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Abstract—The evolution of ICT systems in the way data is

accessed and used is very fast nowadays. Cloud computing is

an innovative way of using and providing computing resources

to businesses and individuals and it has gained a faster pop-

ularity in the last years. In this context, the user’s expec-

tations are increasing and cloud providers are facing huge

challenges. One of these challenges is fault tolerance and both

researchers and companies have focused on finding and devel-

oping strong fault tolerance models. To validate these models,

cloud simulation tools are used as an easy, flexible and fast

solution. This paper proposes a Fault Injector Module for

CloudSim tool (FIM-SIM) for helping the cloud developers to

test and validate their infrastructure. FIM-SIM follows the

event-driven model and inserts faults in CloudSim based on

statistical distributions. The authors have tested and validated

it by conducting several experiments designed to highlight the

statistical distribution influence on the failures generated and

to observe the CloudSim behavior in its current state and im-

plementation.

Keywords—cloud simulation, continuous distributions, discrete

distributions, fault injector.

1. Introduction

Cloud computing is in this moment the most used com-

putational technology with implementations from private

in-house environments (private clouds) to public clouds

offered commercially to the customers and all sharing

the same characteristics providing reliable services, fault

tolerant hardware, and scalable computational power [1].

Born from the idea of a system that can serve seamlessly

and transparently the end user, the cloud system architec-

ture needs to be able to act like a reliable infrastructure

with a high availability and degree of resource integration

within.

In this context, one of the top things that a cloud provider

must have in mind is the fault tolerance assurance. The lit-

erature provides various fault tolerance techniques [2], [3]

and both research institutes and companies are still dig-

ging for finding complex and better solutions. The ques-

tion rising at this moment is “how to better validate these

models?” One of the most popular methods is cloud sim-

ulation based on a dedicated tool. A simulation represents

an environment in which a system that behaves similarly

to another system, but is implemented in an entirely dif-

ferent way [4]. It provides the basic behavior of a system

but it may not reproduce the exact output as the real one.

It is important to distinguish between simulation and em-

ulation, which presents a system, that behaves exactly like

another system, and it is expected to have the same output

as the real one. In other words, it represents a complete

replication of another system, but operating in a different

environment. The cloud simulation top benefits are: flexi-

bility, easy to customize and low cost [5], [6]. Designing,

developing, testing and afterwards redesigning and retesting

on the cloud can be expensive.

For this work, the authors have chosen CloudSim, a widely

used and easy to integrate simulation framework together

with CloudReports a graphical extension for CloudSim.

The aim of this work is to create a module that can au-

tomatically inject faults into CloudSim order to verify its

behavior in case of a fault. The questions rising when de-

signing such a module are: when to inject a fault? Where

to place the fault? How much time does it take?

For answering the first question, there are three different

kinds of simulation systems: continuous, discrete and dis-

crete-event systems. A continuous system modifies its state

continuously in time. On the other hand a discrete system

is observed only at some fixed regular time points. A real

life analogy would be the health exam that we are tak-

ing every six months. In a discrete-event system, its state

is determined by random event times t1, t2 etc. A con-

tinuous system will determine the time until the first fail-

ure, but a discrete system will found out the period between

two failures. In our tool we considered both discrete and

continuous distribution based event generator. The fault in-

jection module will help the end user in determining the

system reliability and drawing conclusions like: the failure

caused by a network bottleneck will respect a Weibull dis-

tribution with parameters β = x and θ = y hours. By having

these variables one can find out the system reliability.

Regarding the second question, the following type of fail-

ures is considered: host failures (memory and PEs failure),

VM creation failures, and high level failures like cloudlets.

For the third question the following assumptions have been

made: the affected resources will be down during the rest

of the simulation period and the VM creation failure for

a specific host will be activate only for the moment when

the event is introduced into the system.
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In this context, this paper proposes a Fault Injector Mod-

ule for CloudSim tool (FIM-SIM) for helping the cloud

developers to test and validate their infrastructure. FIM-

SIM follows the event-driven model and inserts faults in

CloudSim based on statistical distributions.

This paper is structured as follows. Section 2 covers the

critical analysis of exiting work, focusing on fault tol-

erance and various cloud simulation tools, together with

CloudSim, the chosen solution. Section 3 describes the

model of proposed simulation model, the statistical dis-

tribution used, system architecture and interaction with the

other modules. Section 4 describes the experimental setup

and results obtained. The paper ends with conclusion and

future work, presented in Section 5.

2. Related Work

In order to test a system’s capabilities and availability, his

response in exceptional situation is analyzed and moni-

tored [7]–[9]. Fault injection [10] is the key operation for

testing and creating these abnormal situations for a system,

offering him as input faulty states. The motivation around

this kind of testing where the system is intentionally ex-

posed to unwanted scenarios is that real life events are hard

to collect and preferable to be avoided. With these tech-

niques we can understand failures and validate the system

availability to extreme scenarios [11].

The most common failures are: crash, time out of response,

incorrect response message, arbitrary fails (byzantine

failure) [12]. Beside the above classification of commonly

failures we still have the hardware fails encounters, which

are most of the times bypassed by redundant components of

server’s key items. Here it’s worth to mention disks failure,

network connectivity issues (network overload or adapter

failure) and not least the environment incidents (fire, floods,

earthquakes, etc).

To define the server availability and viability, the industry

uses most of the times the indicator Mean Time To Failure

(MTTF). This parameter is defined as the up-time divided

by the number of failures. As a short example in cloud

storage, is a Google study in which the availability propri-

ety of a storage system is 4.3 MTTF and the most failure

events (approx. 10%) last longer than 15 minutes [13]. As

a result, many failures are correlated with each other and

can chain to a series of critical events that can take down

the system.

The arbitrary fail is by far the most difficult failure to pre-

dict due to its apparently randomness. The fault tolerant

technique, designed to prevent such type of failures, is in-

spired by the Byzantine Generals Problem [14]. In this

case, the system’s components will fail in arbitrary ways

and the overall system may respond in an unpredictable

way unless is designed to be fault tolerant. We can take

a logical example of 3 functions in which the result of the

first function it will serve as an input for the second func-

tion and so on. If the first output of the first function it

will have even a small round-off error this will propagate

and create a much larger error until the values produced

are worthless. This is a typical case of a small deviation

that can cause a very powerful impact over the whole sys-

tem. In real life we had two such examples: Amazon S3

was down for several hours due to a single-bit hardware

error propagated through the entire system and Google –

due to a code type error (“;” misplaced) system was propa-

gating no availability through servers around the world. In

this case, the fault injection will help the cloud provider by

injecting into the system several events, following a math-

ematical distribution, with the main target of failing sev-

eral components, for example, the create virtual machine

module.

In [8] an Adaptive Fault Tolerance in real-time cloud com-

puting is proposed. This scheme tolerates the faults on the

reliability basis of each computing node. A virtual machine

is selected for computation if it has a higher reliability level

and can be removed, if does not perform well for real time

applications. There are two main types of nodes: a set of

virtual machines, running on cloud infrastructure, and an

adjudication node. The virtual machine contains the real

time application algorithm and an acceptance test for its

logical validity. On the adjudicator, there is a time checker,

reliability assessor and some decision mechanism modules.

The location of adjudication node depends on the type of

the real time applications and the scenario in which they

are used. It can be a part of the cloud infrastructure or can

be a part of the user infrastructure. Generally, it is placed

near to the sensors, actuators, and submission node.

The proposed Fault Injector Module will also help the

above proposed adaptive fault tolerance module, by offering

the context of determining the reliability of a resource in

a certain scenario [15]. A critical analysis of existing tools

for implementing fault tolerance techniques is presented

in Table 1.

Cloud computing, as the successor of the grid systems,

has all the attributes of the parallel system gathering a col-

lection of virtualized nodes, dynamically provisioned and

presented as one unified computing resource. The resources

are allocated through the rules of service level agreements

and negotiated between the service provider and consumer.

Analyzing and testing the performance of a distributed

system such as a public cloud has become more of a chal-

lenge. Cloud computing environments are offering a dy-

namically large pool of resources, configurable and option-

ally rebalanced. A full test of a public cloud can result

in a significant cost and time, with the possibility to go to

thousands of processing core involved. The most feasible

option to test the service discovery performance, schedul-

ing, monitoring, etc., of these systems without a scalable

environment is a simulation tool. This tool will need to be

able to reproduce the relevant tests and behavior of a real

system.

iCanCloud is a modeling and simulation platform for cloud

computing systems. The main purpose of the platform

is to provide to the user useful information about the

cost of given applications ran on the cloud specific hard-
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Table 1

Existing tools for implementing fault tolerance techniques

Fault tolerance
Policies System

Programming
Environment

Fault Application
techniques framework detected type

Self-healing,
Reactive/ Virtual Process/ Load balancing/job migration,
Proactive

HAProxy Java
machine node failures Fault tolerancereplication

Check-pointing Reactive SHelp SQL, Java
Virtual Application Fault
machine failure tolerance

Check-pointing,
Reactive/ Virtual Host, Faultretry,
Proactive

Assure Java
machine Network failure toleranceself-healing

Job migration,
Reactive/ Cloud Application/replication,
Proactive

Hadoop Java, HTML, CSS
environment node failures

Data intensive
Sguard, Resc

Replication,
Reactive/

Amazon
Cloud Application/ Load balancing/Sguard, task

Proactive
Amazon EC2 Machine Image,

environment node failures Fault toleranceresubmission Amazon Map

Power
datacenter

Fault injector

H1

H’1

Hn

H’n

Cloudlet

Cloudlet

Cloudlet

Broker

Fig. 1. FIM-SIM model system architecture.

ware and predict the trade-offs between cost and perfor-

mance [16].

GreenCloud is packet-level simulator with the focus on the

cloud communications, cloud computing data centers mod-

ule with energy-aware modules. Also as a focus in data

centers for energy saving, the tool is offering a detailed

modeling for energy consumption by the IT equipment:

computing nodes, network infrastructure and communica-

tion links [17].

The chosen simulation tool for proposed solution is

CloudSim. The modularity of the tool made it the perfect

choice. Each component is implemented as a Java class

and can be extended very easy. CloudSim can provide an

extensible simulation framework generalized by the main

properties of the cloud concept [18].

3. FIM-SIM: Fault Injector Module for

CloudSim

This section presents the proposed solution by providing

further details on the implementation and the architecture.

3.1. FIM-SIM Model

The authors have developed a run-time, event driven fault

injection module for cloud simulation. At random moments

of time [19] it will generate an event and it will simulate

a failure in the cloud system.

Its architecture is described in Fig. 1. We can notice that

the Broker will send one or more cloudlets to the Data-

center and the Datacenter will schedule it, according with

a Scheduling Policy, on a host. Each entity of CloudSim

can send a certain event to another. In this case, the Fault

Injector will send a message to the Datacenter and it will

notify it about any failures that have occurred in the sys-

tem. Sending the failure event is based on the following

command:

sendNow(dataCenter.getId(),

FaultEventTags.HOST FAILURE,

host);

One of the main characteristics of this fault injector module

is the fact that it generates the events based on statistical

distribution, both discrete and continuous. The fault injec-

tor is a thread that will be present for the whole simulation
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period and it will try to insert faults based on a statistical

method for generating random numbers.

For example at the moment t, the inject function will do

the following:

mean = statisticalDistrbution.mean;

x = statisticalDistrbution.sample();

if (x > mean) {
generateFault();

} else {
Continue;

}

3.2. Statistical Distributions used by FIM-SIM

This section presents various statistical distributions: the

ones that already exist in CloudSim plus another one – Pois-

son. It also presents the key concepts, implementations and

further details for cloud simulation, fault tolerance and var-

ious simulation tools. We describe here only the Weibull,

Poisson and Pareto distributions. The other ones used in

our model are:

• Exponential distribution, used for analysis of the

Poisson process,

• Uniform distribution (used very well in situation of

risk analysis but also in algorithms for random gener-

ation of numbers due to its propriety of given equal

probability over a known range for continuous distri-

bution);

• Gamma distribution – model exponentially sums of

random variables;

• LogNormal distribution – Galton distribution, used

very often for reliability modeling of the application

in order to achieve fault tolerance scenarios)

• Lomax distribution – Pareto 2 distribution, sed as an

alternative to the exponential distribution with data

heavily tailed;

• Zipf distribution, a discrete distribution with many

applications in linguistics and modeling rare events.

Weibull distribution – for life data analysis, it is the most

used statistical model [20]. As a continuous probability

distribution, it is used in continuous simulations with ap-

plication in economic forecasting, weather forecasting and

all problems based on the solution of time dependent par-

tial differential equations. The probability density function

of a Weibull random variable is:

f (x;λ ,k) =

{

k
λ

(

x
λ

)k−1
e−(x/λ )k

x ≥ 0,

0 x < 0,
(1)

where λ is the scale parameter and k the shape parameter

of the distribution function. The Weibull distribution, in

particular cases, it interpolates between two known distri-

bution: exponential distribution (where k = 1) and Rayleigh

distribution (where k = 2). If we define the random Weibull

variable x as time-to-failure then we will have a distribution

where the rate of failure is proportional to a power of time.

In this way, the Weibull distribution changes dramatically

with the value of the shape parameter k. This parameter in

the interval (0,1) could be interpreted as follows:

• failure rate decreases in time for k < 1,

• failure rate increases with time for k > 1, an example

here could be an aging process that is likely to fail

as time goes by,

• constant failure rate in time for k = 1 (random exter-

nal events are causing the failure).

The hazard rate of the distribution or failure rate is given

by:

h(x;k,λ ) =
k

λ

( x

λ

)k−1

. (2)

The Poisson distribution is a very useful and used dis-

tribution in experiment because many random events are

following the pattern of this distribution [21]. The Poisson

distribution is a discrete probability distribution that can be

used to calculate the probability of certain event number to

occur in a fixed interval of time and space. The events con-

sidered should be independent and with a known average

occurrence rate. The probability function of the Poisson

distribution for a given discrete random variable has the

following definition:

f (k;λ ) = Pr(X = k) =
λ ke−λ

k!
. (3)

The notations used by the distribution are the following:

x = k means actual number of success resulted from the

Poisson experiment, λ is the average number of successes

that occurs in a certain known interval. In the Poisson

experiment, the probability of a success to occur is propor-

tional to the size on the interval/region and the smaller is

the interval of time or region the probability will be close

to zero.

Pareto Distribution – the distribution is named after the

engineer Vilfredo Pareto and used to describe observable

events in many fields of expertise. The statistical analy-

sis [22] of the distribution can reveal the key events, which

influence significantly the events chain part of the distribu-

tion. After rigorous analysis in quality control processes,

charting the events based on the distribution, the Pareto

rule was defined saying that 80% of the problems (events)

are cause by 20% of key events/actions done wrong. The

survival function is given by the probability of the Pareto

random variable to be greater than some number x (xm is

the scale parameter and α is shape parameter for the Pareto

distribution):

F(x) = Pr(X > x) =







(xm

x

)α
x ≥ xm,

1 x < xm.
(4)
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The distribution can be used to describe many situations for

equilibrium found in large/small items or events and make

observations about the effectiveness of the process steps.

3.3. Integration in CloudSim

While describing CloudSim is important to mention the

main entities/concepts its based on, in terms of termi-

nology:

• Processing element (PE) or the unit responsible for

computational execution. It can be seen as the small-

est unit of the system responsible for the completion

of a certain task;

• datacenter represents the resource provider. It is

responsible for managing the available resources, i.e.

hosts, PEs, VMs, memory;

• broker is responsible for mediating between the user

and the datacenter. It represents the users needs. It

sends the cloudlets for scheduling to the datacenter,

monitors the cloudlets status and it informs the user

about current state of his requirements;

• cloudlet represents the user requirement (a task for

the cloud provider). It is characterized by length, PEs

number (the number of PEs required for the cloudlet

to be done);

• host is a physical resource characterized by a number

of PE and RAM capacity (a computer);

• Virtual machine (VM) is a software-based emula-

tion of a computer.

Datacenter Registry Datacenter broker

Registration

Query

Available datacenters

Get characteristics

Create VMs

Tasks scheduling

Tasks completion

Fig. 2. CloudSim communication model.

The entities in CloudSim communicate through messages.

Since host and VM are static entities, each change in their

state should be realized by the datacenter. Figure 2 presents

an example of the messages flow during the simulation

between the broker and the datacenter. The broker, based

on the simulation configuration (number of cloudlets and

their specification) will request the VM creation, cloudlets

scheduling and it will wait to be informed by the datacenter

when the cloudlets completion is realized.

The Fault Tolerance Module is extending the CloudSim

core functions with the following entities:

1. FaultInjector

– extends the SimEntity class;

– it will be started at simulation startup along with

the other entities from the system;

– it is responsible for inserting fault events at ran-

dom moments of time;

– the random generation of moments of time is

based on a statistical distribution.

2. FaultEvent

– extends the SimEvent class;

– describes a fault event: source, destination, time

and type;

– tag type: HOST FAILURE,

CLOUDLET FAILURE,

CREATE VM FAILURE;

– it is created in the Fault Injection Module.

3. FaultHandlerDatacenter

– extends the datacenter class;

– processes fault events sent by the FaultGenera-

tor;

– it updates the cloudlet execution/status accord-

ing to the fault event type;

– it handles VM migration;

– since host and VM are static entities, all its

state modification should be processed by the

datacenter.

3.4. Fault Injector Integrated with CloudReports

The authors have chosen to integrate FIM-SIM in

CloudReports, a GUI implementation for CloudSim. The

module is an integrated part of CloudSim and can be

further used in any other application that is based on

CloudSim. CloudReports is an extension that can be used

with CloudSim as a simulation tool. It’s basically a graph-

ical tool that helps to simulate distributed system environ-

ments, providing an easy interface to user and pluggable

extension.

To meet all CloudSim proprieties, CloudReports can pro-

vide a number of datacenters, each been 100% customiz-

able, and run them as a provider of services or in cloud

terms as an Infrastructure as a Service (IaaS). The cus-

tomers to this solution are also customizable with a full

cost and resource allocation. They can modify and set the

number of VMs needed as a user. The broker can allocate

the resources and track down the consumptions. Virtual

machines can be entirely customized from CPU processing
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power to RAM and network bandwidth but can also run

scheduling algorithms for tasks in place.

As this is a graphical tool, CloudReports can generate

reports for each simulation from raw data to processed

data. Those reports that can be displayed as HTML reports

or exported for further analysis in third-party application

tools. This application has been built on top of CloudSim

as a framework for modeling and simulation of IaaS by

Thiago T. Sa for final graduation project at Federal Uni-

versity of Ceara, Brazil. This software is licensed under

GNU GPL 3.0.

This application have been chosen based on the fact that it

provides a friendly GUI that permits easy creation, mod-

ification and removal of any cloud component. In addi-

tion, the fault injector was integrated in the graphical in-

terface, allowing two options: enable/disable fault injec-

tor and choose the statistical method for generating the

events.

As mentioned before one of the Cloud Reports benefits

is its logging and reporting system, both in raw data and

graphic interface. One can obtain all data types about the

system performance, i.e., power consumption, storage us-

age, CPU performance needed and bandwidth used from

provider and customer perspectives. In addition it of-

fers information about the cloudlets successfully finished,

the execution time evolution, the average start and finish

time, etc.

4. FIM-SIM Evaluation

The several experiments have been conducted with the main

goal of noticing CloudSim behavior in case of a failure oc-

currence, the overall system performance and the rate of

faults generated based on the statistical distribution cho-

sen. In performed tests the number of hosts was varied

from 10 to 30 and the number of VMs from 4 to 10. The

cloudlet generation is dynamic and continuous for the ob-

servation time specific to each simulation. It is realized by

CloudReports broker: at every cloudlet finish it will gen-

erate another one with a random length. For this reason,

the total number of cloudlets sent in a period of time t,

may vary from simulation to simulation, even if all the

describing parameters are the same.

The authors have inserted 2 types of failures: host fail-

ures and high level failures (cloudlet failures caused by any

networking problem that CloudSim can not control). The

second type of failures have been chosen for the tests where

we followed only the faults generation rate or the relation-

ship between the statistical parameters and total number of

failures generated.

The experiments for VM CREATION, VM DESTROY and

VM SCHEDULING ERROR faults are no relevant because

the CloudReports simulations are not dynamic so it does

not permit the dynamic creation of other VMs or further

host integration. In this case, it was out of the target to

focus on these types of failures since we have wanted to

notice the system behavior during a simulation.

4.1. Poisson Failures Distribution

In the first experiment a 10 hosts, 4 VMs and an observation

time of one hour have been chosen. There were failures

generated for each of them and starting with t > 50 minutes

the system failed to provide requests. When the number of

hosts was modified to 30, the system continued to execute

the cloudlets. It can be noticed that there is a tendency

to generate more faults in the second half of the observed

interval (see Fig. 3).
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Fig. 3. Poisson failures distribution.

The host selection process was randomly for every moment

that was considered a fault. It is important to mention that

CloudSim has a sequential method of selecting the host

that will be eligible for migration (based on a power con-

sumption limit). In this case, if the selection of the next

host to be failed is also sequential we will have a very

big number of migrations generated. The overall perfor-

mance of the cloud will be affected in terms of response

time and resources consumption. The success rate it is not

affected. Table 2 presents a short example of the number

of migrations generated for several randomly host chosen

simulations and for one sequential.

Table 2

Migrations generated for several simulations

Simulation ID Number of migrations Hosts implied

1 4 2

2 12 4

3 8 3

4 8 3

5 4 2

Sequential 44 11

As a brief conclusion, an average rate of 4/8 migrations

can be expected, which will bring a better performance to

the system then 44.

4.2. Weibull Failures Distribution

In this case the cloudlets failures for 2 different customers

have been inserted, chosen in an alternative way, randomly

each other. Here we can notice that the failures are spread
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all over the interval with a frequency rate of at every 5 min-

utes (see Fig. 4).
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Fig. 4. Weibull failures distribution.

4.3. Exponential Failures Distribution: λλλ Variation

For the exponential distribution the λ is increased and

growing failures number is observed (see Fig. 5).
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Fig. 5. Exponential distribution failure rate (λ variation).

4.4. Pareto Failures Distribution

In the case of Pareto distribution mostly the same number

of failure is obtained generated without any observable rela-

tionship between the parameters and faults injected. How-

ever the maximum value of failures inserted was 22 (see

Table 3).

Table 3

Pareto Distribution Results

α xm Mean Number of faults

1.5 0.5 0.15 9

2 0.5 1 14

3 0.5 0.75 20

4 0.5 0.66 21

5 0.5 0.625 22

10 0.5 0.555 22

20 0.5 0.52 22

50 0.5 0.51 22

100 0.5 0.5005 22

2 1 2 14

2 2 4 14

2 3 6 14

2 10 20 14

2 100 200 14

4.5. System Performance without VM Migration

For the last experiment the VM migration was deactivated

and a 10 different simulations without any change in the

initial state of the system were run. The results are pre-

sented in Fig. 6 The best success rate obtained, in case of

a host failure, depending on the random sequence of fail-

ures was 52%. The events were generated based on Poisson

distribution.
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Fig. 6. System performance without VM migration.

Other observations realized during the performed experi-

ments:

• CloudSim can assure host failures through migration;

• If a failure is sent during the execution of some

cloudlets those cloudlets will fail even though a VM

migration was started. A success rate of 90–100%

was obtained;

• It does not resubmit the failed cloudlets;

• CloudReports is based on power aware module: it

will generate migration if the power consumption has

level up at certain threshold.

5. Conclusion

The work presented in this paper can be summarized as

follows. A Fault Injector Module, named FIM-SIM, have

been designed and implemented, on cloud simulation with

the main goal to provide a helpful tool for validation and

testing of various fault tolerance models or any new policy

that can be faulty. In authors vision, the main characteris-

tic of this fault injector is its intention to reproduce faults

in a more natural and realistic way. We all have faced some

moment in times when something went wrong and we have

described it as “randomly happen”. Maybe, in some cases,

randomly is not so randomly as it seems to be. Probably

there are failures that tend to happen with a certain fre-

quency or tend to respect a certain pattern in time. For

these situations a Fault Injector Module have been built

that tends to produce faults event according to a certain

distribution.

The authors have built FIM-SIM module as a integrated

part of CloudSim and it was extended with CloudReports,
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a GUI solution for CloudSim. This module was designed

as an event generator with various ways of “randomly” gen-

erating the events in time following distributions as: a Pois-

son, Weibull, Gamma, Pareto, and Exponential.

In conducted experimental results the authors have no-

ticed some tendencies in failures distribution under Pois-

son and Weibull distributions. For the Poisson distribu-

tion, the failures tend to happen more in the second half

of the analyzed interval but in the Weibull distribution it

tends to respect a certain frequency: 3 every 5 minutes for

example.

CloudSim can respect requests even if the resources are

failing by activating the VM migration. There is a strong

relationship between the sequence of failures and the VM

migration. If the VM migration is realized based on the

location criteria and there are failures that happens in a cer-

tain area, then the number of migration will increase and

the overall performance will be lower. Another important

observation is that CloudSim does not resubmit the failed

cloudlets.

The authors think that FIM-SIM module can have a great

impact in the research area for cloud providers. Sometimes

is very expensive to validate a model in real life, to real-

ize that it has many drawbacks and you have to redesign

it an implement it again. As a further work, the authors

intend to propose some fault tolerance techniques and try

to extend the type of failures that can appear in a cloud en-

vironment.
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