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Abstract—Cities are increasingly recognized for their ability

to play a catalytic role in addressing climate and energy chal-

lenges using technologically innovative approaches. Since en-

ergy used in urban areas accounts for about 40% of total

EU energy consumption, a change of direction towards re-

newable energy is necessary in order to alleviate the usage

of carbonized electricity and also to save money. A combina-

tion of IT and telecommunication technologies is necessary

to enable the energy and resources saving. ICT based so-

lutions can be used to enable energy and money saving not

only for a single building, but for the whole community of

a neighborhood. In this paper a model for the energy cost

minimization of a neighborhood together with an agent-based

interaction model that reproduces the proposed formal rep-

resentation is presented. Furthermore the authors present

a prototype implementation of this model and first experimen-

tal tests.

Keywords—collective intelligence, energy cost minimization,

multi-agent systems, Smart Cities.

1. Introduction

The Internet of Things (IoT) paradigm is rapidly gaining

ground in the scenario of modern wireless telecommunica-

tions. The basic idea of this concept is the pervasive pres-

ence around us of a variety of things or objects – such as

Radio-Frequency IDentification (RFID) tags, sensors, ac-

tuators, mobile phone – which, through unique addressing

schemes, are able to interact with each other and cooper-

ate with their neighbors to reach common goals [1]. As

application of IoT, Smart Cities mainly focus on applying

the next-generation information technology to all walks of

life, embedding sensors and equipment to hospitals, power

grids, railways, bridges, tunnels, roads, buildings, water

systems, dams, oil and gas pipelines and other objects in

every corner of the world [2].

The issues related to the climate challenge make Smart

Cities even more attractive. Nowadays a change of direc-

tion towards renewable energy is necessary in order to

alleviate the usage of carbonized electricity and also to

save money. One of the renewable energy options is solar

electricity, which could be deployed decentralized in urban

areas. In Europe, 21.9 GW of photovoltaic systems were

connected to the grid in 2011, compared to 13.4 GW in

2010, which is in line with the average of 40% increase

during the past 15 years. Under this aspect, ICT based

solutions can be used to enable energy and money saving

not only for a single building, but for the whole community

of a neighborhood. First of all, a formal representation of

the problem is needed in order to study the feasibility of

a possible solution and to map it on hardware and software

structures. This introduces a model for the minimization

of energy costs that leads to benefits not only to the single

household, but to the entire community of a neighborhood.

Each house is represented by an agent acting on its behalf

in order to implement the developed model and to auto-

mate the optimization operations by using and exchanging

the energy within the community according to the house

own requirements and capabilities.

The presented work has been conceived within the research

activities of CoSSMic project. CoSSMic (Collaborating

Smart Solar-powered Micro-grids. FP7 – SMARTCITIES,

2013) is an ICT European project that aims at fostering

a higher rate for self-consumption (50%) of decentralized

renewable energy production by innovative autonomic sys-

tems for the management and control of power micro-grids

on users’ behalf [16]. Home Area Network (HAN) is

formed by all electrical devices of the home connected

to the network. In each house there is an agent gate-

way. Agents are used to manage the HAN with the aim of

optimizing self-consumption rates using renewable energy

sources. Micro-grids, embedded with renewable energy

production, storage capacity and consumption, are com-

bined with an intelligent ICT platform.

The paper is structured as follows. Section 2 reviews some

related works, while in Section 3 a formal modeling of

the cost minimization problem is presented, as well as an

agent interaction model that maps the proposed solution.

A prototypal implementation of the agent model and ex-

perimental results are described in Section 4. Finally con-

clusions are drawn in Section 5.

2. Related Work

The scientific community investigates different priorities

in the field of smart grids. Some examples are mar-

ket deregulation, ICT architecture, IT security and data

protection, energy efficiency, integration of renewable ener-

gies, supply security, grid bottlenecks, grid expansion, de-

centralized energy production, smart meteorology, storage
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devices and load flexibilization. Much effort has been spent

on the investigation in the field of agents’ technology. In [7]

the authors describe why they believe that artificial intelli-

gence, and particularly, the fields of autonomous agents

and multi-agent systems are essential for delivering the

smart grid as it is envisioned. In [8] a multi-agent system

architecture simulates and analyses competitive electricity

markets combining bilateral trading with power exchange

mechanisms. Several heterogeneous and autonomous in-

telligent agents representing the different independent enti-

ties in electricity markets are used and a detailed descrip-

tion of a promising algorithm for decision support is pre-

sented and used to improve agents bidding process and

counter-proposals definition. Agents are endowed with his-

torical information about the market including past strate-

gies of other players, and have strategic behavior to face

the market. In [9] authors consider how consumers might

relate to future smart energy grids, and how exploiting soft-

ware agents to help users in engaging with complex energy

infrastructures. Paper [10] presents the architecture of an

agent-based platform for power generating and power con-

suming companies in contract electricity market. An intel-

ligent agent, by using fuzzy logic modification of genetic

algorithm in order to accomplish strategy optimization, im-

plements the negotiation process by selecting a strategy

using learning algorithms. In [11] another negotiation al-

gorithm using game theory is proposed, where agents act

on behalf of end users, thus implying the necessity of being

aware of multiple aspects connected to the distribution of

electricity related to outside world variables like weather,

stock market trends, location of the users etc. In [12] au-

thors define a methodology for predicting the usage of home

appliances. An agent based prediction algorithm captures

the everyday habits by exploiting their periodic features. In

addition, the algorithm uses an episode generation hidden

Markov model (EGH) to model the interdependency among

appliances. In [13] and [15] an agent-based approach to

manage negotiation among the different parties is presented.

The goal is to propose adaptive negotiation strategies for

energy trading in a deregulated market. In particular, strate-

gies derived from game theory are used, in order to opti-

mize energy production and supply costs by means of ne-

gotiation and adaptation. Negotiation strategies in a multi-

agent environment are also used in [14] where agents col-

laborate to assist human activities in safety critical scenar-

ios. In [17], [19], [20] agents’ technology is used for the

negotiation and brokering of computational resources in

cloud markets.

3. Energy Model

In the context of Smart Cities it is possible to model and

analyze the energy profile of a house within a neighbor-

hood so that it is possible to identify the best strategies

to minimize the energy cost of the single house and of

the overall neighborhood. Some notations useful for the

discussion are introduced in Table 1. The proposed model

is discrete-time, with sampling period T.

Table 1

Energy model parameters

Parameter Description Constraints

T Sampling period T ≥ 0

ca
Auto-consumed energy

ca ≥ 0
unit cost

cp Provider’s energy unit cost cp ≥ 0

cn Neighbor’s energy unit cost cn ≥ 0

fa
Auto-consumed energy

0 ≤ fa ≤ 1selling indicator

fp
Provider’s energy selling

0 ≤ fp ≤ 1indicator

fn
Neighbor’s energy selling

0 ≤ fn ≤ 1indicator

er Required energy er ≥ 0

era
Auto-consumed required

era ≥ 0
energy

erp
Required energy acquired

erp ≥ 0
from provider

ern
Required energy acquired

ern ≥ 0from neighbor

ep Produced energy ep ≥ 0

C House total energy cost

Ca Auto-consumed energy cost

Cp
Energy cost acquired from

provider

Cn
Energy cost acquired from

neighbor

3.1. House Cost Minimization

In principle it is possible to define the house required en-

ergy er as the sum of three contributions: the part of the

required energy that is auto-consumed from the produced

one, the part of the required energy acquired from a neigh-

bor and the part of the required energy acquired from the

energy provider:

er(kT) = era(kT)+ ern(kT)+ erp(kT),∀k ∈ Z . (1)

The auto-consumed energy cost Ca can be defined as:

Ca(kT) = caera(kT),∀k ∈ Z , (2)

where ca can be decomposed in a constant part and a part

that takes into account costs and fees for the energy con-

sumption ( fa):

ca = c + c fa . (3)

Thus Ca becomes:

Ca(kT) = cera(kT)+ c faera(kT) . (4)

62



An Agent-Based Collaborative Platform for the Optimized Trading of Renewable Energy within a Community

C(kT) = c
[(

era(kT)+ ern(kT)+ erp(kT)
︸ ︷︷ ︸

er(kT)

)
+

(
fnern(kT)+ fperp(kT)
︸ ︷︷ ︸

F(kT)

)]

≥ 0, ∀k ∈ Z

Fig. 1. House total cost.

In the same way it is possible to evaluate the energy cost
acquired from a neighbor (Cn) and the energy cost acquired
from provider (Cp):

{

Cn(kT)=cnern(kT)

cn = c+c fn

→Cn(kT) = cern(kT)+c fnern(kT) ,∀k ∈ Z

{

Cp(kT)=cperp(kT)

cp = c+c fp

→Cp(kT) = cerp(kT)+c fperp(kT) ,∀k∈Z

(5)

The house total energy cost C is the sum of the contribution

calculated in Eqs. (4) and (5):

C(kT) = Ca(kT)+Cn(kT)+Cp(kT) . (6)

By expanding the Eq. (6) we obtain:

C(kT) = caera(kT)+ cnern(kT)+ cperp(kT) =

= cera(kT)+ c faera(kT)+ cern(kT)+ c fnern(kT)+

+cerp(kT)+ c fperp(kT) =

= c
[
(era(kT)+ ern(kT)+ erp(kT))+

+( faera(kT)+ fnern(kT)+ fp)
]
, ∀k ∈ Z (7)

Assuming that for the auto-consumed energy fees are nul-

lable, fa = 0 could be considered. The equation becomes

as shown in Fig. 1.

Derived from the equation, the house total energy cost de-

pends on the required energy and on a part that takes into

account the fees for purchasing energy from neighbor and

provider, weighed by a scale factor on the amount of re-

quired energy F . Since C is a non-negative value, to mini-

mize the house energy cost is equivalent to tend C to zero.

Given the fact that the naive solution er = 0 is a non-feasible

solution (the authors are supposing that the house needs

energy to power its devices), it is possible to analyze two

situations:

1. The house produces more energy than it requires,

ep ≥ er. In this case the best strategy is to tend F to

zero, that translates in tending ern and erp to zero:

min
{

C(kT)
}

= limern(kT)→0 lim
erp(kT)→0

C(kT) =

= c(era(kT)+ 0 + 0) . (8)

The Eq. (8) means that the best efficiency in terms

of house’s consumption cost is when ererer = eeerarara, i.e.,

the best strategy is to auto-consume the produced

energy.

2. The house requires more energy than it produces (or

it is unable to produce energy), ep ≤ er. In this case

the house has to acquire the required energy (or part

of this) from two of the possible energy sellers, i.e.,

the neighborhood and the energy provider. Usually

energy providers introduce significant fees and ancil-

lary costs. Thus it is possible to assume that

fp ≫ fn . (9)

In order to minimize C to minimize erp would be

necessary:

min{C(kT)} = lim
erp(kT)→0

C(kT) =

= c [(era(kT)+ ern(kT)+ 0)+ fnern(kT)] . (10)

By unifying the results reached in cases 1 and 2 it is ev-

ident that the best strategy to minimize the house energy

cost is to auto-consume the produced energy and to acquire

the remaining requested part from the neighborhood, thus

minimizing the exchange with the energy provider.

3.2. Neighborhood Cost Minimization

The neighborhood is composed by several buildings, that

can be handled as houses in presented model. In general

a neighborhood is composed by NH houses that can con-

sume and/or produce energy.

Define CNH as neighborhood’s total energy cost, that is:

CNH(kT) = f [Si (kT)] ,∀i ∈ NH, ∀k ∈ Z , (11)

where Si is the energy state of each house.

From Eq. (11) it is possible to understand that in order to

find the best energy exchange in the neighborhood’s that

leads to a minimization of CNH the neighborhood should

know the energy state of the houses at any time. This

requirement implies a number of technological issues:

• Needing of a centralized controller. In order to

evaluate the best energy exchange a global vision

of the neighborhood’s energy state is needed. Thus

there is the necessity of a centralized controller that

collects data about Si and manages energy exchanges

among the houses, having scalability and efficiency

losses;

• Real-time constraints. Time instant t depends on

the sample time of the sensors that gather data within

the houses and on the processing capacity of the

controller. The efficiency of the minimization algo-

rithm is bound to the performances of the used tech-

nologies;
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• Communication overhead. Even when the houses

don’t need an energy exchange, they must communi-

cate to the controller their state, thus increasing traffic

on the neighborhood’s network and leading the con-

troller to become a bottleneck.

CNH can be described as the sum of contribution coming

from each house:

CNH(kT) =
NH

∑
i=1

Ci(kT), ∀i ∈ NH, ∀k ∈ Z . (12)

Thus it is possible to define:

min
{

CNH(kT)
}

= min

{ NH

∑
i=1

Ci(kT)
}

, ∀i ∈ NH, ∀k ∈ Z .

(13)

In order to minimize the neighborhood’s total energy cost

it is possible to lighten model’s requirements. Assume that

each Si is independent of any S j:

Si(kT ) |= Sj(kT), ∀k ∈ Z, ∀i ∈ NH, j 6= i . (14)

Equation (14) means that every house can look only at

itself in order to minimize the energy cost, by acting au-

tonomously without a centralized orchestrator. Due to the

unfeasibility of a centralized solution and by taking a cue

from the assumption of energy status independence, the

minimization of the neighborhood’s total energy cost can

be processed as the minimization of the each house local

energy cost:

min
{

CNH(kT)
}

=
NH

∑
i=1

min
{

Ci(kT)
}
, ∀i ∈ NH, ∀k ∈ Z .

(15)
By combining Eqs. (12) and (15), we obtain:

min
{

CNH(kT)
}

=
NH

∑
i=1

min{Ci(kT)}=

=
NH

∑
i=1

{

limerni
(kT)→0 limerpi

(kT)→0Ci(kT), if epi
(kT)≥ eri

(kT )

limerpi
(kT)→0Ci(kT), if epi

(kT ) < eri
(kT )

}

=

=
NH

∑
i=1

{

cerai
(kT), if epi

(kT )≥ eri
(kT)

c[(erai
(kT)+erni

(kT))+ fni
erni

(kT)], if epi
(kT)< eri

(kT )

}

,

∀i ∈ NH, ∀k ∈ Z . (16)

This approach brings an optimization of energy costs by

using a selfishly behavior of each house, where the col-

laboration and communication among the houses is lim-

ited to the energy demand in case of its unavailability to

auto-consume. This solution is completely distributed and

doesn’t need a centralized management and coordination,

being highly scalable and efficient.

3.3. Energy Characterization

In order to characterize the house behavior, it is necessary

to identify the constraints that the home must comply with,

in energy state S(t) terms. First of all, it is assumed that

each house has an accumulator to store the produced energy

to use or to sell if needed. Notations are introduced in

Table 2.

Table 2

Energy characterization parameters

Parameter Description

Pp(t)
Power produced by photovoltaic system

(PV system)

Ac(t) Current consumed by the load

V House supply voltage

Pacc−max

Maximum power supplied

by the accumulator

Eacc(t) Energy stored in the accumulator in time t

The consumed power Pc(t) is:

Pc(t) = Ac(t)V , (17)

while S(t) is defined as:

S(t) = Pc(t)−Pp(t) . (18)

Due to Eqs. (17) and (18), it is possible to understand that

the condition for the auto-consumption is:

t0+∆ t∫

t0

S(t)dt−Eacc(t0) ≤ 0 . (19)

Since the accumulator are characterized by a maximum

amount of power that it is able to provide (Pacc−max), the

condition for the auto-consumption becomes:







t0+∆ t∫

t0

S(t)dt ≤ Eacc(t0)

Smax ≤ Pacc−max

. (20)

Due to the fact that the accumulator is modeled as a ca-

pacitor, the maximum amount storable energy is:

Eacc−max =
1

2
CaccV

2
. (21)

Thus:

Eacc(t) ≤
1

2
CaccV

2
. (22)

Let us suppose that the production profile of the PV system

and the consumption profile of the load can be predicted.

This translates in estimates a-priori Pp(t) and Ac(t):

t0+∆ t∫

t0

Sest(t)dt =

t0+∆ t∫

t0

Pc est(t)dt−

t0+∆ t∫

t0

Pp est(t)dt =

= V

t0+∆ t∫

t0

Ac est(t)dt−

t0+∆ t∫

t0

Pp est(t)dt . (23)
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Eacc(t0 −∆ t) = Eacc(t0 −∆ t)+ Esurplus[t0 −∆ t;t0]−Esold[t0 −∆ t;t0]

Eexc[t0;t0 + ∆ t] = Eacc(t0 −∆ t)+

t0+∆ t∫

t0

Pp est(t)dt−V

t0+∆ t∫

t0

Ac est(t)dt

Eto-sell[t0 −∆ t;t0] =

{
Eexc[t0;t0 + ∆ t], if Eexc[t0;t0 + ∆ t] > 0

0,otherwise

Eto-buy[t0 −∆ t;t0] =

{
|Eexc[t0;t0 + ∆ t]| , if Eexc[t0;t0 + ∆ t] < 0

0,otherwise

Fig. 2. Prediction algorithm.

The authors assume that only energy stored in t0 −∆ t is

available so to plan the necessary actions to undertake in

t0 < t < t0 +∆ t. By predicting Pp(t) and Ac(t) it is possible

to forecast the amount of exceeding energy:

Eexc[t0;t0 + ∆ t] = Eacc(t0 −∆ t)+

+

t0+∆ t∫

t0

Pp est(t)dt−V

t0+∆ t∫

t0

Ac est(t)dt (24)

By forecasting the amount of exceeding energy, it can be

evaluated if there is energy to sell or buy:

Eexc[t0;t0 +∆ t]=

{

Eto-sell[t0−∆ t;t0], if Eexc[t0;t0+∆ t] ≥ 0

Eto-buy[t0−∆ t;t0], if Eexc[t0;t0+∆ t] < 0
.

(25)

Since the load optimization operations and the prediction

starts in t0 −∆ t, and the forecasting is valid for the period

between t0 and t0 + ∆ t, the time limit for publishing the

proposal and the energy requests and for closing the

evaluations is ∆ttt.

By taking a cue from the described relations, the steps

that the houses should do each timespan ∆ t are described

by the algorithm in Fig. 2. The authors suppose that is

possible to get information about the energy stored by

the accumulator at any instant. This value is not the real

amount of energy available to be auto-consumed because

there is the possibility that the house decided the selling

part of energy to a neighbor in the previous timespan. If

Eto−sell[t0 −∆ t;t0] is greater than zero, the house publishes

a proposal to sell energy that is valid until t0. By the con-

trary, if Eto−buy[t0 −∆ t;t0] is greater than zero, the house

publishes a energy request in order to buy the future con-

sumed energy from someone in the neighborhood. The

search and the evaluation are allowed up to t0, if the evalu-

ation fails or there are not proposals during this period, the

house buys the needed energy from the provider. Since it is

possible to acquire from a neighbor more energy than the

required one, it is possible to store the exceeding amount

in the accumulator. This energy is taken into account by

Esurplus[t0 −∆ t;t0]. In this way there is the possibility that

also a building that has not production facilities can become

a seller.

The algorithm relies on the knowledge about the power pro-

duction and consumption in the future. For Pp(t) it is pos-

sible to use historical data about the production of the PV

panels and to rely on short-term weather forecasts. For the

estimation of Ac(t) it is possible to use historical series and

the current scheduling of the expected loads (dishwasher,

washing-machine, etc.) generated according to some opti-

mization actions of the house’s loads. Boundaries such as

Pacc−max and Eacc−max can be used as evaluation’s parame-

ters in the proposals and in the energy requests.

The one-step prediction used in the algorithm could lead

to performances that aren’t the best for the single house.

In fact, suppose that in t0 −∆ t < t < t0 an house decides

to sell energy because it predicts that in t0 < t < t0 + ∆ t

it has an energy surplus. After that, if the evaluation suc-

ceeds, it predicts that in t0 + ∆ t < t < t0 + 2∆ t it needs to

buy energy because it doesn’t have enough energy stored

in order to satisfy the load in this timespan and it is forced

to make an energy request in t0 < t < t0 + ∆ t. In this case

it is evident that the best for the house would have been not

to sell the energy so to have enough energy stored to auto-

consume also in t0 + ∆ t < t < t0 + 2∆ t. Even if it seems

that a multi-step prediction has better performances for the

single house, the one-step prediction has a lower computa-

tional complexity which corresponds to a higher reactivity

in the application of the algorithm, which becomes crucial

by dealing with a system with strong real-time constraints.

Moreover, since the algorithm is based on the usage of his-

torical data and forecasts, a short-term prediction has more

accuracy than a long-term one, that impacts positively on

the prediction performances.

One way to give more robustness to the algorithm is to
change the evaluation of Eto-sell[t0 −∆ t;t0] and Eto-buy[t0 −
∆ t;t0] as follows:

Eto-sell[t0–∆ t;t0]=

{

Eexc[t0;t0+∆ t]−εsell, if Eexc[t0;t0+∆ t]>0

0, otherwise
,

Eto-buy[t0–∆ t;t0]=

{

|Eexc[t0;t0+∆ t]|+εbuy, if Eexc[t0;t0+∆ t]<0

0, otherwise
,

(26)

where εsell and εbuy are parameters that take into account

possible forecasting errors in selling and buying energy.
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1: Evaluate state

2: Publish proposal 3: Ask for proposal

4: Wait acceptance

6: Sell energy 5: Cancel proposal

7: Evaluate proposal

9: Cancel CFP 8: Acquire from neighbour

10: Acquire from provider

[E_to-sell>0]

[E_to-sell = E_to-buy = 0]

[E_to-buy>0]

[Acceptance received] [Proposal expired]

[Proposal received] [Proposal expired]

[CFP expired]

[CFP expired]

[Evaluation failed]

[Evaluation succeeded]

Fig. 3. Agent interaction model for energy cost minimization.

3.4. Agent Interaction Model for Cost Minimization

To implement the abovementioned strategy, the agent

paradigm is used, building up an interaction model for

Collective Intelligence that aims at minimizing the over-

all neighborhood’s cost. Each house is modeled by an

agent that adapts its behavior in order to maximize auto-

consumption of energy and minimize the exchange with the

energy provider. Thus the neighborhood is represented by

a number of agents that are distributed within a “virtual”

community and run autonomously in order to implement

their own strategy. Since every house might have different

sensors in order to retrieve information about the energy

consumption/production of the devices, the connection be-

tween sensors and the agent is implemented by a RESTFul

gateway that is in charge of translating the events in an agent

common language and forwarding them to the agent [18].

Thanks to its reactiveness and proactiveness capabilities,

the agent paradigm is able to match the described self-

ish behavior with on-demand collaboration in a distributed

environment by using an asynchronous communication ap-

proach. The agent technology allows to easily react to envi-

ronment’s changes in order to reach the cost minimization

goals. Moreover, the architecture is highly scalable and can

easily grow and decrease with the neighborhood by simply

adding and removing agents from the platform, thus ex-

ploiting the complete decoupling among the agents.

The minimization’s strategy can be translated in three

agent’s macro-behaviors:

• maximize auto-consumption – whatever state the

agent is in, if the agent needs energy and an energy

production’s event occurs, this event triggers a se-

ries of state transitions that lead it to consume the

produced energy;

• minimize energy requests to the provider – if

there is an energy request and the produced energy

is not sufficient to completely satisfy the request,

the agent asks for the needed energy to the neigh-

borhood;

• collaborative approach – if the house has an excess

of produced energy, the agent provides this energy to

the neighborhood.

The agent interaction model is drawn in Fig. 3 while the

description of each state is provided in Table 3.

Being consistent with the discrete-time model presented

in Section 3, even if the interaction model is event-based,

the full set of operations is marked by ∆ t. Every ∆ t the

automata returns to its initial state, starting a new round of

estimation-trading-purchasing/selling.

As it is possible to understand, ∆ t becomes a crucial pa-

rameter for the algorithm performances. Too small a value

of ∆ t makes stressing the prediction algorithm and might

be too short to complete the negotiation phase. Too high

a value of ∆ t makes the energy performances of the house

too bind to the accuracy of the forecasting. For these rea-

sons, the tuning of ∆ t strongly impacts on the house cost

minimization.

4. Prototype Implementation

As described in Section 3.4, it is possible to map the house

behavior to an agent in charge of performing the opera-

tions aimed at minimizing the energy cost. The designed

interaction model has been implemented by using the agent

technology. Execution environment for agents and commu-

nication facilities are provided by the JADE agent plat-

form [3], that supplies an execution environment of soft-
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Table 3

Agent’s state description

No. State Description

1
Evaluate In this state are performed all the

state operation described in Fig. 2.

2
Publish

If the house produces some

proposal

exceeding energy, the agent
publishes a proposal in order to
sell the energy to other houses

in the neighborhood.

3
Ask for

If the house needs energy and it has

proposal
not produced one, it asks the

neighborhood for energy to buy
by using a Call for Proposal (CFP).

Wait
In this state the house waits for

4
acceptance

acceptance of a proposal
published in state 2.

Cancel
If during the waiting of a proposal

5
proposal

acceptance notification t passes,
the proposal is canceled.

Sell
If a proposal acceptance notification

6
energy

has been received, the agent sells
the agreed energy to the buyer.

Evaluate
If a proposal is received, the agent

7
proposal

evaluates it in order to the buy
neighbor’s energy.

Acquire If a proposal evaluation succeeded,
8 from the agent buys the agreed energy

neighbor from the seller.

Cancel
If during a proposal evaluation

9
CFP

or the waiting of proposals t passes,
the CFP is canceled.

Acquire

This is the worst state in which

from

the agent can be. If the agent needs

provider

energy and no acceptable proposals
10 come within ∆ t, the only thing that

the agent can do is to acquire
the needed energy from the

energy supplier.

ware agents, an Agent Communication Channel (ACC) and

some protocol implementation to support communication.

AMS and DF provide standard services of FIPA compli-

ant agent platforms [4]. A management system for agents

and a yellow pages registry for publication and discovery

of agent based services. Agents will communicate among

them via standard ACL (Agent Communication Language).

JADE is completely written in Java so that each agent is

represented by a Java class as well as the behaviors of

every agent.

The agent representing the house is called Energy Agent

(EA). It is composed by a number of behaviors that imple-

ment the Finite State Machine (FSM) designed in Fig. 3.

Each behavior contains the particular operations that char-

acterize the state of the house. For example, the Evaluate

State behavior includes the forecasting of Pp(t) and Ac(t) as

well as the prediction algorithm described in Fig. 2, while

the Evaluate Proposal behavior embeds the algorithms used

to evaluate a given proposal against a submitted CFP.

In order take in account the temporal constraint given by ∆ t,

it is used a Watchdog behavior that runs in parallel with

the ones representing the state of the FSM. If ∆ t passes

and it marks the proposal/CFP as expired by writing a par-

ticular variable in memory. Each state of the FSM con-

trols this variable and adapts its behavior according to the

read value, being compliant with the described interaction

model. When the EA is in the Evaluate State behavior,

it resets the Watchdog behavior in order to restart all the

operations.

To ensure the scalability of the distributed platform, it has

been used a bus-based approach. When an agent wants

to sell some energy, it publishes the proposal on the bus

and waits for an acknowledgement coming from someone

in the neighborhood that is interested in buying its energy.

When the proposal expires, it simply withdraws this from

the bus. If someone is evaluating the proposal, it is noti-

fied about the withdrawal. On the other hand, if an agent is

interested in buying some energy, it can retrieve a proposal

from the bus (if any) and can evaluate it. The bus usage for

the communication within the neighborhood allows also the

synchronization among sellers and buyers. When a buyer

asks for a proposal, the bus gives to the asker the first pro-

posal in the queue that is not yet under the evaluation by

another agent. In fact, when an agent is evaluating a pro-

posal, it puts a lock on it in order to prevent that someone

can evaluate at the same time the same proposal. If the

evaluation succeeds, the seller is alerted and it starts to

give the agreed energy to the buyer. If the evaluation fails,

Table 4

Agent Bus operations

Method Description

Publish
This method allows a seller to publish

proposal
a new proposal to be evaluated by
other agents in the neighborhood.

Ask for

It is used by a buyer to retrieve

proposal

the first unlocked proposal in the
queue (if any). It returns a proposal

and locks it in case of success,
a null value otherwise.

Release
This method allows a buyer to unlock

proposal
a proposal that has been evaluated

and refused.

Accept In order to mark a proposal as accepted,
proposal a buyer can use this method.

Receive

This method is used by a seller

acceptance

in order to ask the bus about the

notification

acceptance of a published proposal
by a buyer. It returns a boolean

value, true if accepted, false
otherwise.

Cancel
When a proposal expires, the publisher

proposal
can use this method to withdraw the

proposal.
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Accept proposal

Release proposal

Publish proposal

Get proposal

Cancel proposal

0..1

0..1

0..1

0..1
0..1

Agent Bus

+addProposal(Proposal): void

+getProposal(AID): Proposal

+releaseProposal(Proposal): void

+cancelProposal(Proposal): void

+acceptProposal(Proposal): boolean

Agent Bus operation

+releaseProposal(Agent, Proposal): void

+cancelProposal(Agent, Proposal): void

+publishProposal(Agent, Proposal): void

+askForProposal(Agent): Proposal)

+acceptProposal(Agent, Proposal): boolean

+receiveAcceptanceNotification(Agent): boolean

Fig. 4. Agent Bus class diagram.

the buyer unlocks the proposal so that it can be evaluated

by others.

The bus can be realized by using different technologies,

such as queue servers like ActiveMQ [5], RabbitMQ [6],

etc. In first prototype, the bus has been implemented as an

agent within the platform, called Agent Bus (AB). AB runs

at boot time and provides to the EAs all the operations they

need in order to perform the overmentioned operations. In

particular, the methods that the bus makes available are

described in Table 4.

As it is possible to understand from the AB class diagram

in Fig. 4, the Agent Bus Operation exposes operations that

are used by each EA and embeds the ACL messages sent

and received to/from the AB in order to perform the cho-

sen action: in other words, EAs and AB are connected by

using Agent Bus Operation via messages’ exchange. On

the other hand, for each operation, the AB has a particular

behavior that allows to receive the specific message and

to act on its data structures in order to perform the re-

quested action.

4.1. Experimental Results

In order to validate the proposed approach a synthetic work-

load built up by using five buildings in a neighborhood is

used. We define consumer a building that has not energy

production facilities and, in its normal behavior, it has only

the possibility to consume energy. By the contrary, a pro-

sumer is a building that has energy production capabilities.

In presended experiments the energy profiles of three con-

sumers and two prosumers are used and the attention is

focused on a consumer, called target. As previously said,

the predefined energy profiles for each building are used,

thus zeroing the time for Pp(t) and Ac(t) estimations. Fur-

thermore, it is assumed that these estimations are correct,

thus not introducing errors in the prediction phase.

The experiments aim at evaluating the impact of ∆ t on the

house performances varying the buildings in the neighbor-

hood. The ∆ t is set on two consumers and two prosumers

to a fixed value ∆ tothers = 1000 ms. The ∆ ttarget was varied

at 500, 1000, 2000 ms, gradually introducing buildings in

the neighborhood.

In order to understand the performances of the prototype,

the percentage of occurrences of the Acquire from Provider

state is analyzed, that represents the less favorable state of

the agent (Fig. 5). As it is possible to see, ∆ ttarget strongly

impacts on the number of occurrences of this state. In fact

a greater value of ∆ ttarget provides much time to evalu-

ate proposal in the neighborhood before the CFP expires.

However the performances are also influenced by the ratio

among consumers and prosumers within the neighborhood.

If there are too many consumers with respect to prosumers,

the speed in evaluating the proposals becomes crucial and

consequently the energy performances are closely linked to

the performances of the evaluation algorithm. The intro-

duction of a new prosumer radically changes the scenario,

as reported in the chart.
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Fig. 5. Acquire from provider percentage of occurrences.

Another interesting result coming from the experiments is

evincible by looking at Figs. 6 and 7. The fact that the

values in these charts are not completely null denotes the

68



An Agent-Based Collaborative Platform for the Optimized Trading of Renewable Energy within a Community

100

80

60

40

20

0

[%]

O
cc

u
rr

en
ce

s

0/0 0/1 1/1 2/1 2/2

t = 500 ms t = 1000 ms t = 2000 ms

No. of consumers / no. of prosumers
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Fig. 7. Sell energy percentage of occurrences.

situation in which target bought more energy than it needed

and it converts itself to a seller, publishing proposals and,

in some cases, being able to sell excess energy.

5. Conclusion

In this paper authors present a model for the energy cost

minimization of a neighborhood. The energy cost function

of a single house at first is analyzed and modeled. After that

the authors model, under houses’ independence hypothesis,

the neighborhood energy cost function and how to minimize

it. Also a characterization of the house behavior is pro-

posed in terms of energy production and consumption and a

way to reach the cost minimization by using predictions and

load estimation. On this basis, an agent-based interaction

model that aims at maximize the auto-consumption of the

produced energy and at buying the needed one from neigh-

bors instead of supplier is presented. The validation of the

interaction model has been performed by developing and

testing a prototypal model implementation. Experimental

results highlight how a correct tuning of the operations

timespan has a strong impact on the performances, as well

as a balanced ratio among the number of consumers and

prosumers can play a crucial role on the performances of

the whole neighborhood. The authors are planning other

experiments aimed at evaluating the performances of the

prototype by having different timespans for each building

within the neighborhood. Furthermore, future works will

deal with the introduction of constraints on the house de-

vices control in order to optimize the cost function as well

as the introduction of algorithms for the estimation of pro-

duced and consumed energy.

Acknowledgements

This work has been partially supported by the European

Community’s Seventh Framework Programme as part of

the ICT CoSSMic project (FP7-ICT-608806)

References

[1] D. Giusto, A. Lera, G. Morabito, and L. Atzori, The Internet of

Things. Springer, 2010.

[2] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in Proc.

Int. Conf. Elec. Commun. Contr. ICECC 2011, Ningbo, China, 2011,

IEEE, pp. 1028–1031.

[3] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-compliant

agent framework,” in Proc. Pract. Appl. Intell. Agents Multi-Agents

PAAM 1999, London, 1999, vol. 99, no. 97–108.

[4] “FIPA” [Online]. Available: http://www.fipa.org

[5] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in Action. Shelter

Isl., USA: Manning, 2011.

[6] A. Videla and J. J. Williams, RabbitMQ in Action. Shelter Isl., USA:

Manning, 2012.

[7] A. Rogers, S. D. Ramchurn, and N. R. Jennings, “Delivering the

smart grid: Challenges for autonomous agents and multi-agent sys-

tems research”, in Proc. 26th AAAI Conf. Artif. Intell. AAAI-12,

Toronto, Canada, 2012, pp. 2166–2172.

[8] I. Praça, C. Ramos, Z. Vale, and M. Cordeiro, “Intelligent agents for

negotiation and game-based decision support in electricity markets”,

Engin. Intell. Syst. Elec. Engin. Commun., vol. 13, no. 2, p. 147,

2005.

[9] T. A. Rodden, J. E. Fischer, N. Pantidi, K. Bachour, and S. Moran,

“At home with agents: exploring attitudes towards future smart en-

ergy infrastructures”, in Proc. SIGCHI Conf. Human Fact. Comput.

Syst., Paris, France, 2013, pp. 1173–1182.

[10] Y. Jia-hai, Y. Shun-kun, and H. Zhao-guang, “A multi-agent trading

platform for electricity contract market”, in Proc. 7th Int. Power

Engin. Conf. IPEC 2005. Singapore, 2005, pp. 1024–1029.

[11] D. Whitehead, “The El Farol bar problem revisited: Reinforcement

learning in a potential game”, ESE Discussion Papers, no. 186,

Edinburgh School of Economics, 2008.

[12] N. C. Truong, L. Tran-Thanh, E. Costanza, and D. S. Ramchurn,

“Activity prediction for agent-based home energy management”, in

Proc. 4th Int. Worksh. Agent Technol. for Energy Syst. ATES 2013,

Saint Paul, Minnesota, USA, 2013.

[13] N. Capodieci, E. F. Alsina, and G. Cabri, “A context-aware agent-

based approach for deregulated energy market”, in Proc. 21st

IEEE Int. Worksh. Enabling Technol. Infrastruc. Collabor. Enterpr.

WETICE 2012, Toulouse, France, 2012, pp. 16–21.

[14] R. Aversa, B. Martino, M. Ficco, and S. Venticinque, “Simulation

and support of critical activities by mobile agents in pervasive and

ubiquitous scenarios,” in Proc. 10th Int. Symp. Parall. Distrib. Pro-

cess. Appl. ISPA 2012, Madrid, Spain, 2012, pp. 815–822.

69



Luca Tasquier and Rocco Aversa

[15] N. Capodieci, G. Cabri, G. A. Pagani, and M. Aiello, “Adaptive

game-based agent negotiation in deregulated energy markets,” in

Proc. IEEE Int. Conf. Collabor. Technol. Syst. CTS 2012, Denver,

CO, USA, 2012, pp. 300–307.

[16] A. Amato et al., “Software agents for collaborating smart solar-

powered micro-grids”, in Smart Organizations and Smart Artifacts,

L. Caporarello, B. Di Martino, and M. Martinez, Eds. Lecture

Notes in Information Systems and Organisation, vol. 7, pp. 125–133,

Springer, 2014.

[17] S. Venticinque, L. Tasquier, and B. Di Martino, “A restfull interface

for scalable agents based cloud services”, Int. J. of Ad Hoc and

Ubiquitous Comput., vol. 16, no. 4, pp. 219–231, 2014.

[18] L. Tasquier, M. Scialdone, R. Aversa, and S. Venticinque, “Agent

based negotiation of decentralized energy production”, in Intelli-

gent Distributed Computing VIII, D. Camacho, L. Braubach, S. Ven-

ticinque, and C. Badica, Eds. Studies in Computational Intelligence,

vol. 570, pp. 59–67. Springer, 2015.

[19] S. Venticinque, L. Tasquier, and B. Di Martino, “Agents based cloud

computing interface for resource provisioning and management”, in

Proc. 6th IEEE Int. Conf.Complex, Intell. Softw. Intens. Syst. CISIS

2012, Palermo, Italy, 2012, pp. 249–256.

[20] R. Aversa, L. Tasquier, and S. Venticinque, “Cloud agency: A guide

through the clouds,” Mondo Digitale, vol. 13, no. 49, 2014.

Luca Tasquier is Ph.D. stu-

dent in Computer and Elec-

tronic Engineering at Depart-

ment of Industrial and Infor-

mation Engineering of the

Second University of Naples.

He received his Master degree

in Computer Engineering in

2011. He is involved in research

activities dealing with parallel

and cloud computing and mobile/intelligent agents for

distributed systems. He participated to research projects

supported by international and national organizations.

E-mail: luca.tasquier@unina2.it

Dipartimento di Ingegneria Industriale e dell’Informazione

Second University of Naples

Via Roma, 29

81031 Aversa, Italy

Rocco Aversa graduated in

Electronic Engineering at Uni-

versity of Naples in 1989 and

received his Ph.D. in Computer

Science in 1994. He is As-

sociate Professor in Computer

Science at the Department of

Information Engineering of the

Second University of Naples.

His research interests are in the

area of parallel and distributed

systems. The research themes include: the use of the mo-

bile agents paradigm in the distributed computing, the de-

sign of simulation tools for performance analysis of par-

allel applications running on heterogeneous computing ar-

chitectures, the project and the development of innovative

middleware software to enhance the grid and cloud com-

puting platforms. He is associate editor of International

Journal of Web Science (IJWSM Inderscience Publishers).

Dr. Aversa participated to various research projects sup-

ported by national organizations (MURST, CNR, ASI) and

by EC in collaboration with foreign academic institutions

and industrial partners.

E-mail: rocco.aversa@unina2.it

Dipartimento di Ingegneria Industriale e dell’Informazione

Second University of Naples

Via Roma, 29

81031 Aversa, Italy

70


