR1 . (18)

In noisy environment the least mean squares technique

(LMS) is used to estimate P that minimizes the Frobenius

norm ||R2 −PHR1||:

PH = R2(R
H
1 R1)

−1RH
1 . (19)

Next, the matrix Q is constructed, such that:

QH =
[

PH − IN−P

]

. (20)

The spectrum is given by:

P(θ ) = Ppropag(θ ) =
1

||QHa(θ )||2
. (21)

2.10. Partial Covariance Matrix

Partial covariance matrix technique [15] is an enhanced

version of the propagator method, where no eigendecom-

position is needed. The different approach for computing

the propagation operator is based on using three submatri-

ces of the estimated cross-correlation matrix R̂xx. The array

manifold matrix can be portioned as:

A =
[

AT
1 , AT

2 , AT
3

]

, (22)

where Ai, i=1,2,3 is matrix with dimensions P×P, P×P

and (N −2P)×P respectively.

The following partial cross-correlation matrices of the array

output are defined as :

R12 =E
[

X(1 : P, :)X(P+ 1 : 2P, :)H
]

=A1RssA
H
2 , (23)

R31 =E
[

X(2P+ 1 : N, :)X(1 : P, :)H
]

=A3RssA
H
1 , (24)

R32=E
[

X(2P+1 : N, :)X(P+1 : 2P, :)H
]

=A3RssA
H
2 . (25)

Based on these sub-matrices, the matrix Q is:

QH = [R32R−1
12 R31R−1

21 −2IN−2P]

Multiplying Q with the steering matrix yields to:

QHA = 0,QHa(θk) = 0 (k = 1,2 . . . , p) . (26)

The spectrum is then, similarly to the propagator method,

given by:

P(θ ) = Ppartial(θ ) =
1

||QHa(θ )||2
. (27)

3. Simulation Results

A comparative study [17] has been made between 7 algo-

rithms for DOA, using 4 elements and 2 sources with fixed

SNR = 10 dB and the 2 sources were separated by d = 80◦.

This study focused on the performance of the algorithms

based on the number of snapshots by simulating the first

time with L1 = 10 then with L2 = 100 snapshots.

In this paper, real life scenario is simulated by studying the

performance of each method based on the noise environ-

ment by testing with SNR1 = 1 dB (high noise level) and

SNR2 = 20 dB (low noise level). To evaluate the Rayleigh

angle resolution limit, for example the second and the third

radiating sources were chosen to be separated by 6◦ while

the number of snapshots was fixed.

The authors consider Uniform Linear Array (ULA) com-

posed of N = 10 identical sensors with half wavelength

inter-element spacing and P = 4 almost equally powered

emitting sources with carrier frequency f c = 1 GHz. The

distance between two sensors is d = 15 cm so the total

distance of the array is 135 cm and K = 200 snapshots.

For simulation on evaluating each method the Monte-Carlo

method was used such as each result is an average of

L = 100 runs.

44



Comparative Study between Several Direction of Arrival Estimation Methods

The sources are non-coherent as given by the normalized

cross-correlation matrix Rss:

Rss =









1.00 0.00 0.00 0.04

0.00 1.00 0.05 −0.05

0.00 0.05 1.00 0.08

−0.04 −0.05 0.08 1.00









.

In Table 1 the configuration of the described sources is

presented.
Table 1

Sources characteristics

Sources S1 S2 S3 S4

DOAS [◦] –24 15 21 70

Power [W] 1.20 1.30 1.44 1.50

Figure 2 shows the results of the Bartlett spectrum, ap-

parently the maximum resolution for this method is more

than 6◦, which makes inappropriate for this case. In the

previous studies [17], the authors show that ideal resolu-

tion of this algorithm is 20◦.
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Fig. 2. Bartlett spectrum.

Figure 3 represents the Capon beamformer spectrum

which is better performing than the Bartlett method, at

SNR = 20 dB the algorithm detects well the sources, but
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Fig. 3. Capon beamformer spectrum.

in high-level noise it fails to separate the second and the

third sources located at (15◦, 21◦). The numerical tests

at SNR = 1 dB showed that the algorithm can separate the

sources with minimal difference of 9◦.

Figure 4 shows the result of Linear Prediction algorithm, by

choosing the fifth element as the vector u, in the Eq. (12),

from the identity matrix I10×10

u =
[

0 0 0 0 1 0 0 0 0 0
]T

This algorithms performs better than the two previous tech-

niques, it separates well the closed sources at low SNR.
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Fig. 4. Linear prediction spectrum.

Figure 5 shows the result of the maximum entropy DOA

estimate, by choosing the vector C̄ j as the first column of

the inverse cross-correlation matrix R̂−1
xx in the Eq. (13).
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Fig. 5. Maximum entropy spectrum.

This technique performs well by separating the sources at

both noise levels which makes it better than Bartlett, Capon

and linear prediction methods, however the choice of the

column C̄ j influences the performance. As in [17], the

jth column was chosen to be in the center of the cross

correlation matrix, but in this study the first column was

chosen which gives also good results.

In Fig. 6, the application of the Pisarenko harmonic decom-

position, at SNR = 20 dB, gives almost the same spectrum
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of the maximum entropy method, while at SNR = 1 dB,

the spectrum detected well the first source at −20◦, could

not separate the second and the third angles while the last

source is detected at 67◦, which makes this technique non

convenient in low SNR condition.
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Fig. 6. Pisarenko harmonic decomposition spectrum.

Figure 7 illustrates the minimum norm spectrum which is

almost identical with maximum entropy method but with

higher number of floating point operations.
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Fig. 7. Minimum norm spectrum.

It should be noted that all the methods are computed using

MATLAB and the results are plotted in decibel using the

formula

P(dB) = 10log10

(

spectrum

Max[spectrum]

)

,

to produce a unique frame for comparison [18].

The MUSIC algorithm gives the best result compared to the

previous algorithms, as illustrated in Fig. 8, because it de-

tects well all the sources in any noise level and its spectrum

does not contain side lobes unlike other techniques.

Note that in high level noise, the spectrum has minimum

magnitude of –50 dB while the minimum norm presents

a minimum at –60 dB.
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Fig. 8. MUSIC spectrum.

Although, the MUSIC algorithm may fail to resolve the

high correlated sources which makes preprocessing tech-

niques like the forward backward averaging or spatial

smoothing mandatory to decorrelate the sources.

The propagator method, shown in Fig. 9, has identical per-

formance in both noise levels with minimum apparition of

side lobes.

The main advantage of the propagator method is that

the constructed matrix Q in Eq. (20) does not need

any eigendecomposition, hence the complexity is reduced

to NPK + O(P3) [9].
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Fig. 9. Propagator spectrum.

Finally, the partial covariance matrix algorithm (without

eigendecomposition) is shown in Fig. 10. The results are

almost identical with the propagator method, except a no-

ticeable increase in the two side lobes. What makes this

technique better than that of the PM method is that the

complexity [15] is reduced to (N−P)PK+O(P3) and takes

only partial cross correlation matrices to compute the spec-

trum. Therefore it is effective in the case of nonuniform

colored noise.

The second simulation is based on the average Root Mean

Square Error (RMSE) over K = 100 runs between the true

DOAs and the nine normalized spectrums, with chrono-
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Fig. 10. Partial covariance spectrum.

logical order as described in this paper, computed for two

values of SNR:

RMSE(P̂(θ ),P(θ )) =

√

1

N

N

∑
n=1

(P̂(θn)−P(θn))2 .

Figures 11–12 represent the RMSE between each method

and the true spectrum for SNR = 1 dB and SNR = 20 dB

respectively.
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Fig. 11. RMSE, SNR = 1 dB.
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Fig. 12. RMSE SNR = 20 dB.

4. Conclusions

In this paper, some algorithms for one dimensional narrow-

band direction of arrival (DOA) estimation in stationary

case for smart antennas, and for spatially uniform AWGN

was compared, starting with the Bartlett method to the re-

cent algorithm which is the partial covariance. In order

to evaluate its performance four non-correlated and almost

equally powered emitting sources was considered such that

two of the sources are separated of 6◦, the SNR of 1 dB

and 20 dB was the key factor for evaluation. The results

showed that in high-level noise, the minimum norm algo-

rithm performs well while in the low-level noise the MU-

SIC, propagator and partial covariance matrix methods are

almost the same and give good results.

In the perspective study, the authors will try to evaluate

the partial covariance matrix algorithm in the case of two

dimensional wideband sources.
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