




Preface
The Second International Conference on Decision Support for Telecommunications and In-
formation Society DSTIS-2002, organised by the National Institute of Telecommunications
in Warsaw (5th – 7th September 2002), assembled researchers working in several modern
and important fields of telecommunications and computer science. Some papers submitted
to this conference are presented at this issue.
Domains of decision support and optimisation are represented here by five papers. One of
them is devoted to the procedure for finding the optimal decision in the case when information
about the state of nature and utility functions is imprecisely defined. The next paper shows
how the class of reference point methods can be reduced to the class of weight methods, so
it is possible to implement both classes in the same technical framework. Another approach
to reference point and vector optimisation applies evolutionary algorithms, using them in an
interactive mode. The problem of allocation of limited resources among competing activities
is also presented, showing how to achieve the best overall performances with fair treatment
of all activities. The last paper of this group describes two ideas of modifying projection
methods for the case of nonlinear optimisation.
The set of papers devoted to network modelling and design starts from two descriptions
of new developments of a multiple objective dynamic routing method for multiexchange
networks, that enables numerical calculation of global network performance parameters.
Dynamic routing problems are also considered in the next work which shows that they may
be interpreted as optimal control or regulation problems, and solved with the use of well
known methods. Afterwards the topological network design is described as optimisation
problem, determining network structure and allocation pattern that would minimise the cost
of the network, using various algorithms. Another optimisation method is proposed for
reconfiguration of the IP over optical network, in order to balance the load of network
elements.
Tools for intelligent systems are presented in four papers. A theory is described that defines
contextual probability function satisfying all axioms of probability and therefore generalising
the classical probability theory. The author of rough set theory considers some relationship
between Bayes theory and rough sets, using flow graphs and decision rules. The next elab-
oration proposes modified training algorithms for artificial neural networks, in which the
initial weight configuration remains unchanged throughout the training process. Qualitative
features of decision problems can be represented by classical influence diagrams but their use-
fulness is enlarged if time is introduced as special parameter, what is described in appropriate
paper.



Data mining is the subject of the last group of conference papers. The first paper presents
a method of computerised generation of hypotheses (as a kind of association rule) based
on given data, represented as a matrix of objects and attributes. The second one suggests
several models of data mining operations, based on the concept of information system. The
last paper describes the new form of quantitative and multi-dimensional association rules
that may be used for cellular network planning.

Decision support is needed in almost all domains of human activities and presented here set
of papers shows some possibilities.

Wiesław Traczyk
Guest Editor
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Abstract — The decision problems are considered when the
prior probabilistic information about the state of nature and
decision maker’s utility function are imprecisely defined. In
such a case the risks (or the expected utility) of considered de-
cisions are also imprecisely defined. We propose two-step pro-
cedure for finding the optimal decision. First, we order possi-
ble decisions using the λλλ -average ranking method by Campos
and Gonzalez [1]. Then we use possibilistic possibility of dom-
inance and necessity of strict dominance indices proposed by
Dubois and Prade [3] for the comparison of consequences of
the most promising solutions.
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1. Introduction

In decision making we deal with uncertainties related to
an unknown state of nature. The behaviour of a decision
maker may be described as a kind of game between him and
a fictitious player who may be called “nature” or “chance”.
Decisions made by a decision maker are rational if they
are derived from his knowledge about nature’s behaviour
and the knowledge of the consequences of his decisions.
Mathematical theories of decision making are known for
more than fifty years and are based on probabilistic mod-
els of nature’s behaviour and utility functions. Their basic
ideas and main results were published in a famous book by
Raiffa and Schlaifer [6] that has been recently republished
by J. Wiley & Sons. In the classical models of decision
making it is assumed that the decision maker knows the
joint probability distribution of all possible states of the
nature and all possible results of experiments which pro-
vide him with some knowledge about the actual state of the
nature. Moreover, it is assumed that there exists a precisely
defined utility function which assigns decision maker’s util-
ity related to all possible pairs: decision and state of the
nature. These premises have been recently relaxed by as-
suming that some parameters of decision models may be
defined only with a certain degree of precision. As a con-
sequence of such more general assumptions we arrive at
mathematical models of imprecise risks.
In this paper we present some results obtained under the
assumption of the existence of imprecisely defined risks.
In Section 2 we present a mathematical model of decision
making in the presence of imprecisely defined probabilistic
prior information about the possible states of the nature and
imprecisely defined utility functions. A lack of the preci-
sion we describe in the language of the fuzzy sets theory.

We propose to find the best decisions by the defuzzification
of imprecisely defined expected risks. For this purpose we
propose the use of the defuzzification method proposed by
Campos and Gonzalez [1]. This method allows the user to
take into account his attitude, i.e. his level of optimism (or
pessimism). In Section 3 we propose a possibilistic method
for the comparison of different decisions. By applying this
method we provide the user with addition information about
the real differences between the consequences of his deci-
sions. In this comparison we take into account the impact
of imprecise input information on the decision making.

2. Mathematical model and the choice
of optimal decisions

There exist different methods for modelling decisions. In
this paper we adopt the approach described in a general
form by Raiffa and Schlaifer [6]. The model proposed
by Raiffa and Schlaifer consists of two parts: one part is
dedicated to the choice of the final decision, and the second
part is dedicated to the choice of the experiment whose
ultimate goal is to provide the decision maker with some
information about the actual state of nature. According to
this model the decision maker can specify the following
data defining his decision problem:

1. Space of terminal decisions (acts): A= fag.

2. State space: Θ = fθg.

3. Family of experiments: E = feg.

4. Sample space: Z = fzg.

5. Utility function: u(�; �; �; �;) on E�Z�A�Θ.

The decision maker evaluates an utility u(e;z;a;θ ) of mak-
ing a particular experiment e, obtaining the result of this
experiment z, taking a decision a in the case when the
true state of nature is θ . In order to find appropriate (hope-
fully optimal) decisions the decision maker has also to spec-
ify a joint probability measure Pθ ;z(�; �je) for a Cartesian
product Θ�Z. The knowledge of this probability measure
means that we know the joint probability distribution of
observation z in an experiment e when the random state
of nature is described by θ . Knowing this joint probabil-
ity distribution we can calculate some important marginal
and conditional probability distributions. In particular, for
a given experiment e we are usually interested in three dis-
tributions:
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1. The marginal distribution on the state space Θ de-
scribing our prior information about possible states
of nature. We assume that this distribution does not
depend on e.

2. The conditional distribution on the sample space Z
for a given state of nature θ .

3. The conditional distribution on the state space Θ for
a given result of the experiment z describing our pos-
terior information about possible states of nature.

Note, that we may know only these particular distributions
as their knowledge is equivalent to the knowledge of the
joint probability distribution on Θ�Z.
Let us consider the simplest case of the general model when
there is no experiment e. In such a case the only informa-
tion we need is the probability distribution π(θ ) defined
on the state space Θ. We call this distribution the prior
distribution of the parameter (parameters) describing the
unknown state of nature. If we know the utility function
u(a;θ ) defined on A�Θ we may calculate the expected
utility assigned to a particular action (decision) a from the
simple formula

u(a) =
Z

Θ

u(a; θ )π(θ )dθ : (1)

If we use a loss function L(a;θ ) for the description of po-
tential consequences of taking decision a we may calculate
the expected loss (usually called a risk) from an equivalent
formula

ρ(a) =
Z

Θ

L(a;θ )π(θ )dθ : (2)

Having the expected utilities for all possible decisions
we can find the optimal one which is related to the max-
imal expected utility (or the minimal risk). This proce-
dure is in principle very simple. However, in many practical
cases (when the number of possible decisions is sufficiently
large) it may require the use of sophisticated optimisation
methods.
When the decision maker has an additional informa-
tion about the state of nature in a form of observations
z= (z1;z2; : : : ;zn) of a random vector described by a prob-
ability distribution f (z;θ ) we may calculate the expected
utility assigned to a particular action (decision) a from a for-
mula

u(a;z) =
Z

Θ

u(a;θ )g(θ jz)dθ ; (3)

where

g(θ jz) =
f (zjθ )π(θ )R

Θ
f (zjθ )π(θ )dθ

(4)

is the posterior distribution of the parameter θ which de-
scribes the state of nature. In such a case the expected
utility attributed to each decision is calculated from

u(ajz) =
Z

Θ

u(a;θ )g(θ jz)dθ ; (5)

and the respective risk from the formula

ρ(ajz) =
Z

Θ

L(a;θ )g(θ jz)dθ : (6)

The procedure for finding the optimal decision is exactly
the same as in the case described previously.
Suppose now that the prior distribution π(θ ) and the loss
(or utility) L(a;θ ) are functions of parameters ζ and ψ , re-
spectively, and that these parameters are known only impre-
cisely. Let us assume that our imprecise knowledge about
possible values of ζ and ψ is represented by fuzzy sets eζ
and eψ , respectively. A fuzzy set eX is defined using the
membership function µ

eX
(x) which in the considered con-

text of this paper describes the grade of possibility that
a fuzzy parameter, say eX, has a specified value of x. Each
fuzzy set may be also represented by its α-cuts defined as
ordinary sets

Xα =
�

x2 R : µ
eX
(x)� α

	
; 0� α � 1: (7)

From the representation theorem for fuzzy sets we know
that each membership function may be equivalently ex-
pressed as

µ
eX
(x) = sup

�
αI

eXα (x) : α 2 [0;1]
	
: (8)

Now let us assume that imprecisely known parameters ζ
and ψ are represented by their α-cuts, and that these
α-cuts are given in a form of closed intervals

�
ζ α

L ; ζ α
U

�
and

�
ψα

L ; ψα
U

�
, respectively. The knowledge of these α-cuts

let us calculate fuzzy equivalents of the expected utility or
the expected loss (risk). To make the presentation sim-
ple we assume that decision are based exclusively on the
knowledge of the prior distribution π(θ ) and the loss func-
tion L(a;θ ). As these functions are the functions of im-
precise fuzzy parameters, they are also fuzzy, and may be
denoted as eπ(θ ; eζ ) and eL(a;θ ; eψ), respectively.
Now, let us rewrite formula (2) as

eρ(a) = Z

Θ

eL(a;θ ; eζ )eπ(θ ; eψ)dθ : (9)

The risk calculated from formula (9) is now an impre-
cisely defined fuzzy number whose membership function
may be calculated using Zadeh’s extension principle (see
Klir and Yuan [5], or any other textbook on fuzzy sets for
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a reference). It is easy to show that the fuzzy risk eρ(a) is
now represented by its α-cuts

�
ρα

L ;ρα
U

�
, where

ρα
L = inf

ζ2
�

ζ α
L ;ζ α

U

�
ψ2
�

ψα
L ;ψα

U

�
eρ(a) (10)

and

ρα
U = sup

ζ2
�

ζ α
L ;ζ α

U

�
ψ2
�

ψα
L ;ψα

U

�
eρ(a): (11)

Thus, for every possible decision a we may find a fuzzy
risk eρ(a) or a fuzzy expected utility eu(a) which may
be calculated in the same way. Moreover, if there ex-
ists an additional information in the form of observations
z = (z1;z2; : : : ;zn) we may use exactly the same proce-
dure in order to fuzzify the expected utility given by for-
mula (5) and the risk given by formula (6). Note how-
ever, that in this case the respective calculations (especially
for the fuzzy posterior distribution) may be much more
complicated.
In contrast to the non-fuzzy (crisp) case the univocal op-
timal solution of the decision problem for imprecisely de-
fined input parameters does not exist. It stems from the fact
that fuzzy sets are not naturally ordered. Thus, in general,
it is not possible to indicate the decision with lowest risk
(or the highest expected utility). In order to do this we
must apply one of the many proposed in literature ranking
methods.
There are many methods for ranking fuzzy numbers that
are based on different defuzzification methods. Gil and
Lopez-Diaz [4] have noticed that the λ -average ranking
method proposed by Campos and Gonzalez [1] is espe-
cially useful in decision making. Let eX be a fuzzy number
(fuzzy set) described by the set of its α-cuts

�
Xα

L ;X
α
U

�
,

and S be an additive measure on [0;1]. Moreover, assume
that the support of eX is a closed interval. The λ -average
value of such a fuzzy number eX is defined by Campos and
Gonzalez [1] as

Vλ
S (eX) =

1Z

0

�
λXα

U +(1�λ )Xα
L

�
dS(α) ; λ 2 [0;1] : (12)

In the case of continuous membership functions the inte-
gral in formula (12) is calculated with respect to dα . Thus,
the λ -average value of eX can be viewed as its defuzzified
value.
The parameter λ in (12) is a subjective degree of deci-
sion maker’s optimism (pessimism). In the case of fuzzy
risks λ = 0 reflects his highest optimism as the minimal
values of all α-cuts (representing the lowest possible risks)
are taken into consideration. On the other hand, by tak-
ing λ = 1 the decision maker demonstrates his total pes-
simism, as only the maximal values of all α-cuts (repre-

senting the highest possible risks) are considered. In the
case of fuzzy expected utilities the situation is reversed,
i.e. λ = 1 represents decision maker’s optimism, and λ = 0
reflects his total pessimism. If the decision maker takes
λ = 0:5 his attitude may described as neutral. Thus, by
varying the value of λ the decision maker is able to take
into account the level of his optimism (pessimism) which
may arise e.g. from having some additional information
that has not been reflected in the prior distribution. Some
interesting features of the λ -average ranking method have
been discussed in Gil and Lopez-Diaz [4].
Having a simple ranking method given by formula (12) we
may calculate defuzzified values of fuzzy risks (expected
utilities) related to all considered decisions. The optimal
decision has the lowest defuzzified risk (or the highest de-
fuzzified expected utility). Moreover, the decision maker
can order all considered decisions with respect to their risks
(or expected utilities).

3. Possibilistic analysis
of optimal decisions

The procedure described in the previous section allows the
decision maker to find the optimal decision. It has to be
noted, however, that the ranking method gives only a partial
information about the differences between competitive de-
cisions. Therefore, we claim that it is necessary to perform
an additional analysis that provides the decision maker with
an additional information about the considered decisions.
Such an analysis is especially interesting when the conse-
quences of different decisions are similar, and when other
decision maker’s preferences, not reflected in the optimisa-
tion model, exist. To analyse the consequences of different
decisions we propose to use the methodology known from
the theory of possibility, namely the possibility of domi-
nance and necessity of strict dominance indices proposed
by Dubois and Prade [3].
For two fuzzy numbers eA and eB the possibility of domi-
nance (PD) index is calculated from the formula

PD= Poss(eA� eB) = sup
x;y:x�y

min
�

µ
eA
(x); µ

eB
(y)
	
: (13)

The PD index gives the measure of possibility that the
fuzzy number eA is not smaller than the fuzzy number eB.
Positive value of this index tells the decision maker that
there exists even slightly evidence that the relation eA� eB
is true.
The degree of conviction that the relation eA> eB is true is
reflected by the necessity of strict dominance (NSD) index
defined as

NSD= Ness(eA> eB) =
= 1� sup

x;y:x�y
min

�
µ
eA
(x); µ

eB
(y)
	
=1�Poss(eB� eA): (14)
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The NSD index gives the measure of necessity that the
fuzzy number eA greater than the fuzzy number eB. Positive
value of this index tells the decision maker that there exists
rather strong evidence that the relation eA> eB is true.
According to Cutell and Montero [2] we may use the PD
and NSD indices to evaluate mutual relationship between
two considered decisions. Let us describe the evaluation
procedure for two decisions a1 and a2 with associated
fuzzy risks eρ(a1) and eρ(a2), respectively. The value of
NSD= Nec

�eρ(a1)> eρ(a2)
�

indicates that extend decision
a1 is inferior in comparison to decision a2. On the other
hand, 1�PD= 1�Poss

�eρ(a1) � eρ(a2)
�

indicates that ex-
tend decision a1 might be considered superior in compar-
ison to decision a2. If instead of fuzzy risks we com-
pare fuzzy expected utilities the conclusions are reversed,
i.e. the value of NSD�Nec

�eu (a1) > eu (a2)
�

indicates
that extend decision a1 is superior in comparison to deci-
sion a2, etc. The value of PD�NSDmay be viewed upon
as the measure of indifference between the consequences
of the considered decisions.
If the decision maker has the ordered sequence of his
possible decisions he should always consider a possibil-
ity of performing pairwise comparisons between the best
two (or more) competitive solutions. High values of the
indifference indices reveal that the consequences of con-
sidered decisions are rather insignificant due to the lack
of precision of the optimisation model. In such a case
the decision maker may use some additional criteria for
choosing an appropriate decision. This is also the signal
that it is advisable to make the optimisation model more
precise.

4. Decisions with two possible
outcomes – a numerical example

Let us consider the simplest situation when each action
from a set of alternatives fa1; : : : ;aMg leads to two possi-
ble outcomes w(m); m=1; : : : ;M and v(m); m=1; : : : ;M, re-
spectively. The outcome w(m) appears with probability p(m),
m= 1; : : : ;M, and the outcome v(m) appears with probabil-
ity 1�p(m). Suppose that the expected outcome is equiva-
lent to the expected utility. Thus the expected utility asso-
ciated with the action am is given by

u(m) = p(m)w(m) +
�
1� p(m)

�
v(m); m= 1; : : : ;M : (15)

In this way, the optimal action is a such one which max-
imises Eq. (15) when the outcomes are given in terms of
profits or minimises Eq. (15) when outcomes are expressed
in terms of losses.
Let us assume that all information about the outcomes
and respective probabilities are imprecise and are given
by fuzzy numbers described by a trapezoidal membership
functions. In general, any trapezoidal membership func-

tion of a fuzzy number eX = eX(xl ;x0;l ;x0;r ;xr) is described
by the following formula:

µ
eX
(x) =

8>>>>>>>>><
>>>>>>>>>:

0 x� xl
x�xl

x0;l �xl
xl < x� x0;l

1 x0;l < x� x0;r
xr �x

xr �x0;r
x0;r < x� xr

0 x> xr

: (16)

The α-cuts of the fuzzy number described by the mem-
bership function given by formula (16) have the following
form:

�
xl +α(x0;l �xl ); xr �α(xr �x0;r)

�
.

Denote by ew(m); m= 1; : : : ;M, and ev(m); m= 1; : : : ;M the
fuzzy counterparts of the crisp outcomes w(m) and v(m), re-
spectively. Moreover, let ep(m); m= 1; : : : ;M be the fuzzy
counterpart of the crisp probability p(m). Assume now,
that for each α-cut we have w(m)

0;l
> v(m)

0;r
. It means that

despite their imprecision both possible outcomes are sepa-
rated. When this assumption does not hold we have either
to assume that the outcomes are interactive in a special
way or to assume that they are indistinguishable to some
extent. In both cases, this leads to severe complication of
the optimisation procedure.
Now, we can define a fuzzy expected utility as follows

eu(m) = ep(m) ew(m) +(1� ep(m))ev(m); m= 1; : : : ;M : (17)

Using the extension principle of Zadeh we can find the
membership function of the fuzzy expected utility eu(m),
m= 1; : : : ;M. In further calculations in order to simplify
the notation we omit the upper index (m) that indicates
the undertaken action. Denote by

�
ul (α);ur(α)

�
the α-cut

of eu. By simple calculations we can show that

ul (α) = pl wl +(1� pl)vl +α
�
(p0;l � pl)wl +

+pl (w0;l�wl )�(p0;l�pl )vl +(1�pl)(v0;l�vl )
�
+

+α2
�
(p0;l�pl )(w0;l�wl )�(p0;l�pl )(v0;l�vl )

�
(18)

and

ur(α) = prwr +(1� pr)vr +α
�
(pr � p0;r)vr +

�(1� pr)(vr �vr;0)�pr(wr �w0;r)+(pr � p0;r)wr
�
+

+α2
�
(pr�p0;r)(wr�w0;r)�(pr�p0;r)(vr�v0;r)

�
: (19)

The λ -average value of eu calculated from formula (12) is
now given by

Vλ (eu) = λ
h1

2
(vr+v0;r)+

1
3

�
pr(wr�vr)+

+p0;r(w0;r�v0;r)
�
+

1
6

�
pr(w0;r�v0;r)+p0;r(wr�vr)

�i
+

+(1�λ )
h1

2
(vl+v0;l )+

1
3

�
pl (wl�vl )+p0;l (w0;l�v0;l )

�
+

+
1
6

�
pl (w0;l�v0;l)+ p0;l(wl�vl )

�i
: (20)
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Having λ -average values of the fuzzy expected utilities for
all considered actions we can find the optimal one that has
the maximal value of Vλ�eu(m)

�
.

Let us assume that all considered actions are numbered
in such a way that Vλ �eu(1)

�
� Vλ �eu(2)

�
� : : :Vλ �eu(M)

�
.

The next step of the possibilistic analysis consists in the
comparison of fuzzy expected utilities eu(1) and eu(2). The
analysis of Eq. (14) shows that NSD

�eu(1) > eu(2)
�
> 0

if the relation holds u(2)
r (1) < u(1)

l
(1). In such a case

NSD
�eu(1) > eu(2)

�
= 1�α�, where α� is the solution of

the equation

u(2)
r (α) = u(1)

l
(α) : (21)

Let

x1 = pl wl +(1� pl)vl ; (22)

x2 = (p0;l � pl )wl + pl(w0;l �wl )+

�(p0;l � pl)vl +(1� pl)(v0;l �vl) ; (23)

x3 = (p0;l � pl)(w0;l �wl)� (p0;l � pl)(v0;l �vl) ; (24)

y1 = prwr +(1� pr)vr ; (25)

y2 = (pr � p0;r)vr � (1� pr)(vr �vr;0)+

�pr(wr �w0;r)+(pr � p0;r)wr ; (26)

y3 = (pr � p0;r)(wr �w0;r)� (pr � p0;r) ; (27)

A1 = x1�y1 ; (28)

A2 = x2�y2 ; (29)

A3 = x3�y3 : (30)

Hence, the solution of Eq. (21) is given by

α� =

8><
>:

�A2+
q

A2
2�4A1A3

2A3
if A3 6= 0

�A1=A2 if a3 = 0

: (31)

To illustrate these theoretical results let us consider a nu-
merical example. Suppose, that there are four possible

actions described by the following sets of their fuzzy pa-
rameters:

– action a1:
ep(1) = ep(1)(0:2;0:25;0:3;0:35),ew(1) = ew(1)(80;90;100;110),ev(1) = ev(1)(20;25;30;35);

– action a2:
ep(2) = ep(2)(0:2;0:25;0:25;0:25),ew(2) = ew(2)(60;70;80;90),ev(2) = ev(2)(15;20;20;25);

– action a3:
ep(3) = ep(3)(0:2;0:25;0:25;0:3),ew(3) = ew(3)(60;70;80;90),ev(3) = ev(3)(�10;20;20;25);

– action a4:
ep(4) = ep(4)(0:2;0:2;0:2;0:4),ew(4) = ew(4)(30;60;60;70),
ev(4) = ev(4)(�10;0;10;20).

The expected utilities associated with each action are given
as fuzzy numbers whose λ -averages calculated according
to Eq. (20) are the following (for λ = 0:5, i.e. for a neutral
decision maker):

Vλ�eu(1)
�
= 46:33; Vλ�eu(2)�= 33:17;

Vλ�eu(3)
�
= 29:06; Vλ�eu(4)�= 17:5:

Thus, action a1 is visibly better than the others. However,
if we compare the fuzzy utility of a1 with the fuzzy utility
of the second best action a2 we arrive at the following re-
sults. For a1 from Eqs. (21)–(24) we get: x1 = 32, x2 = 9,
x3 = 0:25, and for a2 from Eqs. (25)–(27) we get: y1 =
= 41:25, y2 =�6:25, y3 = 0. Hence, from Eqs. (28)–(30)
we get: A1 = �9:25, A2 = 15:25, A3 = 0:25. Thus, from
Eq. (31) we obtain α� = 0:6, and the necessity of strict
dominance index is the following NSD

�eu(1) > eu(2)
�
= 0:4.

It means that there exists only limited necessity that a1 is
better than a2, and – to some extent – their results are indis-
tinguishable. This is especially true, when the parameters
of the decision model come from different sources.

5. Conclusions

In the paper we present a generalisation of a classical Bayes
decision model. In this generalised model we assume that
all input parameters describing prior probabilities, costs,
and statistical data may be expressed in an imprecise way.
If we apply a fuzzy description of those vague data we ar-
rive at fuzzy risks or fuzzy expected utilities associated with
each possible action (decision). Unfortunately, a method for
an unique ordering of fuzzy numbers does not exist. There-
fore, we propose to use the defuzzification method of Cam-
pos and Gonzalez [1] in order to find two possibly best ac-
tions. Imprecise consequences of these decisions we com-
pare using possibility and necessity indices. This approach
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gives us a better insight in the process of decision mak-
ing. We illustrate the proposed procedure with a numerical
example when each action (decision) may result with two
possible outcomes.
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Paper Weight versus reference
point multiple criteria decision

making methods – analogies and differences
Ignacy Kaliszewski

Abstract — In this work we shall be concerned with inter-
active multiple criteria decision making methods. We show
how on the technical level the class of reference point methods
can be reduced to the class of weight methods. Though meth-
ods from these two classes represent two different interactive
decision making paradigms, the equivalence observed opens
a way for a joint implementation of a pair of methods each rep-
resenting a different class. This would establish a firm ground
for systematic comparison of both classes of methods as well
as for hybrid schemes mixing decisional tools specific for
each class.

Keywords — multiple criteria decision making, weight methods,
reference point methods.

1. Introduction

A rough taxonomy of interactive multiple criteria deci-
sion making (MCDM) methods distinguishes three ma-
jor classes, namely weight methods, reference point meth-
ods, and constraint methods. All methods of these classes
amount to a partial, decision maker (DM) guided search of
the set of efficient decisions. The trichotomy is based on
which elements are manipulated to capture DM’s prefer-
ences: weights, reference points, or constraints. In this
presentation we shall confine ourselves to the first two
classes, which are believed to capture DM’s preferences
in a favourable manner.
In weight methods the DM articulates his partial prefer-
ences pointing to preferred decisions in pairwise compar-
isons. Partial preferences are translated next into relations
expressed in terms of weights. In some methods weights
are provided explicitly by the DM. In reference point meth-
ods the DM articulates his preferences by pointing to ref-
erence points which can be any elements of the space of
criteria.
In weight methods the set of weights is systematically
searched and reduced according to DM articulated pref-
erences. The volume of the set of weights is a natural
measure of progress and convergence of the decision mak-
ing process. Reference point methods lack such a systemic
convergence indicator.
The purpose of this paper is to show that in technical terms
reference point methods can be reduced to weight methods.
With such an interpretation provided it is possible to im-
plement methods of these two classes in the same technical

framework. This would establish a firm ground for system-
atic comparison of both classes of methods as well as for
hybrid schemes mixing decisional tools specific for each
class. Moreover, a convergence indicator is then available
for either class of methods.
The plan of the paper is as follows. In Section 2 we recall
all the relevant definitions and formulations. In Section 3
we recall characterizations of the set of properly efficient
decisions, namely the characterization by weight manipula-
tions and the characterization by reference point manipula-
tions, and in Section 4 we recall how these characterizations
are used in the two classes of MCDM methods considered.
In Section 5 we show that under a restriction of reference
point methods, weight methods and reference point meth-
ods are technically equivalent. In Section 6 we discuss
practical significance of such an equivalence. Section 7
concludes.

2. Preliminaries

In the multiple criteria decision making framework a deci-
sion problem is formalized as follows:

choose “the most preferred” vector f (x); x2 X0 � X ;
(1)

where X is the space of decisions, X0 is the set of fea-
sible decisions, f : X ! R

k is the criteria map, where
f = ( f1; :::; fk) and fl : X ! R ; l = 1; :::;k; are criteria
functions. We assume that all criteria are of the type “bet-
ter if more”.
From the algorithmic point of view the above problem is
ill-defined. As long as we do not know what “the most
preferred” means precisely we are not in a position to pro-
pose a problem solving method. The only source of sup-
plementary information to those already given in (1) can
be the decision maker (DM). The underlying assumption
of MCDM is that this information cannot be acquired from
the DM at once.
A formal model for MCDM is offered by the vector opti-
mization problem, namely

vmax f (x) ; x2 X0 � X ; (2)

where vmax stands for the identification of all efficient de-
cisions of X0. This problem is well-defined which means
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that under minor assumptions, satisfied in practical prob-
lems, the solution to (2) always exists.
Decisions are represented by their criteria values. With this
in mind, from now on we shall be dealing with elements
f (x) of set f (X0) and for the sake of simplicity we shall
use the notation

y= f (x) and Z = f (X0) :

Elements of set Z we shall call outcomes. Under this con-
vention, for given feasible decision x, yl = fl (x) is the value
of l th component of outcome y= f (x) : Thus, yl is the value
of l th criterion.
All properties of decisions we shall need throughout this
paper can be defined in terms of outcomes. The notation
x; X0; f (x); f (X0) has to be used only when one is to op-
erationalize an implicit (i.e. in the form of constraints)
feasible decision representation.
The element ŷ representing the hypothetical decision which
maximizes all objective functions, called utopian element,
is calculated as

ŷl = maxy2Z yl ; l = 1; :::;k:

Definition 1. The outcome ȳ 2 Z is efficient if yl � ȳl ;
l = 1; :::;k; y2 Z; implies y= ȳ:

For clarity of presentation and without loss of generality,
in this paper we confine ourselves exclusively to a subset
of efficient outcomes, namely to properly efficient out-
comes.

Definition 2 [3]. The outcome y2 Z is properly efficient if
it is efficient and there exists a finite number M > 0 such
that for each i we have

yi �yi

yj �yj
�M

for some j such that yj < yj ; whenever y2 Z and yi > yi :

The set of all properly efficient outcomes we shall denote
by P. The distinction between efficient and properly effi-
cient outcomes, important in formal considerations, is of lit-
tle importance in practical MCDM problems. It is enough
to recall that in the case set Z is polyhedral or finite all
efficient outcomes are properly efficient.

3. Pareto set characterizations

A corner stone for every interactive MCDM method is the
ability to derive properly efficient outcomes. Every prop-
erly efficient outcome should be potentially derivable. The
so-called characterizations of P are useful for this purpose.
Bellow we recall two types of characterizations prized for
their generality and therefore often exploited in MCDM
methods, namely:

– the characterization by weight manipulations,

– the characterization by reference point manipulations.

Any of the above characterizations represents a parametric
family of optimization problems.

3.1. Characterization by weight manipulations

The idea of characterizing the Pareto set by weight ma-
nipulations consists in constructing a surrogate objective
function parameterized by k parameters – weights. A sur-
rogate objective function when maximized (or minimized –
depending on the surrogate objective function form) over
Z yields properly efficient outcome of vector optimization
problem (2) (cf. Fig. 1). By changing weights and solving
the resulting optimization problems one derives different
properly efficient outcomes.

Fig. 1. Contours of a surrogate objective function and the prop-
erly efficient outcome “corresponding” to the selected vector of
weights.

Below we shall make use of a selected element of the cri-
teria space denoted y� and defined as

y�l = ŷl + ε ; l = 1; :::;k;

where ε is any positive number and ŷ is the utopian element
defined in the previous chapter.

Sufficient condition for proper efficiency. An outcome
which solves the optimization problem

min
y2Z

max
l

λl ((y
�

l �yl )+ρek(y��y)) ; (3)

or the problem

min
y2Z

max
l

λl (y
�

l �yl )+ρek(y��y) ; (4)

where λl >0; l = 1; :::;k, ρ > 0, and ek is the k-dimensional
row vector with all components equal to one, is properly
efficient [1, 4, 11–13].
The surrogate functions (3) and (4) are the most general
forms of functions used in weight manipulation methods.

10



Weight versus reference point multiple criteria decision making methods – analogies and differences

3.2. The characterization by reference point
manipulations

The idea of characterizing the Pareto set by reference point
manipulations consists in constructing a surrogate objective
function parameterized by an element y of Rk. A surrogate
objective function when minimized over Z yields a prop-
erly efficient outcome of vector optimization problem (2)
(cf. Fig. 2). By changing reference points and solving the
resulting optimization problems one derives different prop-
erly efficient outcomes.

Fig. 2. Contours of a surrogate objective function and the prop-
erly efficient outcome “corresponding” to the selected reference
point.

A continuous function sȳ(y) : Rk ! R; where ȳ 2 Rk,
(ȳ – a reference point), is called an achievement function. In
the context of this paper it is required that an achievement
function is ε-strongly increasing [10].

We define the following optimization problem:

min
y2Z

sȳ(y) : (5)

Let outcome y̆ be a solution of problem (5), i.e.

y̆= argmin
y2Z

sȳ(y) :

Sufficient condition for proper efficiency. If sȳ is ε-strongly
increasing, then outcome y̆ is properly efficient [10].
Functions (3) and (4) for each λ ; λl > 0; l = 1; :::;k;
are ε-strongly increasing; they both are achievement func-
tions with ȳ = y� : Various other forms of achievement
functions exists but for the properties required achievement
functions (3) and (4) posses the simplest form.

4. Methods

4.1. Weight methods

In weight methods ([2, 8, 9, 14] to name just a few, the
reader is referred to e.g. [7] for a more complete list of

references) the DM articulates his preferences by pointing
(directly or indirectly) to a vector of weights. Then a prop-
erly efficient outcome which “corresponds” to the selected
vector of weights is determined with the help of a sur-
rogate objective function (cf. Section 3.1). The notion of
correspondance is intuitively explained in Fig. 1. By ma-
nipulating weights the DM is able to determine a subset
of P set and from this subset select the most preferred
outcome.
In that manner the set of weights is systematically searched
and reduced. Search can be organized in the form of weight
cuts (the Zionts-Wallenius method and the Dell-Karwan
method) or weight zooming (the Tchebycheff method by
Steuer). Reductions of the set of weights give rise to a nat-
ural stopping rule: search is terminated if the set of weights
is so small that outcomes corresponding to weights from
this set differ insignificantly. Other usual stopping rules
such as limit of the elapsed time or limit of iterations are
of purely technical nature.

4.1.1. Weight cut methods

In weight cut methods it is assumed that the surrogate ob-
jective function used approximates locally DM’s implicit
utility function. With such an assumption in place a pair
of outcomes subjected to DM’s evaluation yields a weight
cut. With the surrogate function (3) and with two out-
comes ya; yb we have

max
l

λl ((y
�

l �ya
l )+ρek(y��ya))< max

l
λl ((y

�

l �yb
l )+

+ρek(y��yb)) (6)

if the DM prefers ya to yb, and

max
l

λl ((y
�

l�ya
l )+ρek(y��ya))> max

l
λl ((y

�

l �yb
l )+

+ρek(y��yb)) (7)

otherwise.

The cut (6) or (7) reduces the set of vectors λ . Vectors λ
from the reduced set are selected and problem (3) is solved
to derive elements of P for successive DM evaluations.

4.1.2. The Tchebycheff method

The so-called Tchebycheff method exploits problem (3) to
determine properly efficient outcomes (in the original ver-
sion of the method ρ = 0).
The method consists of the following operations: select-
ing a number of vectors λ ; λl > 0; l = 1; :::;k; and then,
iteratively:

11



Ignacy Kaliszewski

– solving problem (3) for all selected λ to derive
a number of properly efficient outcomes,

– selecting by the DM the most preferred outcome ỹ;

– selecting a number of vectors λ ; λl > 0; l = 1; :::;k;
in a neighborhood of λ̃ corresponding to the most
preferred outcome ỹ.

The above process has an effect of “zooming” in the set
of weights in a quest for weights which yield a sequence
of increasingly (or at least non decreasingly) preferred
outcomes.

4.2. Reference point methods

In the simplest version of reference point methods the DM
articulates his preferences by pointing to a reference point.
The reference point can be an outcome, i.e. an element
of Z ; or any other element of Rk : Then a properly efficient
outcome which “corresponds” to the reference point and the
achievement function used (cf. Section 3.2) is determined.
The notion of correspondence is intuitively explained in
Fig. 2. By manipulating reference points the DM is able to
determine a subset of P set and from this subset select the
most preferred outcome.

Fig. 3. Contours of a surrogate objective function and the prop-
erly efficient outcome “corresponding” to the selected pair of
reservation-aspiration points.

A variant of reference point methods admits also DM point-
ing to a pair of reference points; a point yres called a reser-
vation point and a point yasp, yasp2 yres+ int(Rk

+
), called an

aspiration point, where int(�) denotes the interior of a set.
It is quite natural to assume that yres2 Z and yasp =2 Z pro-
vided such points are easily identifiable. In general, the
condition yasp2 yres+ int(Rk

+) is sufficient. It is possible
then to construct an achievement function such that an out-
come y which minimizes that function over Z is an element
of P farthest from the reservation point and at the same time

closest to the aspiration point. One such an achievement
function is the function (3), where

λl =
1

yasp
l

�yres
l

; l = 1; :::;k:

This is schematically illustrated in Fig. 3.
In reference point methods no explicit evaluations (compar-
isons) of outcomes take place.

5. Weight versus reference point
methods

5.1. Weight versus reference point methods –
methodological level

On the methodological level weight methods and reference
point methods represent two entirely different decision mak-
ing paradigms.
In weight methods it is assumed (assumption A), often im-
plicitly, that at each iteration of the interactive decision
making process the DM is able to express his partial pref-
erences by pointing to a preferred outcome (and hence de-
cision) from a handful of outcomes presented to him. Then
his preference is translated into relations in terms of vec-
tors λ .
In reference point methods it is assumed (assumption B)
that at each iteration of an interactive decision making pro-
cess the DM is able to express his partial preferences by
pointing to a reference point representing his preferred de-
cisional pattern, or, as in the variant of the reference point
methods, by pointing to a pair of reservation-aspiration
points.
There is no decisive evidence which assumption is better
justified. Quite evidently assumption A is better justified
than assumption B when the DM posses some analytical
capabilities. In turn, assumption B seems to be better jus-
tified than assumption A when the DM acts intuitively and
tends to present his preferences in a holistic manner. Point-
ing to a reference point is a holistic form of expressing
preferences.

5.2. Weight versus reference point methods – technical
level

Let us observe that in weight methods selecting at each
iteration a vector λ > 0 amounts in fact to selecting a half-
line starting from y� along which the apexes of the con-
tours of the function (3) lie (cf. Fig. 1). This line has the
form

s= y�� tτ;

where t > 0 and τ = (τ1; :::;τk); τl =
1
λl
; l = 1; :::;k. In

course of iterations one gets a “fan” of half-lines all starting
at y� (Fig. 4).
In reference point methods the DM specifies at each itera-
tion a reference point yre f , what amounts in fact to selecting
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(recall we have assumed that (3) is the achievement func-
tion) a half-line starting from yre f , i.e.

s0 = yre f � tτ;

where t > 0 and τ = (τ1; :::;τk); τl =
1
λl
; l = 1; :::;k. In

course of iterations one gets a “forest” of parallel half-lines
(the vector λ is fixed) (Fig. 5).

Fig. 4. A fan-type interactive decision making process.

Fig. 5. A forest-type interactive decision making process.

Fig. 6. A maze-type interactive decision making process.

In the variant of reference point methods the DM specifies
at each iteration a reservation point yres and an aspiration
point yasp, what amounts in fact to selecting (recall we have
assumed that (3) is the achievement function) a half-line
starting from yasp and passing through yres, i.e.

s00 = yasp� tτ;

where t > 0 and τ = (τ1; :::;τk); τl =
1

yasp
l

�yres
l
; l = 1; :::;k.

In course of iterations one gets a “maze” of half-lines
(Fig. 6).
Table 1 summarizes the mechanics of the methods.

Table 1
Mechanics of considered interactive

decision making methods

Methods
Decisional item

fixed to be selected
Weight methods y� τ
Reference point methods τ yre f

Reference point methods – the variant � yres
; yasp

From Table 1 we see that though weight methods and refer-
ence point methods represent totally different decision mak-
ing (searching) methodologies, technically they are very
similar. Indeed, in each method to proceed to the next
iteration, i.e. to derive a subsequent trial outcome, a com-
bination of two decisional items is required: either two
elements of Rk or a direction and an element of Rk. The
methods differ in presence or absence of fixed items and
in which item is an active toll to search over the set of
efficient outcomes.

Fig. 7. Aspiration points take the role of y� in appropriately
constrained set Z.

The most flexible method is the variant of reference point
methods since no decisional item is fixed a priori. Let
us note, however, that a great extent of flexibility is not
necessarily always plausible.
We can make weight methods and the variant of reference
point methods technically equivalent with the following re-
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striction of the latter. Let us assume yasp= y�, i.e. the
aspiration point is fixed. Then DM changes only reserva-
tion points what amounts in fact to selecting a half-line
starting from y� and passing through yres; i.e.

s000 = y�� tτ;

where t > 0; and τ = (τ1; :::;τk); τl =
1

y�l �yres
l
; l = 1; :::;k.

If it is the case, we can say that both methods rely on
a direction selection mechanism.
Let us observe that y� plays the same role to Z as yasp(yre f )
to the set

Z\fyjyl � yasp
l

� ε; l = 1; :::;kg

(Z\fyjyl � yre f
l
� ε; l = 1; :::;kg) ;

where ε > 0 is the value we used in Section 3 to define y�

(cf. Fig. 7).
To decide if the proposed restriction of the variant of ref-
erence point methods is methodologically justified a vast
practical experience with applications of these methods is
required and this is lacking. At this stage we can only note
that the technical equivalence of weight methods and the
variant of reference point methods we have just shown has
some interesting practical consequences.

6. Discussion

There are two major practical consequences of the technical
equivalence of weight methods and the variant of reference
point methods.
The first consequence is that with the equivalence shown
two methods, one representing the class of weight methods
and other representing the class of reference point meth-
ods, can be implemented jointly with the same computing
(optimizing) software and an interface admitting the DM to
select which of these two methods he would like to work.
This would establish a firm ground for systematic compar-
ison of these methods in the same technical environment.
This also would open a way for some hybrid type decision
processes mixing elements of the two methods.
The second consequence is as follows. In weight methods
the principle of weight set reduction gives rise to a natural
convergence measure. Namely, convergence can be con-
trolled (and a stopping rule invoked) basing on the “vol-
ume” of sets of weights resulting from subsequent reduc-
tions. In general, reference point methods do not incur
a similar natural convergence measure.
Only by the simple modification proposed above the variant
of reference point methods acquires this property. Indeed,
any two outcomes from two subsequent iterations give rise
to a cut (6) or (7) and in consequence to a reduction of
the set of weights. Though the DM would have to answer
questions “which of two outcomes do you prefer?” those
are kind of technical questions of no influence on the course
of the decision process, which relies in, we recall, selecting
a reservation point with the aspiration point fixed at y�.

7. Concluding remarks

The fact that weight methods and the variant of reference
point methods can be realized in the same technical frame-
work has an important practical consequence. Namely, as
shown in companion papers of the author [5, 6], with weight
methods it is possible to calculate bounds, lower and up-
per, on values of criteria (outcome components) prior to
explicitly decision determining. This possibility is of ut-
most practical importance for applications of MCDM meth-
ods because using bounds instead of exact values one can
avoid determining decisions explicitly and hence solving
optimization problems. Since, as shown above, weight and
the variant of reference point methods can be reduced to
(and implemented in) the same technical framework realiz-
ing a “fan” type decisional process, reference point meth-
ods also enjoy this property. This aspect will be a topic for
further research.
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point approaches

Marcin Szczepański and Andrzej P. Wierzbicki

Abstract — Multiple criteria evolutionary algorithms, being
essentially parallel in their character, are a natural instrument
of finding a representation of entire Pareto set (set of solutions
and outcomes non-dominated in criteria space) for vector opti-
misation problems. However, it is well known that Pareto sets
for problems with more than two criteria might become com-
plicated and their representation very time-consuming. Thus,
the application of such algorithms is essentially limited to
bi-criteria problems or to vector optimisation problems with
more criteria but of simple structure. Even in such cases,
there are problems related to various important aspects of
vector optimisation, such as the uniformity of representation
of Pareto set, stopping tests or the accuracy of representing
Pareto set, that are not fully covered by the broad literature on
evolutionary algorithms in vector optimisation. These prob-
lems and related computational tests and experience are dis-
cussed in the paper. In order to apply evolutionary algorithms
for decision support, it would be helpful to use them in an in-
teractive mode. However, evolutionary algorithms are in their
essence global and of batch type. Nevertheless, it is possible
to introduce interactive aspects to evolutionary algorithms by
focusing them on a part of Pareto set. The results of experi-
mental tests of such modifications of evolutionary algorithms
for vector optimisation are presented in the paper. Another
issue related to vector optimisation problems with more than
two criteria is the computational difficulty of estimating nadir
points of Pareto set. The paper describes the use of diverse
variants of evolutionary algorithms to the estimation of nadir
points, together with experimental evidence.

Keywords — evolutionary algorithms, vector optimisation, nadir
point estimation, reference point techniques.

1. Evolutionary algorithms in vector
optimisation: general comments

There are many excellent reviews of evolutionary algo-
rithms used in vector optimisation [3–5, 10, 12]. Most
of them, however, treat evolutionary or genetic algorithms
as goals in themselves, as given tools that should be further
developed and put into use. In this paper, we concentrate
rather on the use of such algorithms for solving various
tasks of vector optimisation or multiple criteria analysis for
decision support.

First, let’s recall the traditional distinction between genetic
and evolutionary algorithms: genetic algorithms rely on bi-
nary representation of individuals, while evolutionary algo-
rithms admit real-valued (computational) representations.
For vector-valued representations, evolutionary algorithms
are more appropriate. On the other hand, special meth-
ods developed for genetic algorithms can be also usefully
translated into evolutionary algorithms.

Next, we observe that evolutionary algorithms are applied
to vector optimisation in order to obtain accurate repre-
sentation of the Pareto set (or any modified concept of
a non-dominated set). Being inherently parallel, evolu-
tionary algorithms are a natural approach to the problem
of representing a complicated set. However, research on
truly parallel or distributed implementations of evolution-
ary algorithms is scarce. Thus, the application of such
algorithms is essentially limited to bi-criteria problems or
very simple vector optimisation problems with more cri-
teria. Accurate representation of more complicated Pareto
sets using evolutionary algorithm still requires huge com-
putation efforts.

On the other hand, practical applications of vector optimisa-
tion to decision support require interactive multiple criteria
analysis [11], where instead of computing a single Pareto
set, various characteristics of selected variants or parts of
Pareto sets are needed for subsequent formulations of the
problem being analysed. Such cases include utopia points,
nadir points, neutral compromise points of Pareto sets and,
finally and most importantly for interactive applications –
representations of selected segments of Pareto sets. While
evolutionary algorithms might be useful for obtaining such
characteristics, little attention was given to such applica-
tions. Generally speaking, the same fact can be stated as
follows: since evolutionary algorithms are global and non-
interactive in their nature, the challenge in their applica-
tions for multiple criteria analysis is to make them more
local and interactive. While this paper does not resolve all
problems related to this challenge, it tries to move in this
direction – by treating evolutionary algorithms not as main
goal in itself, but as a way of addressing various tasks of
multiple criteria analysis.
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2. Modifications of evolutionary
algorithms in vector optimisation

2.1. Representation of individual

By individual in genetic or evolutionary algorithms, we
consider a current solution point together with additional
parameters, typically characterising its mutation potential
by specifying the dispersion σ . In vector optimisation or
multiple criteria analysis, current solution is typically rep-
resented by a vector of decision variables x2Rn and vector
of decision outcomes or criteria q2Rk. Dispersion parame-
ters are related to decision variables and can be represented
by a vector of the same dimension. Thus, an individual is
represented by:

ind = (x;σ ;q) 2 R2n+k
: (1)

2.2. Constraints

Constraints on decision variables (either in equation or in-
equality form) define the permissible set of decisions:

X0 =

(
gi(x)� 0; i 2 I

x2 Rn :
hi(x) = 0; i 2 E

)
: (2)

In genetic algorithms, if x is not in X0, the individ-
ual is simply discarded. This may lead, however, to
quite long computations if the set X0 has a compli-
cated structure. Therefore, we shall use a method typi-
cally adopted in evolutionary algorithms to represent con-
straints – applying penalty functions. There are many types
of penalty functions (internal, external, exact, shifted, etc. –
see e.g. [11]). With evolutionary algorithms that do not
need derivatives of optimised functions, it is best to use
exact non-differentiable external penalty functions of the
type jhi(x)j and jgi(x)�j= min

�
gi(x); 0

�
j (with sufficiently

large penalty coefficients), which are added to each crite-
rion value – if it is minimised or subtracted – if maximised.

2.3. Cross-breeding

Cross-breeding is a typical evolutionary operation. In vec-
tor optimisation, cross-breeding applies to two parent indi-
viduals represented by decision variable vectors x1 and x2;
their successor x0 may be determined as follows:

x0 = ax1+(1�a)x2; (3)

where the parameter a is a random variable from the in-
terval a 2 [0; 1]. This is called basic arithmetic cross-
breeding, while extended arithmetic cross-breeding applies
to each component x0i of the vector x0 with separately gener-
ated random coefficients ai . There are several other variants
of cross-breeding, such as heuristic cross-breeding, not dis-
cussed here.

2.4. Mutation

In vector optimisation, mutation is applied to every compo-
nent xi of the decision variable vector x (usually, mutation
is additionally applied to a successor of cross-breeding) by
selecting a random variable with a normal distribution and
modifying the component xi by this variable with a corre-
sponding dispersion coefficient:

ξ x
i 2 N(0; 1) ;

x0i = xi +σ 0
i ξ

x
i : (4)

Additionally, the dispersion coefficient is modified ran-
domly, but usually slowly decreased after (or before) each
mutation. This decreasing modification of dispersion pa-
rameters slows down mutations when approaching solu-
tions. In vector optimisation, it results in coming closer
to the Pareto set.

2.5. Selection

Selection is responsible for convergence of a genetic al-
gorithm towards optimal solutions and applies to selection
of parent individuals (selection in reproduction); there are
numerous methods of such selection, not discussed here.
In evolutionary algorithms, succession may substitute for
selection. This means choosing the µ as best individ-
uals from population µ + λ (so-called µ + λ succession
strategy; µ denotes here a population from parent indi-
viduals, λ the corresponding population of successors) in
some way. Another strategy consists of simply substitut-
ing parent population µ by successor population λ (the
so-called µ ; λ strategy). For vector optimisation purposes,
succession is superior to selection.

2.6. Pareto ranking

Succession process includes multiple stages to uniformly
approximate Pareto set by an evolutionary algorithm. First,
we use Pareto ranking of a population, then apply special
niched methods for preserving uniformity of representation,
and finally use special succession methods. We will de-
scribe all of them below.
Pareto ranking consists of attaching a rank value (the lower
the better) to each individual. Goldberg [2] has proposed
to give rank 1 to each non-dominated individual in popu-
lation. Next, we delete the non-dominated individuals and
determine non-dominated individuals in remaining part of
population, giving them rank 2. We continue the process
with increasing rank values until each individual has a rank
value. Then we can either select successor population of
given number of individuals according to lowest rank val-
ues, or – as proposed by Goldberg – determine the prob-
ability of reproduction depending on rank value (which is
actually a selection, not a succession mechanism).
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Another ranking method proposed by Fonseca and Flem-
ing [4] involves assigning each individual a rank value
of 1 plus the number of other individuals dominating this
individual. This method provides for more differentiation
of a population than Goldberg method.

Having a rank value, it is easy to determine a fitness indi-
cator f it (x) – for example, by defining it as inverse of the
rank value.

2.7. Niched methods

Having a fitness value or fitness function for Pareto rank-
ing, it is easy to apply the basic principle of evolution-
ary algorithms – the survival of the fittest individuals.

Fig. 1. The set of attainable criteria values (a) and the Pareto
set (b) for the nonlinear example.

However, such a method does not result in a uniform repre-
sentation of the Pareto set. The fittest individuals can form
an elite close to each other, representing only an “easy”
part of Pareto set. Such degeneration of the survival of
the fittest principle can be illustrated by a relatively simple,

but nonlinear example (Fig. 1). We maximize two criteria
functions (with – 0:5� x� 6):

max :q1(x) =

8>><>>:
x+2 x� 1

�x+4 1< x� 3
x�2 3< x� 4

�x+6 x> 4

9>>=>>; ;

max :q2(x) = �x2+10x+5: (5)

Fig. 2. Non-uniform representation of Pareto set with a sim-
ple survival of the fittest evolutionary algorithm (population size:
50, 200 generations).

Fig. 3. Examples of sharing functions.

Application of a simple survival of the fittest algorithm
here results in a degenerated representation of the Pareto
set, concentrating on the “easy part” of the set (Fig. 2).
In order to overcome this difficulty, we must penalise the
fitness function for individuals being too close to each other.
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With this aim, we define a sharing function depending on
a distance of two individuals, say x and x0. This sharing
function sh must have the following properties:

0� sh(x�x0)� 1; for any distancejx�x0j

sh(0) = 1

lim sh(x�x0) = 0; jx�x0j ! ∞ : (6)

Sharing functions shown in Fig. 3 belong to the family:

sh(x�x0) =

8<:1�

�
jx�x0j

D

�p

jx�x0j< D

0 jx�x0j � D
; (7)

where D is a diameter of a niche.
The so-called niched methods consist of modifying fitness
values f it (x) for a given individual x, reciprocal to the
sharing function:

f it 0(x) =
f it (x)

1+m(x)
; (8)

where m(x) is a sum of sharing functions over other non-
dominated individuals y in given population:

m(x) = ∑
y

sh
�
d(x; y)

�
: (9)

Figure 4 illustrates effectiveness of such niched methods
in preventing degeneration through cross-breeding of too
close individuals.

Fig. 4. Effectiveness of a niched method with D=0:1 (population
size: 50, 200 generations).

We see it is necessary to use niched methods in evolution-
ary algorithms of vector optimisation not only in order to
obtain a uniform representation of Pareto set, but also to
prevent degenerate populations resulting from naive direct
application of the “survival of the fittest” principle.

2.8. Stopping tests

Before discussing succession methods, stopping tests for
entire algorithm should be discussed. Stopping test for
evolutionary and genetic optimisation algorithms are much
less developed than for analytical optimisation methods. If
the optimal value of an optimised function is known (which
happens only in very special cases) then the distance from
this optimal value can be used for a stopping test. Other-
wise, one must limit the number of iterations in the algo-
rithm (number of generations in a genetic or evolutionary
algorithm) and hope for a good accuracy. Another stopping
test is based on the speed of change of an approximation of
the solution: work stops when changes fall below certain
level.
For vector optimisation, the issue of stopping tests is more
complicated. We can rely on a given number of iterations
or generations, but cannot easily use the speed of change,
because we approximate or represent an entire Pareto set
and the uniformity of this representation is also a goal.
A substitute for the speed of change might be a compari-
son of two subsequent generations and checking how many
individuals in the next generation dominate some individ-
uals in the former generation. Figure 5 shows example of
such computation.

Fig. 5. Average numbers of dominated individuals between gen-
erations for a typical evolutionary algorithm.

We see such a stopping test cannot be very reliable. Other
tests, however, might be related to special features of vec-
tor optimisation. One relates to the uniformity of Pareto
set representation, which can be represented by average
value of sharing function m(x) as defined by Eq. (9). An-
other relates to the concept of utopia and nadir points for
a Pareto set. For an approximation of Pareto set obtained in
a subsequent generation numbered here by i, it is relatively
easy (see also point 4) to compute utopia points qU

i (“low-
est” points dominating entire Pareto set) as well as nadir
points gN

i (“highest” points dominated by the entire Pareto
set). If the approximation of a Pareto set converges to the
actual Pareto set, the distance between the approximations
of utopia and nadir points:

un(i) = jqU
i �qN

i j (10)
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increases and converges to the value characterising the
actual Pareto set. We illustrate both of these concepts
on an example (we use here an example defined later
by Eq. (22)) – see Figs. 6 and 7.

Fig. 6. Average values of sharing function in subsequent gener-
ations for Eq. (22).

Fig. 7. Utopia-nadir distances in subsequent generations for
Eq. (22).

We observe that after a small number of iterations most
of the analysed measures oscillate around a constant value
and thus are not particularly useful for stopping tests. An
exception is the distance of utopia and nadir approxima-
tions, which converges to a constant value after a relatively
large, but reasonable number of iterations. Thus, the rela-
tive change of the distance of utopia and nadir approxima-
tions is the best stopping test for estimating a Pareto set by
evolutionary algorithms.

2.9. Succession methods

Application of niched methods results in decreasing fitness
of an individual in densely represented parts of a Pareto set.
However, this might lead to concentration on the boundaries
of the Pareto set, demonstrated by the following example.
Analysing how to choose successors in order to get a uni-
form representation of a Pareto set, we investigated a simple
case: let the Pareto set in three-dimensional space belong

to the plane z= 0 and be a square x; y 2< 0; 9>. The
simplest niched method with the niche diameter of 2 gives
the following values of fitness function (100 points arranged
in square table) shown in Fig. 8.

Fig. 8. Values of a fitness function for the simple case considered.

By applying the simplest succession method based on
a simple ranking of the individuals to this case, we pro-
mote individuals located on the boundary of Pareto set
(Fig. 9).

Fig. 9. Successors in the simple case with basic ranking succes-
sion rule (µ = 0:25).
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Table 1
Comparison of various succession methods

Succession method

Parameter ranking roulette tournament modified fitness deterministic

µ = 10

Computing time [ms] 36.59 4.84 7.40 28.56 1744

Average fitness 0.807 0.807 0.779 0.820 1

µ = 25

Computing time [ms] 39.13 8.89 14.30 33.30 1665

Average fitness 0.520 0.579 0.548 0.601 1

µ = 50

Computing time [ms] 46.92 19.14 29.70 43.63 1466

Average fitness 0.374 0.367 0.348 0.381 0.469

We can also imagine a deterministic (actually – non-
evolutionary) succession rule in which we eliminate in a de-
terministic loop subsequent individuals, while increasing
the fitness of its neighbours. The process is repeated until
the population drops to a given number of individuals, as
illustrated by Fig. 10.

Fig. 10. Block-diagram of a deterministic succession rule.

Another succession rule is obtained by modifying definition
of coefficient m(x), needed to determine fitness. Instead
of summing it up over all non-dominated individuals as
in Eq. (9), it can be summed up only for individuals with
lower index numbers on the list:

m(x) =
y�1

∑
x=1

sh
�
d(x; y)

�
: (11)

That way, the individuals considered first on the list obtain
greater fitness indicators (Fig. 11).

Yet another methods of succession for evolutionary vec-
tor optimisation can be obtained by modifying roulette
and tournament approaches to general evolutionary algo-
rithms. Recall that a roulette approach determines succes-
sors (or selects individuals for cross-breeding) randomly,
with probability increasing with the fitness indicator. Tour-
nament approach determines successors by selecting ran-
domly k individuals for a tournament and then selecting

the tournament winner as the individual with highest fit-
ness indicator (or randomly selects one of them, if there
is a tie). Both approaches give similar results in our case
(Fig. 12).
The above mentioned methods were compared in terms of
their accuracy (defined by uniform coverage of the Pareto
set, measured by average value of fitness indicator, that
should be highest for a uniform coverage) and computa-
tional effort needed to solve this simple case. Table 1 gives
results obtained by using a PC with 700 MHz Pentium III
processor, after a large number of generations (10 000).

Fig. 11. Successors in the simple case with deterministic suc-
cession rule.

The most uniform representation of the Pareto set is ob-
tained by deterministic method, though the required com-
puting time is rather large. Among other methods, simple
ranking method gives the least uniform representation – as
can be expected since it favours individuals on the edge
of Pareto set. For further experiments, either the roulette
method (giving shortest computing time) or the determin-
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Fig. 12. Successors obtained by a roulette method in the simple
case – the tournament method gives similar results.

istic method (ensuring uniform representation), were typi-
cally used. We will show later that performance of ranking
succession method can be considerably improved if a more
sophisticated ranking method is used.

2.10. Accuracy of representing Pareto set

When analysing more complicated Pareto sets than the sim-
plest example presented before, it was observed that evolu-
tionary algorithms do not converge precisely to the actual
Pareto set. In a sense, this phenomenon is obvious: due to
mutation necessary for evolutionary behaviour, only a few
individuals come precisely to the Pareto set; most of them
are oscillating just “below” the Pareto set. Even if obvious,
this aspect was not sufficiently stressed and analysed in the
literature. We give here results of investigating – in some
cases for quite a long time with up to 30 000 generations –
a simple example with known Pareto set, obtained by linear
vector optimisation:

maxxj ; j = 0; : : : ; i ;

i
∑
j=0

xj � 1;

xj � 0; j = 0; : : : ; i : (12)

We see that for the investigated example with i = 2, the av-
erage distance form the Pareto set oscillates about 4 �10�3

(actually, 3:76�10�3) after only 200 generations (Fig. 13).
Naturally, this value depends on the limit values for de-
creasing the dispersion parameter σ . This is because the
oscillation of the distance from the Pareto set results from
recombination and (predominantly) the mutation operation.
Even if the original population were situated precisely on
the Pareto set, mutation would put successors “below” this
set, as illustrated by the following simple example (Fig. 14).

Fig. 13. Average distance from Pareto set for the example defined
by Eq. (12) (i = 2; µ = 100; λ = 100; r = 0:01).

Fig. 14. Population on Pareto set (a), successor population after
recombination and mutation (b) the same after succession (c).

We could of course force the algorithm to converge to the
precise Pareto set, if we decided to decrease the mutation
effect through decreasing dispersion parameter σ to zero.
This would result, however, in losing exploratory powers
of the evolutionary algorithm, considered a degeneration
of the algorithm. Precise dependence of accuracy of ap-
proximating Pareto sets on the limit values of dispersion
parameters requires further detailed study.

3. Use of reference points and
achievement functions in evolutionary

algorithms

A powerful and practical way of making vector optimi-
sation algorithms interactive is to combine them with the
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concepts of reference points and to use order-preserving
achievement functions [11]. We will investigate here, how
to combine these concepts with evolutionary algorithms in
order to either make them more interactive or to eliminate
other deficiencies.

3.1. Segments of Pareto sets dominating a reference
point

In interactive analysis of Pareto sets, it might be interesting
to approximate a part of Pareto set “above” a given reser-
vation point qres – see the example shown in Fig. 15. We
have to add constraints:

f (x)� gres
i ; i = 1; : : : ;k1 (for maximised criteria) ;

f (x) � gres
i ; i = k1+1; : : : ;k (for minimised ones) : (13)

Fig. 15. A part of Pareto set above a given reservation
point (0, 24, 0).

Provided that the resulting problem is feasible (the reserva-
tion point is not “above” Pareto set), specifying such addi-
tional requirement does not complicate the evolutionary al-
gorithm. Additional constraints are simple and can be taken
into account as selection conditions. We can also achieve
a better approximation accuracy if the reservation point lies
close to Pareto set. For the relatively simple examples of
Pareto sets considered here, the necessary computational
effort does not diminish, however: approximating a part of
Pareto set is as expensive as approximating the entire set.
On the other hand, the necessary computational effort is
reasonable for simple examples. Interactive investigation
by approximating first entire Pareto set, and approximating
selected parts of it more precisely later is possible.

3.2. Using achievement functions for better ranking
and for improving the accuracy of representing
Pareto set

Ranking Pareto in evolutionary algorithms can be modi-
fied by using an order-consistent achievement function (see
also [11]), e.g.:

σ(q; q) = min
1�i�m

σi(qi ;qi)+ ε
m

∑
i=1

σi(qi ;qi) ; (14)

where q is a reference point in criteria space. The partial
achievement functions can be defined for a simple case as
follows:

σi(qi ;qi) =
qi�qi

qU
i �qN

i
(for maximised criteria);

σi(qi ;qi) =
qi�qi

qN
i �qU

i
(for minimised ones); (15)

where qU and qN are utopia and nadir point vectors or their
approximations, respectively. Modification of Pareto rank-
ing is based on the following property of the achievement
function:

q2Q0 )

(
maxq2Q0

σ(q;q)� 0bq= argmaxq2Q0
σ(q;q)� q

)
: (16)

Thus, the value σ(q;q) greater than 0 indicates (approxi-
mately), that point q dominates the reference point q. The
value 0 of the achievement functions indicates that point q is
either equal or (approximately) equivalent to q. Because of
these properties, the Pareto rank of an individual can be
determined by:

rank(t)
j

= 1+
Sj

∑
k=1

σ(qk;qj) ; (17)

where qk are individuals dominating qj , thus σ(qk;qJ)� 0,
and Sj is the number of individuals dominating qj . This
way of ranking takes into account both distance of a given
point from Pareto frontier and number of points dominating
given point. The disadvantage is that estimation of utopia
and nadir points must be available to construct the achieve-
ment function, hence this ranking method cannot be used
when approximating Pareto set for the first time. It is appli-
cable only to further, interactive analysis of selected parts
of Pareto set.
Despite such drawback, the ranking method based on
achievement function values has several advantages. It is
more sensitive than the classical Golberg ranking method
and the Fonseca and Fleming method, which can be illus-
trated by the simple example (Fig. 16).
Another, more practical advantage of Pareto ranking using
achievement function values is that it might improve the ac-
curacy of the entire evolutionary algorithm. We have seen
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Fig. 16. Example of ranking values obtained by (1st value)
Goldberg method; (2nd value) Fonseca and Flemming method;
(3th value) by using achievement function values.

before that ranking methods did not behave well as suc-
cession mechanisms. A ranking method using achievement
function values can perform much better: we can increase
the accuracy of the entire evolutionary algorithm by in-
creasing the value of the parameter ε , as suggested by the
computation results shown in Table 2.

Table 2
Average distance from Pareto set after 30 000 generations
depending on the parameter ε (i = 2; µ = 100; r = 0:01)

ε 0 0.01 0.1 1 10 100
Average distance
from Pareto set 3.82 3.88 3.88 1.18 0.19 0.00012
[�10�3]

We see that, using evolutionary algorithm interactively for
more precise investigation of a part of Pareto set, we could
actually obtain much better accuracy or use much shorter
computation times for a ranking method based on achieve-
ment function values. On the other hand, very large values
of ε (say, changing it from 10 to 100) mean only increasing
the absolute value of achievement function, not its charac-
ter that is dominated then by its linear part. This suggests
that similar results would be obtained when using a slightly
different form of the ranking formula:

rank(t)
j

= 1+β
SJ

∑
k=1

σ(qk; qj) ; (18)

while increasing the parameter β over its initial value 1.

Thus, use of ranking values based on achievement functions
not only increases flexibility of ranking, but also results in
much better accuracy of approximating Pareto set.

3.3. Neutral compromise points and their
neighbourhoods

Given a reservation point qres and an aspiration point qasp

in criteria value space, we can define a relative neutral com-
promise point as a point in Pareto set in criteria space being
closest to the line joining points qres and qasp (Fig. 17).

Fig. 17. Example of Pareto set with a reservation, aspiration and
a relative neutral compromise points shown.

This point can be obtained by optimising the achievement
function σ(q; q) of the form (14) with partial achievement
functions defined e.g. as follows:

σi(qi ; qi) =
qi�qasp;i

qasp;i�qres;i
(for maximised criteria);

σi(qi ; qi) =
qasp;i�qi

qres;i�qasp;i
(for minimised ones): (19)

For more sophisticated forms of partial achievement func-
tions see e.g. [11]. In evolutionary algorithms, we can use
the achievement function σ(q; q) as a fitness measure and
thus optimise it.

This results in interactive modification of evolutionary al-
gorithms for vector optimisation: the user defines the aspi-
ration and reservation points, the algorithms responds with
the relative neutral compromise point or its approximation
by a population of points (Table 3). This idea is illustrated
by the following example. For the vector optimisation prob-
lem defined by Eq. (5), we define reservation and aspiration
points as in Fig. 17. The line joining points qres and qasp

24



Application of multiple criteria evolutionary algorithms to vector optimisation, decision support and reference point approaches

Fig. 18. The approximation of the relative neutral compromise point for the example from Fig. 17. Approximation cloud depending
on generation number (a) n= 5; (b) n= 10; (c) n= 15; (d) n= 30 (µ = 50; λ = 50).

Table 3
Diameter of approximation cloud depending on

generation number (µ = 50;λ = 50)

Generation number 5 10 20 40 60

∆q1
[�10�3] 1020 850 45.95 1.82 0.07

∆q2
[�10�3] 10640 9230 91.35 3.63 0.16

does not intersect Pareto set, but this makes the example
more interesting. An evolutionary algorithm with achieve-
ment function used as a fitness measure produces a popu-
lation approximating the relative neutral compromise point
(2, 29) in the criteria space at first, and soon converges to
this point (Fig. 18).

3.4. Parameterisation of representing Pareto set or its
segment

The approach discussed above can be further parameterised
combining a niched method with ranking based on achieve-
ment function. The niched method was originally used to
provide a uniform representation of Pareto set in a global
approach; here we use it to parameterise a local approach.
Size of the niche can be related to e.g. the distance between
aspiration and reservation points. Use of the niched method
results in broadening the dispersion of a population around
a neutral compromise point, as illustrated in Fig. 19.
We conclude that the evolutionary algorithms of vector op-
timisation, though traditionally understood as global and
having non-interactive, batch character, can nevertheless be
localised and used as local tools of interactive multiple cri-
teria analysis.

25



Marcin Szczepański and Andrzej P. Wierzbicki

Fig. 19. Dispersion around the relative neutral compromise point
for the example from Fig. 17, resulting from a niched approach
with niche size equal to 10% of the range between aspiration and
reservation points (population size 50, 200 generations).

4. Estimation of utopia and nadir points
in evolutionary algorithms

4.1. Definitions and classical computations of utopia and
nadir points

We recall that the utopia point qU is defined as the “low-
est” point dominating entire outcome set Q0 (and thus en-
tire Pareto set bQ0) in criteria value space. In other words,
if some criteria are maximised and other minimised, we
define:

qU
i = max

x2X0

fi(x); i = 1; : : : ;k1

(for maximised criteria) ;

qU
i = min

x2X0

fi(x); i = k1+1; : : : ;k

(for minimised criteria) ; (20)

where fi(x) are criteria functions, k is the number of them
(while k1 is the number of maximised criteria), X0 is the
set of admissible decisions and Q0 = f (X0) is the outcome
set of attainable criteria vectors.

The nadir point is defined as the “highest” point in criteria
value space dominated by the entire Pareto set bQ0 – and
not necessarily the entire outcome set Q0. This difference
explains the difficulty (see e.g. [9]) of precisely calculating
the nadir point, since we must perform necessary compu-
tations not over entire X0 or Q0, but over their efficient

subsets bX0 or bQ0. Thus, if some criteria are maximised and
other minimised, we define:

qN
i = min

x2bX0

fi(x) = min
q2 bQ0

qi ; i = 1; : : : ;k1

(for maximised criteria) ;

qN
i = max

x2bX0

fi(x) = max
q2 bQ0

qi ; i = k1+1; : : : ;k

(for minimised criteria) : (21)

We cannot replace bQ0 with Q0 in the equation above, be-
cause this might lead to nadir estimation much lower than
actual values. On the other hand, computation of precise
value of the nadir point is very difficult when using clas-
sical methods. There are many methods that approximate
nadir point components; the simplest of them is based on
using only results of computations related to determining
utopia components as in (20) and selecting the worst crite-
ria values encountered during these computations:

qU
i = max

x2X0

fi(x); bqi = argmaxfi(x); i = 1; : : : ;k1

(for maximised criteria) ;

qU
i = min

x2X0

fi(x); bqi = argminfi(x); i = k1+1; : : : ;k

(for minimised criteria) ;

qN
i = min

1� j�k
bqj

i ; i = 1; : : : ;k1(for maximised criteria) ;

qN
i = max

1� j�k
bqj

i ; i=k1+1; : : : ;k (for minimised criteria) ; (22)

where qj denotes the jth component of vector q. This
method is accurate if k= 2, for bi-criteria problems. How-
ever, in other cases it usually gives too optimistic estima-
tions of the nadir value.
Matthias Ehrgott and Dagmar Tenfelde-Podehl [9] have
proposed an algorithm computing the nadir point for three
(or more) criteria by determining the Pareto sets for (each
possible pair of) two criteria. For these bi-criteria Pareto
sets, the values of the third missing criterion are attached,
the resultant three-dimensional vectors are collected in one
set, dominated results deleted, and the nadir values are di-
rectly computed from the resulting approximation of Pareto
set.

4.2. Evolutionary algorithms and utopia and nadir points

Although the literature on evolutionary and genetic al-
gorithms for vector optimisation is rather rich, it is fo-
cused more on the algorithms details than on their use for
analysing Pareto set. Thus, an obvious fact was practi-
cally overlooked: since we approximate entire Pareto set
by an evolutionary algorithm, the computations of utopia
and nadir points should be much more easy than when us-
ing classical vector optimisation algorithms and should be
actually by-products of the evolutionary algorithm applied.
The questions that should be investigated are “only” how to
provide for necessary accuracy of estimating these points –
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especially the nadir point – while limiting the computa-
tional effort necessary for this estimation. We shall show
on an example that these questions are by no means trivial.

We consider a slightly modified example from [3]:

maximise :f1(x) = 100�7x1�20x2�9x3

maximise :f2(x) = 4x1+5x2+3x3

maximise :f3(x) = x3

11
2x1+x2+13

5x3 � 9

x1+2x2+x3� 10

xi � 0; i = 1;2;3: (23)

The set of admissible decisions X0 is illustrated by Fig. 20.

Fig. 20. Set of admissible decisions X0 for the example defined
by Eq. (23).

The set of admissible decisions X0 is determined by its
corner points:n

P0= (0;0;0); P1= (6;0;0);

P2= (0;5;0); P3=
�
0;0;55

8

�
;

P4= (4;3;0); P5=
�
0;3 2

11;3 7
11

�o
:

Following the transformation q = f (x) determined by
Eq. (23), we can define also the corresponding corner points
of the set of attainable criteria values Q0 (Fig. 21). By di-
rect examination, we can eliminate some of them as not
belonging to Pareto set.
We can show in this way that the Pareto set is composed
of surfaces determined by the following points in criteria
space: n

P0= (100;0;0); P1= (58;24;0);

P3=
�
493

8;167
8;55

8

�o
andn

P1=
�
58;24;0); P3=

�
493

8;167
8;55

8

�
;

P4= (12;31;0); P5=
�
3 7

11;26 9
11;3 7

11

�o
:

By direct examination, we can find for these points
the utopia point qU =

�
100;31;55

8

�
and the nadir point

qN =
�
3 7

11;0;0
�
. Now we shall show the results of com-

puting these points via three variants of evolutionary algo-
rithms.

Fig. 21. The set of attainable criteria values Q0 for the example
defined by Eq. (23).

I. Evolutionary computations of utopia point with
utopia based nadir approximations

The first variant uses direct determination – see Eq. (19) –
of utopia point for an evolutionary approximation of
a Pareto set and an indirect – see Eq. (21) approxima-
tion of the nadir point based on the data obtained in
utopia point determination. An evolutionary algorithm with
(µ ;λ ) = (200;100) and 200 generations gave the following
results:

qU
1 = (100; 0; 0)

qU
2 = (11:9998; 30:9999; 0)) qU = (100; 30:9999; 5:625)

qU
3 = (49:375; 16:875; 5:625)

with the corresponding quite inaccurate nadir approxima-
tion qN = (11:9998; 0; 0). By increasing the computing ef-
fort (measured below as the number of new computations
of criteria values, because this, rather than organisation of
the algorithm determines the computational effort) we can
increase the accuracy of utopia approximations, but accu-
racy of nadir approximations remains inadequate, as shown
in Table 4. Thus, we conclude that this method of nadir
approximations is not worth using with evolutionary algo-
rithms.
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Table 4
Results of utopia and nadir point approximation

by method I

The number of

new computations

of criteria values

Nadir point

approximation

Utopia point

approximation

30 000 (12.06; 0; 0) (100.0; 30.79; 5.617)

60 000 (11.97; 0; 0) (100.0; 30.95; 5.624)

120 000 (12.00; 0; 0) (100.0; 31.00; 5.625)

II. Evolutionary computations of utopia point and nadir
point

Since an evolutionary algorithm approximates entire Pareto
set, we can also simply determine utopia and nadir points
directly, according to their definitions, for the subsequent
evolutionary approximations of Pareto set (Fig. 22). This
simple method needs not, however, be the best, since a uni-
form approximation of Pareto set does not necessarily cover
well the remote corners of this set, which are responsible
for utopia and nadir points.

Fig. 22. Approximation of the Pareto set for the example defined
by Eq. (23).

Thus, an evolutionary algorithm for vector optimisation
must be modified in order to provide for a good approxi-
mation of utopia point and particularly the nadir point. It is
necessary to increase fitness indicators for individuals with
extreme values of criteria components.

Theoretically, such a method should give good approxima-
tions of Pareto set together with its utopia and nadir points.
However, practical applications show that good approxima-

tions of the nadir point remain difficult to obtain. This is
illustrated by results (Table 5) of an evolutionary algorithm
with direct determination of nadir point for Pareto set ap-
proximations in subsequent iterations, with a modification
of fitness indicators for individuals with extreme values of
criteria vectors components. We observe that accuracy of
the nadir point approximation, although much better than
in method I, still remains inadequate even after very long
computations.

Table 5
Results of nadir point approximation by method II

The number of new

computations

of criteria values

Nadir point

approximation

Arbitrary starting population

30 000 (6.78; 0; 0)

60 000 (5.90; 0; 0)

120 000 (5.91; 0; 0)

Starting population containing individuals

responsible for utopia point

30 000 (5.38; 0; 0)

60 000 (5.24; 0; 0)

120 000 (5.06; 0; 0)

III. Evolutionary approximations of Pareto sets for
smaller number of criteria

The method proposed by Ehrgott and Tenfelde-Podehl [9]
was not developed as an evolutionary algorithm, but can be
easily combined with evolutionary approaches, involving
the following steps:

– for each pair of criteria, Pareto sets are be approxi-
mated by using an evolutionary algorithm;

– for each individual in these approximations, the cor-
responding values of other criteria are computed;

– results obtained this way are combined and domi-
nated points deleted, resulting in an approximation
of Pareto set for the original problem;

– utopia and nadir points are computed according to
their definitions for this approximation of Pareto set.

The advantage of this method over method II is that approx-
imation of Pareto sets for bi-criteria problems in a natural
way provides for more attention paid to extreme values of
criteria components.

We illustrate the working of this method by showing the
results of such approximations obtained by using an evo-
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Fig. 23. Approximation of Pareto set for criteria 1 and 2 (a) with three-dimensional presentation (b).

Fig. 24. Approximation of Pareto set for criteria 1 and 3 (a) with three-dimensional presentation (b).

lutionary algorithm with (µ ;λ ) = (200; 100); 200 genera-
tions and alternative niche diameters 4,75; 1,55; 0,28) –
see Figs. 23–25.

This way, after a large number (360 000) of computations
of new criteria vectors, the following approximations were
obtained: utopia point qU = (100; 30:999; 5:625) and nadir
point qN = (4:36; 0; 0). We see that nadir point approxi-
mation, though much better than in other methods, still
remains inadequate. Moreover, method III requires more

computations (three times in this case) than methods II
and I, and a fair way of comparing them is to compare nadir
approximations after the same number of computations of
new criteria vectors. Such a comparison is presented in
Table 6.

When we compare the results of these three methods,
we see that method III is most promising. The exam-
ple defined by Eq. (23) might be especially difficult for
nadir point approximation, hence we tried another variant

29



Marcin Szczepański and Andrzej P. Wierzbicki

Fig. 25. Approximation of Pareto set for criteria 2 and 3 (a) with three-dimensional presentation (b).

Fig. 26. Pareto sets for criteria 1 and 2 (a) or for criteria 1 and 3 (b), for example defined by Eq. (24).

Table 6
Results of nadir point approximation by method III

Number of new
computations

of criteria vectors

Nadir point
approximation

30 000 (5.01; 0; 0)
60 000 (4.67; 0; 0)

120 000 (4.78; 0; 0)

of this example, at the same time testing the possibility of
generalising method III for a larger number of criteria.

The original example from [3] is as follows:

minimise : f1(x) = 9x1+191
2x2+71

2x3

minimise : f2(x) = 7x1+20x2+9x3

maximise :f3(x) = 4x1+5x2+3x3

maximise :f4(x) = x3

11
2x1+x2+13

5x3 � 9

x1+2x2+x3� 10

xi � 0; i = 1; 2; 3: (24)

The set of admissible decisions X0 is the same as in the
example defined by Eq. (23) – see Fig. 20. However,
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Fig. 27. Pareto sets for criteria 1 and 4 (a) or for criteria 2 and 3 (b), for example defined by Eq. (24).

Fig. 28. Pareto sets for criteria 2 and 4 (a) or for criteria 3 and 4 (b), for example defined by Eq. (24).

utopia and particularly nadir points change with each
change of criteria and they are here qU =

�
0; 0; 31; 55

8

�
and qN =

�
941

2; 96 4
11; 0; 0

�
. The Pareto sets for consecu-

tive bi-criteria problems are shown in Figs. 26–28.

Utopia and nadir points obtained using evolu-
tionary algorithm with (µ ; λ ) = (200;100) and
200 generations, and a version of method III
for four criteria: qU = (0; 0; 30:999; 5:625) and
qN = (94:4998; 95:8747; 0; 0). Although the actual num-
ber of criteria value computations here increased 6 times
(this is the drawback of using method III), we have
obtained quite acceptable approximation of utopia and
nadir points in this example.

5. Conclusions and future research

We shall point out only few conclusions, in particular those
concerning future research:

� Although there is a very rich literature on evolution-
ary algorithms for vector optimisation, this literature
focuses mostly on the tool – specific aspects of evo-
lutionary algorithms, much less on the task – specific
issues of vector optimisation, for which an evolution-
ary approach might be helpful.

� When concentrating on the task, evolutionary algo-
rithms might be usefully extended – e.g. to ob-
tain more precise approximations of selected parts
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of Pareto set, or better approximations of utopia and
nadir points of Pareto set.

� In such extensions of evolutionary algorithms, an
essential issue is to make them more interactive
(e.g. first approximating entire Pareto set, then a se-
lected part of it). For interactive extensions of evo-
lutionary algorithms, combining them with reference
point approaches and achievement function concepts
might be useful.

� A particularly difficult issue (not only for evolution-
ary algorithms, but also in entire vector optimisa-
tion) is the determination of nadir points. Clas-
sical evolutionary approaches are not sufficient to
solve this issue. Combinations of evolutionary algo-
rithms with other approaches of vector optimisation
are necessary.

� Many issues outlined in this paper should be treated
as starting points only and require deeper future re-
search. Starting from a different perspective, concen-
trating more on tasks than on tools, the paper serves
only as identification of future research issues.
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Paper Fair resource allocation schemes
and network dimensioning problems

Włodzimierz Ogryczak, Tomasz Śliwiński, and Adam Wierzbicki

Abstract — Resource allocation problems are concerned with
the allocation of limited resources among competing activities
so as to achieve the best overall performances of the system
but providing fair treatment of all the competitors. Telecom-
munication networks are facing the increasing demand for
Internet services. Therefore, a problem of network dimen-
sioning with elastic traffic arises which requires to allocate
bandwidth to maximize service flows with fair treatment of
all the services. In such applications, the so-called max-min
fairness (MMF) solution concept is widely used to formulate
the resource allocation scheme. This guarantees the fairness
but may lead to significant losses in the overall throughput
of the network. In this paper we show how multiple criteria
optimization concepts can be used to generate various fair re-
source allocation schemes. The solution concepts are tested
on the network dimensioning problem and their abilities to
model various preferences are demonstrated.

Keywords — telecommunication networks, network dimension-
ing, resource allocation, fairness.

1. Introduction

Resource allocation decisions are concerned with the allo-
cation of limited resources so as to achieve the best system
performances. In this paper, we focus on approaches that,
while allocating resources, attempt to provide a fair (equal)
treatment of all the competing activities [8, 13]. The prob-
lems of efficient and fair resource allocation arise in various
systems which serve many users, like in telecommunication
systems among others [8].
The development of the Internet has led to an increased
role of the traffic carried by the IP protocol in telecom-
munication networks. Due to the use of packet switch-
ing, the IP protocol can provide greater network utilization
(the so-called multiplexing gain). For these reasons, net-
work management can be interested in designing networks
which have a high throughput for the IP protocol.
At the same time, data traffic carried by the TCP proto-
col (which is the most frequently used transport protocol in
IP networks) has a unique characteristic. The TCP protocol
will adapt its throughput to the amount of available band-
width. It is therefore capable to use the entire available
bandwidth, but it will also be able to reduce its throughput
in the presence of contending traffic. This type of network
traffic has been called elastic traffic.
Network design today often considers the problem of de-
signing networks that carry elastic traffic. If the network
is also used for other types of communication that require
guaranteed quality of service, the network design problem

can be decomposed into two parts: first, design the network
to carry non-elastic traffic in such a way that all demands
for that communication are satisfied. Next, use the spare
capacity to carry elastic traffic of the IP protocol. Resource
allocation models may be used to help to solve such net-
work design problems.
Within a telecommunication network the data traffic is gen-
erated by a huge number of nodes exchanging data. In such
a network, a relatively small subset of nodes are chosen to
serve as hubs which can be used as intermediate switching
points [2, 6]. Given a set of hubs, data traffic generated
by a service is sent from the source node to a hub first.
It can be then sent along communications link between
hubs, and finally reach the destination node along a link
from a hub. The hub-based network organization allows
the data traffic to be consolidated on the inter-hub links.
The problem of network dimensioning with elastic traffic
arises when there is a need to design the (inter-hub) link ca-
pacities to carry as much traffic as possible between a set of
network nodes. This can occur in the case described above,
when the network capacity available after considering all
non-elastic demands has to be used for elastic traffic, or in
another case: when the network capacity is insufficient to
carry all non-elastic demands. In such a case, the problem
is to determine how much traffic of the non-elastic demands
can be admitted into the network. To do so, the demands
can be treated as elastic traffic. The outcome of network
design will also specify the limits of traffic to be admitted
into the network for each demand [16].
Network management must stay within a budget of ex-
penses for purchasing link bandwidth. Network manage-
ment will want to have a high throughput of the IP network,
to increase the multiplexing gains. This traffic is offered
only a best-effort service, and therefore network manage-
ment is not concerned with offering guaranteed levels of
bandwidth to the traffic. Network dimensioning with elas-
tic traffic can therefore be thought of as a search for such
network flows that will maximize the network throughput
(the sum of all flows in the network) while staying within
a budget constraint for the costs of link bandwidth. How-
ever, such a problem formulation would lead to the starva-
tion of flows between certain network nodes.
Looking at the problem from the user perspective, the net-
work flows between different nodes should be treated as
fairly as possible. The users may be interested in high avail-
able bandwidth between any two nodes of the network, or
in high available bandwidth from all other network nodes
to the user’s node, or in high available bandwidth from the
user’s node to all other nodes. Whatever the user prefer-
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ence, it would be expressed in terms of fairness for a certain
set of criteria which depend on the individual flows. Let us
first consider providing fairness for all flows between any
two network nodes. Such a goal would clearly lead to lower
levels of throughput, since resources must be allocated to
distant nodes, which is more expensive than using the entire
budget to purchase a high capacity for close nodes.
Therefore, network management must consider two goals:
increasing throughput and providing fairness. These two
goals are clearly conflicting, if the budget constraint has to
be satisfied. Network management could therefore be in-
terested in finding compromise solutions that do not starve
network flows, and give satisfying levels of throughput.
The search for such compromise solutions has led to the
development of a method that finds solutions which are fair
with respect to flows in certain categories. These categories
can depend on the distance between the source and desti-
nation of a flow. The details of this method will be given
below; it is referred to as proportional fairness (PF) [5].
However, this method gives only one possible compromise
solution. The purpose of this work is to show that there
exists a methodology that allows the decision maker to ex-
plore a set of solutions that could satisfy his preferences
with respect to throughput and fairness, and choose the so-
lution which the decision maker finds best. This interactive
approach to decision making is superior to a black box ap-
proach, when the decision maker has only one solution and
cannot express his preferences [18].
The paper is organized as follows. In the next section we
recall the network dimensioning problem. In Section 3,
basic fair solution concepts for resource allocation are for-
mally introduced. In the next section, the ordered outcomes
are used to introduce LP implementable solution concepts
allowing to model various fair allocation schemes. Finally,
in Section 5, we report some results of our initial compu-
tational experience with this new approach.

2. The network dimensioning problem

The generic resource allocation problem may be stated as
follows. There is given a set I of m services. There is also
given a set Q of allocation patterns (allocation decisions).
For each service i 2 I a function fi(x) of the allocation
pattern x has been defined. This function, called the in-
dividual objective function, measures the outcome (effect)
yi = fi(x) of the allocation pattern for service i. In ap-
plications, we consider, an outcome usually expresses the
service flow. However, outcomes can be measured (mod-
eled) as service time, service costs, service delays as well
as in a more subjective way. In typical formulations a larger
value of the outcome means a better effect (higher service
quality or client satisfaction). Otherwise, the outcomes can
be replaced with their complements to some large num-
ber. Therefore, without loss of generality, we can assume
that each individual outcome yi is to be maximized which
results in a multiple criteria maximization model.

The problem of network dimensioning with elastic traffic
can be formulated as a linear programming (LP) resource
allocation problem as follows. Given a network routing
topology G =< V;E >, consider a set of pairs of nodes
as the set I of services. For each service i 2 I , the elas-
tic flow from source us

i to destination ud
i will be denoted

by yi , which is a variable representing the model outcome.
For each service, we have given the information about the
routing path in the network from the source to the desti-
nation. This information can be in the form of a matrix
A = (aei), which satisfies the relation: aei = 1 if link e be-
longs to the routing path connecting us

i with ud
i . Further,

for each link e2 E, marginal costs ce of link bandwidths is
given. Hence, the cost of the entire path for service i can
be expressed as:

κi = ∑
e2E

ceaei:

The network dimensioning problem depends on allocating
the bandwidth to several links in order to maximize flows
of all the services while remaining within available bud-
get B for all link bandwidths. The decisions are usually
modeled with (decision) variables: xe – representing the
bandwidth allocated to link e2 E. They have to fulfill the
following constraints:

∑
e2E

cexe = B (1)

∑
i

aeiyi = xe 8e2 E ; (2)

where Eq. (1) represents the budget limit while Eqs. (2)
establish the relation between service flows and links band-
width (the quantity ∑i2I aeiyi is the load of link e). Cer-
tainly, all the decision and outcome variables must be non-
negative: xe � 0 for all e2 E and yi � 0 for all i 2 I .
Alternatively, one may eliminate variables xe formulating
the problem as a simplified resource allocation model with
only one constraint:

m

∑
i=1

κiyi = B (3)

and variables yi representing directly decisions.
The model could have various objective functions, depend-
ing on the chosen approach. One may consider two extreme
approaches. The first extreme approach is the maximiza-
tion of the throughput (the sum of flows) ∑i2I yi . Due
to possible alternative formulation (3), it is apparent that
this approach would choose one variable yio which has the
smallest marginal cost κio = mini2I κi and make that flow
maximal within the budget limit (yio = B=κio), while lim-
iting all other flows to zero. A slightly more fair optimal
solution would give equal values to all flows which have
marginal costs equal to the minimal marginal cost. How-
ever, all flows that have marginal costs larger than the min-
imum would have to be zero in a solution that maximizes
throughput.
The so-called max-min fairness solution concept is widely
used to formulate fair resource allocation schemes [1, 8].
The worst performance (minimum flow) is there maximized
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and additonally regularized, if necessary, with the lexico-
graphic (sequential) maximization of the second worst per-
formance, the third worst etc. The MMF concept is con-
sistent with Rawlsian [15] theory of justice.
Actually, due to possible alternative formulation (3), the
MMF concept would lead us to a solution that has equal
values for all the flows [12]:

yMMF
i = B=∑

i2I

κi for i = 1; : : : ; m:

Allocating the resources to optimize the worst performances
may cause a large worsening of the overall (mean) perfor-
mances. In such a solution the throughput (mB=∑m

i=1 κi)
could be considerably smaller than the maximal through-
put (B=mini=1;::: ;mκi). In an example analyzed further, we
shall show that the throughput in a perfectly fair solution
can be less than 50% of the maximal throughput.
Network management can be interested in seeking a com-
promise between the two extreme approaches discussed
above. The approach called proportional fairness proposed
in [5] maximizes the sum of logarithms of the flows yi .
The use of the logarithmic function makes it impossible
to choose zero flows for any pair of nodes, and, on the
other hand, makes it not profitable to assign too much flow
to any individual demand. The optimization model of the
PF method takes the following form:

max
m

∑
i=1

log(yi): (4)

For the problem of network dimensioning with elastic traffic
and unbounded flows, the solution found by the PF method
has an interesting property [11]. The optimal flows yPF

i are
given by the expression:

yPF
i = B=κi for i = 1; : : : ; m: (5)

This property implies that the optimal flow in the PF model
is inversely proportional to the cost of the path that the flow
travels in the network. Due to this property, it is not neces-
sary to solve nonlinear models in order to find the PF op-
timal solution. Also, the solution provides fairness to the
flows which have the same path costs. Arguably, the PF so-
lution is a good compromise solution to the problem, since
it provides a higher throughput than the perfectly fair so-
lution. However, network management could be interested
in choosing among a larger set of compromise solutions in
order to satisfy their preferences. In the following sections,
we shall describe an approach that allows to search for such
compromise solutions.

3. Basic fair allocation schemes
Consider a generic resource allocation problem defined as
an optimization problem with m objective functions fi(x):

maxff(x) : x 2Qg ; (6)

where f(x) is a vector–function that maps the decision space
X = Rn into the criterion space Y = Rm, Q� X denotes

the feasible set, and x 2 X denotes the vector of decision
variables.

Model (6) only specifies that we are interested in maximiza-
tion of all objective functions fi for i 2 I = f1;2; : : : ;mg.
In order to make it operational, one needs to assume some
solution concept specifying what it means to maximize
multiple objective functions.
Typical solution concepts for multiple criteria problems are
defined by aggregation functions g : Y ! R to be maxi-
mized. Thus the multiple criteria problem (6) is replaced
with the maximization problem

max fg(f(x)) : x 2Qg : (7)

In order to guarantee the consistency of the aggregated
problem (7) with the maximization of all individual ob-
jective functions in the original multiple criteria problem,
the aggregation function must be strictly increasing with
respect to every coordinate, i.e., for all i 2 I ,

g(y1; : : : ;yi�1;y
0

i ;yi+1; : : : ;ym)< g(y1;y2; : : : ;ym) (8)

whenever y0i < yi .
In order to guarantee fairness (equitability) of the solu-
tion concept, the aggregation function must be additionally
symmetric (impartial), i.e. for any permutation τ of I ,

g(yτ(1);yτ(2); : : : ;yτ(m)) = g(y1;y2; : : : ;ym) (9)

as well as be equitable (to satisfy the principle of transfers)

g(y1; : : : ;yi0 � ε; : : : ;yi00 + ε; : : : ;ym)> g(y1;y2; : : : ;ym)

(10)

for any 0 < ε < yi0 � yi00 . In the case of an aggregation
function satisfying all the requirements (8), (9) and (10),
we call the corresponding problem (7) a fair (equitable)
aggregation of problem (6). Every optimal solution to the
fair aggregation (7) of a resource allocation problem (6)
defines some fair allocation scheme.
Note that symmetric functions satisfying the requirement

g(y1; : : : ;yi0 � ε; : : : ;yi00 + ε; : : : ;ym)� g(y1;y2; : : : ;ym)

(11)

for 0< ε < yi0 �yi00 are called (weakly) Schur-concave [10]
while the stronger requirement of equitability (10), we con-
sider, is related to strictly Schur-concave functions. In other
words, an aggregation (7) is fair if it is defined by a strictly
increasing and strictly Schur-concave function g.
The simplest aggregation functions commonly used for the
multiple criteria problem (6) are defined as the sum of
outcomes

g(y) =
m

∑
i=1

yi (12)

or the worst outcome

g(y) = min
i=1;::: ;m

yi : (13)

In the network dimensioning problem, the former repre-
sents throughput maximization while the latter corresponds

36



Fair resource allocation schemes and network dimensioning problems

to the MMF model. The sum (12) is a strictly increasing
function while the minimum (13) is only non-decreasing.
Therefore, the aggregation (7) using the sum of outcomes
always generates a Pareto-optimal solution while the max-
imization of the worst outcome may need some additional
refinement. Both the functions are symmetric and satisfy
the requirement (11), although they do not satisfy the eq-
uitability requirement (10). Hence, they are Schur-concave
but not strictly Schur-concave. To guarantee the fairness
of solutions, some enforcement of concave properties is
required.

For any strictly concave, increasing function s : R! R, the
function

g(y) =
m

∑
i=1

s(yi) (14)

is a strictly monotonic and strictly Schur-concave func-
tion [10]. This defines a family of the fair aggregations
according to the following corollary [7].

Corollary 1. For any strictly convex, increasing function
s : R! R, the optimal solution of the problem

max

� m

∑
i=1

s( fi(x)) : x 2Q

�
(15)

is a fair solution for resource allocation problem (6).

In the case of the outcomes restricted to positive values,
one may use logarithmic function thus resulting in the pro-
portional fairness model (4). Various other concave func-
tions s can be used to define fair aggregations (15) and the
resulting resource allocation schemes. However, the prob-
lem of network dimensioning, we consider, is originally
an LP model. Therefore, it is important if various fair al-
location schemes can be generated with LP tools. We will
show such LP models in the next section.

The standard maximin approach (13) may be lexicograph-
ically extended to the full MMF model where, in addition
to the smallest outcome, one maximizes also the second
smallest outcome (provided that the smallest one remains
as large as possible), maximizes the third smallest (provided
that the two smallest remain as large as possible), etc. Note
that the lexicographic maximization is not applied to any
specific order of the original criteria. Nevertheless, in the
case of LP problems, there exists a dominating objective
function which is constant on the entire optimal set of the
maximin problem [9]. Hence, having solved the maximin
problem, one may try to identify the dominating objective
and eliminate it to formulate a restricted maximin problem
on the former optimal set. Therefore, the lexicographic
maximin solution to LP problems can be found by sequen-
tial maximin optimization with elimination of the dominat-
ing functions. Although, the LP models, we will present
in the next section, provide us with a direct formulation for
the MMF model.

4. Ordered outcomes

Multiple criteria optimization defines the dominance
relation by the standard vector inequality. The the-
ory of majorization [10] includes the results which al-
low us to express the relation of fair (equitable) dom-
inance as a vector inequality on the cumulative or-
dered outcomes [7]. This can be mathematically for-
malized as follows. First, introduce the ordering map
Θ : Rm! Rm such that Θ(y) = (θ1(y);θ2(y); : : : ;θm(y)),
where θ1(y)� θ2(y)� �� � � θm(y) and there exists a per-
mutation τ of set I such that θi(y) = yτ(i) for i = 1; : : : ;m.
Next, apply to ordered outcomes Θ(y), a linear cumula-
tive map thus resulting in the cumulative ordering map
Θ̄(y) = (θ̄1(y); θ̄2(y); : : : ; θ̄m(y)) defined as

θ̄i(y) =
i

∑
j=1

θ j(y) for i = 1; : : : ;m: (16)

The coefficients of vector Θ̄(y) express, respectively: the
smallest outcome, the total of the two smallest outcomes,
the total of the three smallest outcomes, etc.
Vector Θ̄(y) can be viewed graphically with a piece
wise linear curve connecting point (0,0) and points
(i=m; θ̄i(y)=m) for i = 1; : : : ;m. Such a curve represents
the absolute Lorenz curve which can be mathematically for-
malized as follows. First, we introduce the right-continuous
cumulative distribution function:

Fy(d) =
m

∑
i=1

1
m

δi(d) ; where δi(d) =

�
1 if yi � d
0 otherwise

which for any real value d provides the measure of out-
comes smaller or equal to d. Next, we introduce the quan-
tile function F(�1)

y as the left-continuous inverse of the cu-
mulative distribution function Fy:

F (�1)
y (η) = inf

�
d : Fy(d)� η

	
for 0< η � 1:

By integrating F(�1)
y one gets F (�2)

y (0) = 0 and

F (�2)
y (η) =

Z η

0
F (�1)

y (α)dα for 0< η � 1:

Graphs of functions F (�2)
y (η) (with respect to η) take

the form of concave curves (Fig. 1), the (upper) ab-
solute Lorenz curves. In our case of m outcomes, the
absolute Lorenz curve is completely defined by the
values F(�2)

y (i=m) = 1
m θ̄i (y) for i = 1; : : : ; m, where

F(�2)
y (1=m) = θ̄1(y) = θ1(y) represent the worst outcome

and F (�2)
y (1) = 1

mθ̄m(y) = 1
m ∑m

i=1 θi(y).
In income economics the Lorenz curve is a cumulative pop-
ulation versus income curve [10]. A perfectly equal distri-
bution of income has the diagonal line as the Lorenz curve
and no outcome vector can be better. The absolute Lorenz
curves, we consider, are unnormalized taking into account
also values of outcomes. Vectors of equal outcomes are dis-
tinguished according to the value of outcomes. They are
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Fig. 1. Vectors Θ̄(y) as the absolute Lorenz curves.

graphically represented with various ascent lines in Fig. 1.
Hence, with the relation of fair dominance an outcome vec-
tor of large unequal outcomes may be preferred to an out-
come vector with small equal outcomes.
Note that fair solutions to problem (6) can be expressed as
Pareto-optimal solutions for the multiple criteria problem
with objectives Θ̄(f(x))

max
n�

θ̄1(f(x)); θ̄2(f(x)); : : : ; θ̄m(f(x))
�

: x 2Q
o
: (17)

Corollary 2. A feasible solution x 2Q is a fair solution of
the resource allocation problem (6), iff it is a Pareto-optimal
solution of the multiple criteria problem (17).
Corollary 2 provides the relationship between fair alloca-
tion schemes and Pareto-optimality. Moreover, the multiple
criteria problem (17) may serve as a source of fair alloca-
tion schemes.
Although the definitions of quantities θ̄k(y), used as criteria
in (17), are very complicated, the quantities themselves can
be modeled with simple auxiliary variables and constraints.
It is commonly known that the worst (largest) outcome
may be defined by the following optimization: θ̄1(y) =
=maxft : t � yi for i = 1; : : : ;mg, where t is an unrestricted
variable. It turns out that this approach can be generalized
to provide an effective modeling technique for quantities
θ̄k(y) with arbitrary k [14]. Namely, for a given outcome
vector y the quantity θ̄k(y) may be found by solving the
following linear program:

θ̄k(y) = max kt�∑m
i=1di

s:t: t�yi � di ; di � 0 for i = 1; : : : ;m;
(18)

where t is an unrestricted variable while nonnegative vari-
ables di represent, for several outcome values yi , their
downside deviations from the value of t. Independently
from the formal proof [14], this formula can be justified
as follows. It is obvious that max(kt�∑m

i=1di) = θ̄k(y)

whenever no more than k�1 deviations di are strictly pos-
itive. On the other hand, for any t and di feasible to (18)
one can define an alternative feasible values: t̃ = t �∆
and d̃i = di �∆ for di > 0, where ∆ is an arbitrary small
positive number. For at least k positive values one gets
kt̃�∑m

i=1 d̃k � kt�∑m
i=1dk, which justifies (18).

Formula (18) provides us with a computational formulation
for the worst conditional mean M k

m
(y) defined as the mean

outcome for the k worst-off services, i.e.:

M k
m
(y) =

1
k

θ̄k(y); for k= 1; : : : ;m: (19)

Note that for k = 1, M 1
m
(y) = θ̄1(y) = θ1(y) = M(y)

thus representing the minimum outcome, and for k = m,
Mm

m
(y) = 1

mθ̄m(y) = 1
m ∑m

i=1 θi(y) =
1
m ∑m

i=1yi = µ(y) which
is the mean outcome. Formula (18) allows us to maximize
effectively the worst conditional means for various interme-
diate values k [13].
Note that Corollary 2 allows one to generate equitably effi-
cient solutions of (6) as efficient solutions of problem (17).
The aggregation maximizing the sum of outcomes, corre-
sponds to maximization of the last (mth) objective in prob-
lem (17). Similar, the maximin scalarization corresponds
to maximization of the first objective in (17). For modeling
various fair preferences one may use some combinations of
the cumulative ordered outcomes θ̄i(y). In particular, for
the weighted sum on gets

m

∑
i=1

wi θ̄i(y) : (20)

Note that, due to the definition of map Θ̄ with (16), the
above function can be expressed in the form with weights
vi = ∑m

j=i wj (i = 1; : : : ;m) allocated to coordinates of the
ordered outcome vector. Such an approach to aggregation
of outcomes was introduced by Yager [19] as the so-called
ordered weighted averaging (OWA). When applying OWA
to problem (6) we get

max
n m

∑
i=1

viθi(f(x)) : x 2Q
o
: (21)

The OWA aggregation is obviously a piece wise linear func-
tion since it remains linear within every area of the fixed
order of arguments.
If weights vi are strictly decreasing and positive, i.e.
v1 > v2 > � � �> vm�1 > vm > 0, then each optimal solution
of the OWA problem (21) is a fair solution of (6). More-
over, in the case of LP models, as the network dimension-
ing one, every fair allocation scheme can be identified as an
optimal solution to some OWA problem with appropriate
monotonic weights [7].
While equal weights define the linear aggregation, several
decreasing sequences of weights lead to various strictly
Schur-concave and strictly monotonic aggregation func-
tions. Thus, the monotonic OWA aggregations provide
a family of piece wise linear aggregations filling out the
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space between the piece wise linear aggregation func-
tions (12) and (13) as shown in Fig. 2. Actually, formu-
las (20) and (18) allow us to formulate any monotonic (not
necessarily strictly) OWA problem (21) as the following
LP extension of the original multiple criteria problem:

max
m

∑
k=1

wkzk (22)

subject to x 2Q

zk = ktk�
m

∑
i=1

dik for k= 1; : : : ;m (23)

tk�dik � fi(x); dik � 0 for i;k= 1; : : : ;m; (24)

where wm= vm and wk = vk�vk+1 for k= 1; : : : ;m�1.

Fig. 2. Isoline contours for equitable OWA.

When differences among weights tend to infinity, the OWA
aggregation approximates the lexicographic ranking of the
ordered outcome vectors [20]. That means, as the limiting
case of the OWA problem (21), we get the lexicographic
problem:

lexmax
�

Θ(f(x) : x 2Q
	

(25)

which represents the MMF (lexicographic maximin) ap-
proach to the original resource allocation problem (6).
Problem (25) is a regularization of the standard maximin
optimization (13), but in the former, in addition to the worst
outcome, we maximize also the second worst outcome (pro-
vided that the smallest one remains as large as possible),
maximize the third worst (provided that the two smallest
remain as large as possible), and so on. Due to (16),
the MMF problem (25) is equivalent to the problem:

lexmax
�

Θ̄(f(x) : x 2Q
	

which leads us to a standard lexicographic optimization
with predefined linear criteria defined according to (18).

5. Computational results

First we have tested the OWA computational mod-
els (22)–(24) when applied to a generic LP resource al-
location problem. We tested solution times for different
size parameters. For each number of decision variables
n and number of criteria (services) m we solved 20 ran-
domly generated problems (Table 1). All computations
were performed on a PC with the Pentium 200 MHz pro-
cessor employing the CPLEX 6.0 package [4].

Table 1
Computation times for randomly generated problems

Services Allocations – n

m 5 10 20 40 60 100

10 0.05 0.10 0.10 0.15 0.15 0.20
20 0.30 0.35 0.40 0.60 0.75 1.00

30 0.80 1.00 1.55 2.15 2.65 3.35

40 1.95 2.35 3.20 5.25 6.75 9.50
60 7.30 8.80 10.95 20.75 31.30 44.95

100 49.05 54.60 65.40 104.15 173.10 278.80

Further we have analyzed sample network dimensioning
problem with elastic traffic. For this purpose we have con-
sidered a network of the topology is patterned after the
backbone network of a Polish ISP (Fig. 3). The network
has 12 nodes, and we consider flows between any pair of
these nodes (therefore, there are 144�12= 132flows). All
links have marginal costs equal to one, and the budget for
link bandwidth is B = 1000. Since all links have equal
costs of one, path cost will be equal to the link length,
which is 1, 2, 3 or 4 in the example topology. All flows
are unbounded. However, it is clear that due to the budget
constraint no flow can exceed B.

Fig. 3. Sample network topology.

To have control over the solution that will be found by the
model, we decided to scale the outcomes (flows). Following
the concepts of reference point methodology [17], we as-
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sume that the decision maker (DM) specifies requirements
in terms of aspiration and reservation levels, i.e., by intro-
ducing desired (acceptable) and required values for several
outcomes. Depending on the specified aspiration and reser-
vation levels, ya

i and yr
i , respectively, a special achievement

function is built which can be interpreted as a measure of
the DM’s satisfaction with the current value of outcome the
ith outcome. It is a strictly increasing function of outcome
yi with value 1 if yi = ya

i , and value 0 for yi = yr
i . Thus

the partial achievement functions map the outcomes values
onto a normalized scale of the DM’s satisfaction. Various
functions can be built meeting those requirements [18]. We
use the piece wise linear function:

σi(yi) =

8><
>:

γ(yi �yr
i )=(y

a
i �yr

i ); for yi � yr
i

(yi �yr
i )=(y

a
i �yr

i ); for yr
i < yi < ya

i

β (yi �ya
i )=(y

a
i �yr

i )+1; for yi � ya
i

where β and γ are arbitrarily defined parameters satisfying
0< β < 1< γ . Parameter β represents additional increase
of the DM’s satisfaction over level 1 when a criterion gen-
erates outcomes better than the corresponding aspiration
level. On the other hand, parameter γ > 1 represents dis-
satisfaction connected with outcomes worse than the reser-
vation level. The achievement function σi can be viewed as
an extension of the fuzzy membership function to a strictly
monotonic and concave utility (Fig. 4).

Fig. 4. Outcomes scaled with the achievement function.

The scaled flows are combined into an objective function
using the OWA model. The linear program formulation
of the OWA approach uses weights wi , which are first-
order differences of the weights vi which are coefficients
of the ordered outcome vector in the OWA model. In the
approach used here, the weights wi = 1 for all i. Thus,
the OWA model has linearly decreasing weights. In the next
section, we shall apply the outlined approach to search for
compromise solutions of the network dimensioning prob-
lem with elastic flows using the sample topology given
in Fig. 3.

The first application of the outlined approach used the
same reservation and aspiration levels for all flows. Pre-
dictably, the result was a perfectly fair solution with each
flow equal to 3:546, and a throughput of 468:1. This solu-
tion has a throughput which is less than 50% of the opti-
mum throughput (equal to the budget constraint, 1000).

Next, the aspiration and reservation levels were chosen
close to the values of the flows predicted by the property
of the PF approach. Indeed, we got the optimal solution
of the PF model, which has a throughput of 573:3. While
the throughput of this solution is larger than in the per-
fectly fair solution, it is still not large when compared to
the optimum.

Finally, the aspiration levels were set to 999 (close to the
maximal flow), and the reservation levels were chosen for
flows that had identical path costs in the following way:
the flows with path cost equal to 1 had a reservation level
of 15; flows with path cost equal to 2 had a reservation level
of 2:0; flows with path cost equal to 3 had a reservation
level of 1:0, and flows with path cost equal to 4 had a reser-
vation level of 0:5. This approach resulted in a solution that
had a throughput of 732:7, yet the smallest flow was larger
than 1:0, and flows with equal path costs were treated fairly,
like in the proportionally fair solution. The Lorenz curves
of all the described solutions are shown in Fig. 5. Note
that none of the solutions dominates any other.

Fig. 5. Solutions obtained for the sample topology.

As was indicated in the introduction, the users of a network
could be interested in fair treatment of flows between any
pair of nodes, or in some other form of fairness. For ex-
ample, the users could be interested in having fair amounts
of available throughput from all other nodes to the user’s
node. This form of preferences could be expressed by the
criteria:

nv = ∑
pi=(u;v)

xi 8v2V : (26)

In this case, the number of criteria is reduced. Also, note
that in approaches which make the value of a flow de-
pendent on the distance between the origin and destination
(like proportional fairness), nodes which are distant from
all other nodes will be treated unfairly. The three solutions
described above will be shown in Fig. 6. The figure plots
the Lorenz curves for the 12 criteria nv for each of the three
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Fig. 6. The three solutions with respect to node criteria nv.

solutions. It can be seen that the solution which increases
throughput dominates the other two. This is a consequence
of the design of the network topology, which is such that
increasing network throughput improves the throughputs to-
ward all the nodes. Another consequence of the topology is
that all nodes have close values of criteria nv, which is why
the curves on the figure are almost straight; in more detail
one could notice that the curves for proportional fairness
and the OWA method have each 6 changes of slope. The
perfectly fair solution predictably remains perfectly fair for
the criteria nv.

6. Concluding remarks

In various systems which serve many users, like in telecom-
munications systems, there is a need to respect the fairness
rules, i.e. to allocate resources equitably among the com-
peting services. Allocating the resources to optimize the
worst performances may cause a large worsening of the
overall (mean) performances. Therefore, several other fair
allocation schemes are searched and analyzed.

The conditional mean is based on averaging restricted to
the group of the worst performances defined by the tol-
erance level. Our earlier computational experiments with
the conditional mean criterion applied to a traffic engineer-
ing model (a single ring bidirectional loading) were very
promising [13]. The OWA aggregation further enriches
modeling capacity offered by the conditional mean. In the
case of LP models all equitable preferences may be mod-
eled by selection of weights in the OWA aggregation.

Initial experiments with application of the OWA criterion
(together with the reference point methodology) to the prob-
lem of network dimensioning with elastic traffic have con-
firmed the theoretical properties of the approach. We were
able to generate easily allocations representing classical
fairness models as well as to find new compromise so-
lutions.

Maximization of the OWA aggregation, similar to the stan-
dard minimax approach, can be defined by optimization of
a linear objective and a number of auxiliary linear inequal-
ities. Many specific large-scale allocation models (espe-
cially discrete ones) may need some specialized exact or
approximate algorithms. Thus, further research on compu-
tational aspects is necessary.

The problem of network dimensioning with elastic traf-
fic could be extended with constraints on the individual
flows. For example, network management could obtain traf-
fic statistics that indicate the maximum throughputs which
will be required between a pair of nodes. On the other
hand, network statistics could also determine how much
of the IP traffic requires guaranteed throughput (for exam-
ple, from voice over IP applications). From this, mini-
mal throughputs between a pair of nodes could be derived.
In this work, we have analyzed in details the network design
with elastic traffic without flow constraints. However, our
approach allows to express such constraints in the objective
function.
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Paper Some variants
of projection methods for large

nonlinear optimization problems
Paweł Białoń

Abstract — Two ideas of modifying projection methods for the
case of smooth nonlinear optimization are presented. Projec-
tion methods were originally successfully used in solving large-
scale linear feasibility problems. The proposed instantiations
of projection methods fall into two groups. One of them is
a decomposition approach in which projections onto sets are
realized as optimization problems which themselves involve
much portions of original problem constraints. There are two
subproblems: one build with linear constraints of the origi-
nal problem and the second one build with original nonlinear
constraints. These approaches use special accelerating cuts
so that the separation of nonlinear and linear constraints can
be effective and some problem sparsity preserved. The sec-
ond group bases on penalty-shifting/multiplier methods and
draws from the observation that unconstrained subproblems
obtained there may solve very slowly due to their nonsmooth
character. Thus it is proposed to solve them with modified pro-
jection methods which inherit from conjugate gradient meth-
ods a multi-dimensional subspace in one epoche.

Keywords — projection methods, penalty shifting method, non-
linear optimization.

1. Introduction

Projection methods [2, 10] in their classical form serve for
solving convex feasibility problems, i.e, the problems of
finding a common point of several closed convex sets. They
received some success, especially in image reconstruc-
tion for medical applications (see references in [2]), where
problems of million sizes have been solved favourably for
some time. There has been a considerable stream of re-
search on adopting projection methods for optimization
problems, which differ from feasibility problems only by
the existence of a goal function. However, usually the
investigations surround themselves with nondifferentiable
optimization [13, 19], whereas the author sees some pos-
sibilities to aply them in more “standard” branches of op-
timization, i.e. nonlinear smooth, possibly large-scale opti-
mization. Despite their success in solving large feasibility
problems, projection methods have other features that seem
appealing for such a usage. They do not have to involve
any complex linear algebra in the case where the sets in
feasibility problems are halfspaces (which means that the
feasibility problem is linear). On the other hand, the large
nonlinear optimization problems are usually composed of
a big linear part and much smaller nonlinear part. Other

attractive features of projection methods include a clear in-
dication of how to accelerate them, easily seen from the
convergence analysis: the method should make long steps.
Several things seem discouraging, for example, the theoret-
ical worst-case convergence for projection methods is not
much competitive, but the author proposes some ways of
taking advantage of information taken from quadratic mod-
els of the nonlinear optimization problem, which should
accelerate the solving process.
In Section 2 a brief introduction to projection methods is
given. The next two sections show a few-years work of the
author on adapting projection methods for nonlinear opti-
mization. Two approaches are presented. One of them is
only briefly summarized in Section 3 (it was in more detail
presented in [4] and [5]). This is a decomposition approach
in which projections are realized via solving two different
optimization subproblems with auxiliary solvers. One of
the subproblems involves the linear constraints from the ini-
tial problem and the second one – the nonlinear ones. Due
to the separation of constraints, specialized solvers (pure
linear and nonlinear) may be used for the subproblems.
The method is designed for problems in which the large
size is generated mainly by the size of the linear part. The
main effort in designing this method was done to generate
special accelerating cuts that preserve the good features of
the parts of the initial problem (sparse structure of the lin-
ear part and the low dimensionality of the nonlinear part).
A very interesting feature of this method is that one of its
best behaviors can be expected on the so-called nonlinear
multicommodity flow problem, a classical item in telecom-
munication network design.
Section 4 presents an approach introducing projection
methods in solving nonlinear optimization problems via the
multiplier/penalty shifting method. The multiplier method
produces unconstrained subproblems. Due to the spline
character of these subproblems they might be sometimes
very hard to solve, and the level of this hardness surprized
the author who was trying to tackle them with a conju-
gate gradient method. The author proposes replacing the
conjugate gradient method with a special kind of projec-
tion method, in which, however, a quadratic model of the
minimized function and elements of the conjugate gradi-
ent method are still present and allow to obtain long steps
in the projection method. This approach is formulated as
a core algorithm and may have various realizations, each
of them probably requiring a considerable amount of addi-
tional conceptual work.
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Finally, in Section 5 some discussion and the author’s ob-
servations regarding the methods as well as conclusions
steming from the author’s experience are given.

2. The idea of projection methods

Projection methods serve to solving the following convex
feasibility problem:

Find

x2 S
def
=
\

i=1;:::m

Gi ; (1)

where Gi � R
n are closed, convex sets. In practice, Gi are

often defined as sets of points allowed by some constraints.
Assume that S is nonempty. We start our description with
the case of m= 2.
For x2 Rn and a closed convex nonempty C� R

n we shall
denote by PCx the (unique) orthogonal projection of x onto
C, PCx = argminy2Ckx� yk2. The projection vector for
such a projection is PCx�x.
The idea of searching for the solution consists in performing
sequential alternate projections onto G1 and G2; i.e., given
the starting point x0, we produce a sequence

x1 = PG1
x0; x2 = PG2

x1; x3 = PG1
x2; etc. (2)

We assume such projections are easily realizable numeri-
cally.
In the convergence analysis of projection methods it is im-
portant that the projection operator possesses the Fejér con-
traction property.

Definition. A finite or infinite sequence (xi) of points in
a Hilbert space H has the Fejér contraction property with
respect to C� H if

kxi �ck2 � kxi+1�ck2+kxi+1�xik2 (3)

for each c 2 C. Similarly, operator O : H ! H has this
property if for each c2C and x2H kx�ck2�kOx�ck2+
+kOx�xk2.

Fact. Projecting onto a nonempty closed convex set of
points in Rn has Fejér c. p. with respect to this set.
For a proof of the above fact see calculations on page 228
in [14] with tmin = tmax= 1.

After putting C= S we see that with every projection per-
formed in our algorithm (2) we decrease the squared norm
from (any but fixed) point c2 S by at least the square of
the appropriate step (projection vector) length . It now
suffices to assure certain lengths of steps to establish the
convergence1.
In other words, the Fejér contraction property of projections
in our algorithm means that we approach each solution
point with an acute angle.

1Which is usually easy and is done with the notion of the problem
geometrical property called regularity – see [2].

Zigzagging often slows down projection methods: we may
approach the solution with an angle less than but close to
π=2, making the distance from a solution decrease very
slowly. This happens in an example in Fig. 1; there, more-
over, consecutive projection vectors form angles close to π .

Fig. 1. Zigzagging.

Cuts serve as a standard remedy for zigzagging. Given
point a and vector p in a Hilbert space, we define a cut as
an inequality h��a;bi � hb;bi � 0 with fixed a;b2 Rn; its
hyperplane H(a;b) is given as fx2Rn : hx�a;bi= hb;big,
its halfspace – as fx2 Rn : hx�a;bi � hb;big.
Using cuts means replacing (2) with

x1 = P
G0

1
1x0; x2 = PG0

22x1; x3 = PG0
13x2; etc. (4)

where sets G0
1

k and G0
2

k (k = 1;2;3; : : : ) are G1 and G2
narrowed by some cuts, i.e, they were obtained from G1
and G2 by intersecting G1 and G2 with halfspaces of some
cuts.
A geometric cut based on (constructed after) the projection
of x =2G onto close convex G, G� S is defined as

h��x;PGx�xi � hPGx�x;PGx�xi :

In Fig. 2, unlike in Fig. 1, point x3 was obtained by project-
ing x2 not onto G2 but onto G2 narrowed by the geometric
cut constructed after projection of x1 onto G1. H is a hy-
perplane of this cut. We see that the step made is longer
and we approach the solution with a smaller angle.
A cut is called valid or proper if it is satisfied for each
point in the solution set S. Validity is necessary to assure
that narrowed sets (i.e., G0

1
k or G0

2
k) contain S and thus

projection onto them still possesses the Fejér contraction
property with respect to S; moreover, we do not want our
method to degenerate by producing empty G0

1
k or G0

2
k. Ge-

ometric cuts constructed after a projection of an x =2G onto
nonempty, closed, convex G� S can be easily shown to be
proper.
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Fig. 2. A geometric cut reduces zigzagging.

Fig. 3. Obtaining a surrogate cut (dotted line) from two cuts
(dashed lines) whose normal vectors form an obtuse cone; q= 2.

We may narrow set G1 or G2 with only one cut but it
may bring a profit in efficiency to narrow them with sev-
eral cuts simultanously (i.e., to intersect G1 or G2 with the
intersection of the halfspaces of several cuts). Various tech-
niques for cuts cumulation are given in [6, 7, 12, 13, 16].
We can:

1. Project on the real intersection of halfspaces of cu-
mulated cuts by solving an optimization problem that
reflects the definition of orthogonal projection (it has
a quadratic goal function).

2. Construct a valid “surrogate” cut on basis of the cu-
mulated cuts and project on its halfspace, hopefully
obtaining a long projection vector (step).

A way of obtaining a surrogate cut from q geometric
cuts, say h:� p; tii � htt ; tii, i = 1; : : : ;q was given
by Cegielski [6, 7] (and a similar approach – by
Kiwiel [12]). Here p is the current iterate point.

Lemma (adopted Remark 7 on Theorem 3 in [6]) .
Let p;z2 Rn , p 6= z. If

(a) S = fsi : i = 1; : : : ;qg is a system of linearly
independent vectors,

(b) 8i2f1;:::;qg hz� (p+si);sii � 0,

(c) coneconvS obtuse2,

(d) t is the solution of the following equation sys-
tem

8i2f1;::: ;qg h(s
i); t�sii= 0 (5)

then hz� (p+ t); ti � 0.

This lemma says that the cut h:� (p+ t); ti � 0 is
valid on condition that the cumulated cuts are valid3 –
see Fig. 3; this is the surrogate cut in Cegielski’s
method. The next iterate is obtained from p by
adding t, a long vector, to it.

However, the normals si of cuts must form an obtuse
cone. Cegielski assures it in several ways, the easiest
one is to assure hsi ;sj i � 0 for i 6= j (so si form
a so-called regular obtuse cone), by a simple rejection
of some cuts to be cumulated.

Any convex optimization problem of the form
min

x2
Tm

j=1 Gj�Rn f (x) may be solved by means of projection

methods for feasibility problems after reducing it to
a feasibility problem of finding a common point of Gj ,
j = 1; : : : ;m and fx2 Rn : f (x) < Qg, parametrized with
number Q, which must be experimentally tuned to the
optimal value of the initial optimization problem within
some schemme, e.g. bisection or level control [11]. Thus
we actually need to solve a sequence of feasibility problems
with various Qs; usually a detection of infeasibility of
a feasibility problem must happen from time to time.

3. Decomposition of large problems
into linear and nonlinear parts

The algorithm described in this section is multi-layered,
similarly as the group of approaches described in the next
section. They both combine some elements typical for
smooth optimization with elements of projection methods.
Here the projection layer is higher than the layer of standard
smooth techniques.

2An accute cone is a cone C such that for a2C, b2C ha;bi � 0, an
obtuse cone is a cone conjugate to some accute cone.

3i.e., they do not cut off any solution point represented here by z.
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The solved problem after reducing to a feasibility problem
with parameter Q has the following form: find (x>;y>)>

that satisfies:

g(x)�Q

A(x>;y>)> � b

B(x>;y>)> = d

xlo � x� xup; ylo � y� yup;

(6)

where function g : RnN ! R
mN depends in one coordinate

on Q, since this coordinate was made from the goal function
of the optimization problem (the coordinate says how much
the goal function value exceeds Q). A and B are matrices of
appropriate sizes. Functions gi are continuous quasiconvex,
xlo,xup,ylo,yup are constant vector bounds.
The feasibility problem has nN nonlinear variables4 , nL lin-
ear variables, mN nonlinear inequality constraints, mLI lin-
ear inequality constraints, mLE linear equality constraints.
Let m=mN+mLI +mLE, n= nL+nN. The better mN �m
and nN � n, are fulfilled, the more efficient the algorithm
will be.
In order to solve the problem (6) we need to see it in the
form of (1).
The following sets N and L will play the role of G1 and G2
in problem (1):

N =fx2 RnN : g(x)� 0^xlo � x� xupg

L =
n

x2 RnN : xlo � x� xup^

^ 9y2RnL

�
ylo � y� yup^

^ A(x>;y>)> � b^B(x>;y>)> = d
�o

:

Notice that these are not actually the sets of points al-
lowed by nonlinear and linear constraints but their orthog-
onal projections on the subspace of nonlinear variables.
The projection algorithm operates in this low-dimensional
subspace.
Projections on these sets are realized by solving optimiza-
tion subproblems with quadratic goal functions, moreover:

1. A projection on N yields a small (nN�mN) subprob-
lem with nonlinear constraints.

2. A projection on L yields a large (n�mL) subproblem
but with linear constraints.

The optimization subproblems are solved efficiently with
specialized solvers, in the author’s experiments nonlinear
IAC-DIDASN++ [15] and quadratic HOPDM [1].
A special care is connected with using geometric cuts, but
this will be only outlined here (see [4] and [5] for de-
tails). An introduction of geometric cuts in general means
extending the above subproblems by adding suitable linear
inequality constraints to them. Whenever we use such a cut,

4A nonlinear variable is a problem variable involved in at least one
nonlinear function in the model formulation; the remaining variables will
be called linear.

the inequality must be present in the subproblem realizing
the projection.
We can freely construct a geometric cut based on a pro-
jection onto N: such a cut introduces at most nL nonze-
ros into constraint matrices of the quadratic subproblem,
which is not much by comparison with the nonzeros num-
ber in constraints from the quadratic optimization subprob-
lem.
Using a cut based on a projection onto L should be avoided:
if we wanted to use such a cut in some next projection
onto N, we would introduce a bigger relative complication
into the nonlinear subproblem. Thus we treat this cut only
as “virtual”, e.g., we state that such a cut might be con-
structed and would be proper, but we do not really add it
to any collection of cumulated cuts that augments N. Then
we cumulate such a “virtual” cut with the latest cut based
on the projection onto N, obtaining a surrogate cut accord-
ing to Lemma in point 2 in Section 2. The surrogate cut,
called anti-zigzagging cut (or Z-cut) is used later instead of
the “virtual” cut to augment subproblems; however, it aug-
ments only the quadratic subproblems so the subproblem
complication is not excessive.
The successive Z-cuts can be then cumulated directly, by
cumulation of constraints augmenting a subproblem (i.e., in
the way described in point 1 in Section 2). Since the cu-
mulation is full, i.e, each successive Z-cut is cumulated,
the zigzagging in the method is claimed to decrease in the
cited works.
A nice feature of the method is discussed in [5]. The re-
quired proportions of sizes are particularly good when we
apply the method to the nonlinear multicommodity flow
problem [18]. Moreover, the situation becomes better as
the number of commodities distinguished in the problem
grows.

4. Accelerating the multiplier method
with projection methods elements

In this section we shall want to solve the following prob-
lem:

min
x2Rn

ϕ(x) (7)

s. t.

g(x)� 0 (8)

with g : Rn 7! R
m, gi and ϕ continuous quasiconvex.

The idea of algorithm presented in this section bases on
an observed poor behavior of a penalty shifting/multiplier
method in the version for inequality constraints ([3], see
also [21]) and with the Fletcher-Reeves conjugate gradi-
ent method applied to the resulting unconstrained subprob-
lems. The author once solved a problem of the form (7)–(8)
with several tens (!) of variables, a quadratic goal func-
tion and several tens or about a hundred of quadratic in-
equality constraints. Even on such a small example, the
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solution times sometimes reached a rank of hours. The
number of iterations of the multiplier method was small,
but the resulting subproblems were solved extremely slow.
Probably setting a too high penalty coefficient was not the
reason for this behavior, since the coefficient did not ex-
ceed the value of 1 even by several ranks of value; neither
did the coefficients in the initial problem definition differ
from 1 by many ranks. The probable reason for such a be-
havior of the method was formulated as a nonsmooth (ac-
tually spline) character of the unconstrained subproblems,
caused by a similar character of the augmented Lagrangian
function.

We can find several signs in the literature that seem to sup-
port the anxiety about the augmented Lagrangian for in-
equality constraints and the application of it being spoken.
One of them is the existing collection of trials of modi-
fying the augmented Lagrangian in order to eliminate its
quadratic-spline character. An example is a construction
of a cubic Lagrangian. A second one might be the way
of treating nonlinear inequality constraints in the broadly
recognized LANCELOT solver [8]. Instead of using the
version of the multiplier method for inequality constraints
directly, the nonlinear inequality constraints are first trans-
formed to nonlinear equality constraints by an addition of
bounded slack variables, similarily to the way it is done
in the simplex method. Then the equality constraints are
treated with the variant of the multiplier method for equal-
ity constraints, in which the Lagrangian is smooth. The
constructors of the solver even agree with a possibility of
obtaining nonconvex subproblems, with additional slacks
and bounds (the bounds on slacks are transfered to the un-
constrained subproblems of the multiplier method).

Having in mind the hardness of the subproblems with nons-
mooth Lagrangian, the author of this paper decided to solve
the subproblems with a variant of projection method.

If we wanted to truly treat the Lagrangian (the goal func-
tion of the unconstrained subproblem) as a nondifferen-
tiable function, we would perhaps want to use some vari-
ant of the Polyak subgradient method [19] for minimizing
a convex goal function φ . In an iteration of this method,
one makes a projection of the current iterate point on the
Q-level set of the linear underestimation of φ constructed
on the basis of the value and the subgradient of φ at the
current iterate; Q denotes, as previously, the current estima-
tion of the minimal value of φ . But it seems better for the
convergence speed if we take an advantage of a quadratic
model of the minimized Lagrangian (let us denote it as
f : Rn 7! R) which may be, at least locally, good if the
initial optimization problem was smooth.

In a Polyak method iterate we actually use the information
at one point and we obtain a projection vector of a certain
length. In the author’s proposition we first make k � n
steps (an epoche of steps) of the Fletcher-Reeves method,
say, while the quadratic approximation of f seems good
enough. From there we have an approximate model of the
function in a whole subspace ∆ of the dimensionality of k.
This information allows us to find a point ỹ 2 ∆ at which

we can construct a valid cut: h:� ỹ;∇ f (ỹ)i � 0. Then
we project the current iterate p onto the halfspace of this
cut; since the cut is valid, the projection possesses the Fejér
contraction property w.r.t. any solution point. The vector of
projection of current iterate p onto the halfspace of this cut
is hoped to be much longer than that in the Polyak method,
since we can choose ỹ from the whole subspace ∆. As
we remember, a big step length usually implies a quicker
convergence in projection methods.
We shall manage only to outline the proposition, since it is
quite sophisticated and may have many variants. We start
with the heart of the proposition, which is calculating ỹ.
Assume the epoche of conjugate gradient method gener-
ated points x0 � p, x1; : : : ;xk 2 Rn , conjugate directions:
d0;d1; : : : ;dk�1 2 Rn, gradients of f : g0 = ∇ f (x0), g1 =
=∇ f (x1); : : : ;gk =∇ f (xk), real coefficients β 1, β 2; : : : ;β k

and the step lengths α0;α1; : : : ;αk�1.
These objects are interrelated with the following dependen-
cies:

d0 =�g0 ; (9)

di =�gi +β idi�1 (i = 1; : : : ;k) ; (10)

xi+1 = xi +α idi (i = 0; : : : ;k�1) : (11)

For simplicity we assume xk = 0.
We shall now treat f as a quadratic function defined with
a symmetric, positive definite matrix.

Fig. 4. Choosing point ỹ. The ellipses denote the level sets of f ,
the smaller plane is the plane of the cut and v is the projection
vector that should be as long as possible.

The problem of choosing ỹ is shown in Fig. 4. Vector v
is the projection vector and we want to make it as long as
possible. In order to make a small exercise try to imagine
how this figure change for two choices: ỹ= x0 and ỹ= xk.
Observe that x0 is a poor candidate for ỹ, since for such
a choice the final steplen jvj would be equal to 0. Neither
ỹ = xk is a good choice, since from theory of conjugate
gradient methods we know that gk?∆, which against yields
kvk= 0.
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The heuristic taken by the author is to search for ỹ among
points x satisfying5

∇
k

f (x) =�τ(x�x0) ; (12)

x2 ∆ (13)

for some positive parameter τ , where ∇k f denotes the part
of ∇ f parallel to ∆.
The solution of system (12)–(13) becomes easier when we
represent x in the basis of conjugate directions: x = Ds,
D�

�
d0d1 : : : ;dk�1

�
and thus reduce them to a search for

the best s.
Under such a representation, system (12)–(13) transforms,
with some elaborated calculations, to

(I + τM)s= q (14)

with

M =

2
666666666666666664

1
α0 �

β 1

α1

β 1�1
α0

β 2+1
α1

�1
α1

. . .
�β k�2

αk�2

β k�1+1
αk�2

�β k�1

αk�1

�1
αk�2

1
αk�1

3
777777777777777775

(15)

and q being the representation of x0 in the basis of conju-
gate directions: x0 = Dq.
Now the search for the best ỹ is reduced to a search for op-
timal τ > 0. For a candidate τ we find s by solving a quite
easy system (14), with a tridiagonal matrix, compute ỹ=Ds
and for it (based on real gradient of the minimized func-
tion f , or on its quadratic model being considered now),
the projection vector. The length of the projection vec-
tor seems not to be in general a concave function of τ ,
but practical experiments showed that one-dimensional op-
timization in τ may be replaced just with examining several
values of τ .
The cuts generated by the algorithm are then cumulated
with the Cegielski’s method of regular obtuse cone pre-
sented in Section 2, but only a limited number of them
takes part in the cumulation process in order to keep the
linear systems present in the method (one in the cuts cu-
mulation process, second in searching for ỹ) small.

5. Discussion

The method of decomposition from Section 3 has been thor-
oughly discussed in [4] and [5]. Several modifications of

5The demand of exact maximization of kvk yields a multidimensional
nonconvex optimization problem. Instead, in the heuristics we want to be
far from the situation where angle between (ỹ�x0) and ∇k f (ỹ) equals to

π=2, as it happened with the choice of ỹ= xk.

this method are possible, e.g., a possibility of augmenting
set N with geometric cuts instead of set L if we decide so
by more precise analysis of particular problem sizes. Other
options include subtle changes in the order of cuts cum-
mulation, which may affect the speed of convergence. The
method performed quite good on an artificial multicom-
modity flow problem in the sense of number of iterations
in the projection method layer. Thus, the decomposition
of the problem into linear and nonlinear parts seems to be
done well, but the overal effectiveness of the method de-
pends on the speed of the solvers solving pure (quadratic
or nonlinear) subproblems. Applying warm restarts during
many runs of the quadratic solver seems to be necessary
in order to make this method competitive with commercial
solvers on this problem.
Regarding the method of combining projection and the con-
jugate gradient method from Section 4, one must be aware
of a great number of technical details and further decisions
that we face when trying to implement it, in particular:

1. A separate treatment of equality constraints in large
problems. We constructed our method for purely
nonlinear problems. We can formally represent lin-
ear constraints as nonlinear, but for large problem it
usually becomes essential to treat them separately6.
Linear constraints can be introduced directly in the
form of additional cuts to be cumulated in the conical
method.

2. Introducing bounds on variables would somewhat
complicate the algorithm; perhaps some elements of
projected gradient method would have to be used,
may be the bounds would have to be added to the
collection of cuts being cumulated.

Speaking about large problems, let us make an important
note. Due to inserting linear constraints directly in the pro-
jection method steps and due using some conjugate gradient
techniques (not variable metric) there is a chance to design
the whole algorithm so that any complicated linear algebra,
like an implicit inverting sparse matrices, is avoided.
Making the cuts based on points ỹ even deeper than in the
above descriptions seems to be another important issue. In
some circumstances such operations might be essential for
an efficient work of the method.

1. Having an approximation Q for the optimal value
of the unconstrained subproblem, one can shift any
constructed cut (make it deeper) by using techniques
known from the Polyak method (apply a linear model
of f constructed at point ỹ). However, f must be
convex, not only quasiconvex, to make this approach
proper.

6Remember also that the method does not support nonlinear equality
constraints, so linear equality constraints cannot be represented as non-
linear. A propos, the inability of treating nonlinear equality constraints is
common to both the propositions in this paper. It seems essential since it
stems from the fact that projection methods work only for convex prob-
lems. Possibly, one might try some trust region approach to incorporate
nonlinear equality constraints.
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2. Do not use the Lagrangian in all runs of the subprob-
lem solving, but instead its different valid underesti-
mations, which are easy enough to obtain due to the
spline character of the Lagrangian. This may intro-
duce some perturbations in the cuts positions (usu-
ally deepening) resulting in long steps after the cuts
cumulation. A difficulty occurs in such a case: one
must stop conjugate gradients run when we go below
the optimal value of the subproblem, since otherwise
obtained cuts would be invalid.

Many technical decisions, some of them mentioned earlier,
certainly must be made in order to make the process of
finding τ work properly.
Another concern must be connected with the work of the
method of cuts cummulation itself. It might be augmented
or tuned for some interesting patterns configuration of cuts,
frequently observed during experiments (closeness of the
angles between the majority of cut normal pairs to π=2;
very obtuse cones observed for some problems).
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Abstract — There are advantages in considering the rout-
ing problem in integrated communication networks as a mul-
tiobjective shortest path problem, having in mind to grasp
eventual conflicts and trade-offs among distinct objectives and
quality of services (QoS) constraints. On the other hand the
utilisation of dynamic routing methods in various types of net-
works is well known to have significant impact on network per-
formance and cost, namely in overload and failure conditions.
This paper presents the detailed formulation of a proposal
of a multiple objective dynamic routing method (MODR) of
periodic state dependent routing type, enabling to represent
distinct QoS related metrics and requirements in a consistent
manner. The MODR method present formulation is based on
a multiple objective shortest path model with constraints and
is prepared to use implied costs as one of the metrics. Alter-
native paths for each traffic flow are changed as a function
of periodic updates of certain QoS related parameters esti-
mated from real time measurements on the routes and trunks
of the network. Such paths are computed by a specialised and
efficient variant of a bi-objective shortest path constrained al-
gorithm, developed for the MODR, enabling to incorporate
flexible requirements on the QoS metrics. The architecture of
the routing system is discussed together with the features of its
main modules. An illustrative example of application of the
MODR path calculation module to a circuit-switched type net-
work using blocking probability and implied cost as metrics,
is also presented, considering different overload conditions.

Keywords — dynamic routing, multicriteria decision support
systems, traffic management.

1. Introduction

The evolution of multiservice network functionalities leads,
in terms of teletraffic engineering, to the necessity of deal-
ing with multiple, fine grain and heterogeneous QoS re-
quirements. When applied to routing mechanisms this
concern led, among other developments, to a new routing
paradigm designated as QoS routing, which involves the
selection of a chain of network resources satisfying certain
QoS requirements and seeking simultaneously to optimise
route associated metrics (or a sole function of different
metrics) such as a cost, delay, number of hops or block-
ing probability. This trend makes it necessary to consider
explicitly distinct metrics in routing algorithms such as in
references [1, 2, 3] or [4]. In this context the path selection
problem is normally formulated as a shortest path problem
with a single objective function, either a single metric or
encompassing different metrics. QoS requirements are then

incorporated into these models by means of additional con-
straints and the path selection problem (or routing problem
in a strict sense) is solved by resorting to different types of
heuristics. Since the mathematical models have inherently
a network structure which renders them to be tackled in an
effective way by specialised and efficient algorithms, the
introduction of additional constraints destroys some under-
lying properties and implies a heavier computational bur-
den.
Therefore there are advantages in considering the routing
problem of this type, subject to multiple constraints as
a multiple objective problem. Note that in a multiple ob-
jective context involving multiple, potentially conflicting,
incommensurate objective functions, the concept of opti-
mal solution in single objective problems (unique in gen-
eral) gives place to the concept of non-dominated solutions
(feasible solutions for which no improvement in any objec-
tive function is possible without worsening at least one of
the other objective functions). Multiple objective routing
models thus enable to grasp the trade-offs among distinct
QoS requirements by treating in a consistent manner the
comparison among different routing alternatives. This type
of approach was previously proposed by the authors [5]
to solve a static routing problem, formulated as a multiple
objective shortest path problem, and using a particularly
efficient algorithmic approach.
On the other hand the utilisation of dynamic routing in var-
ious types of networks is well known to have a quite sig-
nificant impact on network performance and cost, namely
considering time-variant traffic patterns, overload and fail-
ure conditions (see for example [6] and [7]).
The objective of this paper is to present a formulation of
a multiple objective dynamic routing method (or MODR)
that may be envisaged as a new type of periodic state de-
pendent routing (PSDR) method. The MODR method is
based on a multiple objective routing paradigm and incor-
porates a dynamic alternative routing principle, as well as
the utilisation of the concept of implied cost in [8] as one
of the metrics of the routing problem model. Other feature
of MODR is the capability of defining preference regions
(concerning the search for alternative paths) which may
change dynamically, through variable boundary values. The
paper is organised as follows. Section 2 is a concise review
of the multiple objective static routing model in [5]. The
main features of the proposed MODR method are presented
in Section 3 and the main modules and functionalities of
a centralised MODR architecture, are discussed. The char-
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acteristics of the route calculation algorithm developed for
the MODR, are presented in Section 5. Section 6 gives the
model proposed for calculating dynamically changing esti-
mates of the coefficients needed by a bi-objective version
of the MODR method. An example of application of the
MODR method to a fully meshed circuit-switched network
is shown is Section 7 in order to illustrate relevant fea-
tures of the proposed alternative route calculation method
and its inherent capabilities. Finally, some conclusions and
lines for further work on this matter will be outlined in the
conclusion section.

2. Review of a multiple objective
routing principle

The static routing principle and the basic algorithm from
which the MODR routing method was derived, were pro-
posed in [5]. This approach formulates the static rout-
ing problem as a multiple objective shortest path prob-
lem and uses a particularly efficient algorithmic approach.
This algorithm computes non-dominated paths by optimis-
ing weighted-sums of the multiple objective functions, to
determine solutions which belong to the boundary of the
convex hull of the union of the set Z of the non-dominated
solutions with fz2 RK jz� 0g, namely vertex solutions.
It uses a very efficient k-shortest path algorithm [9], to
search for unsupported non-dominated solutions within du-
ality gaps (which are solutions located to the inside of the
convex hull). Also it enables that QoS requirements may
be expressed as additional (soft) constraints on the objec-
tive functions values in terms of requested and acceptable
thresholds for each metric, which define preference regions
in the objective functions space. Recalling the general for-
mulation of the multiple objective shortest path problem
with K-objective functions, where each function is associ-
ated with a particular metric:

min zn = ∑
lk=(vi ;vj )2L

C
n
kxi j (n= 1; : : : ;K) (1)

s.t.

∑
vj2V

xs j = 1

∑
vi2V

xi j � ∑
vq2V

xjq = 0 8vj 2V; (vj 6= s; t)

∑
vi2V

xit = 1 (2)

xi j = 0;1 8lk = (vi ;vj) 2 L

(Problem P
(K)) ;

where Cn
k is the cost associated with metric n (n =

= 1;2; : : : ;K) on arc lk = (vi ;vj) 2 L of the graph (V;L),
V is the node set and L the arc set of the network struc-
ture; the variables xi j enable to define a solution (path)
p from node s to node t by taking the value 1 if the arc

(vi ;vj) 2 p and 0 otherwise. Note that the cost of a path is
a real-valued vector Cp = (C1

p; : : : ;C
K
p ) with Cn

p = ∑lk2pC
n
k

being the cost associated with metric n. In general there is
no feasible solution which minimises all objective functions
simultaneously. Since there is no guarantee of the existence
of this ideal optimal solution, the resolution of this static
multiple objective routing problem aims at finding a best
compromise path from the set of non-dominated solutions,
according to some relevant criteria defined by the decision
maker. Non-dominated solutions can be computed by opti-
mising a scalar function which is a convex combination of
the K-objective functions:

min z= ∑
lk2L

Ckxi j (3)

with the same constraints of the original problem and Ck =

= ∑K
n=1εnC

n
k where ε = (ε1;ε2; : : : ;εK) 2 E= fε : εn � 0;

n= 1; : : : ;K^∑K
n=1εn = 1g. However, by using this form of

scalarization only supported non-dominated paths (that is
those which are located on the boundary of the convex hull)
may be found. Nevertheless non-dominated solutions lo-
cated in the interior of the convex hull may exist. The men-
tioned algorithmic approach implemented for two objec-
tive functions, designated hereafter as basic multi-objective
routing algorithm (BMRA) resorts to an extremely efficient
k-shortest path algorithm [9] to search for this specific type
of non-dominated paths. It must be noted that in the cal-
culation of non-dominated solutions, namely unsupported
non-dominated solutions, it seems useful considering refer-
ence point approaches. However in the case of shortest-path
problems, the recent development of an extremely efficient
algorithm (the MPS algorithm [9]) for the k-shortest path
problem, creates the possibility of developing very efficient
techniques for calculating supported and unsupported non-
dominated solutions in this particular context.
Blocking probability is a key metric to be considered in
the case of traffic flows working on a loss basis. This
metric can be easily transformed into an additive metric
(as required by the algorithm) by associating with each arc
lk, � log(1�Bk), Bk being the blocking probability on lk.
Other common metrics such as cost, delay and hop-count
follow the additive aggregation function. Also path band-
width may be a metric of the model by using the concave
aggregation rule [5]. The other features and the details of
the BMRA, are described in [5].

3. The MODR method

The multiple objective dynamic routing method proposed
in this paper may be envisaged as a new type of periodic
state dependent routing [10] method based on a multiple
objective routing paradigm. The PSDR class of routing
methods [10] is based on a centralised type of control which
provides routing decisions for each pair of exchanges based
on periodical updates of the number of free circuits in each
trunk of the network using a typical update period of 10 s.
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In its general formulation the MODR here discussed has the
following main features: i) paths are changed dynamically
as a function of periodic updates of certain QoS related
parameters obtained from real-time measurements, using
a multiple objective principle which enables to consider,
in a consistent manner, eventually conflicting QoS metrics;
ii) it uses a very efficient version of the BMRA, designated
hereafter as a modified multiobjective routing algorithm
(MMRA), prepared to deal with the selection of alterna-
tive paths in a dynamic alternative routing context; iii) the
present version of the method uses implied costs in the
sense defined by Kelly in [8] as one of the metrics to be
incorporated in the underlying multiple objective model;
iv) it enables to specify required and/or requested values
for each metric (associated with predefined QoS criteria)
as in the BMRA; such values define preference regions on
the objective functions space, which may change dynami-
cally, in a flexible way, through variable boundary values;
this capability is attached to a routing management system
(described in the next section) and enables to respond to
various network service features and to variable working
conditions.
As for the way in which the paths are selected in the
MODR method, the first path is always the direct route
whenever it exists. The remaining routes for traffic flows
between an exchange pair are selected from the MMRA,
taking into account the defined priority regions. This may
be easily formalised in the following manner. Let R be
the number of routes attempted by a call of each traffic
flow (r1( f ); r2( f ); : : : ; rR( f )) and S( f ) be the ordered set
of solutions selected by MMRA fs1;s2; : : : ;sRg for flow f
as a function of the defined priority regions for flow f and
rd( f ) the possible direct route:

1st case :rd( f ) = /0) r i( f ) = si ; (i = 1;2; : : : ;R) (4)

2nd case :rd( f ) 6= /0)

�
r1( f ) = rd( f )
r i( f ) = s0i�1; (i = 2; : : : ;R)

(5)

with S0( f ) = S( f )nfrd( f )g = fs01; : : : ;s
0
jS0( f )jg. All these

features aim at turning more effective and flexible the ap-
plication of the multiple objective routing approach to a dy-
namic routing method, having in mind the multifaceted na-
ture of traffic flows and the variability of a network working
conditions.

4. Architecture of the MODR system

A periodic centralised routing technique must be able of
computing, every T seconds, for every traffic flow f asso-
ciated with each exchange pair of the network, the routing
tables better fitted to the network state, having in mind to
obtain the best possible network performance according to
the routing method. For this purpose the MODR routing
system must receive from the network nodes the necessary
QoS related measurements. As can be seen in Fig. 1, there
are two following main subsystems:

Routing control/real time management, which is the core
of the MODR method architecture. The core of this sub-
system is the MMRA path calculation algorithm (it consti-
tutes the basis of the alternative path calculation module),
described in the next section. The inputs to the MMRA
are the current values of the coefficients of the objective
functions and the associated (soft) constraints which de-
fine preference regions in the objective function space. The
routing control also includes a network data module that
contains all the necessary information about the network
configuration that is important for the coefficient calcula-
tion.

Routing management system which operates on a wider
time scale as compared with the previous subsystem. The
main functions of this subsystem are the following: the
specification of relevant parameters for the routing con-
trol such as the path update period T and the frequency
1=τ of real time measurements of QoS related parame-
ters; a change in the maximum number R of alternative
paths is also possible; the specification of threshold values
for the route metrics (typically required and/or acceptable
values) which enable to define the preference regions for
alternative path selection according to the MMRA (see Sec-
tion 5). Such values may be modified empirically at any
time, as a result of the intervention of the operator of the
routing management system (an essential part of any traffic
management system). Those values, namely the required
(or “desirable”) values, also may vary periodically (with
period T) as a result of the changes in the marginal opti-
mal values of the objective functions using a criterion as
the one defined in Section 5 for the priority regions; these
functions are associated with the parametrisation module
in Fig. 1.

Also, other more specialised mechanisms, namely related to
the functional and/or transport network levels, may also be
included in this subsystem in order to reinforce the network
survivability under particular failure or overload conditions
through the module designated in Fig. 1 as other routing
management mechanisms. Finally the parametrisation of
service protection mechanisms such as circuit reservation
could be performed through this module.

The core of the MODR method, i.e., the routing control/real
time management subsystem, can be, in principle, decen-
tralised to the network nodes without too much effort when
the network is totally meshed, assuming each node has an
associated path calculation module. In this case, some ad-
ditional signalling messages, which must include the values
of the implied costs and blocking probabilities on the links,
must be exchanged between the nodes because each node
must have information about these data related to all the
links, in order to be able to compute multi-objective paths
via the MMRA. It must be noted that the implied cost for
the adjacent links of each node can be computed in this case
because each node knows the implied cost for all links in
the network needed for its path calculations.
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Fig. 1. Architecture of the MODR system.
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5. The route calculation
algorithm MMRA

The modified multiobjective routing algorithm is a new
variant of the BMRA proposed in [5], adapted and opti-
mised to the needs of the MODR method. Its basic features
and differences with respect to the BMRA are the follow-
ing: i) it enables to search for and select non-dominated
or dominated paths for alternative routing purposes; ii) it
uses as sub-algorithm for calculating k-shortest paths a new
variant of the k-shortest path algorithm in [9], developed
in [11] by some of the authors for solving the k-shortest
path problem with a constraint on the maximum number of
arcs per path since this is a typical constraint considered
in practical routing methods; iii) the search direction in the
objective function space is a 45Æ straight line; this is justi-
fied by the variable nature of the metrics in an integrated
service network environment and the possibility of dynamic
variation of the priority regions; iv) the priority regions for
alternative path selection have a flexible configuration that
varies dynamically as a result of the periodic alterations in
the objective function coefficients; furthermore the bounds
of those regions may also be changed through some of the
functionalities associated with the parametrisation module
of the routing and management system.

Concerning the specification of the requested and/or ac-
ceptable values for the metrics, distinct cases should be
envisaged. In the case of blocking probabilities, delays and
delay jitter for example, such values can be obtained from
network experimentation and/or from ITU-T standardisa-
tion or recommendations for various types of networks and
services. On the other hand, in the case of costs, namely
implied costs, included in the present model, it is more dif-
ficult to define a priori such values, since no general criteria
are known for these quantities. In the application example
described in Section 7 for a circuit-switched network with
loss traffic, the following approach was used. As for the
path blocking probabilities, having in mind that alterna-
tive routing is used, the value required for path blocking,
Breq is obtained from an approximation based on the mean
call blocking on the trunks, calculated when the network is
dimensioned for a typical end-to-end blocking probability
such as 0:5%:

Breq = 1�
D

∏
k=1

�
1�Bkmed

�
=

= 1�
�

1�Bkmed

�D
(6)

by consideringBkmed
=

1
jLj ∑

lk2L

Bd
k ; (7)

Bd
k being the calculated average call congestion on link lk

resulting from the dimensioned network and D the max-
imum number of links per path. Note that this criterion

intends to guarantee that the constraint Breq is satisfied by
any path selected by the MMRA in the priority regions for
which B�Breq. As for the implied costs obtained from the
model described in Section 6, analogous criterion leads to
the required implied cost path value:

creq =
D

∑
k=1

ckmed
= Dckmed

(8)

by consideringckmed
=

1
jLj ∑

lk2L

cd
k ; (9)

cd
k being the implied cost value obtained for link lk, using

an adequate form of numerical fixed point iteration for the
engineered network. For obtaining the acceptable values
Bacc and cacc for the associated path metrics an analogous
procedure was used by dimensioning the network for a typ-
ical end-to-end blocking value such as 1%.

Taking into account the variability in time of the marginal
optimum Opn of each objective function zn, the follow-
ing cases may occur regarding the priority regions in the
bi-objective model, designating by M a generic metric:
i) Mn

req>Opn for (n= 1;2) in which case there are 5 prior-
ity regions, analogously to the static routing example in [5];
ii) if Opn < Mn

req < Mn
acc for one of the objective functions

and Mm
req < Opm < Mm

acc, (m 6= n) then there are 3 priority
regions as illustrated in Fig. 2; iii) if Mn

req < Opn < Mn
acc

for (n = 1;2) then there are two priority regions only, of
type C and D; iv) if Mn

acc < Opn for (n = 1;2), case in
which there is only region D for searching for last chance
route(s), defined by the intervals [Opn;Mn

L].

It is assumed the following convention: An is a region
which satisfies both requirements (Mn

req and Mn
acc) for zn

(A� A1\A2); Bn a region which satisfies Mn
req and Mn

acc
but does not satisfy Mm

req although satisfying Mm
acc (m 6= n);

C a region which satisfies Mn
acc (n = 1;2) but not Mn

req
(n= 1;2) and D is the last priority region, corresponding
to search for a last chance route in the cases where particu-

Fig. 2. Case ii) for dynamic priority regions (B1;C;D).
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larly unfavorable network conditions occur. Mn
L is the more

relaxed bound considered for zn.

6. Estimates of the model coefficients

The periodical computations for updating the node routing
tables for the nth time interval, of duration T, are based
on QoS related measurements obtained from the network
nodes in the (n�1)th time interval and possibly on values
obtained in previous time intervals. Moving-average itera-
tions, as suggested in [8], may be used for this purpose as
will be explained next.

One of the parameters to be estimated is the blocking prob-
ability on each link lk. In the time interval, [(i�1)τ; iτ] –
τ is the measurement period – an estimate of the blocking
probability is Bk(i) = NT

iloss
=NT

i , where NT
iloss

is the number

of lost calls and NT
i is the number of call attempts in that

interval. For simplicity it will be assumed that the updat-
ing period τ of the measurements coincides with the rout-
ing updating period T . If βk(n) is an estimator of blocking
probability for link lk for the nth time interval then it can be
calculated through the first order moving-average iteration:

βk(n) = (1�b)βk(n�1)+bBk(n�1) ; (10)

where b2 [0;1] reflects a balance between accuracy of es-
timation and speed of response. This estimation is car-
ried out in the module measurements of QoS parame-
ters. The information concerning the values βk(n), ob-
tained at one of the adjacents nodes of lk should then
be conveyed to the centralised routing system. The fore-
casted carried traffic on link lk for the nth time interval,
yk(n), can also be estimated in a similar manner, i.e.,
yk(n) = (1�b0)yk(n�1)+b0Yk(n�1), where Yk(n) is the
estimate for the average carried traffic in the [(n�1)T;nT]
period, which was communicated to the measurements of
QoS parameters module. The carried traffic estimate for
a path r i( f ), x

ri( f )
(n), associated with traffic flow f between

a certain pair of nodes can be, in principle, estimated in
a similar manner. Nevertheless, in dynamic routing the set
of routes available for each pair of nodes may change in
successive periods, so the moving-average iterations must
be adapted to cope with this: if a path was selected as
a possible route in the (n�1)th time interval but not in
the (n� 2)th interval, then only the measurements in the
(n�1)th interval should be used in the estimation scheme
for the nth interval. Therefore b should be made equal to
1 in this situation. The details of the easy adaptation of
these estimation schemes to the cases in which it is used
a measurement updating period τ shorter than T , are ex-
plained in [12].

Two possible approaches for calculating implied costs esti-
mates in the context of MODR with R= 2, are now pre-
sented for a circuit-switched type network with single cir-
cuit calls.

The first one, using a moving-average iteration will be de-
scribed next. Let ck(n) be an estimate for ck, the implied
cost associated with link lk and s

ri ( f )
(n) be an estimate

for s
ri ( f )

, the surplus value of a call on route r i( f ) (i = 1;2),

for the nth time interval. Designating by w( f ) the expected
revenue obtained from an accepted call of traffic flow f ,
then one may easily obtain (see details in [12]) from equa-
tion (7.11) in [8] the following iterative scheme:

ck(n) = (1�a)ck(n�1)+

+ aFk(n)

2
4 ∑

f :lk2r1( f )

x
r1( f )

(n)

yk(n)

�
ck(n�1)+s

r1( f )
(n�1)

�
+

+ ∑
f :lk2r2( f )

x
r2( f )

(n)

yk(n)

�
ck(n�1)+s

r2( f )
(n�1)

�35 (11)

s
r2( f )

(n) = w( f )� ∑
l j2r2( f )

cj(n�1)

s
r1( f )

(n) = w( f )� ∑
l j2r1( f )

cj(n�1)+

�
�

1�L
r2( f )

(n)
�

s
r2( f )

(n) ;

where

Fk(n) = zk(n)[E(zk(n);Ck�1)�E(zk(n);Ck)] : (12)

Here E(A;C) is the value of the Erlang-B function for
offered traffic A and C circuits, zk(n) is the estimate of
the offered traffic on link lk given by yk(n)=(1� βk(n))
and L

ri( f )
(n) the blocking probability estimate of r i( f ), for

the nth time interval. The meaning of the auxiliary param-
eter a is analogous to b.
The second approach, more rigorous, although heavier in
terms of required numerical calculations, is based on the
execution of a fixed point iteration at the beginning of each
period of duration T . Let cjn

k
(n) designate an estimate

for ck, and sjn
ri ( f )

(n) an estimate for the surplus value of

a call on route r i( f ), for the nth time interval, using this
approach.
Then the calculation procedure is the following:

cj+1
k

(n) = (1�a0)cj
k
(n)+

+ a0Fk(n)

2
4 ∑

f :lk2r1( f )

x
r1( f )

(n)

yk(n)

�
cj

k
(n)+sj

r1( f )
(n)
�
+

+ ∑
f :lk2r2( f )

x
r2( f )

(n)

yk(n)

�
cj

k
(n)+sj

r2( f )
(n)
�35 (13)

sj+1
r2( f )

(n) = w( f )� ∑
l j2r2( f )

cj
j(n)

sj+1
r1( f )

(n) = w( f )� ∑
l j2r1( f )

cj
j(n)+

�
�

1�L
r2( f )

(n)
�

sj+1
r2( f )

(n)
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with j = 0;1; : : : ; jn�1 and c0
k(n) = cjn�1

k
(n�1), where jn

is the number of iterations used to calculate ck(n). The
parameter a0 in this approach is the damping parameter of
the fixed point iteration scheme. Here a0 should be cho-
sen in order to guarantee the convergence of the iterations
in (13).

7. Application example

A fully-meshed 6 node circuit-switched network with sin-
gle circuit calls was dimensioned according to the method
in [13] for 0:005 end-to-end blocking probability, assum-
ing one alternative path to the direct route. The obtained
network is characterised in Table 1. For the definition of
the priority regions bounds, the required values for each
metric of the paths, are given according to Eqs. (6), (8):
Breq = 1� (1�Bkmed

)2, creq = 2ckmed
, where Bkmed

is the
average link blocking probability and ckmed

is the average
implied cost of the links, both obtained for the network
in Table 1, using fixed point iteration schemes. The ac-
ceptable bounds are obtained by a similar approach for the
same network topology dimensioned for end-to-end block-
ing probability of 0:01 (for the same traffic offered as in
Table 1).

Table 1
Network of the application example

O-D pair Link capac. Offered traf.
Intermediate

node
1-2 36 27 3
1-3 13 6 4
1-4 33 25 5
1-5 27 20 6
1-6 31 20 2
2-3 29 25 4
2-4 17 10 5
2-5 37 30 6
2-6 25 20 1
3-4 17 11 5
3-5 14 8 6
3-6 19 13 1
4-5 13 9 6
4-6 27 20 1
6-6 18 12 1

These bounds are marked in Figs. 3 (a) and (b) where the
search direction is a 45Æ straight line. Two examples for
illustrating the application of the MMRA model have been
selected, showing the results of the search for two paths
with at most two links. The following notes may be drawn
from this experimental study. Blocking probability and im-
plied cost may be conflicting criteria, although in general
they are not orthogonal. In example (a) described in Ta-
ble 2 (network with 5% overload) it is shown that the three
first generated solutions are non-dominated. In example

(b) described in Table 3 (network with 10% overload in
all traffic flows from node 1) although the first feasible so-
lution is the ideal optimal solution (meaning that in this
case the two metrics are not conflicting and lead to the
same optimal solution), the second and the third solutions
are dominated solutions not comparable in a multicriteria
sense. In fact, in various fully meshed networks dimen-
sioned by the same algorithm as the network in Table 1,
more than 50% of node pairs, for the first and/or the sec-
ond path, path blocking probability and path implied cost
were conflicting objectives. This fully justifies the poten-
tial advantages of the MODR principle. In both examples

Fig. 3. (a) Network with 5% overload; (b) network with 10%
overload in all traffic flows from node 1.
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Table 2
Network with 5% overload

i Blocking Implied cost Generated paths Selected paths Type
Preference
region type

1 0.119621 0.371881 2! 3 r1( f ) Non-dominated C

2 0.112106 0.410792 2! 1! 3 Non-dominated C

3 0.0953536 0.471365 2! 5! 3 r2( f ) Non dominated B1

4 0.164738 0.521878 2! 6! 3 Dominated C

5 0.167548 0.563675 2! 4! 3 Dominated C

Table 3
Network with 10% overload in traffic flows from node 1

i Blocking Implied cost Generated paths Selected paths Type
Preference
region type

1 0.0292787 0.0950544 5! 3 r1( f ) Ideal solution A

2 0.137195 0.493963 5! 2! 3 r2( f ) Dominated C

3 0.152468 0.487164 5! 6! 3 Dominated C

4 0.149753 0.541269 5! 1! 3 Dominated C

5 0.218845 0.562676 5! 4! 3 Dominated C

represented graphically in Figs. 3 (a) and (b) the number
of generated paths depends on the fact that the MMRA al-
gorithm does not stop searching for paths while there is
the possibility of finding a solution in a lower preference
region not yet fully covered.
The results in Tables 2 and 3 are graphically presented
in Figs. 3 (a) and (b) with the preference regions clearly
marked. Note that the last choice region D is not repre-
sented in these graphics.

8. Conclusions and further work

A new MODR method is proposed having as basis a multi-
ple objective shortest path model, tackled by a specialised
and very efficient algorithm which enables to find a pre-
defined number of alternative paths which may change pe-
riodically as function of QoS related parameter measure-
ments. The present formulation of the method uses implied
costs as one of the metrics, which enable to represent the
knock-on effects of accepting a call on a given route upon
the other routes (see [8]), in the context of the MODR. The
modules and functionalities of a MODR centralised archi-
tecture were also outlined as well as the possibility of de-
centralising some of its basic functions in the case of fully
meshed networks. Other important feature of the method
is the capability of defining in a dynamic and flexible way,
preference regions for selection of alternative routes be-
tween every pair of nodes.

An application example of the MODR principle to a fully
meshed circuit-switched network was also presented which
showed that path implied cost and blocking probability may
be conflicting objectives in many practical network working
conditions, namely in cases of global or local overload.
This fully justifies, in our opinion, potential advantages of
a MODR type method.
Further work should be focused on a number of open is-
sues, namely: the evaluation of network performance un-
der MODR in different traffic conditions using an appro-
priate simulation platform, in the context of multiservice
networks. Also the parametrisation of the method namely
in terms of the tunning of the updating periods for the mea-
surements and routing tables should be addressed through
simulation. Also the incorporation of service protection
mechanisms, already foreseen in the routing architecture
should be addressed in the near future having in mind the
known significant impact of these mechanisms in network
performance, as shown in [14] in the case of adaptative
dynamic routing. The extension of the MODR principle to
broadband networks is being developed at the present.
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Paper Implementation
and performance of a new multiple
objective dynamic routing method

for multiexchange networks
Lúcia Martins, José Craveirinha, João N. Clímaco, and Teresa Gomes

Abstract — The paper describes new developments of a mul-
tiple objective dynamic routing method (MODR) for circuit-
switched networks previously presented, based on the peri-
odic calculation of alternative paths for every node pair by
a specialised bi-objective shortest path algorithm (MMRA).
A model is presented that enables the numerical calculation
of two global network performance parameters, when using
MMRA. This model puts in evidence an instability problem
in the synchronous path computation model which may lead
to solutions with poor global network performance, measured
in terms of network mean blocking probability and maximum
node-to-node blocking probability. The essential requirements
of a heuristic procedure enabling to overcome this problem
and select “good” routing solutions in every path updating
period, are also discussed.

Keywords — dynamic routing, multiple objective routing, mul-
tiexchange telecommunication network performance.

1. Introduction

The evolution of multi-service telecommunications network
functionalities has led to the necessity of dealing with mul-
tiple, fine grain and heterogeneous grade of service require-
ments. When applied to routing mechanisms this concern
led, among other developments, to a new routing concept
designated as QoS routing, which involves the selection
of a chain of network resources satisfying certain QoS re-
quirements and seeking simultaneously to optimise route
associated metrics (or a sole function of different metrics)
such as cost, delay, number of hops or blocking probability.
This trend makes it necessary to consider explicitly distinct
metrics in routing algorithms such as in references [12, 13]
or [11]. In this context the path selection problem was nor-
mally formulated as a shortest path problem with a single
objective function, either a single metric or encompassing
different metrics. QoS requirements were then incorporated
into these models by means of additional constraints and
the path selection problem (or routing problem in a strict
sense) was solved by resorting to different types of heuris-
tics.
Therefore there are potential advantages in modelling the
routing problem of this type as a multiple objective prob-
lem. Multiple objective routing models enable to grasp the
trade-offs among distinct QoS requirements by enabling to

represent explicitly, as objective functions, the relevant met-
rics for each traffic flow and treat in a consistent manner
the comparison among different routing alternatives.
On the other hand, the utilisation of dynamic routing in
various types of networks is well known to have a quite sig-
nificant impact on network performance and cost, namely
considering time-variant traffic patterns, overload and fail-
ure conditions (see for example [6] and [2]).
In a previous paper [5] the authors presented the essential
features of a multiple objective dynamic routing method
(MODR) of periodic state dependent routing type, based on
a multiple objective shortest path model. In its initial for-
mulation for multiexchange circuit-switched networks the
model uses implied costs and blocking probabilities as met-
rics for the path calculation problem. Alternative paths
for each node-to-node traffic flow are calculated by a spe-
cialised bi-objective shortest path algorithm, designated as
modified multiple objective routing algorithm (MMRA),
as a function of periodic updates of certain QoS related
parameters estimated from real time measurements on the
network. In other network environments in terms of under-
lying technologies and supplied services other QoS metrics
can be easily integrated in this type of routing model.
The main objective of this paper is to present new develop-
ments of the MODR method, for circuit-switched networks,
including a model for network performance evaluation un-
der MODR and the discussion of a path instability problem
associated with the MMRA model and of its consequences
in terms of global network performance measured by two
criteria (network mean blocking probability and maximal
node-to-node blocking probability).
The paper begins by reviewing the main features of the
MODR method and of the core node-to-node route calcu-
lation algorithm MMRA, based on a bi-objective shortest
path model. Then it outlines an analytical model the nu-
merical resolution of which gives the global network per-
formance measured in terms of total traffic carried and
maximal node-to-node blocking probability, when using
MMRA and periodically time varying traffic matrices, for
one class of service. This model enabled to put in evidence
an instability problem in the synchronous path computation
module, expressed by the fact that the paths computed by
MMRA for all node pairs in each period tend to oscil-
late between a few sets of solutions many of which lead
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to a poor global network performance. Having in mind to
explicit this instability/inefficiency which results from the
interdependencies between implied costs, blocking proba-
bilities and computed paths and from the discrete nature
of the multiple objective shortest path problem, a model
(of bi-objective nature) for the global network performance
evaluation, was developed. The essential requirements of
a heuristic procedure enabling to overcome this problem
and select “good” routing solutions in every path updating
periods, are discussed. This heuristic will have to be based
on an adequate selection of candidate second choice paths
for possible change in each updating period. A criterion
for selecting such paths will be proposed.
Finally the main conclusions from this paper will be drawn
together with the presentation of the lines of undergoing
developments of this work.

2. Review of the basic features
of the MODR method

The MODR method [5] is based on the formulation of the
static routing problem (calculation of the paths for a given
pair of nodes assuming fixed cost coefficients in the ob-
jective functions) as a bi-objective shortest path problem,
including “soft constraints” (that is constraints not directly
incorporated into the mathematical formulation) in terms
of requested and/or acceptable values for the two metrics.
The formulation of the problem for circuit-switched net-
works uses as metrics, for loss traffic, implied cost (in the
sense defined by Kelly [9]) and blocking probability. The
implied cost ck associated with arc lk = (vi ;vj ) 2 L (where
vi ;vj 2V, L is the set of arcs of the graph (V;L) defining
the network topology and V is the node set where each
node represents a switching facility or exchange and each
arc or link represents a transmission system) represents the
expected number of the increase in calls lost (on all routes
of all traffic flows using lk) as a result of accepting a call
of a given traffic flow, on arc lk. Therefore the bi-objective
shortest path problem is:

min zn = ∑
lk=(vi ;vj )2L

C
n
kxi j (n= 1;2) (1)

s.t.

∑
vj2V

xs j = 1

∑
vi2V

xi j � ∑
vq2V

xjq = 0 8vj 2V;(vj 6= s; t)

∑
vi2V

xit = 1 (2)

xi j 2 f0;1g; 8lk = (vi ;vj) 2 L
�
Problem P

(2)�
;

where
C

1
k = ck and C

2
k =� log(�Bk) :

Bk being the call congestion on arc lk and the log being
necessary for obtaining an additive metric.

The multiple objective dynamic routing method proposed
in [5] is as a new type of periodic state dependent routing
method based on a multiple objective routing paradigm.
In its general formulation MODR has the following main
features: i) paths are changed dynamically as a function of
periodic updates of certain QoS related parameters obtained
from real-time measurements, using a multiple objective
shortest path model which enables to consider, in an ex-
plicit manner, eventually conflicting QoS metrics; ii) it uses
a very efficient algorithmic approach, designated as modi-
fied multiple objective routing algorithm, prepared to deal
with the selection of one alternative path for each node
pair in a dynamic alternative routing context (briefly re-
viewed later in this section) by finding adequate solutions of�
P(2)

�
; iii) the present version of the method uses estimates

of implied costs as one of the metrics to be incorporated
in the underlying multiple objective model; iv) it enables
to specify required and/or requested values for each met-
ric (associated with predefined QoS criteria), values which
define priority regions on the objective functions space.
This capability is attached to a routing management system
(see [5]) and enables to respond to various network service
features and to variable working conditions. As for the
way in which the paths are selected in the MODR method,
the first path is always the direct route whenever it exists.
The remaining routes for traffic flows between an exchange
pair are selected from the MMRA, taking into account the
defined priority regions.

In general there is no feasible solution which minimises
both objective functions of

�
P(2)

�
simultaneously. Since

there is no guarantee of the feasibility of this ideal optimal
solution, the resolution of this routing problem aims at find-
ing a best compromise path from the set of non-dominated
solutions, according to some relevant criteria defined by
the decision maker. Non-dominated solutions can be com-
puted by optimising a scalar function which is a convex
combination of the bi-objective functions:

min z= ∑
lk2L

Ckxi j (3)

with the same constraints of P(2) and Ck = ∑2
n=1εnC

n
k,

where ε =(ε1;ε2)2 ε = fε : εn� 0; n= 1;2^∑2
n=1εn = 1g.

However, by using this form of scalarization only supported
dominated paths (that is those which are located on the
boundary of the convex hull) may be found. Nevertheless
non-dominated solutions located in the interior of the con-
vex hull may exist. MMRA resorts to an extremely efficient
k-shortest path algorithm [10] to search for this specific type
of non-dominated paths.

The basic features of MMRA are the following: i) it en-
ables to search for and select non-dominated or dominated
paths for alternative routing purposes; ii) it uses as sub-
algorithm for calculating k-shortest paths a new variant of
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the k-shortest path algorithm in [10], developed in [7] for
solving the k-shortest path problem with a constraint on the
maximum number of arcs per path since this is a typical
constraint considered in practical routing methods; iii) the
search direction in the objective function space is a 45Æ

straight line; this is justified by the variable nature of the
metrics in an integrated service network environment and
the possibility of dynamic variation of the priority regions;
iv) the priority regions for alternative path selection have
a flexible configuration that varies as a result of periodic
alterations in the objective function coefficients.

Concerning the specification of the requested and/or ac-
ceptable values for the metrics, distinct cases should be
envisaged. In the case of blocking probabilities, delays and
delay jitter for example, such values can be obtained from
network experimentation and/or from ITU-T standardisa-
tion or recommendations for various types of networks and
services. On the other hand, in the case of costs, namely
implied costs, included in the present model, it is more dif-
ficult to define a priori such values, since no general criteria
are known for these quantities. In the illustrative example
described in [5] the requested and acceptable values for z1

and z2, were obtained from calculations for the network
dimensioned by the classical heuristic [3] for typical net-
work mean blocking probabilities in nominal and overload
conditions. The non-dominated and possible a dominated
solution corresponding to an alternative path for a given
node pair, are selected by MMRA in the higher priority
regions. Further details on MMRA and the architecture of
MODR method may be seen in [5].

3. Model of network performance

The MODR model described so far, overlooks a question
which will be shown to have significant impact on network
performance: the interdependencies between implied costs,
blocking probabilities and the paths chosen between every
node pair. For understanding this and other related prob-
lems a model for global network performance evaluation,
is now presented.

Denote by: At( f ) the traffic offered by flow f from node
vi to node vj at time period t (in Erlangs); Rt( f ) =

= fr1( f ); r2( f ); :::; rM( f )g (in the present model M = 2) the
ordered set of paths (or routes) which may be used by traf-
fic flow f in time t; Rt = fRt( f1); : : : ;Rt( fjFj)g (F is the
set of all node to node traffic flows); Ck the capacity of link
lk; Rk = fr( f ) 2Rt( f1)[�� �[Rt( fjFj) : lk 2 r( f )g the set of

routes which, at a given time , may use arc lk; At a matrix
of elements At( f ), f = (vi ;vj); C the vector of link capac-
ities Ck; B the vector of link call blocking probabilities Bk;
c the vector of link implied costs ck and L

ri( f )
the blocking

probability of route r i( f ). From the definitions and analytic
results in [9] and in the previous paper [5] one may obtain

a system of implicit equations in Bk and ck, of the general
form:

8<
:

Bk = βk

�
B;C;At ;Rk

�
(S1a)

ck = αk

�
c;B;C;At ;Rk

�
(S1b)

(k = 1;2; : : : ; jLj)

First important elements of the MODR model are a fixed
point iterative scheme enabling the numerical computation
of B and a similar fixed point iterator to calculate c given
the network topology (V;L), C, At and Rt (therefore all
Rk are also known), which resolve the systems (S1a) and
(S1b) respectively, in this order. The convergence of these
numerical procedures designated hereafter as fixed point
iterators (or simply, iterators) is guaranteed in most cases
of practical interest as a consequence of the results in [8, 9].
Taking into account that the algorithm MMRA calculates
Rt at every period t = nT (n= 1;2; : : :), where T is the path
updating period, the functional interdependencies between
the mathematical entities involved in the MODR may be
expressed through:

� Rt0
= R0,

� Recalculate c, B with the iterators for previous Rt ,

� Rt=MMRA(c;B),

where R0, the initial route set should be defined from a suit-
able network dimensioning method, such as in [3], for given
nominal traffic matrix At0

.
The next point to be addressed is the definition of the global
network performance criteria. The first criterion is the max-
imisation of the total traffic carried in the network Ac:

max
Rt

Ac = ∑
f2F

At( f )
�
1�B( f )

�
; (4)

where B( f ) is the marginal blocking experienced by traffic
flow f in the network at time t:

B( f ) = L
r1( f )

L
r2( f )

: (5)

The maximisation of Ac is equivalent to the minimisation
of the network mean blocking probability:

Bm = ∑
f2F

At( f )B( f )
A0

t
; (6)

where A0
t = ∑ f2FAt( f ) is the total traffic offered; note

that (4) is the objective of all “classical” single objective
routing methods. The second proposed criterion is the min-
imisation of the maximal marginal call congestion:

min
Rt

BM = max
f2F

�
B( f )

	
: (7)

In many situations in alternative routing networks the min-
imisation of Bm is associated with a penalty on B( f ) for
“small” traffic flows At( f ), leading to an increase in BM.
In conventional single objective routing models this effect
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is usually limited by imposing upper bounds on B( f ). Note
that minimising z1 in P(2) corresponds to maximising Ac,
when searching for a path for flow f only if all the remain-
ing conditions in the network (namely the paths assigned
to all other flows and all the link implied costs) were main-
tained constant, which is not really the case. Similar analy-
sis applies for the minimisation of z2 in P(2), concerning the
search for the minimisation of BM . It is therefore important
to analyse the effects of the functional interdependencies in
terms of global network performance. To illustrate these
effects, with respect to z1 and z2 separately, and concern-
ing the performance criteria Ac (4) some results are shown
in Fig. 1 for a network designated as network B with six
nodes, dimensioned according to the method in [3] and de-
scribed in Appendix. These values in the graphics are the
minimum, maximum and average values of Ac obtained for
each traffic load factor, by performing 100� 30 iterations
of minimisation of z1 (calculation of the shortest path in
terms of implied cost) where each iteration corresponds to
the calculation of the alternative path for a given node pair.
Analogous results are presented in Table 1 for a network
designated as network A (given in the Appendix), with the
same topology as network B (six node complete graph) but
different traffic matrix At0

, with link capacities calculated
by the same method [3].

Fig. 1. Oscillations in total carried traffic when z1 (“impl.cost”)
and z2 (“bloc”) are minimised separately, for network B.

The following conclusions may be drawn from these re-
sults: i) the minimisation of the path implied costs tends to
maximise the network carried traffic; ii) there is an insta-
bility in the obtained solutions, leading to significant vari-

ations in the associated network performance metrics Ac

(or Bm) and BM; iii) the minimisation of the path blocking
probabilities leads to relatively small (hence “poor”) values
of Ac. Analogous conclusions are obtained by calculating
paths which minimise z2 (shortest paths in terms of block-
ing probability) as illustrated in Table 1, and replacing the

Table 1
Variations in Bm and BM for network A when z1

(“impl.cost”) and z2 (“bloc”) are minimised separately;
the minBm and minBM obtained for the two sets

of experiments are indicated in bold

Overload Blocking minz2 (bloc) minz1 (impl.cost.)

factor [%] probability min BM minBm minBM minBm

0 Bm 0.00384 0.00368 0.00371 0.00369

BM 0.00504 0.00605 0.00554 0.00613

10 Bm 0.0312 0.0301 0.0306 0.0297
BM 0.0372 0.0442 0.0395 0.0515

20 Bm 0.0946 0.0899 0.0849 0.0796
BM 0.109 0.169 0.140 0.209

30 Bm 0.162 0.149 0.148 0.128
BM 0.177 0.232 0.214 0.258

network criteria Ac by BM (maximal node-to-node block-
ing probability). All these results (similar to those obtained
for other networks) are consistent with the assumptions and
implications of the model.

4. Path instability and network
performance

Similarly to the phenomena observed in the previous sec-
tion for the single objective models based either on implied
cost or on blocking probability it could be expected that
direct application of MMRA would generate unstable solu-
tions, possibly leading to poor network performance (under
the bi-objective approach (Ac;BM)). In fact direct appli-
cation of the previous MODR formulation (involving the
determination by MMRA of the “best” compromise alter-
native paths for all origin-destination node pairs as a func-
tion of the network state) leads to situations where certain
links or paths that were “best” candidates according to the
MMRA working, will be in the following path updating
period, in a “bad” condition as soon as they are selected as
paths of a significant number of O-D pairs. This behaviour
leads typically to situations where paths chosen by the rout-
ing calculation system may oscillate between a few sets of
solutions such that in a certain updating period certain links
will be very loaded (i.e. they will contribute to many paths)
while others are lightly loaded and in the following pe-
riod the more loaded and the less loaded links will reverse
their condition. This phenomena is a new and specific “bi-
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objective” case of the known instability problem in single
objective adaptive shortest path routing models of partic-
ular importance, for example in packet switched networks
(see for example [4], Chap. 5). In our case this behaviour
(which may imply inefficiency of the solutions Rt , from
the point of view of global network performance) results
from the interdependencies between implied costs, block-
ing probabilities and paths computed by MMRA and from
the discrete nature of the bi-objective shortest path prob-
lem.To illustrate these questions Table 2 shows the minimal,
maximal and average values of Bm and BM obtained for net-
work B by executing MMRA 100 times for all node pairs,
for each traffic matrix overload factor.

Table 2
Oscillations in Bm and BM given by MMRA for network B

Overload Bm BM

factor
[%]

Mini-
mum

Maxi-
mum

Average
Mini-
mum

Maxi-
mum

Average

0 0.00430 0.00748 0.00495 0.00852 0.0510 0.0192
10 0.0814 0.105 0.0925 0.176 0.321 0.243
20 0.160 0.183 0.172 0.274 0.469 0.371
30 0.223 0.250 0.238 0.350 0.599 0.452
40 0.280 0.303 0.292 0.416 0.673 0.504
50 0.327 0.349 0.338 0.444 0.690 0.557

The following conclusions may be drawn from the results:
i) there is a significant range of variation in the values of
Bm and BM for each overload factor thereby confirming the
instability and potential inefficiency of the solutions; ii) the
MMRA solutions correspond in most cases to intermediate
values in comparison with the values of minBm and minBM
given by the corresponding shortest path models, as should
be expected. Nevertheless in one apparently “odd” case the
minBm in the table was slightly less than the corresponding
value obtained through the minimisation of z1 in the same
number of iterations. This situation although rare in the set
of the extensive experimentation performed with the models
can be explained by the complexity of the aforementioned
functional interdependencies (and the discrete nature of the
problem – see Section 3) there is no guarantee that by min-
imising z1 (or z2) any finite number of times, the optimal
values of Bm (or BM) might be obtained.

5. Requirements for a heuristic
of synchronous route selection

A heuristic procedure will have to be developed for select-
ing path sets Rt (t = nT; n = 1;2; : : :) capable of over-
coming the described path instability problem and guaran-
teeing a good compromise solution in terms of the two
global network performance criteria (Bm;BM), at every

updating period. The foundation of such procedure will
be to search for the subset of the alternative path set

R
a
t�T =

�
r2( f ); f 2 F

	
(8)

the elements of which should be possibly changed in the
next updating period, seeking to minimise Bm while simul-
taneously not letting that smaller intensity traffic flows be
affected by excessive blocking probability B( f ). A first pos-
sible criterion for choosing candidate paths for “improve-
ment” was suggested by Kelly [9] for use in an adaptive
routing environment: (1� L

r2( f )
)s

r2( f )
. This corresponds

to choose paths with a lower value of non-blocking prob-
ability multiplied by the corresponding path surplus per
call, s

r2( f )
. Extensive experimentation with the model lead

us to propose another criterion for this purpose, depend-
ing explicitly both on the first choice path r1( f ) (which in
MODR is the direct arc from origin to destination whenever
it exists) and on the alternative path r2( f ):

ξ ( f ) = F1F2 =
�

2C1
r1( f )�C1

r2( f )

��
1�L

r1( f )
L

r2( f )

�
; (9)

C1
ri ( f ) = ∑

lk2ri ( f )

ck : (10)

The objective expressed by the factor F1 is to favour (with
respect to the need to change the 2nd route) the flows
for which the 2nd route has a high implied cost and the
1st route a low implied cost. The factor 2 of C1

r1( f )
was

introduced for normalising reasons taking into account that
r1( f ) has one arc and r2( f ) two arcs, in the considered
fully meshed networks. The second factor F2 expresses
the objective of favouring the flows with worse end-to-end
blocking probability. The second point to be addressed in
the heuristic procedure will be to specify how many and
which of the second choice routes r2( f ) with smaller value
of ξ ( f ) should possibly be changed by applying MMRA
once again. In any case, among the recalculated routes only
those which lead to lower Bm and/or lower BM should be
finally selected by the procedure as routes to be changed in
each path updating period. This requires that the effect of
each candidate route, in terms of network performance, be
previously estimated.
Another mechanism to be introduced in MODR is a spe-
cific service protection scheme, aimed at preventing exces-
sive network blocking degradation in overload situations,
associated with the utilisation of alternative routes for all
node-to-node traffic flows. This mechanism here desig-
nated as alternative path removal (APR) is based on the
elimination of the alternative paths of all traffic flows for
which the value of the scalar function z (3) of the multi-
ple objective model is greater than or equal to a certain
parameter zAPR. This parameter will have to be carefully
“tunned” for each specific network by performing a previ-
ous analytical evaluation of the network performance and
represents a practical absolute threshold above which the
use of alternative routing is no longer justified.
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6. Conclusions and ongoing work

A description has been made of new developments of
a multiple objective dynamic routing method of periodic
state-dependent type for circuit-switched networks, previ-
ously presented, aiming to overcome its limitations in terms
of global network performance.

A model was presented the numerical resolution of which
gives the global network performance measured in terms of
total traffic carried and node-to-node blocking probability,
when using MMRA and periodically time varying traffic
matrices, for one class of service. This model enabled to
put in evidence an instability problem in the synchronous
path computation module, expressed by the fact that the
paths computed by MMRA for all node pairs in each period
tend to oscillate between a few sets of solutions many of
which lead to a poor global network performance.
Also the essential requirements of a heuristic procedure
aiming to overcome this instability problem and obtain ac-
ceptable compromise solutions in terms of the global net-
work performance, were presented. Work is progressing
with respect to the specification of a heuristic satisfying
these requirements and enabling to obtain “good” solu-
tions in terms of the two global network performance crite-
ria Bm (network mean blocking probability ) and BM (max-
imal node-to-node blocking probability). The performance
of the global routing method incorporating this heuristic
(MODR-1) is being tested by comparing (for single chan-
nel traffic) the obtained global performance network met-
rics, in three case study networks, with the corresponding
results given by a discrete event simulation model for a ref-
erence dynamic routing method, real-time network rout-
ing (RTNR) developed by AT&T, known for its efficiency
and sophistication in terms of service protection mecha-
nisms. Preliminary experiments with the current version
of the heuristic, involving the comparison of the analyti-
cal results of MODR-1 with simulation results for RTNR
for various test networks suggest that MODR-1 might per-
form better with respect to network mean blocking prob-
ability and/or maximum node-to-node blocking probabil-
ities in a very wide variety of network overload condi-
tions. To confirm these results an extensive simulation
study with MODR-1 will be carried out for three test net-
works. Also some modifications are being introduced in the
model of periodic recalculation of the boundary values of
the priority regions of MMRA which will change dynam-
ically in order to reflect the current loading conditions in
the links.
An important conclusion of this work is that a multiple-
objective (and indeed a single objective) dynamic rout-
ing method where the coefficients of the objective func-
tions of the core multiple objective algorithm depend
on the calculated paths (beyond possible intrinsic inter-
dependencies between cost coefficients) have an inherent
instability problem which can significantly degrade the
“quality” of the obtained solutions in terms of global

network performance. This problem, previously over-
looked, is a new and specific, “bi-objective case” of the
classical instability problem in single objective adaptive
routing models, of particular importance, for example, in
the case of packet switched networks. This phenomena
results from the interdependencies between the calculated
paths and the objective functions coefficients and from the
discrete nature of the routing problem. To overcome its
effects in MODR it is necessary to develop a suitable pro-
cedure of heuristic nature enabling to select a final solu-
tion at each updating period, with a “good” quality (in
terms of the adopted network performance criteria). We
think that similar type of heuristics could be applied to
different dynamic routing models with similar instability
problems.
Further work is also taking place concerning the extension
of MODR-1 formulation to multi-service networks, based
on appropriate generalisation of the concept of implied cost
and appropriate multiclass traffic models, associated with
adequate quality of service (traffic dependent) metrics.
Finally the “tuning” of important parameters of the method,
namely the path updating period and service protection
mechanism parameters, such as zAPR in the aforementioned
alternative path removal scheme, will have to be tackled
through extensive use of a simulation test-bed.

Appendix

Test networks

Calculation results for networks A and B are presented in
Tables 3 and 4, respectively.

Table 3
Network A

O-D Link Offered Intermediate
pair capac. traf. node
1-2 36 27 3
1-3 13 6 4
1-4 33 25 5
1-5 27 20 6
1-6 31 20 2
2-3 29 25 4
2-4 17 10 5
2-5 37 30 6
2-6 25 20 1
3-4 17 11 5
3-5 14 8 6
3-6 19 13 1
4-5 13 9 6
4-6 27 20 1
6-6 18 12 1
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Table 4
Network B

O-D Link Offered Intermediate
pair capac. traf. node
1-2 41 27.47 3
1-3 13 6.97 4
1-4 276 257.81 5
1-5 33 20.47 6
1-6 45 29.11 2
2-3 29 25.11 4
2-4 112 101.61 5
2-5 88 76.78 6
2-6 94 82.56 1
3-4 18 11.92 5
3-5 11 6.86 6
3-6 21 13.25 1
4-5 87 79.42 6
4-6 94 83.0 1
6-6 137 127.11 1
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Paper On the connections
between optimal control, regulation

and dynamic network routing
Andrzej Karbowski

Abstract — The paper is devoted to studying general fea-
tures of dynamic network routing problems. It is shown that
these problems may be interpreted as receding horizon opti-
mal control problems or simply regulation problems. In the
basic formulation it is assumed, that the nodes have no dy-
namics and the only goal of the optimization mechanism is
to find the shortest paths from the source to the destination
nodes. In this problem the optimization mechanism (i.e. the
Bellman-Ford algorithm) may be interpreted as a receding
horizon optimal control routine. Moreover, there is one-to-
one correspondence between the Bellman optimal cost-to-go
function in the shortest path problem and the Lyapunov func-
tion in the regulation problem. At the end some results of
the application of the routing optimization algorithm to an
inverted pendulum regulation problem are presented.

Keywords — stabilization, nonlinear control, optimal control,
dynamic programming, data networks, routing algorithms.

1. General optimal control problem
formulation

We consider a deterministic stationary discrete-time, dy-
namic system described by the state equation:

xk+1 = f (xk;uk); k= 0;1;2; :::;τ (1)

where xk, uk, such that

xk 2 S (2)

uk 2U (3)

are, respectively, the state and control vectors, and

f : S�U ! S: (4)

By S, U we denoted the subsets of some vector spaces of
dimensions n and m, respectively.
For this system we would like to find a closed-loop control
strategy

π = fµ0;µ1; : : : ;µτg ; (5)

where µk(:);k = 0;1; : : : ;τ , is the kth stage control rule,
admissible in the sense of state and control constraints,
that is

uk = µk(xk) 2U; 8xk 2 S; (6)

that minimizes the cost functional:

J(x0) =
τ

∑
k=0

g
�
xk;uk

�
(7)

with respect to both the policy π and the terminal time τ
(i.e., the control horizon is free).
Let us select a point x̄ from the state space S. We will
assume, that for all x 6= x̄ and any u2U

g(x;u)> 0 (8)

and there exists ū2U such that:

f (x̄; ū) = x̄ (9)

with

g(x̄; ū) = 0: (10)

For instance g may be a quadratic function:

g(x;u) = (x� x̄)0Q(x� x̄)+

+(u� ū)0R(u� ū) ; (11)

where the matrix Q is positive semidefinite and the ma-
trix R is positive definite.
Summing up, we consider an optimal control problem with
a fixed terminal state, but free terminal time, defined by

min
π

(
J(x0) =

τ

∑
k=0

g
�
xk;uk

�)
(12)

xk+1 = f
�
xk;uk

�
(13)

uk = µk(xk) 2U (14)

x0 = x (15)

xτ = x̄ (16)

where 8k xk 2 S.
We assume, that the system (13)–(15) is controllable to the
point x̄ from every point of the state space.
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2. Analysis

We will apply an analysis method inspired by Luen-
berger [6].
First, let us notice, that in our problem all functions are
time-invariant (stationary). It means, that the solution will
not depend on time, either. More precisely, the optimal
trajectory from a given state x to the endpoint x̄ is inde-
pendent of the time k0 at which xk0

= x. That is, if x0 = x

leads to the optimal trajectory fx̃kg for k > 0 with final
time τ(x), then the condition xk0

= x must lead to the tra-

jectory fx̃k+k0
g with final time τ(x)+k0. The delay of the

initial time causes only delaying of the whole solution and
the terminal time (i.e., the time of reaching the state x̄) is
simply an unknown function of the initial state only.
The optimal control rule is also a stationary function, that
is for every k

uk = µ�
�
xk

�
: (17)

It must be so, because the initial control, as we have just
stated, depends only on the initial state, not on the initial
time, and we can repeat this reasoning at each time instant.
Because of the assumptions (8)–(10) there will be:

µ� (x̄) = ū: (18)

If µ�(:) is the optimal control rule, then we will obtain the
following closed-loop system equation:

xk+1 = f
�
xk;µ

�
�
xk

��
: (19)

Let us notice, that due to Eqs. (18) and (9) the point x̄
is an equilibrium point of the system (19) and according
to the construction of the rule µ�(:) the system eventually
reaches x̄. Hence, the system is stable.
Now, let us analyze formally the stability of the system and
consider the optimal value function (that is the Bellman
function, sometimes called “the optimal cost-to-go”) Vk(x)
for this problem, expressed as:

Vk

�
xk

�
=

k+τ(xk)

∑
l=k

g
�
xl ;µ

�(xl )
�
; (20)

where the function g(:; :) is defined by Eq. (10). This is the
optimal (minimal) cost of the passage to x̄ at time k+τ(xk)
when the initial point is xk with time k. This function
satisfies the following conditions:

(i) Vk(x̄) = 0

(ii) Vk(x)> 0 for x 6= x̄

(iii) Vk+1(xk+1)�Vk(xk) =�g
�
xk;µ

�(xk)
�
< 0 for xk 6= x̄

Thus V – the Bellman function is a Lyapunov function and
we proved the stability of the system.

3. Discrete-state version

In this section we will assume, that the sets S and U are
finite and have, respectively, T + 1 and V + 1 elements.
For the sake of simplicity we denote them by subsequent
integers, that is:

S= f0;1;2;3; : : : ;Tg (21)

U = f0;1;2;3; : : : ;Vg (22)

Consequently we will have:

xk 2 S� Zn (23)

uk 2U � Zm (24)

In these circumstances, for any state xk = i 2 S, a control
uk = u 2 U can be associated with a transition from the
state xk = i to the state f (i;u) = j 2 S. This passage is
characterized by a cost:

ci j = min
u2U

f (i;u)= j

g(i;u) (25)

We assumed, that in the case when there are several controls
u2U , such that:

f (i;u) = j (26)

we choose as the passage cost (25) the minimal cost among
all costs corresponding to this passage.
Let us define now as a destination state T 2 S. We will
assume that the system may remain in this state, that is

9uT 2U f (T;uT) = T (27)

and that the cost of being in this state equals zero, that is:

g(T;uT) = 0: (28)

In these conditions the state T is absorbing, that is if the
system (1) passes to it, it remains in it for ever.
With this notation, we can interpret our deterministic opti-
mal synthesis problem as a shortest path problem from an
initial state 0 to the terminal state T (Fig. 1).
Let us denote now by N(i) the set of all direct neighbours of
the node i. The optimized dynamic programming algorithm
for this problem will take the form:

J(i) = min
j2N(i)

fci j +J( j)g (29)

with the terminal condition:

J(T) = 0: (30)
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Fig. 1. Graph describing deterministic discrete optimal control
problem with terminal state.

4. Routing problem and the
Bellman-Ford asynchronous

algorithm

The shortest path problem presented above, with a special
structure resulting from the original optimal control formu-
lation, may be immersed into a broader class of problems,
namely into the class of routing problems. It consists in
finding for every node from the set S= f0;1;2; : : : ; Ig a ta-
ble defining direct neighbours to which a load or message
addressed to some remote node r should be transmitted.
A destination may be every node from the set S.
Usually this problem is solved with the help of the asyn-
chronous Bellman-Ford algorithm. This algorithm may be
shortly described in the following way [1, 2, 4].
Let us denote the set of all arcs (i; j) between elements
of the set S by A. Every arc from A can be character-
ized by the weight representing its length ci j . The problem
is to compute for every node i 2 S vectors xir of short-
est distances from this node to the node r . We assume,
that every arc in the directed graph G = (S;A) has pos-
itive length and that there exists at least one path from
every node to others. Then the shortest distances corre-
spond to the unique fixed point of the monotone mapping
F : RI+1�RI+1!RI+1�RI+1 defined by Frr (x) = 0; r 2S
and

Fir (x) = min
f j j(i; j)2Ag

(ci j +xjr ); i 2 S: (31)

The Bellman-Ford algorithm consists in the iteration

xir := Fir (x) = min
f j j(i; j)2Ag

(ci j +xjr ); 8i; r 2 S (32)

or in the vector notation:

x := F(x) (33)

and can be shown to converge to a fixed point

x� = F(x�) (34)

when initialized with xi j = ∞ 8i 6= j .

The convergence takes place also in the case of an asyn-
chronous implementation [1, 4].

5. Integration

Taking into account conclusions drawn from the previous
sections, we can write the following:

1. The optimal control policy in the receding hori-
zon control problem for stationary systems with
a Lagrange-type performance index is stationary.

2. When the terminal time is free, the optimal closed-
loop control problem consists in finding the minimal
cost trajectory from any point of the state space to
a given point x̄.

3. The deterministic closed-loop discrete optimal con-
trol problem with a fixed terminal state but with free
terminal time (i.e. horizon) can be represented as
a shortest path problem.

4. The shortest path may be solved with the help of the
Bellman-Ford algorithm designed for routing prob-
lems, that might be implemented asynchronously (as
in the Internet protocols RIP, IGP or Hello [2]).

Thus, having discretized the problem (12)– (16), connecting
all resulting nodes according to the state equation (13) and
solving the shortest path problem from all nodes to the node
representing the point x̄, we can transform the receding
horizon optimal control problem into the routing problem
and vice-versa.

6. Application of the routing algorithm
to the stabilization of an inverted

pendulum

To confirm experimentally the equivalence between rout-
ing algorithms and the feedback regulation the presented
approach was tested on an example taken from [5].
A control law synthesis problem for a simple inverted pen-
dulum was considered. The state variables of this system
are the angle ξ and the angular velocity ξ̇ . The input u is
a torque in the shaft, which is bounded to such an amount,
that the pendulum cannot directly be turned from the hang-
ing into the upright position. Instead, it is first necessary
to “gain enough momentum”, which requires a complex
trajectory planning, even for this simple system. This non-
linearity posses the main difficulty for the feedback design
in this example.
The system is described by the state equations:

ẋ1(t) = x2(t) (35)

ẋ2(t) = sinx1(t)+h(u(t)) ; (36)
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where x1 = ξ ; x2 = ξ̇ and h(:) is the linear function with
saturation, when the module of its argument exceeds 0:7,
that is

h(u) =

8><
>:

�0:7 u��0:7

u �0:7< u< 0:7

0:7 u� 0:7

(37)

An interesting feature of the above system is that a con-
tinuous state feedback, which asymptotically stabilizes the
system for all initial conditions, does not exist! The rea-
son is, that for any continuous feedback there is a different
than origin equilibrium point. More precisely, this point
has a nonzero first coordinate. It must be so, because the
function

f (x1) = sinx1+h(µ(x1;0)) (38)

Fig. 2. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[π;0] and RB controller.

Fig. 3. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[ π

2 ;0] and RB controller.

has the positive sign for x1 = π�arcsin0:8 and the nega-
tive sign for x1 = π +arcsin0:8. It means (from the Dar-
boux theorem) that this function has a root in the inter-
val [π � arcsin0:8; π + arcsin0:8]. In other words, the
dynamic system (35)–(36) has an equilibrium point with
a zero second and a nonzero first coordinate.

Fig. 4. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[� 2

3π;0] and RB controller.

The system (35)–(36) was discretized under the following
conditions:

– the conversion to the discrete-time representation was
obtained via the Euler scheme for a sampling interval
Ts = 0:5;

– as the state coordinate x1 space, the interval [�4;4]
was taken; it was discretized into 221 levels;

– as the state coordinate x2 space, the interval
[�1:6;1:6] was taken; it was discretized into 121 lev-
els;

– the control space (the interval [�0:7;0:7]) was di-
vided into 20 equal subintervals;

– the cost function g(x(t); u(t)) was assumed to be
quadratic, that is

g(x;u) = x0Qx+u0Ru (39)

with

Q=

�
5 0
0 2

�
(40)

and R= 2.

It is worth noting, that according to the state equa-
tions (35)–(36), for u = 0, except of the origin, there are
many other equilibrium points, those of coordinates:
[kπ ; 0], k = 0;1;2; : : : . For instance, in the domain, there
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are two other (actually it is the same point, where the pen-
dulum is hanging freely) such points.
Several experiments for different initial points were per-
formed. All of them finished in the origin.
The resulting trajectories of the state and control variables
are presented in Figs. 2–4. The abbreviation RB means
routing based (controller).
For comparison, next figures (Figs. 5–7) present the
same trajectories, obtained with the help of LQ method-
ology, without saturation of the function h(:) (that is, it
was replaced by identity). In those experiments, the sys-
tem (35)–(36) was linearized in the origin, then the opti-
mal static feedback matrix K (that is u= K �x) was calcu-
lated, with the help of the Matlab Control Toolbox (proce-
dure ’lqr’).

Fig. 5. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[π;0] and LQ controller.

Fig. 6. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[ π

2 ;0] and LQ controller.

It is seen, that although in all cases the LQ controller was
able to stabilize the pendulum, the control u was very big,
out of the admissible interval [�0:7;0:7] of the previous
(RB) case.

Fig. 7. Trajectories x1 (---), x2 (� � � ), u (—) for initial condition
[� 2

3π;0] and LQ controller.

Fig. 8. Trajectories x1 (---), x2 (� � � ), u (—) for moving pendulum
and LQ controller with saturation for initial condition [π;0].

After the series of experiments it turned out, that in the
case when the control constraints are taken into account
while implementing the LQ control law, even for much
greater values of the coefficient R, it is impossible to con-
duct the pendulum from the free ([π ;0]) to the upright
position (Fig. 8). Let us recall, that it was not a prob-
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Fig. 9. Trajectories x1 (---), x2 (� � � ), u (—) for moving pendulum
and LQ controller with saturation for initial condition [π;0:5].

lem for RB controller (Fig. 2). However, after giving the
pendulum some momentum, the LQ controller with satu-
ration succeeded in regulating the pendulum to this posi-
tion (Fig. 9).

7. Conclusions

The paper presented connections between a nonlinear sta-
bilization problem and a network routing problem. The
may idea lies in the formulation of the original regulation
problem as a set of discrete-time receding horizon control
problems, solved for all initial states. The optimal control
rule may then be calculated (after state discretization) by
the application of the Bellman-Ford algorithm, which is an
elementary method for calculation of the shortest paths in
networks.
An inverted pendulum case of study results showed, that
the regulator obtained in this simple way has some advan-
tages over classical LQ approach: it requires much smaller
controls to move the state of the system to the equilibrium
point neighbourhood, and it can successfully control the
system even for initial conditions lying very far from the
equilibrium point (that is, it is global). The drawbacks of
this regulator are small oscillations around the terminal

point, caused by discretization, and the longer time of reg-
ulation. Because of that, the best solution in the case of
continuous nonlinear systems would be probably a hybrid
regulator: discrete – routing based for points lying far from
the terminal point and continuous – LQ methodology based,
in its neighbourhood.
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Paper Heuristic algorithms
in topological design

of telecommunication networks
Piotr Karaś

Abstract — The paper addresses the generic topological
network design problem and considers the use of various
heuristic algorithms for solving the problem. The target of
the optimisation is to determine a network structure and
demand allocation pattern that would minimise the cost of
the network, which is given by fixed installation costs of
nodes and links and variable link capacity costs described
by linear or concave functions. Input data for the optimi-
sation consists of a list of potential node and link locations
and their costs and a set of demands defined between the
nodes. Since the problem is known to be NP-hard, the
use of specialised heuristic algorithms is proposed. The pre-
sented approaches encompass original ideas as well as se-
lected methods described in literature and their enhance-
ments. The algorithms are based on the following ideas and
methods: shifting of individual flows, local and global restora-
tion of flows from chosen links or nodes, Yaged algorithm
for finding local minima, Minoux greedy algorithm, simu-
lated allocation and genetic algorithms. Efficiency of each
of the proposed methods is tested on a set of numerical
examples.

Keywords — topological design, network optimisation, heuristic
algorithms, genetic algorithms.

1. Introduction

Topological design of telecommunication networks encom-
passes a range of problems related to localisation of links
and nodes of a network. The target of the optimisation is to
determine a network structure and demand allocation pat-
tern that would minimise the cost of the network, given
a list of potential node locations and a list of admissible
interconnections between these nodes. The objective func-
tion to be minimised is given as a sum of fixed installation
costs of nodes and links and variable link capacity costs
(a function of link capacity).
Two subproblems can be distinguished – namely the
link localisation problem (LLP), where only link local-
isation is to be optimised, and the more general tran-
sit node and link localisation problem (TNLLP), where
localisation of links and transit nodes is subject to op-
timisation. In literature the LLP is also referred to as
the optimal network design problem. This paper ad-
dresses both variants, however it concentrates on the more
complex TNLLP.

Below the inputs and objectives of the optimisation are
described in more detail.
Input data for the optimisation:

– a list of nodes, where access nodes (which originate
or terminate demands) and transit nodes (which may
transit flows) are distinguished;

– a list of all allowable interconnections between nodes
(access links for connecting access nodes to tran-
sit nodes and transit links for interconnecting transit
nodes);

– demands defined between access nodes, which are to
be satisfied;

– link costs – a fixed link installation fee and a variable
cost (function of link capacity);

– node costs – a fixed transit node installation fee.

Objectives of the optimisation:

– derive a set of necessary transit nodes;

– derive a set of necessary transit links and access
links;

– find an optimal routing of demands in the network;

– minimise the objective function, which is given as
a sum of costs of all actually installed links and
nodes.

The discussed topological network design problem is
generic. It may be interpreted as a task of optimising the
topology of a backbone network. Such a design task is
a difficult combinatorial optimisation problem and is known
to be NP-hard. As the use of exact methods is, in this case,
limited to very simple network examples, the heuristic ap-
proach has to be considered. Moreover, due to the local op-
tima problem, only more sophisticated methods can prove
to be effective.
The paper provides a mathematical formulation of the con-
sidered problem and proposes a set of adequate heuristic
algorithms. The presented approaches encompass original
ideas as well as select methods described in literature and
their enhancements.
The proposed algorithms can deal with problems where
link cost functions are either linear functions of link ca-
pacity with a fixed cost (e.g. link cost may depend on the
geographical distance between nodes and a fixed link instal-
lation fee) or concave functions of link capacity (reflecting
the economy of scale phenomenon common in telecommu-
nication systems).
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Numerical examples considered in this paper follow an as-
sumption that the demands are directed and links are undi-
rected (link capacity is taken as a sum of flows in both
directions). However all of the algorithms could be easily
adapted to solve problems with directed links if required.
Similarly sets of transit nodes and access nodes are basi-
cally assumed to be disjoint but the algorithms allow for
access nodes with transiting capability (mixed functional-
ity).
The paper is organised as follows. Section 2 of the pa-
per provides a mathematical formulation of the considered
problem. Next, in Section 3, a range of specialised heuris-
tic algorithms for topological network design is described
in detail. Efficiency of each of the proposed methods is
tested on a set of numerical examples – the network exam-
ples, obtained results and calculation times are presented
and discussed in Section 4. Finally, the concluding remarks
can be found in Section 5.

2. Problem formulation

Below, a general formulation of the transit node and link
localisation problem is given. The link localisation prob-
lem, which is a special case of TNLLP, can be obtained by
assuming a fixed transit node configuration and setting null
transit node installation costs.
The TNLLP formulation presented below uses the link-path
notation. The node-link notation is also available (c.f. [1])
and may be more suitable for MIP solvers.
As mentioned above, link cost can be given either by a lin-
ear or a concave function of link capacity. In order to
obtain a MIP formulation, the ceye term should be used
in (1) instead of fe(ye), which allows for a nonlinear case.

TNLLP (link-path formulation)

indices

d = 1; 2; : : : ; D demands
j = 1; 2; : : : ; Jd paths for flows realising demand d
e= 1; 2; : : : ; E links
v= 1; 2; : : : ;V transit nodes

constants
hd volume of demand d
aed j 1 if link e belongs to path j realising

demand d,
0 otherwise

ke fixed link e installation cost
fe(ye) variable cost of link e

(a function of load ye of link e)
bev 1 if link e is incident with transit node v,

0 otherwise
lv fixed transit node v installation cost
Ye upper bound of the capacity of link e

(not active)
Gv upper bound of the degree of transit node v

(inactive)

variables
xd j flow realising demand d allocated to path j

(non-negative continuous variable)
ye capacity of link e (non-negative continuous

variable)
σe 1 if link e is provided, 0 otherwise (binary

variable)
εv 1 if node v is provided, 0 otherwise (binary

variable)

objective

min∑e

�
fe(ye)+keσe

�
+∑v

lvεv (1)

constraints

∑ j
xd j = hd d = 1; 2; : : : ; D; (2)

∑d ∑ j
aed jxd j = ye e= 1; 2; : : : ; E; (3)

ye�Yeσe e= 1; 2; : : : ;E; (4)

∑ebevσe�Gvεv v= 1; 2; : : : ;V: (5)

Constraints (2) guarantee realisation of demands imposed
on the network. Constraints (3) and (4) ensure that zero
capacity is assigned to all links that are not provided.
Consistent link and node allocation is enforced by con-
straints 5). In the considered problems parameters Ye

and Gv are assumed to be inactive – they do not limit
the capacity of edges and the degree of the nodes, respec-
tively.
Localisation of access nodes is determined by the set of
demands imposed on the network. Null installation fee is
assumed for these nodes, since it does not have any influ-
ence on the produced solutions (other than shifting all of
the results by a fixed value).

3. The methods

All of the considered heuristic methods and their modifica-
tions are presented below. A short description is provided
in each case.

3.1. Flow shifting and rerouting

Most of the proposed flow shifting methods are new im-
plementations of approaches already presented in literature
(c.f. [1, 2]), in many places original modifications have
been introduced. The flow shifting algorithms are rather
simple and serve as basis for some of the more complex
methods described in the following subsections.

3.1.1. Individual flow shifting

Individual flow shifting (IFS) was proposed in [1] as a sim-
ple heuristic for solving the LLP and TNLLP.
Firstly an initial allocation of demands is performed with
a greedy type of algorithm. Subsequent demands are taken
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in a random order and allocated to shortest paths. The paths
are computed according to incremental cost of routing the
demand in question on a given link (in particular if a link
is empty its installation cost is added, otherwise only the
variable cost is counted).
Secondly, in the main loop of IFS, subsequent demands are
checked in a random order and reallocated if their rerouting
results in a decrease of the total network cost.
The algorithm stops when the flow rerouting procedure can
achieve no further network cost improvement.

3.1.2. Minoux greedy algorithm

The algorithm proposed by Minoux in [2] dealt with the
LLP (ONDP). Here the Minoux greedy algorithm (MGA)
is applied to the TNLLP.
Firstly initial allocation of demands is done, which may
proceed as described for IFS.
Each iteration of the MGA main loop consists in assigning
restoration costs δe to all of the links carrying some load.
The δe value for a given link e is calculated as the cost of
locally restoring the capacity of the link to an alternative
shortest path. The link with the lowest negative restoration
cost δe is switched off and its flows are redirected.
The algorithm stops when, in a given iteration, all of
the links have a positive restoration cost δe, meaning that
no further improvement of the total network cost can be
achieved.

3.1.3. Accelerated Minoux greedy algorithm

The accelerated Minoux greedy algorithm (aMGA) [2]
is similar to MGA, however here changes of restoration
costs δe for subsequent iterations are assumed to be mono-
tonic – hence it is no longer necessary to recalculate all
of the δe in each iteration. Although the above assump-
tion may not be true for all types of link cost functions,
aMGA can be used in all cases and usually provides the
same results as MGA while requiring fewer relocation cost
computations (which, in turn, makes it significantly faster).

3.1.4. Bulk flow shifting

Initial allocation of demands is performed as described
for IFS.
In the main bulk flow shifting (BFS) loop, the algorithm
looks through all of the links in a random order. The cur-
rently analysed link is switched off and demands crossing
it are disconnected. Subsequently an attempt is made to
reallocate these demands to new paths. If the reallocation
is not feasible or causes an increase of network cost then
rollback to the previous configuration is performed.
The algorithm stops when no further improvements are
achievable.
In the case of MGA flows from the removed link were re-
routed locally and jointly. In case of BFS they are rerouted
globally and individually which usually produces a better
result. This algorithm differs from the bulk flow shifting

approach presented in [1] where the deallocation decision
was based on δe computations as described for MGA.
Several variants of the algorithm have been analysed. The
variant described above is marked as BFS/1. BFS/n stands
for a similar method where flows are deallocated on per
node basis rather than per link basis. In BFS/b all of the
nodes and links are checked in each iteration and the best
(not the first better) option is chosen for switch off.
Another option to consider is whether to switch appropriate
links/nodes permanently off or rather allow for flow alloca-
tion on these links/nodes in the following iterations. These
options are indicated as BFS.off and BFS.on, respectively.

3.2. Yaged algorithm

The Yaged algorithm (YAG) proposed in [3] has been used
to find locally optimal solutions of network design prob-
lems characterised by concave link cost functions over a set
of linear flow constraints. The method is known to con-
verge, in a finite number of steps, to local optimum points
compliant with the Kühn-Tucker conditions.
Extensions of the algorithm have been presented in [1].
Here the method is applied to the TNLLP.
First an initial allocation of demands is done.
Subsequent iterations of the main YAG loop consist in re-
calculation of shortest paths for all of the demands with
marginal link costs (d fe(ye)/dye) taken as link weights for
the Dijkstra algorithm.
The algorithm stops when a fixed point is reached, i.e. two
subsequent iterations yield exactly the same flow pattern.

3.3. The notion of adaptive function loop

The adaptive function loop (AFL) approach has been
used in [1], combined with various versions of the Yaged
algorithm, to deal with design problems characterised by
concave link cost functions (requiring global optimisa-
tion). Similar cost smoothing techniques were mentioned
in [1].
The idea consists in placing any of the simple methods
(SM) such as IFS, MGA, aMGA, BFS or YAG in an outer
loop called the adaptive function loop. The AFL modifies
the link cost function for consecutive SM runs. The idea
is to partially linearise the link cost function according to
the following formula:

Ce(ye) =

(
fe(ye) for ye� yth

β th
e �ye for ye < yth

ye� load of link e

fe(ye)�original cost function of link e

yth� threshold link load for linearisation

β th
e = fe(yth)=yth

In subsequent AFL iterations yth value is gradually de-
creased, hence the first iteration is performed with a linear
link cost function (high yth value) and the final one with
the original link cost function (yth = 0). Solution obtained
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by SM in each AFL step serves as starting point for the
next iteration (Fig. 1).

Fig. 1. Cost function linearisation concept in AFL.

The AFL approach has two advantages. Due to the lineari-
sation, the fixed cost is partially included in computations
of relocation gain (this tends to give better results). More-
over, by changing the initial yth value and/or the number
of adaptive steps nadapt, the algorithm may be directed to
various areas of the solution space, thus dealing with the
local minimum problem.
Since it is not possible to determine yth and nadapt values
that would work equally well for all kinds of problems,
performing multiple AFL loop runs for various combina-
tions of these parameters seems to be a good idea. Of
course such an approach results in a proportional increase
of computation time.
As mentioned above the AFL approach can be combined
with various simple methods. The following options may
be formed:
Individual flow shifting with adaptive function loop (IFS-
AFL)
Minoux greedy algorithm with adaptive function loop
(MGA-AFL)
Accelerated Minoux greedy algorithm with adaptive func-
tion loop (aMGA-AFL)
Bulk flow shifting with adaptive function loop (BFS-AFL)
Yaged algorithm with adaptive function loop (YAG-AFL)

3.4. Simulated allocation

The simulated allocation (SAL) algorithm (c.f. [5]) has
been already applied to the TNLLP in [1]. Here a sim-
ple version of the method along with some enhance-
ments has been implemented for comparison with other
methods.
The simulated allocation works with partial allocation
states. In each step it decides either to allocate or deallo-
cate a randomly chosen demand (allocation is chosen with
a higher probability in order to proceed towards full allo-
cation states). Current value of α factor (defined as frac-
tion of allocated flows) regulates the probability of alloca-

tion Pa and deallocation Pd. For example, for α < 0:8 use
Pa = 1 and for α � 0:8 use Pa = 0:7.
Every now and then, when a complete allocation state
is reached, a bulk deallocation of demands is performed
(e.g. half of all the demands are deallocated). Bulk deallo-
cation enables the algorithm to explore the solution space.
Best complete allocation state that is reached is this manner
is stored as the final solution.
The algorithm stops if the result is not improved for a pre-
defined number of consecutive full allocation states.
One of the introduced enhancements consists in the way
the bulk deallocation is performed. Instead of operation
on per flow basis, the procedure deallocates all flows from
randomly chosen links or nodes until the requested value
of α = 0:5 is reached. An on/off approach, similar to the
one introduced in BFS.on and BFS.off, was also attempted
but did not prove to be effective.

3.5. Genetic algorithm

The proposed genetic algorithm (GA) is based on the
(µ + λ ) evolution strategy [5]. It involves the use of
problem-specific encoding and genetic operators.
The population consists of chromosomes that represent
various structures of the network. Each chromosome is
built of E binary genes corresponding to each link e of
the network. When a link is allocated in a given network
structure, the corresponding gene value of the considered
chromosome is set to 1. Genes set to 0 indicate not allo-
cated links.
The initialisation procedure builds the initial parent pop-
ulation P0 by creating µ chromosomes. Half of the P0 is
generated by the greedy initialisation procedure already de-
scribed for IFS, where shortest paths for the demands are
computed in a random order, thus providing diverse solu-
tions. The other half is derived by routing the demands on
shortest paths obtained for randomly generated link metrics.
In this manner diversity is introduced into P0.
Inside the main program loop an offspring population On

consisting of λ chromosomes is formed by copying ran-
domly chosen chromosomes from parent population Pn and
mutating them. Mutation consists in introduction of gene
variations corresponding to changes in the structure of the
network. The following mutation operators may be ap-
plied to randomly chosen links and/or nodes: node switch
on/off, single link switch on/off and multiple links switch
on/off. Each of these actions is performed with a defined
probability. After mutation, On is evaluated (the demands
are routed in the derived network structure and the total
network cost is calculated for each chromosome) and the
algorithm proceeds to the selection procedure. Here µ best-
fitted (i.e. characterised by a minimal network cost) chro-
mosomes are chosen and they become the parent population
Pn+1 for iteration n+1.
The loop is exited and the program ends when one of the
following two conditions occurs: the algorithm is unable to
improve the current best solution for a specified number of
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Table 1
Parameters of the tested networks

Network
Number of

transit nodes
Number of

access nodes
Number of

links
Number of
demands

min hd max hd ∑d hd

N7 7 5 90 42 240 1 920 34 320
N14 14 11 418 182 120 7 560 172 320
N28 28 15 1 050 756 120 30 240 892 492
N9 9 19 132 171 30 150 14 220

generations (so called patience) or it exceeds the maximal
allowable number of generations.
The GA version described above is rather simple and there
is a lot of room for further enhancements. Implementation
of crossover operators could be considered. Explorative
properties of the algorithm should be analysed versus its
ability to find locally optimal solutions – in this way values
of the µ and λ parameters as well as mutation probability
could be tuned.

4. Numerical results

Effectiveness of all of the presented methods has been
tested on a range of numerical examples of diverse com-
plexity. The algorithms have been implemented in ANSI C
and executed on a PC equipped with Athlon 900 MHz
processor and 256 MB of RAM.

4.1. The example networks

Three example network structures characterised by dif-
ferent number of nodes have been analysed: N7, N14
and N28 (available from [7]). Link costs were assumed
to be linear with a fixed installation cost. Another ex-
ample network N9 was used with concave link cost func-
tions. The basic parameters of the networks are given in
Table 1. All links are potentially available.
Additionally several variants of N7, N14 and N28 were
introduced in order to analyse a range of fixed and variable
link cost relations (for LLP and TNLLP) as well as the
influence of various node installation costs (for TNLLP).
The unit cost ce of link e is proportional to its geographical
length. The fixed installation cost is given by ke = ce �10n.
For LLP analysis n2 f0;2;3;6g, whereas for TNLLP anal-
ysis n 2 f4;5g (and fixed costs of links are additionally
multiplied by 3 for access links and by 2 for transit links).
For TNLLP, the fixed installation cost of transit nodes is
given by lv = 10k, where k2 f4;5;6g. There is no instal-
lation fee for access nodes.
Results obtained for all of the algorithms, along with the
computation times, are summarised in the tables presented
in subsections 4.2 and 4.3. In order to draw conclusions
on algorithm average performance 10 runs of each of the
algorithms have been conducted – each with a different
seed value for the randomiser.

Bold font indicates the cases when the optimal solution or
the best suboptimal solution has been achieved. Due to the
problem complexity, an exact solution (taken from [1]) is
available only for the smallest networks and is given in the
EX row. It is worth noting that for all of the considered
network examples the BFS-AFL algorithm has managed to
provide either the optimal solution or the best suboptimal
solution.

4.2. TNLLP results

Tables 2–5 refer to the TNLLP problem where link cost
function are linear with a fixed installation cost. Table 2
contains the average solutions from 10 runs. The best
solutions obtained with each method are noted in Ta-
ble 3. Table 4 shows the relation between the average
solution and the best one known (given by (average –
best known)/best known). Average calculation times are
gathered in Table 5.
BFS-AFL algorithms provided the best average results.
BFS/l.on variant proved to be especially effective. SAL.on
also performed well as far as the average results are con-
cerned – especially for the simpler networks.
Optimal results or best suboptimal results were also
achieved by simple algorithms from the BFS group, how-
ever their average results were somewhat worse. Taking
into consideration short calculation times for algorithms
of this kind, a random approach consisting in performing
a number of runs and choosing the best solution could be
applied in this case.
Effectiveness of the considered methods is well depicted by
the “relative distance from the best” presented in Table 4
and the computation times from Table 5.
The simple algorithms (IFS, MGA, aMGA, BFS and YAG)
are characterised by very short computation times, how-
ever they produce solutions way below expectations. The
only significant exception here is the BFS algorithm group,
which requires only slightly more time to provide already
acceptable solutions. Especially, the BFS/b.on variant can
be considered as a good alternative to more complex and
time-consuming algorithms such as SAL and GA.
Introduction of the AFL loop has significantly improved
the results provided by most of the simple methods. The
AFL loop worked very well with IFS, BFS and YAG. The
results for MGA, with or without AFL, are disappointing
for TNLLP. For IFS and YAG a huge improvement, as
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Table 2
TNLLP: average results (10 runs average) [cost unit 106]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 80.16 81.15 91.05 342.10 343.09 352.99 298.21 299.56 313.06 904.80 906.15 919.65
MGA 78.39 79.38 89.28 309.94 310.93 320.83 306.36 307.71 321.21 861.10 862.45 875.95
aMGA 78.41 79.40 89.30 311.52 312.51 322.41 306.36 307.71 321.21 861.90 863.25 876.75
BFS/l.off 58.96. 59.84 69.36 271.03 271.98 281.43 270.79 272.07 287.04 742.13 743.46 756.69
BFS/l.on 59.35 60.34 70.24 266.16 267.15 277.05 263.29 264.64 278.14 742.74 744.09 757.59
BFS/n.on 59.07 60.06 69.96 267.56 268.55 278.45 263.02 264.37 277.87 748.91 750.26 763.76
BFS/b.on 58.49 59.48 69.38 265.49 266.48 276.38 258.54 259.89 273.39 735.17 736.52 750.02
YAG 80.16 81.15 91.05 342.10 343.09 352.99 298.21 299.56 313.06 904.80 906.15 919.65
IFS-AFL 61.94 63.10 76.67 334.77 335.76 349.52 254.25 256.63 274.03 774.74 782.42 786.01
MGA-AFL 78.58 79.57 89.47 306.21 307.20 317.10 302.58 303.93 317.43 877.32 878.67 892.17
aMGA-AFL 78.58 79.57 89.47 306.21 307.20 317.10 302.58 303.93 317.43 877.32 878.67 892.17
BFS/l.off-AFL 57.86 58.82 67.14 265.81 266.80 276.52 258.16 260.31 273.93 730.33 731.77 745.87
BFS/l.on-AFL 57.61 58.60 67.14 265.32 266.31 276.21 250.78 252.24 265.96 725.13 726.48 741.12
BFS/n.on-AFL 57.61 58.60 67.60 265.32 266.31 276.21 256.13 257.28 271.99 727.67 728.62 742.70
YAG-AFL 63.28 64.27 74.17 338.63 339.62 349.52 254.92 256.27 269.77 782.58 783.93 797.43
SAL.on 57.61 58.60 68.50 265.32 266.31 276.21 262.38 263.73 277.23 738.74 740.09 753.59
SAL.off 65.23 65.87 72.06 306.00 306.79 314.67 287.64 288.72 298.37 845.65 846.76 857.70
GA 57.61 58.60 67.67 265.59 266.58 276.78 261.57 263.73 276.04 746.60 747.86 760.04
EX 57.61 58.60 67.14

Table 3
TNLLP: best results (10 runs data) [cost unit 106]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 70.29 71.28 81.18 295.74 296.73 306.63 272.39 273.74 287.24 819.12 820.47 833.97
MGA 68.12 69.11 79.01 287.33 288.32 298.22 283.71 285.06 298.56 780.98 782.33 795.83
aMGA 68.12 69.11 79.01 288.30 289.29 299.19 283.71 285.06 298.56 780.98 782.33 795.83
BFS/l.off 57.61 58.60 67.14 265.32 266.31 276.21 261.60 262.86 275.46 733.00 734.26 746.86
BFS/l.on 57.61 58.60 68.50 265.32 266.31 276.21 255.81 257.16 270.66 729.96 731.31 744.81
BFS/n.on 57.61 58.60 68.50 265.32 266.31 276.21 259.79 261.14 274.64 733.14 734.49 747.99
BFS/b.on 57.61 58.60 68.50 265.32 266.31 276.21 254.79 256.14 269.64 726.48 727.83 741.33
YAG 70.29 71.28 81.18 295.74 296.73 306.63 272.39 273.74 287.24 819.12 820.47 833.97
IFS-AFL 59.85 60.02 71.21 304.49 305.48 315.38 252.31 255.60 270.99 747.33 748.68 756.98
MGA-AFL 68.12 69.11 79.01 287.33 288.32 298.22 283.71 285.06 298.56 779.85 781.20 794.70
aMGA-AFL 68.12 69.11 79.01 287.33 288.32 298.22 283.71 285.06 298.56 779.85 781.20 794.70
BFS/l.off-AFL 57.61 58.60 67.14 265.32 266.31 276.21 255.76 258.60 272.98 726.31 727.66 741.16
BFS/l.on-AFL 57.61 58.60 67.14 265.32 266.31 276.21 250.11 251.74 265.02 723.54 724.89 738.23
BFS/n.on-AFL 57.61 58.60 67.14 265.32 266.31 276.21 254.01 255.79 271.13 726.31 727.66 741.16
YAG-AFL 58.93 59.92 69.82 304.49 305.48 315.38 253.87 255.22 268.72 761.03 762.38 775.88
SAL.on 57.61 58.60 68.50 265.32 266.31 276.21 257.93 259.28 272.78 731.47 732.82 746.32
SAL.off 63.21 63.93 70.69 285.20 286.10 295.10 275.61 276.69 287.49 801.09 802.26 813.96
GA 57.61 58.60 67.14 265.32 266.31 276.21 257.14 261.52 271.70 731.62 732.97 750.79
EX 57.61 58.60 67.14
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Table 4
TNLLP: average – best known/best known [%]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 39 38 36 29 29 28 19 19 18 25 25 25
MGA 36 35 33 17 17 16 22 22 21 19 19 19
aMGA 36 35 33 17 17 17 22 22 21 19 19 19
BFS/l.off 2 2 3 2 2 2 8 8 8 3 3 3
BFS/l.on 3 3 5 0 0 0 5 5 5 3 3 3
BFS/n.on 3 2 4 1 1 1 5 5 5 4 3 3
BFS/b.on 2 1 3 0 0 0 3 3 3 2 2 2
YAG 39 38 36 29 29 28 19 19 18 25 25 25
IFS-AFL 8 8 14 26 26 27 2 2 3 7 8 6
MGA-AFL 36 36 33 15 15 15 21 21 20 21 21 21
aMGA-AFL 36 36 33 15 15 15 21 21 20 21 21 21
BFS/l.off-AFL 0 0 0 0 0 0 3 3 3 1 1 1
BFS/l.on-AFL 0 0 0 0 0 0 0 0 0 0 0 0
BFS/n.on-AFL 0 0 1 0 0 0 2 2 3 1 1 1
YAG-AFL 10 10 10 28 28 27 2 2 2 8 8 8
SAL.on 0 0 2 0 0 0 5 5 5 2 2 2
SAL.off 13 12 7 15 15 14 15 15 13 17 17 16
GA 0 0 1 0 0 0 5 5 4 3 3 3

Table 5
TNLLP: calculation times (10 runs average) [s]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 0 0 0 0 0 0 0 1 1 0 0 1
MGA 0 0 0 0 0 0 0 0 0 1 0 0
aMGA 0 0 0 0 0 0 0 0 1 0 0 0
BFS/l.off 0 1 0 0 0 0 5 5 5 5 5 5
BFS/l.on 0 0 0 1 0 0 5 5 5 4 4 4
BFS/n.on 0 0 0 0 0 0 5 5 5 4 4 4
BFS/b.on 1 1 1 1 1 1 43 43 43 23 22 23
YAG 0 0 0 0 0 0 1 1 1 0 1 1
IFS-AFL 9 9 8 6 6 6 131 134 122 104 104 105
MGA-AFL 1 1 1 1 1 1 4 4 4 5 5 5
aMGA-AFL 1 1 1 1 1 1 4 4 3 4 4 4
BFS/l.off-AFL 41 40 35 41 42 41 708 708 725 736 732 737
BFS/l.on-AFL 45 45 39 42 42 42 762 785 915 760 762 767
BFS/n.on-AFL 48 49 36 37 37 37 956 934 751 952 968 946
YAG-AFL 6 6 6 4 4 4 87 87 87 71 71 71
SAL.on 9 9 9 9 9 9 94 94 94 117 118 117
SAL.off 9 9 9 8 8 8 84 84 92 88 88 88
GA 44 48 80 48 48 48 872 828 951 855 840 831
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Table 6
LLP: results (single run) [cost unit 106]

Network N7 N14 N28
n 0 2 3 6 0 2 3 6 0 2 3 6

IFS 3.76 3.95 5.22 1077.71 26.34 27.32 33.16 2286.59 151.24 154.81 175.40 5433.15
MGA 3.76 3.94 5.25 488.57 26.34 27.26 32.74 1294.16 151.24 154.74 176.48 2623.15
aMGA 3.76 3.95 5.25 488.57 26.34 27.33 32.96 1382.16 151.24 154.84 177.31 3281.58
BFS 3.76 3.94 5.12 503.71 26.34 27.12 31.44 1119.19 151.23 154.17 168.58 3035.84
YAG 3.76 3.95 5.22 1077.71 26.34 27.36 33.37 2358.59 151.24 154.87 176.04 5433.15
IFS-AFL 3.76 3.94 5.10 460.69 26.34 27.13 30.58 1261.56 151.24 154.48 167.97 3018.90
MGA-AFL 3.76 3.94 5.25 488.57 26.34 27.26 32.74 1210.20 151.24 154.71 175.88 2458.68
aMGA-AFL 3.76 3.94 5.25 488.57 26.34 27.26 32.74 1138.20 151.24 154.70 176.02 2491.64
BFS-AFL 3.76 3.94 5.03 460.69 26.34 27.05 30.08 1062.01 151.23 153.91 165.09 2371.12
YAG-AFL 3.76 3.94 5.10 548.44 26.34 27.36 31.41 1435.27 151.24 154.87 175.57 3114.65
SAL 3.76 3.94 5.16 460.69 26.34 27.14 31.47 1172.97 151.23 154.26 169.43 2504.49
EX 3.76 3.94 5.00 460.69 26.34 27.02 30.08

Table 7
LLP: calculation times (single run) [s]

Network N7 N14 N28
n 0 2 3 6 0 2 3 6 0 2 3 6

IFS 0 0 0 0 0 0 0 0 1 1 1 1
MGA 0 0 0 0 0 0 0 0 1 1 1 1
aMGA 0 0 0 0 0 0 0 0 1 0 1 0
BFS 0 1 0 0 0 0 0 0 3 4 7 3
YAG 0 0 0 0 0 0 0 0 1 1 0 0
IFS-AFL 1 1 1 1 25 27 27 23 370 383 378 340
MGA-AFL 0 0 0 0 8 10 6 4 129 157 69 51
aMGA-AFL 1 0 1 0 6 4 2 2 39 23 14 11
BFS-AFL 2 2 3 2 52 71 71 71 966 1033 1051 1203
YAG-AFL 0 1 0 0 4 4 5 3 54 55 57 54
SAL 1 0 0 1 4 3 4 6 43 69 55 71

compared to the simple methods, has been achieved while
keeping the calculation times pretty low. BFS-AFL ap-
proach provided clearly the best results of all the algo-
rithms, being at the same time the most time consum-
ing. Executing the BFS-AFL with fewer AFL iterations,
resulted in proportionally reduced calculation times and
slightly worse solutions (comparable with methods such
as SAL).
As already mentioned in Section 3.3, the algorithms per-
form multiple AFL runs for different combinations of initial
threshold parameter and number of steps parameter. This
approach allows for better exploration of the solution space,
but results in proportionally longer computations. In this
numerical study each of the algorithms performed 40 AFL
iterations for TNLLP and 120 for LLP.
The simple implementation of the SAL algorithm also
proved to be a very good performer. It provided results
at least as good as those cited in [1]. However attempts to
further improve the solutions produced by SAL by tuning
of the algorithms parameters, even at the cost of significant

extensions of the computation time, did not produce any
substantial gain.
The performance of GA should be regarded as promising,
given the fact that the implemented version of the algorithm
requires further tuning and study. However, it should be
kept in mind that genetic algorithms are usually quite slow.

4.3. LLP results

The discussed algorithms were tested also on LLP network
examples. A single run of all of the methods was per-
formed. The results and computation times are presented
in Tables 6 and 7, respectively.
The relative performance of the algorithms as well as their
basic characteristics are comparable to those observed for
TNLLP and commented in the previous subsection. Also
in this case, the BFS-AFL provided the best results. MGA
and especially aMGA worked much better with LLP than
with TNLLP.
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4.4. Concave link cost functions

Network example N9 has been used in order to present the
capability of the studied algorithms to deal with problems
characterised by concave functions. Link cost function of
the following form was assumed (with A= 0:05, B= 300
and C= 0:003):

f (ye) = (�exp(�Cye)+1) � (Aye+B) : (6)

The results are summarised in Table 8. The average values
are derived from ten runs of each of the algorithms.

Table 8
TNLLP: N9 – concave function example (10 runs data)

Algorithm
Average

cost
Best cost

Avg.-best
/best [%]

Time
[s]

IFS 14733.97 14313.07 5.2 0
MGA 15571.60 14507.29 11.1 0
AMGA 14398.66 14114.22 2.8 0
BFS/l.off 14258.21 14060.45 1.8 0
BFS/l.on 14180.96 14065.07 1.2 1
BFS/n.on 14619.52 14010.17 4.3 0
BFS/b.on 14031.60 14010.17 0.2 1
YAG 14733.97 14313.07 5.2 0
IFS-AFL 14221.04 14037.11 1.5 5
MGA-AFL 15553.69 14507.29 11.0 1
aMGA-AFL 14368.22 14114.22 2.6 0
BFS/l.off-AFL 14021.05 14010.17 0.1 13
BFS/l.on-AFL 14104.12 14010.17 0.7 28
BFS/n.on-AFL 14010.17 14010.17 0.0 26
YAG-AFL 14270.68 14037.11 1.9 2
SAL.on 14046.07 14010.17 0.3 8
SAL.off 14082.38 14010.17 0.5 8
GA 14055.06 14010.17 0.3 33

As expected, all of the algorithms are able to deal with
the concave link cost problem. Again the BFS-AFL, SAL
and GA are the most effective methods. This time it is the
BFS/n.on-AFL variant that provided the best result in all
of the iterations. Pretty good performance of IFS-AFL and
YAG-AFL can be observed, especially as compared to the
simple versions of these methods.
Longest calculation times were experienced for BFS-AFL
algorithms and for GA.

5. Conclusions

The generic topological network design problem has been
discussed. The link-path formulation of the design task has
been presented in order to express the considered problem
in a formal manner. Two subproblems, namely the LLP and
the TNLLP, have been distinguished. Since exact solution

methods are applicable only to trivial networks, adequate
heuristic methods capable of providing good suboptimal
solutions in reasonable time are called for.
A wide range of specialised heuristic algorithms has been
presented. The considered solution methods encompass
algorithms known from literature, their modifications and
enhancements as well as original ideas. Efficiency of the
proposed methods has been demonstrated on a set of nu-
merical examples of diverse complexity. Most of the im-
plemented algorithms proved to be suitable for solution of
the considered network examples.
The numerical study enabled a comparison of the methods
and selection of the most effective algorithms. The usual
time versus quality trade-off has been observed. Simple
methods based on the BFS principle were able to provide
decent solutions in very short time. Slightly more time
consuming versions of BFS provided results comparable
to SAL and GA. SAL delivered quite good solutions in
a reasonable time. BFS-AFL outperformed all of the other
algorithms in terms on solution quality, however required
significantly longer computation times. GA implementa-
tion was also very time consuming. Generally speaking the
AFL notion proved very successful. Depending on the im-
posed time and result quality requirements, an appropriate
algorithm from the discussed range can be selected.
Analysis of relative efficiency or the presented methods
gives valuable insight into advantages and drawbacks of
various heuristic approaches to solution of the topological
design task. Of course the proposed algorithms are not
perfect and there is a lot of room for improvements and
tuning. Derivation of a good lower bound of the optimal
solution would be helpful for algorithm evaluation purposes
and/or as a stop criterion. Implementation of more effective
procedures, e.g. for shortest paths computation, should be
also considered.
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Paper Optimization algorithm
for reconfiguration process of the IP over

optical networks
Nghia Le Hoang

Abstract — The IP over optical (IPO) network is becom-
ing one of the most interesting among all proposed models of
transport networks nowadays. In an IPO network, the recon-
figuration capability of the network could be used in order to
balance the load of its network elements (NEs). Reconfigu-
ration operations (i.e., switching in OXC nodes and rerouting
in IP routers) take place in real-time. Consequently, intensive
changes in NEs settings might cause failures in the existing
connections in the network. For that reason, changes in NEs
settings should be coordinated in a reconfiguration process. In
this paper, the author has proposed an optimization method
for such reconfiguration process. The mathematical model of
the method including computation results has been presented.

Keywords — network reconfiguration, network optimization,
IP over optical network.

1. Introduction

IP networks are to transport traffic of various services and
with different characteristics [1, 2, 9, 10]. IP traffic, in
comparison with traditional telephony traffic, is character-
ized by greater dynamics and irregularity [13–15]. In order
to cope with changing traffic conditions, either the capacity
of NEs should be over-provisioned, or NEs should elasti-
cally adapt to the changes of traffic conditions. Considering
the huge annual growth of IP traffic, the second solution
seems to be more desirable. However, the reconfiguration
capabilities of NEs are limited. For that reason, changes in
NEs settings should be optimally coordinated in a reconfig-
uration process. A model of such reconfiguration process
has been proposed in this paper. The mechanism of the re-
configuration process is based on the optimization method
described in the further sections.

1.1. The architecture of an IPO network

An IPO network consists of two layers – the optical layer
and the IP layer. Components of each layer are grouped
into three generic classes: nodes, links and paths. In each
layer, a link connects two nodes, whilst a path is defined
as a sequence of links.
In the optical layer, an optical node represents an opti-
cal cross connect (OXC). An optical link is constructed of
one or several parallel optical fiber trails terminated at its
nodes. An optical path transports one or several optical

signals (lambdas). The frequency (wave) of an optical sig-
nal should be the same along its path, unless some O/E/O
conversions are used on its way. Each optical signal carries
a bit-stream. Consequently, an optical path, after E/O-O/E
adaptation, is seen by the IP layer as a bundle of electric
bit-streams, which has certain rate.

In an IPO network, an IP router is connected to one or sev-
eral OXCs by means of inter-layer connectors. An inter-
layer connector could be implemented with an optical fiber
or a copper pair. In the first case, the IP router should have
E/O-O/E conversion capability. Otherwise, such a capabil-
ity should be located in the OXC.

In the IP layer, an IP node represents an IP router. An
IP link is constructed of the bit-streams transported by one
or several optical paths. These optical paths should start
at an optical node connected to an IP node of the IP link,
and end at an optical node connected to the other IP node
of the IP link. An IP path (i.e., a sequence of IP links)
transports IP packets from its source node to its destination
node.

A simplified illustration of the architecture of an IPO net-
work is shown in Fig. 1.

Fig. 1. The architecture of an IPO network.

The services offered by an IPO network are grouped into
service classes. Between some pair of IP nodes, in each
service class, a demand is defined in order to represent
the offered traffic generated by the users connected to these
nodes. The bandwidth required by a demand is called the
volume of the demand, and is realized by means of one or
several IP paths.
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1.2. The description of a reconfiguration process

A network configuration corresponds to a feasible combi-
nation of NEs settings. The process, in which NEs settings
evolve to adapt the network configuration to the traffic con-
ditions, is called the reconfiguration process of the net-
work (Fig. 2). The effect of changing traffic conditions
is that the network configuration could not be the optimal
one in a long time. The consequence of the non-optimal
configuration is a low quality of service (QoS) level for
connections in the network. In order to prevent such a situa-
tion, the reconfiguration process should be active each time
when a fall in QoS level is forecasted. Each activation of
the reconfiguration process is called a reconfiguration pro-
cedure. The result of the reconfiguration procedure should
be an optimal configuration with regard to the estimated
traffic conditions.
Because generally the network configuration cannot be
changed to the optimal one at once, the reconfiguration
procedure should be decomposed into a sequence of re-
configuration operations. Each reconfiguration operation
represents an indivisible action that modifies the network
configuration.

Fig. 2. The structure of a reconfiguration process.

When a reconfiguration operation takes place, some NEs
settings are in an unstable state. It is one of the reasons why
the next reconfiguration operation should not start imme-
diately after the preceding reconfiguration operation ends.
Furthermore, a period is necessery in order to propagate
the information about changes of NEs settings through-
out the network. Therefore, each reconfiguration operation
should be followed by an idle period considerably larger
than its duration.
The configuration between two consecutive reconfiguration
operations is called an intermediate configuration. In a re-
configuration procedure, a series consisting of intermedi-
ate configurations and the optimal configuration determines
how the network configuration should be changed. In the
further part of this paper, such series is called the configu-
ration series of a reconfiguration procedure.
The configuration series of a reconfiguration procedure
would be computed by means of an optimization algo-

rithm. Such an algorithm has been proposed in this paper.
The principle of the algorithm is based on the optimization
problem of reconfiguration (OPR) that expresses the rela-
tions among NEs and the suitability degree of a network
configuration to traffic conditions.

2. The simplified description of OPR

The formulation of OPR consists of a group of constraints
and an objective function. The constraints of OPR result
from the relations among NEs, whilst the objective function
of OPR corresponds to the suitability degree of a network
configuration to traffic conditions.

2.1. The relations among the NEs – the constraints
of OPR

The main constraints of OPR are below:

1) the conservation of flows – the Kirchhoff’s law,

2) the budget constraint,

3) the network inertia constraint.

Other possible constraints, e.g. the continuity of an optical
wave along its path [5], etc., are neglected in order to sim-
plify the OPR algorithm. It is possible to introduce them
into the model in future works.
The result of constraint (1) is that, among the links of
a path, the amount of capacity reserved for the path in
each link should be equal. Such amount is defined as the
capacity of a path. In the IP layer, considering the possi-
bility of packets loss, the Kirchhoff’s law should only be
a simplifying assumption.
Constraint (2) states that, the total capacity of the paths
going across a link (or a node) is restricted by the capacity
of the link (or the node).
Constraint (3) is a specific constraint of OPR. Network iner-
tia results from various aspects. Firstly, the switching time
in an OXC is finite (� 50 ms). During the switching time,
a stream of 10 Gbit/s rate suffers a loss of 0.5 Gbit. Such
loss causes the number of simultaneous switching opera-
tions to be limited [3, 8, 16]. Furthermore, a node (an OXC
or an IP router), in order to modify its paths, should negoti-
ate with other nodes. The duration time of such procedures
is in the order of seconds or dozens of seconds. With a large
number of modified paths, commands between nodes have
to be queued, and consequently, the unstable period might
be minutes or tens of minutes [4].
The full model of network inertia including all its param-
eters might be quite complicated. In this paper, only the
main parameters of network inertia are considered:

– the maximal feasible number of switching operations
of a node, within a reconfiguration operation;

– the minimal feasible interval between two consecu-
tive reconfiguration operations.
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The network inertia constraint is used in computing an in-
termediate configuration. In contrary, the optimal config-
uration is computed by solving the OPR without this con-
straint.

2.2. The suitability degree of a network configuration to
traffic conditions – the objective function of OPR

The suitability degree of a network configuration to traf-
fic conditions is determined with the level of QoS in the
network. The level of QoS for connections of a demand
depends on the ratio of the bandwidth dedicated for the
demand to the volume of the demand. Such ratio is called
the dedicated-requested ratio. Because network resources
are shared for all demands, the level of QoS in the network
as a whole should be constructed according to a fairness
principle [7, 11, 12]. In this paper, the simplest one has
been considered. The level of QoS in the network is de-
fined as the lower bound of the dedicated-requested ratio
for each demand.
Because the optimization purpose is to increase the level of
QoS in the network, maximization is optimizing the direc-
tion. In the basic version, the formulation of the objective
function is:

u= mind (ad=zd) ;

where ad denotes the bandwidth dedicated for demand d,
and zd denotes the volume of demand d.

2.3. A simplified scenario of a reconfiguration procedure

One of the constraints defined in OPR results from network
inertia. Network inertia is the reason why a reconfigura-
tion procedure should be decomposed into reconfiguration
operations. In a reconfiguration procedure, a configuration
series determines how the network configuration should be
changed. Each element of such series could be computed
by solving a mixed integer programming (MIP) problem
with the objective and the constraints based on OPR.

Fig. 3. A reconfiguration procedure.

A configuration series could be computed as follows.
Suppose the current configuration is x(0), whilst the opti-
mal one is x(opt). Let us assume further that x(opt) is not

directly reachable from x(0) due to the inertia constraints;
while the best reachable configuration (constricted by the
network inertia) is x(1) with an objective value much worse
than x(opt)’s. In this case, we could compute a configuration
x(2) modified from x(1) and better than x(1). After a finite
number of such iterations, we can achieve the optimal con-
figuration (Fig. 3).
It was only a simplified illustration. Detailed problems
(e.g. the shortest way to reach the optimal configuration,
the degeneration effect, etc) have been discussed in further
sections of this paper.

3. The mathematical model of OPR

3.1. The objects of an IPO network

An IPO network is modeled with generic objects (nodes,
links, paths) of both layers and demands. In each config-
uration, the absence of such object as an optical path, an
IP link or an IP path is denoted with a zero capacity of this
object. Hence, a creation or a deletion of such object is
expressed by a change of capacity from zero to a nonzero
value or vice versa.
The IP layer is modeled as a directed graph GGGIP = (VVV;EEE;PPP),
where VVV = fvgVv=1; EEE = fegEe=1 and PPP= fpgPp=1 denote the
set of IP nodes, the set of IP links and the set of IP paths,
respectively.
Similarly, the optical layer is modeled as a directed graph
GGGopt = (WWW; FFF ; QQQ), where WWW = fwgWw=1; ;FFF = f fgFf=1 and
QQQ= fqgQ

q=1
denote the set of optical nodes, the set of opti-

cal links and the set of optical paths, respectively. An op-
tical path serves an IP link by transporting its bit-streams.
The set of optical paths that serve IP link e2EEE is denoted
by QQQ(e).
Symbols SSS= fsgSs=1 and DDD = fdgDd=1 denote the set of
service classes and the set of demands, respectively. The
service class that demand d 2DDD belongs to is denoted with
s(d). The set of IP paths that serve demand d 2DDD is de-
noted by PPP(d).
Each object has some attributes representing e.g. capacity,
switching capability etc. The value of such attribute is
a scalar quantity. In each object set, each attribute could be
denoted with a vector in the III+N orRRR+N space (N denotes
the number of members of the set). Such characteristic
vectors have been described in the next subsections.

3.2. The characteristic vectors of IPO network objects

The capacity of an IP link or an IP path is measured in
bit/s. Symbols b= (be)e2E 2RRR

+E and ξ = (ξp)p2P 2RRR
+P

denote the capacity vectors of IP links and IP paths, respec-
tively. The relation between vectors b and ξ , the budget
constraint, is given by

8e2EEE : ∑
p:p2P^p3e

ξp� be; (1)

where p3 e denotes that path p goes across link e.
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The capacity of an optical link or an optical path
is measured in the number of lambdas. Symbols
c= (cf ) f2F 2 III

+F and η = (ηq)q2Q 2 III
+Q denote the ca-

pacity vectors of optical links and optical paths, respec-
tively. The relation between vectors c and η , the budget
constraint, is presented below:

8 f 2FFF : ∑
q:q2Q^q3 f

ηq � cf : (2)

In an IPO network, an IP link is constructed by the bit-
streams of one or several optical paths. Hence, the value of
vector b could be directly derived by the value of vector η
by the following formula:

8e2EEE : be =Cλ � ∑
q2Q(e)

ηq : (3)

Here Cλ is a constant that denotes the bandwidth of the bit-
stream transported by an optical signal. Besides the link
capacity and path capacity, the node capacity should also
be considered. The limited capacity of an optical node re-
sults from the bounded space in the switching matrix of an
OXC and causes a limited number of its input and output
ports. In each optical node, the number of input ports and
the number of output ports are usually equal. Thus, the ca-
pacity vector of optical nodes is denoted consistently with
n= (nw)w2W 2III

+W. The ports of an OXC are used in con-
necting the OXC to other OXCs and IP routers. The num-
ber of connections in the first type (OXC–OXCs) is equal
the total capacity of optical links ended in the OXC. The
number of connections in the last type (OXC–IP routers) is
equal the total capacity of optical paths ended in the OXC.
Consequently, the number of busy ports in an optical node
could be accounted by the total capacity of optical links and
optical paths ended at the node. In particular, the number
of busy input ports of node w2W is

∑
f :eg( f )=w

cf + ∑
q:ing(q)=w

ηq ;

and its number of busy output ports is

∑
f :ing( f )=w

cf + ∑
q:eg(q)=w

ηq :

The budget constraint is formulated in this case as follows:

8w2WWW : ∑
f :eg( f )=w

cf + ∑
q:ing(q)=w

ηq � nw (4)

8w2WWW : ∑
f :ing( f )=w

cf + ∑
q:eg(q)=w

ηq� nw ; (5)

where ing( f ) and eg( f ) denote, respectively, the ingress
node and the egress node of link f . Similarly, ing(q) and
eg(q) denote the ingress node and the egress node, respec-
tively, of path ‘q.
The limited capacity of an IP node results from the bounded
computational capability of an IP router. The capacity of
an IP node v2VVV represents the maximal total capacity of
IP links ended at the node. The capacity vector of IP nodes

is denoted by m= (mv)v2V 2RRR
+V . The budget constraint

is formulated in this case as follows:

8v2VVV : ∑
eg(e)=v

be�mv (6)

8v2VVV : ∑
ing(e)=v

be�mv : (7)

Vectors m; n and c are parameters that do not depend on
NEs settings. By contrast, vectors ξ and η depend on
them. On the other hand, the pairs (ξ ; η) from differ-
ent network configurations should not be equal. Hence,
a configuration of an IPO network could be defined with
a pair (ξ ; η). In this paper, the pair (ξ ; η) has some-
times been denoted in a convenient form as a mixed vector
x= (ξ ; η)2RRR+P�III+Q.
In an IPO network with known m; n and c, vector
x2RRR+P�III+Q represents a network configuration if and
only if it satisfies the conditions from (1) to (7). The set of
all such vectors is called the set of feasible configurations,
and denoted by KKKmnc.

3.3. The formulation of network inertia

Network inertia causes some configurations not to be di-
rectly reachable (i.e., reachable within a reconfiguration
operation) from the current configuration. Besides, it pre-
vents reconfiguration operations from taking place too fre-
quently.
Such aspects of the network inertia are represented by fol-
lowing parameters:

– the maximal feasible number of switching operations
of a node, within a reconfiguration operation;

– the minimal feasible interval between two consecu-
tive reconfiguration operations.

The switching capability of an IP node is represented
by the maximal feasible number of switching opera-
tions of the node within a reconfiguration operation.
The switching capability vector of IP nodes is denoted
with α = (αv)v2V 2 III

+V . Each switching operation causes
a change in the capacity of an IP path. In particular, such
change could be a growth from zero or a fall to zero that
practically means a creation or a deletion of an IP path.
Thus, in each node, the limited switching capability causes
the bounded number of changes in the capacity of IP paths
that go across the node. Denoting by ξ and ξ 0 the path
capacity vectors of the current and the next configuration,
respectively, the following inequality holds:

8v2VVV : ∑
p:p3v

��sgn(ξ 0p�ξp)
��� αv ; (8)

where sgn denotes the sign-num function (sgn(r) returns
the sign of real number r). The inequality (8) could be
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transformed into a mixed integer form by using a binary
indicator δ = (δp)v2V 2 f0;1g

P:

8p2PPP :�δp�M �
�
ξ 0p�ξp

�
� δp (9)

8v2VVV : ∑
p:p3v

δp� αv : (10)

In the inequality (9), M stands for a big constant (e.g. 106).
Because of the large value of M;δp = 0 only if ξp = ξ 0p,
so δp could represent the value of

��sgn(ξ 0p�ξp)
��.

The switching capability of an optical node is represented
by the maximal feasible number of switching operations of
the node within a reconfiguration operation. The switch-
ing capability vector of optical nodes is denoted with
β = (βw)w2W 2 III

+W. The effect of a switching opera-
tion is an increment or a decrement of one optical wave
in an optical path. Thus, in the optical node, the limited
switching capability causes the bounded sum of capacity
change of optical paths that go across the node. Denoting
by η and η 0 the path capacity vectors of the current and
the next configuration, respectively, we have the following
inequality:

8w2WWW : ∑
q:q3w

��ηq�η 0

q

��� βw : (11)

The reader could notice some dissimilarity between the in-
equalities (8) and (11). The dissimilarity results from the
different ways to change the path capacity in the layers of
an IPO network. A change in the capacity of an optical
path requires a number of physical switching operations.
The more a capacity changes, the larger number of such
operations is needed. In the contrary, the number of oper-
ations for a change in the capacity of an IP path generally
does not depend on the amount of capacity to be changed.
Hence, the number of operations executed by an IP router
to modify capacity of some IP paths depends on the num-
ber of changed paths (detected by the signnum function),
not on the amount of capacity to be changed.

Fig. 4. Time parameters.

In an IPO network of known parameters m; n; c; α and β ,
a configuration x0 = (ξ 0; η 0) belong to KKKmnc is directly
reachable from the current configuration x= (ξ ; η) if and

only if the inequalities (8) and (11) hold. The set of such
configurations is denoted by HHHmncαβ (x), and called the
neighborhood of configuration x. In further part of this pa-
per, assuming the parameters m; n; c; α and β to be known
and constant, the notations KKKmnc and HHHmncαβ (x) have been
replaced by shortened forms KKK and HHH(x).
Another effect of the network inertia is the need of an
idle period between consecutive reconfiguration operations.
When a reconfiguration operation takes place, some NEs
are in an unstable state. Furthermore, a period of time
is needed to propagate the information about changes of
NEs settings throughout the network. Consequently, each
reconfiguration operation should be followed by an idle pe-
riod considerably larger (e.g. 103 times) than its duration.
The duration τr of a reconfiguration operation is in the
order of 100 ms, so interval between reconfiguration oper-
ations T should be at least tens of seconds.
Besides the effect of network inertia, another factor delay-
ing a reconfiguration procedure is the duration of traffic
analysis and optimization computing. Such duration, de-
noted by τa, should not exceed 10% of T.
The relation among τr ; τa and T is illustrated in Fig. 4.
Furthermore, this figure shows how the objective function
changes when a reconfiguration operation takes place.

3.4. The demand models

In the preceding subsections, the model of an IPO network
has been described. The volume of a demand changes in
time and is a quantity independent of the network config-
uration. Furthermore, it is generally difficult to determine
the volume of a demand exactly at each moment. In this
paper, two demand models have been proposed:

1) the deterministic model, based on the effective band-
width;

2) the probabilistic model.

In the first model, the volume of a demand is represented by
the effective bandwidth of the demand. The effective band-
width of a demand is defined as the amount of bandwidth
enough to serve the demand with an acceptable QoS. By
this way, traffic conditions in the network are represented
by the effective bandwidth vector z= (zd)d2D 2RRR

+D.
In the second model, traffic conditions in the network are
represented by random vector Y = (Yd)d2D of known dis-
tribution function FY :RRR+D ! [0: : :1]. Each element of
the random vector Y represents the probabilistic behavior
of the volume of a demand.
Because of the dynamics and irregularity of IP traffic, an
effective bandwidth defined for a long period (e.g. for all
day) causes to be useful. Such a quantity might be too large
in comparison with the mean used bandwidth. Similarly,
a random vector Y defined for such a long period might
have too wide variation. Since the NEs are able to adapt
to the changes of traffic conditions, it is not necessary to
define z or Y for such a long period. This period should
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be chosen in the order of the duration of a reconfiguration
process.

3.5. Optimization objective models

The formulation of an optimization objective function de-
pends on the demand model. For the deterministic demand
model, the objective function, denoted by u1(z;x), has the
basic formulation as follows:

u1(z;x) = min
d2D

(ad=zd) : (12)

In this formulation, ad = ∑
p:p2P(d)

ξp denotes the bandwidth

dedicated for demand d2D, which equals the total capacity
of the IP paths serving this demand.
The advanced formulation of the objective function, which
includes the service class weights, is described below:

u1(z;x) = min
d2D

(ρs(d) �ad=zd) : (13)

The weights of service classes are denoted by vector
ρ = (ρs)s2S2RRR

+S.
The objective function for the probabilistic demand
model is defined with the help of function u1. In this case,
the value of function u1(y;x) represents the QoS level of
configuration x for an instance y of the random vector Y.
Thus, the statistical QoS level of configuration x, which is
denoted by u2(Y;x), could be derived with a Lebesgue’s
integral:

u2(Y;x) =
Z

R+D

u1(y;x)dFY(y) : (14)

Further in this paper, the objective functions u1(z;x) and
u2(Y;x) have sometimes been denoted by common form
u(x) in such situation when the formulations do not depend
on the demand model.

4. The optimization algorithm proposed
for reconfiguration procedures

Having the model of OPR, we could now determine how
a reconfiguration procedure should take place. The config-
uration series of a reconfiguration procedure should satisfy
the following requirements:

� The number of reconfiguration operations in the re-
configuration procedure should be minimized.

� The value of the objective function of a configura-
tion should not be worse than its preceding configu-
ration.

� The last element in the configuration series should
be the optimal configuration.

In this paper, three algorithms for determining the config-
uration series have been proposed. The first exactly obeys
the requirements mentioned above. The others are some
heuristic ones.

4.1. Algorithm 1 – by defining a master problem

Algorithm 1 is to solve the master problem defined below:
Minimize N, subjects to:

8k= 1: : :N : x(k) 2HHH
�
x(k�1)� (15)

8k= 1: : :N : u
�
x(k)

�
� u

�
x(k�1)� (16)

u
�
x(N)

�
= max

x2K
u(x) ; (17)

where x(0) represents the current configuration;
x(1) : : :x(N�1) the intermediate configurations and x(N)

the optimal configuration. Given is x(0), whilst x(1) : : :x(N)

are variables to find.
The procedure for resolving the master problem is follow-
ing:

1. Let N 1.

2. Find x(1) : : :x(N) satisfying (15)–(17). If there exist
such vectors, then finish, the series [x(1) : : :x(N)]
found is the solution we look for.

3. Otherwise, let N N+1, and go to Step 2.

In each time at Step 2, a MIP problem should be resolved.
The size of such MIP problem increases in proportion
with N. Therefor, at present; the algorithm could be used
only for small networks. In future works, the efficiency of
the algorithm could be improved by using a decomposition
technique.

4.2. Algorithm 2 – by finding the local optimum

The idea of Algorithm 2 has been described in the sim-
plified illustration in Section 1. This algorithm is based
on repeating the local optimization computing in order to
reach the global optimal configuration. The description of
this algorithm is below:

1. Compute uopt= max
x2K

u(x).

2. Let N 1.

3. Compute such configuration x(N) 2 HHH
�
x(N�1)

�
that

u
�
x(N)

�
= max

x2H
�

x(N�1)
�u(x). If u

�
x(N)

�
= uopt, then fin-

ish, the series
�
x(1) : : :x(N)

�
found is the solution we

look for.

4. Otherwise, let N N+1, and go to Step 3.

Algorithm 2 has a critical drawback. The consequence of
the drawback might occur when u

�
x(N)

�
= u

�
x(N�1)

�
in

Step 3. In such a situation, we have no guarantee that the
next configuration must not be the same as some earlier one.
Then, the computation procedure might fall into a perpet-
ual loop, and never reach the optimal configuration. The
phenomenon is known as a degeneration effect. In order
to repair the drawback, some anti-degeneration techniques
should be used, e.g. lexicographic ordering of the config-
urations.
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4.3. Algorithm 3 – by finding the shortest distance
to the global optimum

Algorithm 3 is an improved version of Algorithm 2. The
description of this algorithm is below:

1. Compute the global optimal configuration x(opt),
so u

�
x(opt)

�
= max

x2K
u(x).

2. Let N 1.

3. Find such configuration x(N) 2 HHH
�
x(N�1)

�
that

u
�
x(N)

�
= max

x2H
�

x(N�1)
�u(x) and

P+Q
∑

k=1

��x(N)
k
� x(opt)

k

�� to be

minimized. If u
�
x(N)

�
= uopt, then finish, the series�

x(1) : : :x(N)
�

found is the solution we look for.

4. Otherwise, let N N+1, and go to Step 3.

In comparison with Algorithm 2, in Step 3, the configura-
tion x(N) should not only be the best in the neighborhood
of the configuration x(N�1), but should also be the nearest
to the optimal configuration x(opt). The introduction of this
condition avoids the degeneration effect in most practical
cases.

5. Computation examples

The method has been implemented as a C program with
the use of the CPLEX optimization package [6]. Two ex-
amples have been considered. In Example 1, a small size
network is used for illustrating the method. In Example 2,
a medium size network is used for testing the convergence
of the method. In these examples, the deterministic demand
model has been used.

5.1. Example 1 – a small size network for illustrating the
method

The topology of the network in this example is shown in
Fig. 5. In this figure, an edge (without an arrow) represents
a pair of links in both directions between two nodes.

Fig. 5. The topology of the network in Example 1.

The optical layer consists of 6 nodes and 14 links. The
capacity of an optical node equals 10 lambdas. The ca-
pacity of an optical link equals 5 lambdas. Each lambda

carries a bit-stream with 1 Gbit/s. Four optical nodes are
connected to IP nodes.
In order to simplify the illustration, only the optical layer
is considered, while the IP layer is reduced as much as
possible.
The IP layer consists of 4 nodes and 4 links. Each demand
is served by only one IP path consisting of only one IP link.
The demands are AC, AD, BC and BD. The traffic condi-
tions in the network are represented with effective band-
width vector z.

Fig. 6. The configuration series of the reconfiguration procedure
in different cases: (a) β0= 3; (b) β0 = 2; (c) β0 = 1.

Network inertia is represented by the maximal feasible
number of switching operations of an optical node within
a reconfiguration operation. Such number is denoted by β0.
As regards IP nodes, the network inertia constraint is ne-
glected.
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We suppose vector z changes from z(1) = (1;4;1;4)
to z(2) = (4;1;4;1). As vector z changes from z(1) to z(2),
the objective function falls from 1 to 0.25. We consider
three cases: when β0 equals 3, 2 or 1. Figure 6 shows
how the reconfiguration procedure should take place in
each case.
When β0 = 3, only 3 reconfiguration operations are needed.
The objective function successively grows from 0.25 to 1.
In such case, both Algorithms 2 and 3 could be used.
When β0 = 2, a problem occurs in the second reconfigura-
tion operation: the objective function of x(1) and x(2) are
equal. In this case, Algorithm 2 cannot be used because
of the degeneration effect. However, Algorithm 3, hav-
ing an anti-degeneration technique, copes with the problem
and succeeds. In this case, 4 reconfiguration operations are
needed.
When β0 = 1, the network inertia constraint becomes too
severe and causes the reconfiguration procedure to take
place in 10 reconfiguration operations. Algorithm 3 is the
only one that could be used.
In this example, the relation between the reconfiguration
capability and the duration of a reconfiguration procedure
has been observed. It seems that for a not too severe net-
work inertia constraint, the length of configuration series is
acceptable. In the next example, a medium size network is
used for testing the convergence of the method.

5.2. Example 2 – a medium size network for testing
the convergence of the method

The topology of the network of this example is shown
in Fig. 7. In this figure, an edge represents a pair of links
in both directions between two nodes.

Fig. 7. The topology of the network in Example 2.

The optical layer consists of 12 nodes and 44 links. The
capacity of an optical node equals 100 lambdas. The ca-
pacity of an optical link equals 10 lambdas. Each lambda
carries a bit-stream with 1 Gbit/s. Eight optical nodes are
connected to IP nodes. Between each pair of such nodes,
because of the enormous number of possible paths, only
4 optical paths are chosen as the admissible paths.

The IP layer consists of 8 nodes and 24 links. The ca-
pacity of an IP node equals 100 Gbit/s. Between each pair
of IP nodes, 3 IP paths are chosen as admissible paths. The
traffic conditions in the network are represented with effec-
tive bandwidth vector z. Each element of vector z should
be a quantity from 0 to 1 Gbit/s.
Network inertia is represented by the maximal feasible
number of switching operations of an optical node within
a reconfiguration operation. Such number is chosen to
be 4 for each optical node. As regards IP nodes, the net-
work inertia constraint is neglected.
In order to test the method, a random series

�
z(1) : : :z(K)

�
has been generated. Each pair

�
z(k); z(k+1)

�
represents

a change of traffic conditions in the network. Each time
when traffic conditions change, a reconfiguration proce-
dure should take place. In order to determine how the
network configuration changes in a reconfiguration proce-
dure, a configuration series is computed. Algorithm 3 has
been used.

Fig. 8. The test results.

Two tests have been realized. In the first test, the ele-
ments of random series

�
z(1) : : :z(K)

�
are probabilistically

independent. In the second test, the elements of random
series

�
z(1) : : :z(K)

�
are correlated by the following rule: for

a demand, the probability, that the change of its effective
bandwidth is above 50%, is 20%. This rule is denoted as
follows:

8k= 1: : :K�1; 8d2DDD : Pr
n��z(k+1)

d
�z(k)

d

��� 0:5�z(k)
d

o
= 0:2:

Figure 8 presents the distribution of the number of reconfig-
uration operations in a reconfiguration procedure. We see
that, in this example, the number varies just from 1 to 6.
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Paper Contextual probability
Hui Wang

Abstract — In this paper we present a new probability
function G that generalizes the classical probability function.
A mass function is an assignment of basic probability to some
context (events, propositions). It represents the strength of
support for some contexts in a domain. A context is a subset
of the basic elements of interest in a domain – the frame of dis-
cernment. It is a medium to carry the “probabilistic” knowl-
edge about a domain. The G function is defined in terms
of a mass function under various contexts. G is shown to
be a probability function satisfying the axioms of probability.
Therefore G has all the properties attributed to a probability
function. If the mass function is obtained from probability
function by normalization, then G is shown to be a linear
function of probability distribution and a linear function of
probability. With this relationship we can estimate probabil-
ity distribution from probabilistic knowledge carried in some
contexts without any model assumption.

Keywords — mathematical foundations, knowledge representa-
tion, machine learning, uncertainty, data mining.

1. Introduction

Probability theory is the body of knowledge that enables us
to reason formally about uncertain events or propositions.
There are different approaches to probability theory, most
notably the frequentist and Bayesian approaches [1, 4].
In the frequentist point of view, the probability of an event
is taken to be equal to the limit of the relative frequency of
the chosen event with respect to all possible events as the
number of trials goes to infinity. The appeal of the frequen-
tist approach for scientists lies in the apparent objectivity
of its treatment of data.
On the other hand, the Bayesian approach extends the in-
terpretation of probability to include degrees of belief or
knowledge in propositions. We pass from the probabil-
ity of events (frequentist) to the probability of propositions
(Bayesian). Nevertheless the axioms used to define the
mathematical properties of probability remain unchanged.
Consequently many of the statistical procedures of the two
approaches are identical.
Here we focus on the mathematical properties of probabil-
ity. In particular we take probability to be defined in terms
of probability distribution. Let Ω be a set consisting of the
basic elements of interest in a domain. A probability dis-
tribution function is p : Ω! [0;1] such that ∑x2Ω p(x) = 1.
A (classical) probability function is P : 2Ω ! [0;1] such
that, for any E �Ω

P(E) = ∑
x2E

p(x): (1)

The function P(E) is the probability that an arbitrary ele-
ment x2 Ω belongs to a well-defined subset E �Ω.

It can be shown that the classical probability function de-
fined above satisfies the axioms of probability: for any
event E �Ω:

� P(E)� 0.

� P(Ω) = 1.

� If E1\E2 = /0 then P(E1[E2) = P(E1)+P(E2).

It is recognized that any function satisfying the axioms of
probability, however defined, is a probability function [1].
If we know the probability distribution (in the case of fi-
nite sets) or density (in the case of infinite sets) we can
calculate probability for any events – in a sense probability
distribution provides us with complete information about
a domain ([3], p. 273). Therefore probability distribution
estimation – estimating the probability distribution from
known probabilities for some events – is very important.
This is in a sense a way of extending or generalizing our
knowledge (represented by probabilities on some events) to
all possible events of interest.
There are two general classes of distribution models: para-
metric and nonparametric. Parametric models assume
a particular functional form for the distribution function,
such as a uniform distribution, a normal distribution, and
so on [3]. Parametric models are often characterized by
a relatively small number parameters. Parametric models
have the advantage of simplicity (easy to estimate and in-
terpret) but may have relatively high bias because real data
may not obey the assumed functional form.
In nonparametric models the distribution estimate is data-
driven and relatively few assumptions are made a priori
about the functional form. Histogram, kernel models and
k-nearest-neighbors are examples. Histogram is a relatively
primitive version of kernel method, and k-NN is a special
case of kernel [5]. Kernel methods are based on the as-
sumption that a function is constant locally, but the extent
of “locality” is parameter to be given, which has a critical
bearing on the performance of the methods.
In this paper we present a theory that generalizes the clas-
sical probability theory. It can estimate probability distri-
bution without any model assumption.

2. Contextual probability function
Let Ω be a finite set called frame of discernment. E�Ω is
called a context or event. A mass function is m: 2Ω ! [0;1]
such that

∑
X�Ω

m(X) = 1: (2)

The mass function is interpreted as a representation of
(probabilistic) knowledge about Ω.
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Our objective is to extend our knowledge to those contexts
that we have no explicit knowledge about in m. Therefore
we define a new function G : 2Ω ! [0;1] such that for any
E �Ω

G(E) = ∑
X�Ω

m(X)
jE\Xj
jXj

: (3)

The interpretation of the above definition is as follows.
Context E may not be known explicitly in the represen-
tation of our knowledge, but we know explicitly some con-
texts X that are related to it (i.e., E overlaps with X or
E\X 6= /0). Part of the knowledge about X (m(X)) should
then be attributed to E. Since we do not know how this
knowledge about X is distributed among the components
in X, we can assume it is evenly distributed. So the part of
this knowledge attributable to E is m(X)�jE\Xj=jXj.

Theorem 1. G is a probability function on Ω. That is to
say:

1. For any E �Ω, G(E)� 0.

2. G(Ω) = 1.

3. For E1;E2 2 Ω, G(E1 [ E2) = G(E1) + G(E2)
if E1\E2 = /0.

Proof. The first claim is true following the fact that
m(X)� 0 for any X �Ω. The equation holds when E = /0.

The second claim is true since G(Ω) = ∑X�Ω m(X).

Let’s now consider the third claim. X \ (E1 [ E2) =
=(X\E1)[(X \E2). If E1\E2 = /0 then jX\ (E1[E2)j=
= jX\E1j+ jX\E2j. As a result we have

G(E1[E2) = ∑
X�Ω

m(X)
jX\ (E1[E2)j

jXj
=

= ∑
X�Ω

m(X)
jX\E1j+ jX\E2j

jXj
=

= ∑
X�Ω

m(X)
jX\E1j

jXj
+ ∑

X�Ω
m(X)

jX\E2j

jXj
=

= G(E1)+G(E2) :

�

We therefore call G a contextual probability function, and
the formalism about this function is termed contextual
probability theory (CPT for short).

As a probability function G has the following properties,
the proofs of which are left to the readers.

� G(Ē) = 1�G(E).

� G( /0) = 0.

� If E1 � E2, then G(E1)�G(E2).

� G(E)� 1, for any context E.

� If E1;E2; � � � ;En are contexts such that Ei\Ej = /0 for
all pairs i; j , then

G(
n[

i=1

Ei) =
n

∑
i=1

G(Ei):

� G(E1[E2) = G(E1)+G(E2)�G(E1\E2).

By the above theorem we have

1= G(Ω) = ∑
x2Ω

G(x) :

As a result, if G is restricted to the singleton sets (i.e., the
elements in Ω) it is a (calculated) probability distribution.
This is in contrast to p, which can be interpreted as a priori
probability distribution.

For simplicity, if E is a singleton set, e.g., E = fag, we
write G(a) for G(fag).

Now we look at an example before we move on.

Example 1. Let Ω = fa;b;c;d;e; fg, and the mass func-
tion m be as follows:

m(fa;bg) = 0:3

m(fa;b;cg) = 0:4

m(fa;b;c;dg) = 0:1

m(fa;b;c;d;e; fg) = 0:2

Suppose that we are interested in the probabilities of the
contexts: fag;fbg;fcg;fdg;feg;f fg;fb;cg;fa;b;dg. Ac-
cording to the definition of G function, we have

G(a) = m(fa;bg)�
jfagj
jfa;bgj

+m(fa;b;cg)�
jfagj

jfa;b;cgj
+

+ m(fa;b;c;dg)�
jfagj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfagj

jfa;b;c;d;e; fgj
=

= 0:3�1=2+0:4�1=3+0:1�1=4+0:2�1=6=

= 41=120

G(b) = G(a)

G(c) = m(fa;b;cg)�
jfcgj

jfa;b;cgj
+

+ m(fa;b;c;dg)�
jfcgj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfcgj

jfa;b;c;d;e; fgj
=

= 0:4�1=3+0:1�1=4+0:2�1=6=

= 23=120

G(d) = m(fa;b;c;dg)�
jfdgj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfdgj

jfa;b;c;d;e; fgj
=

= 0:1�1=4+0:2�1=6= 7=120
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G(e) = m(fa;b;c;d;e; fg)�
jfegj

jfa;b;c;d;e; fgj
=

= 0:2�1=6= 4=120

G( f ) = G(e) :

Clearly G(a)+G(b)+G(c)+G(d)+G(e)+G( f )= 1. Fur-
ther on, we have

G(fb;cg) = m(fa;bg)�
jfbgj
jfa;bgj

+

+ m(fa;b;cg)�
jfb;cgj
jfa;b;cgj

+

+ m(fa;b;c;dg)�
jfb;cgj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfb;cgj

jfa;b;c;d;e; fgj
=

=0:3�1=2+0:4�2=3+0:1�2=4+0:2�2=6=

= 64=120= G(b)+G(c)

G(fa;b;dg) = m(fa;bg)�
jfa;bgj
jfa;bgj

+

+ m(fa;b;cg)�
jfa;bgj
jfa;b;cgj

+

+ m(fa;b;c;dg)�
jfa;b;dgj
jfa;b;c;dgj

+

+ m(fa;b;c;d;e; fg)�
jfa;b;dgj

jfa;b;c;d;e; fgj
=

= 0:3+0:4�2=3+0:1�3=4+0:2�3=6=

= 89=120= G(a)+G(b)+G(d) :

3. CPT versus probability theory
and Dempster-Shafer theory

Contextual probability theory generalizes classical prob-
ability theory in the sense that the probability distribu-
tion p changes to the mass function m and the probability
function P changes to contextual probability function G.
The probability distribution p is defined on Ω while m is
defined on 2Ω; P and G are both defined on 2Ω and they
are both probability functions. Once the mass function is
restricted to singletons the G function becomes the proba-
bility function.
Dempster-Shafer (D-S for short) theory [6] is also a gen-
eralization of probability theory, which has evolved from
a theory of upper and lower probabilities. It starts by as-
suming a set Ω and a mass function m, based on which the
belief function bel and plausibility function pls are defined.

Formally the mass function is m : 2Ω ! [0;1] where
m( /0) = 0 and ∑X�Ω m(X) = 1. Belief function is bel :
2Ω ! [0;1] such that, for E�Ω, bel(E)=∑X�Ω;X�E m(X).

Plausibility function is pls : 2Ω ! [0;1] such that pls(E) =
= 1�bel(E0), where E0 is the complement of E in Ω.

The set Ω is a set of mutually exclusive alternatives. For
any E �Ω, m(E) represents the strength of some evi-
dence supporting E; bel(E) summarizes all reasons to be-
lieve E, and pls(E) expresses how much we should be-
lieve in E if all currently unknown facts were to support E.
Thus the true belief in E will be somewhere in the interval
[bel(E); pls(E)].

When the mass function is restricted to singleton elements
x 2 Ω, the belief and plausibility functions become the
same and they are also the same as the probability func-
tion. Therefore D-S theory is regarded as a generalization
of probability theory [2].

However the belief function satisfies the first two axioms
of probability theory, but for the third axiom the equation
is changed to “�” [2]. Therefore the belief function is not
probability function.

Although both CPT and D-S theory can be understood as
generalizations of probability theory, there are differences
between the two:

� CPT uses a single function to represent “uncertainty”
while D-S theory uses two functions.

� The G function is a probability function, therefore
all of the properties of probability theory are still
valid. For example, with the additive property we
do not need to calculate G for every E � Ω; in-
stead we only need to do so for singletons x2Ω and
G(E) = ∑x2E G(x). The belief function is, however,
not a probability function. So we have to calculate
bel for every E �Ω.

4. Relationship between G and P

Now that G is a probability function, we may ask the ques-
tion: what is the relationship between G and P? To answer
this question we need to base m on p so that G can be con-
nected to P. Here we interpret mass function as a measure
of the occurrence of elements in a set. Therefore the larger
a set is the more likely the set as an event occurs.

Specifically we assume that the mass function be defined

in terms of probability as follows, letting K
def
= ∑X�Ω P(X)

m(E) =
P(E)

∑X�Ω P(X)
=

P(E)

K
: (4)

According to this interpretation of the mass function the
following lemma follows from the fact that P(E1)� P(E2)
when E1 � E2.

Lemma 1. If E1 � E2 then m(E1)�m(E2).

Let
�N

n

�
be the combinatorial number representing the num-

ber of ways of picking n unordered outcomes from N possi-
bilities. From combinatorics we know that

�N
n

�
= N!

(N�n)!n! .

With these assumptions we have the following results.
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Lemma 2. Let N = jΩj. Then K = ∑N
i=1

�N�1
i�1

�
=

= 2N�1.

Proof.

K = ∑
X�Ω

P(X) =
N

∑
i=1

∑
X�Ω;jXj=i

P(X) =

=
N

∑
i=1

∑
x2Ω

�
N�1
i�1

�
p(x) =

N

∑
i=1

�
N�1
i�1

�
∑
x2Ω

p(x) =

=
N

∑
i=1

�
N�1
i�1

�
= 2N�1 :

�

Theorem 2. Let α def
= 1

K ∑N
i=1

(N�2
i�1)
i , and β def

= 1
K ∑N

i=1
(N�2

i�2)
i .

Then G(x) = α p(x)+β for x2 Ω.

Proof.

G(x) = ∑
Y�Ω

x\Y
jYj

m(Y) = ∑
Y�Ω;x2Y

1
jYj

P(Y)

K
=

=
1
K ∑

Y�Ω;x2Y

P(Y)

jYj
=

1
K ∑

Y�Ω;x2Y

∑z2Y p(z)

jYj
=

=
1
K

N

∑
i=1

1
i ∑

Y�Ω;jYj=i;x2Y
∑
z2Y

p(z) =

=
1
K

N

∑
i=1

1
i

 �
N�1
i�1

�
p(x)+

�
N�2
i�2

�
∑
z6=x

p(z)

!
=

=
1
K

N

∑
i=1

1
i

��
N�1
i�1

�
p(x)+

�
N�2
i�2

��
1� p(x)

��
=

=
1
K

N

∑
i=1

1
i

��
N�2
i�1

�
p(x)+

�
N�2
i�2

��
=

= α p(x)+β :

�

The claim then follows.
Since both P and G are probability functions we have
∑x2Ω P(x) = 1 and ∑x2Ω G(x) = 1. According to Theo-
rem 2 we then have:
Corollary 1. α + jΩj�β = 1.

As a result we only need to calculate either of α and β ,
and the other can be determined according to the corollary.

Since both P and G are probability functions they sat-
isfy the additive axiom. In other words for E � Ω,
P(E) = ∑x2E p(x) and G(E) = ∑x2E G(x). Following The-
orem 2 we then have:
Corollary 2. G(E) = αP(E)+β jEj :

Theorem 2 and Corollary 2 establish the relationship be-
tween G and probability distribution, and G and probability
respectively. If we have full knowledge about the distribu-
tion we can calculate probability, which can further be used

to calculate G. On the contrary, if we have full knowledge
about G then we can calculate distribution and probabil-
ity precisely. The interesting question is, if we have only
incomplete or partial knowledge about G then we can get
an approximation to the probability (and probability dis-
tribution). Therefore CPT can be used as a method for
probability distribution estimation.

Example 2. Consider a set fa;b;c;dg, whose probability
distribution is assumed to be f0:1;0:3;0:4;0:2g. Following
definition, the P, m and G values can be calculated for all
the subsets (contexts) and are shown in Table 1.

Table 1
The set is Ω = fa;b;c;dg. The probability distribution
is assumed to be Ω = fa : 0:1;b : 0:3;c : 0:4;d : 0:2g.

Note that p(x) = P(fxg) for x2 Ω

E /0 fag fbg fcg
P 0 0.1 0.3 0.4
m 0 1/80 3/80 4/80
G 0 198=960 254=960 282=960

E fdg fa,bg fa,cg fa,dg
P 0.2 0.4 0.5 0.3
m 2/80 4/80 5/80 3/80
G 226=960 452/960 480/960 424/960

E fb,cg fb,dg fc,dg fa,b,cg
P 0.7 0.5 0.6 0.8
m 7/80 5/80 6/80 8/80
G 536/960 480/960 508/960 734/960

E fa,b,dg fa,c,dg fb,c,dg fa,b,c,dg
P 0.6 0.7 0.9 1.0
m 6/80 7/80 9/80 10/80
G 678/960 706/960 762/960 1

Clearly the G values for singleton subsets are slightly dif-
ferent from the those P values given in probability distri-
bution.
Let’s now illustrate the relationship between P and G with
respect to Theorem 2.
Here Ω has four elements so N = 4. Then according to
Lemma 2, K = 2N�1 = 23 = 8. Other components in the
theorem are calculated as follows:

α =
1
K

N

∑
i=1

�N�2
i�1

�
i

=

=
1
8

 �
2
0

�
+

�2
1

�
2

+

�2
2

�
3

+

�2
3

�
4

!
=

1
8

�
1+1+

1
3

�
=

28
96

β =
1
K

N

∑
i=1

�N�2
i�2

�
i

=

=
1
8

 �
2
�1

�
+

�2
0

�
2

+

�2
1

�
3

+

�2
2

�
4

!
=

1
8

�
1
2
+

2
3
+

1
4

�
=

17
96

:
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Now we show that P(x) = [G(x)�β ]=α for every elements
in the set.

[G(a)�β ]=α =

�
198
960

�
17
96

�
�

96
28

=
28
960

�
96
28

= 0:1

[G(b)�β ]=α =

�
254
960

�
17
96

�
�

96
28

=
84
960

�
96
28

= 0:3

[G(c)�β ]=α =

�
282
960

�
17
96

�
�

96
28

=
112
960

�
96
28

= 0:4

[G(d)�β ]=α =

�
226
960

�
17
96

�
�

96
28

=
56
960

�
96
28

= 0:2

Clearly the equation holds.
To illustrate Corollary 2, consider context E = fa;b;cg.
By the additive property of the G function we have

G(E) = G(a)+G(b)+G(c) = 734=960:

By the definition of G we have

G1(E) = m(a)+m(b)+m(c)+m(fa;bg)+m(fa;cg)+

+ m(fb;cg)+m(fa;b;cg)+
3
4
�m(fa;b;c;dg) =

=
1
80

+
3
80

+
4
80

+
4
80

+
5
80

+
7
80

+
8
80

+
3�10
4�80

=

=
158
320

G2(E) =
1
2

m(fa;dg)+
1
2

m(fb;dg)+
1
2

m(fc;dg) =

=
3

2�80
+

5
2�80

+
6

2�80
=

14
160

G3(E) =
2
3

m(fa;b;dg)+
2
3

m(fa;c;dg)+
2
3

m(fb;c;dg) =

=
2�6
3�80

+
2�7
3�80

+
2�9
3�80

=
44
240

G(E) = G1(E)+G2(E)+G3(E) =
734
960

:

The probability function P(E) is calculated according the
additive property as follows:

P(E) = P(fag)+P(fbg)+P(fcg)= 0:8:

Using the α and β values above we have

P(E)�α + jEj�β = 0:8�
28
96

+3�
17
96

=
734
960

= G(E)

Example 3. Now let’s look at another example with the
same Ω and the same underlying probability distribution.
We assume that we do not know the distribution explicitly,
but we know the probability values for some subsets. These
values are normalized to give a mass function. The known
probability and mass values are shown in Table 2.

Table 2
The probability and mass values for Example 3

E fa,bg fa,cg fb,dg fc,dg

P 0.4 0.5 0.5 0.6

m 4/50 5/50 5/50 6/50

E fa,b,cg fa,b,dg fa,c,dg fb,c,dg

P 0.8 0.6 0.7 0.9
m 8/50 6/50 7/50 9/50

By definition we have

G(a) =
1
2
[m(fa;bg)+m(fa;cg)]+

+
1
3
[m(fa;b;cg)+m(fa;b;dg)+m(fa;c;dg)]=

=
1
2
�

4+5
50

+
1
3
�

8+6+7
50

=
69
300

= 0:230

G(b) =
1
2
[m(fa;bg)+m(fb;dg)]+

+
1
3
[m(fa;b;cg)+m(fa;b;dg)+m(fb;c;dg)]=

=
1
2
�

4+5
50

+
1
3
�

8+6+9
50

=
73
300

= 0:243

G(c) =
1
2
[m(fa;cg)+m(fc;dg)]+

+
1
3
[m(fa;b;cg)+m(fa;c;dg)+m(fb;c;dg)]=

=
1
2
�

5+6
50

+
1
3
�

8+7+9
50

=
81
300

= 0:270

G(d) =
1
2
[m(fb;dg)+m(fc;dg)]+

+
1
3
[m(fa;b;dg)+m(fa;c;dg)+m(fb;c;dg)]=

=
1
2
�

5+6
50

+
1
3
�

6+7+9
50

=
77
300

= 0:257

To calculate P values from respective G values we need K,
α and β , which are functions of N. From Example 2 we
know that K = 8, α = 28=96= 0:292 and β = 17=96=
= 0:177. P(x) can be calculated by P(x) = [G(x)�β ]=α
for every elements as follows:

P(fag) = (0:230�0:177)=0:292 = 0:18

P(fbg) = (0:243�0:177)=0:292 = 0:23

P(fcg) = (0:270�0:177)=0:292 = 0:32

P(fdg) = (0:257�0:177)=0:292 = 0:27

With these values we can calculate probability for any other
subsets.
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If we apply Dempster-Shafer theory we can calculate the
belief and plausibility values for any contexts. For example

bel(fxg) = 0 for any x2 Ω:

The plausibility value is calculated as follows:

pls(fag) = m(fa;bg)+m(fa;cg)+m(fa;b;cg)+

+ m(fa;b;dg)+m(fa;c;dg) = 30=50

pls(fbg) = m(fa;bg)+m(fb;dg)+m(fa;b;cg)+

+ m(fa;b;dg)+m(fb;c;dg)= 32=50

pls(fcg) = m(fa;cg)+m(fc;dg)+m(fa;b;cg)+

+ m(fa;c;dg)+m(fb;c;dg) = 35=50

pls(fdg) = m(fb;dg)+m(fc;dg)+m(fa;b;dg)+

+ m(fa;c;dg)+m(fb;c;dg) = 33=50:

5. Summary and conclusion

In this paper we have presented a new probability func-
tion G – contextual probability function, which is defined
in terms of a basic probability assignment – mass function.
Therefore G has all the properties of the classical probabil-
ity function, which satisfies the three axioms of probability.
The mass function has similar meaning as that in the D-S
theory. Thus CPT enjoys the flexibility and other properties
attributed to the D-S theory. The key difference between
the two, however, is the fact that G is a probability function
whereas the belief and plausibility functions are not. One
consequence is that, due to the additive property, only the
G values for singleton elements in Ω need to be calculated
and the G values for any other subsets of Ω can be obtained
from the G values for singletons. This is a big save in time.
Since the belief and plausibility functions in the D-S theory
are not additive we have to calculate belief and plausibility
values for all subsets of Ω.
Though G is a probability function, CPT can be viewed as
a generalization of the classical probability theory in the
sense that if the mass function is defined only for elements
in Ω, the G becomes the P function. The D-S theory is also
regarded as a generalization of probability theory, but the

belief and plausibility functions are not probability func-
tions; they become probability functions when the mass
function is defined only for elements in Ω.
The mass function can be interpreted in different ways for
different purposes. We have shown that if it is interpreted
as normalized (summing up to 1) probability function, G is
a linear function of the P function. This connection makes
it possible to estimate probability distribution from the
probability values of some known events.
Future work should include interpreting the mass function
in other ways for other purposes and applying the CPT to
some real world problems.
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Abstract — This paper concerns some relationship between
Bayes’ theorem and rough sets. It is revealed that any decision
algorithm satisfies Bayes’ theorem, without referring to either
prior or posterior probabilities inherently associated with clas-
sical Bayesian methodology. This leads to a new simple form
of this theorem, which results in new algorithms and applica-
tions. Besides, it is shown that with every decision algorithm
a flow graph can be associated. Bayes’ theorem can be viewed
as a flow conservation rule of information flow in the graph.
Moreover, to every flow graph the Euclidean space can be as-
signed. Points of the space represent decisions specified by
the decision algorithm, and distance between points depicts
distance between decisions in the decision algorithm.

Keywords — rough sets, decision algorithms, flow graphs, data
mining.

1. Introduction

Decision algorithm is a finite set of “if .. then” decision
rules. With every decision rule three coefficients are asso-
ciated: the strength, the certainty and the coverage factors
of the rule. The coefficients can be computed from the data
or can be a subjective assessment. It is shown that these
coefficients satisfy Bayes’ formula.
Bayesian inference methodology consists in updating prior
probabilities by means of data to posterior probabilities,
which express updated knowledge when data become avail-
able. The strength, certainty and coverage factors can be
interpreted either as probabilities (objective), or as a de-
gree of truth, along the line proposed by Łukasiewicz [5].
Moreover, they can be also interpreted as a deterministic
flow distribution in flow graphs associated with decision al-
gorithms. This leads to a new look on Bayes’ theorem and
its applications in reasoning from data, without referring to
its probabilistic character.
In this context it is worthwhile to mention that in spite
of great power of statistical Bayesian methodology of
inference methods, the theorem raised wide criticism.
E.g., “The technical result at the heart of the essay is what
we now know as Bayes’ theorem. However, from a purely
formal perspective there is no obvious reason why this es-
sentially trivial probability result should continue to excite
interest” [1]. “Opinion as to the values of Bayes’ theorem
as a basic for statistical inference has swung between ac-
ceptance and rejection since its publication on 1763” [2].
In the proposed setting Bayes’ theorem has been set free
from its mystic flavor. With every decision algorithm a flow
graph can be associated. It is revealed that the throughflow
in the graph is ruled by Bayes’ theorem. The flow graphs

considered in this paper are different to flow networks in-
troduced by Ford and Fulkerson [4], which are intended to
model the flow in transportation network – in contrast to
flow graphs, which are meant to be used as a model for de-
cision analysis in decision algorithms. Besides, with every
decision algorithm the Euclidian decision space is associ-
ated. The decision space is intended to be used to depict
differences between decisions of a decision algorithm in
a geometrical way.

2. Decision algorithms

A decision rule is an expression in the form Φ ! Ψ, read
“if Φ then Ψ”, where Φ and Ψ are logical formulas called
condition and decision of the rule, respectively [8].
Let jΦj denote the set of all objects from the universe U ,
having the property Φ.
If Φ!Ψ is a decision rule then supp(Φ;Ψ)=card(jΦ^Ψj)
will be called the support of the decision rule and

σ(Φ;Ψ) =
supp(Φ;Ψ)

card(U)

will be referred to as the strength of the decision rule.
With every decision rule Φ ! Ψ we associate a certainty
factor

cer(Φ;Ψ) =
supp(Φ;Ψ)

card(jΦj)

and a coverage factor

cov(Φ;Ψ) =
supp(Φ;Ψ)

card(jΨj)
:

Remark. These coefficients for a long time have been used
in data bases and machine learning [9, 10], but first they
have been introduced by Łukasiewicz [5] in connection with
his study of logic and probability.
If cer(Φ;Ψ) = 1, then the decision rule Φ ! Ψ will be
called certain, otherwise the decision rule will be referred
to as uncertain.
A set of decision rules Dec(Φ;Ψ) = fΦi ! Ψig

n
i�1 n� 2,

will be called a decision algorithm if all its decision rules
are:

– admissible, i.e., supp(Φi ;Ψ)i 6=� for every 1� i � n,

– mutually exclusive (independent),
i.e., for every Φi ! Ψi and Φ j ! Ψ j , Φi = Ψ j ,
or Φi ^Ψ j =� and Ψi = Ψ j or Ψi ^Φ j =�,

– cover U , i.e.,
��Wn

i�1 Φi

��= ��Wn
i�1 Ψi

��=U .
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If Dec(Φ;Ψ) = fΦi ! Ψig
n
i=1 is a decision algorithm,

then Dec(Ψ;Φ) = fΨi ! Φig
n
i=1 is also a decision algo-

rithm and will be called an inverse decision algorithm
of Dec(Φ;Ψ).
Dec(Ψ;Φ) gives reasons (explanations) for decisions of
the algorithm Dec(Φ;Ψ).

3. Properties of decision algorithms

Let Dec(Φ; Ψ) be a decision algorithm and let Φ ! Ψ
be a decision rule in the decision algorithm. By D(Φ)
and C(Ψ) we denote the set of all decisions of Φ and
the set of all conditions of Ψ in Dec(Φ; Ψ), respec-
tively [8].
It can be shown that every decision algorithm has the fol-
lowing probabilistic properties:

∑
Φ02C(Ψ)

cov(Φ0
;Ψ) = 1; (1)

∑
Ψ02D(Φ)

cer(Φ;Ψ0) = 1; (2)

π(Ψ) = ∑
Φ02C(Ψ)

cer(Φ0
;Ψ) �πS(Φ

0) = ∑
Φ02C(Ψ)

σ(Φ0
;Ψ); (3)

π(Φ) = ∑
Ψ02D(Φ)

cov(Φ;Ψ0) �πS(Ψ
0) = ∑

Ψ02D(Φ)

σ(Φ;Ψ0); (4)

cer(Φ;Ψ) =
cov(Φ;Ψ) �π(Ψ)

∑
Ψ02D(Φ)

σ(Φ;Ψ0)
=

σ(Ψ;Φ)

π(Φ)
; (5)

cov(Φ;Ψ) =
cer(Φ;Ψ) �π(Φ)

∑
Φ02C(Ψ)

σ(Φ0
;Ψ)

=
σ(Φ;Ψ)

π(Ψ)
; (6)

where π(Ψ) =
card(jΨj)
card(U)

and π(Φ) =
card(jΦj)
card(U)

.

Let us observe that formally formulas (1)–(6) have prob-
abilistic favor. In particular, formulas (3) and (4) can be
understood as total probability theorems, whereas formu-
las (5) and (6) have the form of Bayes’ theorem. As men-
tioned before, if we interpret strength, certainty and cover-
age factors as probabilities (frequencies) then these formu-
las describe some relationships between data in the decision
algorithm. However, we can also interpret these factors in
a deterministic way, as a degree of truth. In this case the
coverage factor cov(Φ;Ψ) expresses to which degree the
conclusion Ψ of a decision rule Φ ! Ψ is true if the con-
dition Φ of the rule is true to the degree cer(Φ;Ψ), whereas
σ(Φ;Ψ) can be regarded as a truth value of the decision
rule (implication) Φ !Ψ.

The idea to replace probability by truth values is due to
Łukasiewicz [5], but we will not discuss this issue here.

4. Flow graphs

With every decision algorithm we associate a directed,
acyclic, connected graph defined in the following way: to
every condition and decision of the decision rule in the de-
cision algorithm we associate a node of the graph. To every
decision rule Φ!Ψ we assign a directed branch connect-
ing the input node Φ and the output node Ψ. Strength
of the decision rule represents the throughflow of the cor-
responding branch. More about flow graphs and decision
algorithms can be found in [7].
The throughflow of the graph is governed by formulas (1)–
(6), and can be considered as a flow conservation equation
similar to that of Ford and Fulkerson [4].
Consequently, the flow graphs can be regarded as a third
model of Bayes’ theorem, in which the theorem describes
flow distribution in a flow graph.

5. Decision space

With every decision algorithm with n-valued decisions we
can associate n-dimensional Euclidean space, where values
of decisions determine n axis of the space and condition
attribute values (equivalence classes) determine point of the
space. Strengths of decision rules are to be understood as
coordinates of corresponding points.
Distance δ (x;y) between point x and y in an n-dimensional
decision space is defined as

δ (x;y) =

s
n

∑
i=1

(xi �yi)
2
;

where x = (x1; : : : ;xn) and y = (y1; : : : ;yn) are vectors of
strengths of corresponding decision rules.

6. An example

For the sake of illustration let us consider a very simple de-
cision algorithm describing vote distribution for two polit-
ical parties X1, and X2 from three mutually disjoint sample
group of voters Y1, Y2 and Y3:

1. Y1 ! X1 (400)

2. Y1 ! X2 (200)

3. Y2 ! X1 (250)
4. Y2 ! X2 (50)

5. Y3 ! X1 (90)

6. Y3 ! X2 (10).

Number given at the end of each rule is the support of the
rule, i.e., the number of voters from group Xi voting for
party Yj .
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The strength, certainty and coverage factors for each deci-
sion rule are given in Table 1.

Table 1
Parameters of the decision rules

Rule Strength Certainty Coverage

1 0.40 0.67 0.54

2 0.20 0.33 0.77

3 0.25 0.83 0.34

4 0.05 0.17 0.19

5 0.09 0.90 0.12

6 0.01 0.10 0.04

The corresponding flow graph is shown in Fig. 1.

Fig. 1. The flow graph corresponding to the example.

Thus from the decision algorithm follows, for example, that
83% voters from group Y2 voted for party X1 and 17% vot-
ers voted for party X2. From the inverse decision algorithm

Fig. 2. The distance space corresponding to the example.

we get, for example, that for party X1 voted 54% voters of
group Y1, 34% – of group Y2, and 12% – of group Y3.
The corresponding distance space is shown in Fig. 2.
Distances between voters are presented in Table 2.

Table 2
Distances between voters

Y1 Y2 Y3

Y1

Y2 0.20
Y3 0.37 0.22

7. Summary

In this paper a relationship between decision algorithms,
flow graphs and Bayes’ theorem are defined and briefly an-
alyzed. It is shown that decision algorithms satisfy Bayes’
theorem, and that the theorem can be also interpreted with-
out referring to its probabilistic connotation – in a purely
deterministic way. This property leads to a new look on
Bayes’ theorem and new applications of Bayes’ rule in data
analysis.
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Paper A world according
to artificial neural networks

Alfons Schuster

Abstract — This paper presents results from a prelimi-
nary study in the field of artificial neural networks (ANN).
The overall aim of our work relates to the field of cogni-
tive science. In this wider framework we try to investigate,
reason about, and model cognitive processes in order to ob-
tain a better understanding of the major processing device
involved – the human brain. In terms of content this paper
presents a novel ANN learning approach. Note that through-
out the paper we assume supervised learning. In contrast to
the classical ANN learning approach where an ANN algorithm
alters an initial random weight assignment until a reasonable
solution to a problem is obtained this approach does not alter
the initial random weight assignment at all, but provides a so-
lution to the problem by transforming the actual input data.
The approach is applied to perceptrons and adalines and its
quality is demonstrated on simple classification problems.

Keywords — artificial neural networks, cognitive science, input
space transformation.

1. Introduction

A few examples are chosen in order to provide a quick
introduction and also to illustrate the motivation behind
this work.
Example 1. Imagine a student looking for material sup-
porting an assignment. The student probably browses sev-
eral books in a library and maybe selects a few of them for
more detailed study. Important in this example is (a) the
information required by the student is external, in library
books etc., (b) the information is represented in different
formats, i.e. different books may cover the same topics
but the styles etc. may be different in each book, (c) after
a while the student may have forgotten some of the studied
material, i.e. the information may no longer be available in
the brain of the student. In order to re-acquire the informa-
tion the student may need to go back to the library. On the
other hand some of the information may not be considered
(studied) on purpose. For example, in case the information
is false or obsolete.
Example 2. Imagine a person having a dog and also hav-
ing a picture of the same dog. Further imagine a second
person pointing to the real dog asking the question: Who’s
dog is this? Then the dog owner will answer: This is my
dog. Imagine now the second person pointing to the picture
of the dog asking the same question: Who’s dog is this?
Then the person will answer again: This is my dog. The
interesting aspects here are (a) there are two completely
different representations of the dog, namely the dog itself
and the picture of the dog, (b) for the purpose of answer-

ing the question however both representations are sufficient,
(c) the two representations are external to the processing
device – the brain of the dog owner, and (d) the original
data, the physical dog, has been transformed into a different
representation, the picture.

Example 3. Philosophers have been thinking about similar
problems in the past. An example involving the philosopher
Immanuel Kant can be summarised as follows [1]. Imagine
a person wearing green glasses since the day of his/her
birth. The person then would see the world in a shade of
green. This may not necessarily have a major influence on
the person’s life. If the person ever took of the glasses then
the person would see the world differently. The points here
are (a) how can we be sure to experience the world with
our senses as the world really is, i.e. how can we be sure
we are not wearing some sort of glasses? and (b) the data
transformation (here a green shift) may not necessarily have
an impact on our ability to do things or on aspects of our
reasoning. For example, the ability to swim is independent
of the color of the water.

Example 4. This example particularly focuses on artifi-
cial neural networks. ANN learning usually starts with
a random weight assignment followed by a training process
using a training set [2]. The training process alters the
initial random weight configuration and establishes a fi-
nal weight configuration. This final configuration remains
static and specifies the ANN for a particular application sce-
nario. From the viewpoint of ANNs as being a model of
the human brain this approach presents a number of ques-
tions. For example, let N be the total number of neurons in
the brain. Further, imagine a simple classification scenario
that can be solved by the utilisation of an ANN. Let n be
the total number of neurons in this particular ANN. Now
imagine this ANN presenting a part or region in the brain.
Since the weight configuration of this ANN remains fixed
or static after the training process this part of the brain
(the ANN) can only be applied for the particular task it is
designed for. This however could lead to the possible con-
clusion that the number of neurons in the brain that remains
available for other tasks is now reduced to N�n. Although
the number of neurons in the brain is quite substantial this
means that sooner or later the brain runs out of neurons.
This example may be a bit naive, but it helps to illustrate
a major difference between the brain and ANNs, namely
the high dynamic and flexibility of the brain opposed to
the static inflexibility of ANNs.

Example 5. This is not really an example but rather a con-
sideration. If there are different representations of an entity
then a learning device such as an ANN, for example, needs
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to be constructed for every representation. The previous
example mentioned that this may require a separate set of
neurons for the processing of each representation. From
an energy point of view all these processes require energy.
Nature usually looks for a maximum in efficiency through
a minimum of effort (energy). The processing of each rep-
resentation individually may contradict this particular drive.
A summary of these examples may be:

– The same information can be represented in different
formats, shapes, representations.

– The different representations of the information are
usually external to a learner or learning device (stu-
dent, brain, ANN).

– Some information may be false or obsolete and there-
fore may not be needed to be acquired (studied,
learned).

– Some of the information learned may get lost or for-
gotten.

– In case there are different representations for the same
information then it is ineffective for a learning device
in terms of energy to construct a model for each
representation.

Based on these examples and observations we here consider
the following approach:

– Instead of producing a model for the learning of dif-
ferent representations of the same information use
a single model that is able to learn the different rep-
resentations.

Very generally speaking this paper has a focus on this issue
and investigates a new approach to this problem. The ma-
jor difference of this approach lies in the fact that instead
of modifying the weight configuration of an ANN until the
weight configuration suits the problem the approach pro-
posed here transforms the actual data representing the prob-
lem until the data fits the initial configuration of the learn-
ing device (ANN). The initial weigh configuration assigned
to the ANN at the start of the training process remains un-
changed throughout this process. The transformed data can
be viewed as a different representation of the problem and
the examples given before indicate that it is possible to
arrive at meaningful conclusions using different represen-
tations of the same information (dog/picture). One of the
interesting consequences of this approach is that a single,
random weight configuration can be used for many different
scenarios.
The reminder of the paper is organised as follows. Sec-
tion 2 presents the basic idea behind this paper, namely
ANN training algorithms that are based on the transforma-
tion of input data rather than on the modification of weight
values. Section 3 introduces two such algorithms. Sec-
tion 4 summarises the results obtained from an application
of the approach on simple classification tasks. Section 5
ends the paper with a summary.

2. Classification through data input
space transformation

This section outlines the basic idea behind this paper. Al-
though the paper deals with two well-known ANN training
algorithms, namely the perceptron training algorithm and
the Adaline training algorithm this section only refers to
the perceptron training algorithm [3, 4]. This is basically
due to the fact that the situation for both algorithms is
very similar. The paper uses a simple classification task as
a run-through example for illustration purposes. The task
is illustrated in Fig. 1 and involves the correct classification
of a particular number of different objects into one of two
classes, Class 1 or Class 2.

Fig. 1. A simple, one-dimensional, linearly separable classifica-
tion task.

Imagine, for example, that Fig. 1 illustrates an arbitrary real
valued x-y co-ordinate system in which the classification
scenario takes place. Let the black dots in Fig. 1 represent
objects of Class 1 and the lined circles objects of Class 2.
From the viewpoint of a classification task Fig. 1 illustrates
a simple, one-dimensional, linearly separable task. Such
a task can be solved by a perceptron, for example.

2.1. Perceptron classification

At this stage it is not necessary to know the exact details
of a perceptron, the details are going to be explained at
a later stage. The motivation in this section is to establish
an understanding for the basic strategy behind perceptron
classification. The perceptron training algorithm starts with
a random weight assignment to the perceptron. In the con-
text of the one-dimensional task at hand such a random
weight assignment represents an arbitrary division point on
the x-axes. For example, let the diamond in Fig. 2a be such
an initial, random division point.

Fig. 2. (a) Possible start of perceptron learning process; (b) pos-
sible end of perceptron learning process.
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Note that the diamond in Fig. 2a does not separate all ob-
jects into their correct classes. The two objects indexed
1 and 2 in Fig. 2a are misclassified. In order to achieve the
correct classification of all objects the perceptron training
algorithm alters the initial weight assignment in a number
of successive, defined steps. This process usually contin-
ues until either all objects are classified correctly, or until
a predefined number of iterations is reached. In illustrative
terms the process of continuously altering the weight con-
figuration of the perceptron is equivalent to an organised
movement of the diamond along the x-axis in Fig. 2a. For
example, after the training process the diamond might end
up in the position illustrated in Fig. 2b. This position actu-
ally represents a solution to the problem, because all sam-
ples of Class 1 are now on one side of the diamond and all
objects of Class 2 are on the other side. The actual details
of the perceptron training algorithm are not so important at
the moment, they will be discussed later. At the moment
this study is interested in the question whether there is an
alternative solution to the classification task given in Fig. 1.

2.2. An alternative solution to the classification problem

Figure 3 indicates an alternative solution to the problem
at hand. In this particular case this alternative solution
shall be referred to as alternative classification algorithm,
or simply ACA.

Fig. 3. (a) Original classification scenario; (b) alternative solution
to the classification task through a transformation of the actual
input data.

Figure 3 illustrates that the ACA is basically an input data
transformation process. The ACA also starts with an initial
random weight assignment. But then, instead of altering
the weight values, which would be equivalent to moving
the initial diamond around, the ACA transforms or shifts
the actual input data in the x-y co-ordinate system until
the initial location of the diamond presents a solution to
the classification task. For example, Fig. 3a represents the
original scenario. Note again that the diamond in Fig. 3a
does not separate all objects into their correct classes. Fig-
ure 3b illustrates a possible scenario after the ACA has
finished a training session. Figure 3b indicates that the lo-
cation of the diamond remains unchanged throughout this
training session, but also that the input data has been trans-
formed in such a way that the initial diamond now presents

a solution to the classification task. The diamond now sep-
arates all objects of Class 1 from objects of Class 2. This
transformation of input data is the basic principle behind
the algorithms presented in the forthcoming sections. Fig-
ure 3 provides one more piece of information. In order to
come up with the correct classification of all objects the
input data has to be transformed by a certain amount. The
index d in the figure indicates that the magnitude (m) of
this transformation or shift has to be m� d.

3. Modified algorithms for perceptron
and Adaline

This section presents two new ANN training algorithms.
The two algorithms are modifications of the well-known
perceptron and Adaline training algorithm and therefore
are referred to as modified perceptron algorithm (MPA)
and modified Adaline algorithm (MAA). The characteristic
feature of the MPA and the MAA is the implementation of
the ideas presented throughout the previous sections, that
is, classification achieved through the transformation of the
data input space as opposed to the update of weight values.

3.1. Perceptron and modified perceptron training
algorithm

The MPA algorithm is a derived modification of the per-
ceptron training algorithm. The section therefore starts
with a brief introduction to perceptrons. Figure 4 illus-
trates a typical perceptron.

Fig. 4. A typical perceptron.

The perceptron in Fig. 4 has one output, and an undefined
number of n inputs (x0; : : : ;xn). The dummy input x0, of-
ten called bias, has a constant value of one. Every input
has a weight value (w0; : : : ;wn) associated with it. The in-
put values and the weight values are usually dealt with as
vectors (e.g., w and i). The output uses the step function
f (x0; : : : ;xn) in order to determine into which of two avail-
able classes an object belongs. The step function is applied
to the weighted sum of the inputs to the perceptron and is
often defined as follows:

f (x0; : : : ;xn) =

�
1 if ∑n

i=0wixi > 0
�1 otherwise

; (1)

where xi and wi are components of the input vector i and
the weight vector w, and the weighted sum ∑n

i=0wixi is
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given by the scalar product between the input vector and
the weight vector as: w�i = w0x0+ : : :+wnxn. Note that
solving the one-dimensional, linear separable classification
task illustrated in Fig. 1 only requires a single perceptron
with two inputs, x0 and x1.
In order to explain the perceptron training algorithm we
make the following assumptions. For an object of Class 1
the desired perceptron output shall be 1, and for an object
of Class 2 the desired output shall be �1. If an object is
classified correctly then the perceptron remains unchanged.
If the desired output is different from the actual output
generated by the perceptron then the weight vector needs
to be changed such that the error reduces. Theoretically
this process is repeated until the desired output and the
generated output are the same. In reality however linearly
separable problems are not the norm and so the process
usually runs for a predefined number of iterations.
Whenever an input vector is presented to a perceptron for
classification two types of error can occur.

Case 1. The input vector i belongs to Class 1 for which
the desired perceptron output is 1, but w � i � 0 (the actual
perceptron output is �1).

Case 2. The input vector i belongs to Class 2 for which
the desired perceptron output is �1, but w � i> 0 (the actual
perceptron output is 1).

A perceptron strives to overcome both types of error
through a defined weight vector update. This update es-
tablishes a new weight vector w’ from a previous weight
vector w according to: w’ = w+∆w. In the first case the
update has to achieve that w’ � i = (w+∆w)i > w � i. In the
second case the aim is w’ � i = (w+∆w)i < w � i. This be-
haviour can be achieved by letting ∆w = �η i, where η is
a positive constant called the learning rate. These concepts
established define a weight update in the first case as:

w’ � i = (w+∆w)i = (w+η i)i = (w � i+η i � i)> w � i : (2)

Note in particular that η is a positive constant and that the
scalar product i � i > 0. In the second case the update looks
like:

w’ � i = (w+∆w)i = (w�η i)i = (w � i�η i � i)< w � i : (3)

Equations 2 and 3 basically represent the core of the per-
ceptron training algorithm. The task now is to design the
MPA, the modified perceptron learning algorithm.

Modified perceptron training algorithm. Remember that
the initial weight vector remains unchanged in the MPA
training process. The MPA updates the input vector i in-
stead. The MPA input vector update is defined as i’ = i+∆i
and so looks quite similar to a weight vector update de-
scribed before.
The MPA uses this input vector update in order to deal
with the two possible error scenarios mentioned before.
For example, in the first case the input vector i belongs
to Class 1 for which the desired perceptron output is 1,
but w � i � 0 (the actual perceptron output is �1). In this

situation the input vector is updated by the MPA such that
w � i’=w(i+∆i)>w � i. In the second case the input vector
i belongs to Class 2 for which the desired perceptron output
is �1, but w � i > 0 (the actual perceptron output is 1). Here
the input vector is updated such that w � i’=w(i+∆i)<w � i.
With ∆i = �ηw and the learning rate η it is possible to
formulate an MPA update for the first case as follows:

w � i’ = w(i+∆i) = w(i+ηw) = (w � i+ηw �w)> w � i :
(4)

Note, η is a positive constant and the scalar product
w �w > 0. In the second case the update appears as:

w � i’ = w(i+∆i) = w(i�ηw) = (w � i�ηw �w)< w � i :
(5)

Although Eqs. 4 and 5 capture the essence of the MPA
Fig. 5 may provide additional transparency to the whole
process.

Fig. 5. A possible scenario for the MPA algorithm: (a) at the
start; (b) at the end.

Figure 5a illustrates the familiar initial scenario with a ran-
dom, but now static, weight assignment including the two
misclassified objects carrying the labels 1 and 2. The MPA
works similar to the perceptron training algorithm. If an
object is classified correctly then the MPA does not inter-
act. If however the desired output for an object is different
from the actual output generated by the perceptron then the
MPA alters the corresponding input vector until (in case of
linear separability) the current object is classified correctly.
Figure 5b aims to capture this process and illustrates that
only the position of the two initially incorrect classified
objects has changed. Figure 5b also indicates that the or-
der of the position of such objects may change during the
transformation process. For example, the new positions of
objects 1 and 2 are now at 1’ and 2’.

Further, the individual changes in the input vector of
those objects that are actually transformed are recorded by
the MPA. The MPA extracts the value max from this infor-
mation (see Fig 5a). The value max determines the mag-
nitude by which all objects need to be transformed along
the x-axis in order to use the perceptron as a meaningful
classifier. The value max is particularly important for the
classification of unknown objects, that is objects that have
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not been included in the training session. For such objects
it is necessary to add an offset of magnitude max to their
input vector.

Since results of an application of the MPA are presented
and discussed at a later stage we here leave the perceptron
training algorithm and its modified alternative and proceed
with the investigation of the Adaline training algorithm.

3.2. Adaline and modified Adaline training algorithm

An Adaline is quite similar to a perceptron. For example,
an Adaline also uses a step function in order to determine
the class membership for different objects. For this rea-
son and because both, perceptrons and Adalines, are well
documented in the literature this section only elaborates
on those issues that are necessary for the understanding of
Adalines and the presented here alternative the modified
Adaline training algorithm.

An Adaline is a system that like a perceptron aims for a re-
duction of the number of misclassifications through a de-
fined weight update. The difference to the perceptron train-
ing algorithm is that the Adaline aims to achieve this task
by minimising the mean square error E = (dj �netj)

2 of
the system through the application of a gradient descent
method, where dj is the desired output for a particular in-
put vector i j , and netj is the weighted sum generated by
this input vector and a weight vector. Figure 6 illustrates
a typical Adaline.

Fig. 6. An typical Adaline at work.

The basic formulas responsible for the learning process in
an Adaline are given by Eqs. 6, 7, and 8. These formu-
las basically indicate how an updated weight value w’ is
generated from a previous weight value w:

w’ = w+∆w ; (6)

where

∆w = η(dj �netj)i j ; (7)

where η is the positive learning rate again, dj is the de-
sired output for a particular input vector i j , and netj is the
weighted sum ∑n

i=0wixi; j generated by the scalar product

between the input vector i j and the current weight vec-
tor w. From Eqs. 6 and 7 the updated weight vector w’ is
produced by:

w’ = w+η(dj �

n

∑
i=0

wixi; j)i j : (8)

A final difference between the perceptron and the Adaline
needs to be mentioned. The perceptron training algorithm
as well as its modification the MPA updates a weight vec-
tor/input vector only if the output generated by the percep-
tron is different from the desired output. On the other hand,
the Adaline training algorithm and its modified alternative
apply an update at every presentation of a sample to the
system.

Modified Adaline training algorithm. The task now is
similar as before and contains modifying Eq. 8 in such
a way that instead of the weights the actual input data is
transformed, without loosing the quality of the system as
a classifier. The three equations below provide a summary
of the mathematical procedures involved. They are very
similar to Eqs. 6, 7, and 8 and form the basis for the mod-
ified Adaline algorithm MAA:

i’ = i+∆i ; (9)

∆i = η(dj �netj)wj ; (10)

i’ = i+η(dj �

n

∑
i=0

wixi; j)wj ; (11)

where i’ is the resulting, updated input vector. A closer
look at the different equations reveals again that the main
difference is basically a substitution between the weight
vector w and the input vector i. So much for the mathe-
matical background of the different algorithms. The next
section provides a summary of the results obtained from an
application of the different algorithms.

4. Results

All algorithms (the original perceptron and Adaline training
algorithm as well as their modifications MPA and MAA)
were applied and evaluated on simple classification tasks.
The problem to solve was always a one-dimensional, lin-
early separable classification problem, similar to the prob-
lem illustrated in Fig. 1. The total number of objects in-
volved in a classification task was variable, but every class
contained the same number of objects. The x-axis in Fig. 1
was given by the interval [0, 1]. The position of the ob-
jects in this interval was generated by the random number
procedure included in the Delphi5 programming tool that
was utilised for the programming of the algorithms. The
position of the initial division point (the diamond in Fig. 1)
was variable and so it was possible to generate a particular
number of misclassified objects.
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Very generally speaking it can be said that the modified
algorithms MPA and MAA performed more or less equally
well as their original counterparts perceptron and Adaline
did. Since the problems posed did not contain any outliers
MPA and MAA were always able to solve the classification
tasks given to them, provided the number of iterations that
was sufficiently high. For a particular task the number of
iterations needed by MPA and MAA was about in the same
range as the number of iterations needed by the perceptron
and Adaline algorithm. In case of outliers MPA and MAA
face similar problems as the original perceptron and Ada-
line algorithm do. The similarity of the approaches may
allow the assumption that approaches to tackle the issue
of outliers in MPA and MAA are similar to approaches
proposed and known for perceptrons and Adalines [2].
The overall conclusion for the undertaken study is that all
the different algorithms did perform about equally well on
the problems given to them, and so MPA and MAA do not
stand back behind the traditional perceptron and Adaline
algorithms.

5. Summary and future work

The paper presents two new classification algorithms. To
some extent these algorithms are derived from the classi-
cal perceptron and Adaline training algorithm. The major
difference between the new algorithms and the classical
algorithms is in the data manipulation that occurs during
the learning process. The classical systems are based on
the manipulation of weight vectors, whereas the proposed
algorithms manipulate or transform the actual input data
entering a system.
The quality of the proposed algorithms was investigated
and tested on simple one-dimensional, linearly separable
classification tasks. The proposed algorithms performed
well on these. Their performance actually did match the
quality of the classical approaches.
The approach has a number of interesting aspects. For ex-
ample, the proposed algorithms allow a single system with
an initial, random configuration to learn a variety of sim-
ilar, but in context completely different, problems without
changing the actual system configuration at all. This makes
the approach flexible and this is one aspect mentioned at
the outset of this study. This aspect might be particularly
interesting in a neuroinformatics context. At this stage no-
body really knows how the brain really works, and there-
fore there is a need for new directions and proposals even if
they are a bit naive at first sight.

Future work. There are a few directions into which this
study can be continued. For example, an interesting route
relates to the question whether it is possible to apply the
approach to more complex network structures, for instance
networks with input, output and hidden layers. It is also
possible to invest the approach and potential consequences
from a mere cognitive science and maybe philosophical
position. For example, how does a system interpret an
environment when the information about this environment
is transformed in the learning process. We hope to engage
into some of these questions in forthcoming studies.
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Paper The role of time
in influence diagrams

Wiesław Traczyk

Abstract — An influence diagram is a compact representation
emphasizing the qualitative features of decision problem un-
der uncertainty. Classical influence diagram has parameters
stable in time, determined order of suggested decisions and
generally is independent of time. Here we have shown some
possible methods of construction of time dependent influence
diagrams: with decision ordering, time-sliced segments and
time consuming nodes. Such gathering of methods can help
in selection of a proper solution.

Keywords — uncertainty, belief networks, influence diagrams,
ordering in time.

1. Introduction

Graphical modelling for decision support systems under un-
certainty is getting more and more widespread. It is an ap-
pealing way to think of and communicate on the underlying
structure of the domain in question. Graphical models are
potentially powerful because they translate a complex de-
cision problem into an easily understood, qualitative form.
Quantitative, numerical solution of the problem presented
in such a form is usually much more complicated, but for
most typical cases there are available not only precise al-
gorithms but also commercial systems, computing needed
results.
Probabilistic graphical models are graphs in which nodes
represent random variables, and arcs (or lack of them) rep-
resent conditional independence assumptions. Undirected
graphical models are used to depict Markov networks, but
directed models, enhanced with additional nodes, can de-
scribe different sceneries of decision systems.

� If some random variables from the set C describe
state of the world, with given prior probabilities of
possible values, and these variables influence some
other chance variables from the set C0 (what is noted
down as C!C0), the graph can be understood as the
model of simple Bayesian network or believe net-
work [1]. For chance variables we must specify the
conditional probability distribution at each node. In
a more complicated case chance variables can influ-
ence another chance variables: (C;C0) ! C0. The
most common task we wish to solve using Bayesian
networks is probabilistic inference.

� Sometimes belief networks are controlled by exter-
nal interventions, described by decision variables
(from the set D). A decision variable is a vari-
able whose instances correspond to possible actions

among which the intervening person can choose. The
model (C;D)!C0 is known as causal graph, chance
variables are called consequences and appropriate
graphs are used for causal reasoning [2].

� Believe networks and causal graphs may help in
preparing a new kind of decisions (from the set D0),
which control external actions ((C;C0;D)! (C0;D0))
or influence chance variables ((C;C0;D;D0) !
(C0;D0)). In many cases the differences between vari-
ables from sets C and C0 or from D and D0 are not
important, thus putting C[C0 = C (called observa-
tions) and D[D0 = D one can describe this model
by (C;D) ! (C;D). This is a simple version of an
influence diagram [3].

� Each decision support system attempts to find the best
possible decision, so in a graph model we need one
more type of nodes: utility nodes (from the set U),
that represent the usefulness of the consequences of
decisions and observations, measured on a numerical
scale called utility. The model (C;D) ! (C;D;U)
illustrates a full version of influence diagram (ID),
used as an analysis tool and a communication tool
for decision support.

We normally assume that the model structure and the pa-
rameters of influence diagrams do not change, i.e. the
model is time-invariant. However, in many cases ID is
used to describe a proces containing the sequence of events,
and time should be taken into account. In such situations
we can add extra nodes to represent the current “regime”,
or we can repeat the basic diagram to represent time-
slices [4].

Classical IDs require a linear temporal ordering of the deci-
sions, and this is often felt as an unnecessary constraint. In
reality some decisions can be taken independently of each
other, and their identification (and order modification) can
simplify system implementation [5], because the solution
of a decision problem modeled by an ID is a sequence of
decisions that maximizes the expected utility.
An ID specifies also a certain order of observations and
decisions through its structure. This order is reflected in
the corresponding methodology of solving ID [6].
The problems specified above confirm the significant role
of time in ID. Some of these problems will be considered
below in detail, but for that more precise definitions are
needed.
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2. Influence diagrams

An influence diagram is a directed acyclic graph
I = (V; E), where the nodes (vertices) V can be parti-
tioned into three disjoint subsets: chance nodes C, decision
nodes D and utility (value) nodes U, thus V = C[D[U.
It is a common practise to term nodes and variables in ID
by the same name and use them interchangeably.
The chance nodes (drawn as circles or ovals) correspond to
chance variables, and represent events which are not un-
der the direct control of the decision maker. The decision
nodes (drawn as squares) correspond to decision variables
and represent actions under the direct control of the deci-
sion maker. The utility nodes (drawn as diamonds) define
utility functions, indicating the local utility for a given con-
figuration of variables in their domain. The total utility is
the sum or the product of the local utilities.
The arcs (links) in an ID (the pairs of nodes (x;y) from
the set E) can be partitioned into three disjoint subsets,
corresponding to the type of node they go into. Arcs into
utility nodes represent functional dependencies by indicat-
ing the domain of associated utility function. Arcs into
chance nodes, denoted dependency arcs, represent proba-
bilistic dependencies. Arcs into decision nodes, denoted
informational arcs, imply information precedens: if there
is an arc from a node x to a decision node d then the state
of x is known when decision d is made.
If there is a directed link from x to y (x;y2 V), then x is
called a parent of y, and y a child of x. The sets of parents
and children of x are denoted pa(x) and ch(x), respectively.
For each utility node u the set ch(u) is empty. In an ID we
usually assume “no forgetting”, which means that if there
is a link from x to d we need not have a link from x to
elements of ch(d).

Fig. 1. Influence diagram of call center.

Simplified example of influence diagram for call cen-
ter (CC) is depicted in Fig. 1. The task of this call center
is to promote voice mail delivered by a telecommunication
company. Call center intensity CCI and efficiency CCE,
defined by known probability distribution of informative

variables, influence the global performance GP of CC.
This performance can be enlarged by external interven-
tion, changing intensity and efficiency, namely personel in-
crease PI and=or special algorithm of data mining DM.
Utility nodes state the costs of interventions (negative
value) and the profit given by enlarged global performance
(positive value). Optimal decision is determined on the
basis of the sum of these utilities.
With each chance variable and decision variable x we as-
sociate a state space Wx which denotes the set of possible
outcomes/decision alternatives for x [5]. For a set X of
variables we define the state space as WX = XfWxjx2 Xg.
The uncertainty associated with each chance variable
r is represented by a conditional probability function
P(rjpa(r)) : W

frg[pa(r) ! [0;1].

When evaluating an ID we identify a strategy for the de-
cision variables; a strategy can be seen as a prescription
of responses to earlier observations and decisions. A strat-
egy is then a set of functions ∆ = fδdjd 2Dg, where δd is
a decision function given by:

δd : Wpa(d) !Wd :

The evaluation is usually performed according to the maxi-
mum expected utility principle, which states that we should
always choose an alternative that maximizes the expected
utility. A strategy that maximizes the expected utility is
termed an optimal strategy. It strongly depends on tempo-
ral ordering of variables and therefore time considerations
are so important.

3. Time in influence diagrams

There are at least three particular cases when the value of
time or ordering in time play important role.
Time is not explicitly declared. If the decision problem,
modeled by an influence diagram, has not periods of time
clearly stated, a diagram is constructed sequentially: at first
chance variables and dependency arcs between them are
introduced, then decision variables with information links
are added, and next utility nodes are defined and connected
with other nodes. The ID is ready, but before using it we
have to term its realization: an attachment of functions to
the appropriate variables. This means that the chance nodes
and variables are associated with conditional probability
functions (or prior probabilities for nodes without parents)
and the utility nodes and variables are associated with util-
ity functions. Decision nodes correspond to actions taken
by external agents; ID defines information needed for each
decision (by information arcs) and, sometimes, the order of
decisions. An order depends on the structure of the ID and
its interpretation.
A directed path π = hx1;x2; : : : ;xki in ID is an ordered
sequence of distinct nodes such that xi 2 pa(xi+1). The
set an(y), called ancestors of y, contains all nodes x such
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that there exist a path hx; : : : ;yi. For ordering in time we
will use notation x� y (x before y).
It will be assumed that:

1. If there is the path from a node x to a node y then
a variable x and all elements of this path are rele-
vant for a variable y, i.e. values or decisions of y are
functions of all values and decisions from the path
realization. This is the simplifying assumption be-
cause in reality:

– some values of the probability distribution can
block the influence of some other values from
the path,

– some values from the path are not required for
an optimal strategy, i.e. are not elements of the
maximum expected utility function [5].

Nevertheless this assumption is sensible because it
helps to order in time events defined by ID in more
general case, when probability distributions and util-
ity functions are modified during the project prepa-
ration.

2. Actions represented by decision nodes cannot
be taken simultaneously and therefore different
nodes di should be related to different times ti .

3. All parameters are stable in time.

If in the ID one can find a path containing all decision
nodes then an order of decisions is forced by this path, and
each earlier decision influences future decisions. If decision
nodes are located in distinct paths–their ordering in time
can be changed and we call them incompatible nodes.

Fig. 2. Influence diagram with incompatible nodes.

Let two decision nodes belong to the set of parents of some
utility nodes: fd0;d00g 2 pa(u), i.e. nodes d0 and d00 are in-
compatible. If d0 � d00 then utility function of u may be
partially or totally satisfied by first decision d0, what influ-
ence a future decision d00; thus order is important. Since all
nodes from an(d0) influence d00 (assumption 1), they also

influence d00. In the case of two sequences with the paths
of chance nodes α;β : hd0;α;ui and hd00;β ;ui situation is
the same if α = β , but if α 6= β then real order of decisions
influences total utility and depends on a delay introduced
by α and β . This case will be discussed below.
The conclusion from these considerations is as follows:
if fd0;d00g 2 an(u) and d0 � d00 and delays can be neglected
then d0 and all its ancestors have an impact on d00.
In the example from Fig. 2 the path hc2;d2;d3;ui means
that d2� d3, and distinct path hc1;d1i means that node d1 is
incompatible with nodes d2;d3. If d3 � d1 then the nodes
c1;c2;c3;d2;d3 influence decision d1, but if d1 � d2 then
c1;d1 have an impact on remaining nodes.
Diagrams are time-sliced. The definition of ID and
known solution algorithms assume that all parameters of
ID have a static nature. If we want to use an influ-
ence diagram for modelling a system with uncertain states
which alter in time, we must repeat basic structure of
ID and relate each instantiation with distinct moment of
time. From the basic structure I of ID one can construct
a chain h(I0; t0);(I1; t1); : : : ;(Ik; tk);i of links Ii , with sim-
ilar structures. Usually each node xj ;0 from I0 has sim-
ilar nodes xj ;1;xj ;2; : : : in remaining segments of ID, but
some parameters of these nodes are different, simulating
parameter changes in discrete time, with a characteristic
hxj ;0;xj ;1; : : : ;xj ;ki. Segments of such time-sliced diagram
are connected by arcs (temporal links) which define how
the distribution of time slice i depends conditionally on
the distribution of the variables of time slice i � 1. The
time slices of ID are assumed to be chosen such that the
ID obeys the Markov property: the future is conditionally
independent of the past given the present.
Figure 3 depicts very simple structure of bit-sliced ID, with
segments corresponding to weeks (in a month) or to quar-
ters (in a year).

Fig. 3. Bit-sliced influence diagram.

Chance nodes may refer to the states of production (busi-
ness, health etc.) during a considered period, decision
nodes show external interventions improving appropriate
state at the end of the period, and utility nodes valuate the
results (periodic and final).
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One of the segments (for example Ix) of a time-sliced ID
can refer to the current time tx. If all parameters up to tx are
observed then inference of parameters from Ix+1;Ix+2; : : :
is known as prediction. On the basis of information from Ix

one can also compute some parameters from the past (hind-
sight).
Time-sliced ID helps in choosing the best moment for de-
cision taking; comparing effects of the same decision in
different slices one can select the most suitable time.
Time is related to nodes. Chance nodes may describe
states or events with substantial length of time. Decision
nodes are also related to time consuming actions, and re-
sults of decisions are sometimes very late towards the mo-
ment of decision. If in a modeled problem time is critical,
all these delays should be taken into account.
Let τ(x) describe the time needed by a node x and τ(π) –
the time necessary for a path π . When τhd0;αi> τhd00;β i
and both paths give the same result with equal costs, the
decision d00 should be preferred. All other cases can be
discussed easily.
As an example of these considerations we will discuss the
case of the call center from the Section 1. In this case the
global performance of CC can be enlarged by personel in-
crease or the new algorithm of data mining, or both. If the
time of performance improvement is critical, the total util-
ity function depends on the times of two actions (personel
recruiting and education versus algorithm preparation and
implementation).
There are some other methods for introducing an impact of
time in ID.

� When a value of time is uncertain we can use a spe-
cial chance node to represent it, and utilize for further
inference.

� If delay of action related with d decreases utility u,
we can model losses with time by the linear or ex-
ponential form of utility functions [7]:

u(d; t) = u(d; t0)�at ; u(d; t) = u(d; t0)e
bt :

4. Summary

We described the assessment and use of time dependent
influence diagrams. It has been shown that there are many
opportunities to introduce time: by ordering nodes, time

slices, time dependent variables and functions. Unfortu-
nately different approaches are devoid of common method-
ology helping in an ID construction. It seems that further
investigations should be directed to the integration of ex-
isting methods.
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Abstract — The paper gives brief, user-oriented, information
on the GUHA method.

Keywords — GUHA method, data mining, exploratory data
analysis.

GUHA is a method of computerized generation of hypothe-
ses based on given data. GUHA stands for General Unary
Hypotheses Automaton. Its origin goes to mid-sixties of
XX century, original authors are P. Hájek, I. Havel and
M. Chytil [7]. The basic monograph on GUHA and its
theory is P. Hájek and T. Havránek [9]. With time the
method has undergone continuous development, both in its
theory and implementations.
The main principle of GUHA, formulated in [7] is to de-
scribe all the possible assertions which may be hypothe-
ses, to generate them in some optimal manner, to verify
each such assertion and to output those found interesting
(“interesting” meaning: supported by data and sufficiently
“strong”). “The function of GUHA is to offer hypotheses,
not to verify previously formulated hypotheses.”
This makes GUHA a method of exploratory data analysis
(as opposed to confirmatory data analysis); since the 90-ties
of the 20th century the term “data mining” has been in
use for such methods (mainly if they deal with very large
data sets, see [1, 2]). From the present point of view,
GUHA is a very early (and still developing) method of data
mining, which, unfortunately, has been rather unknown.
Here we describe GUHA very briefly, giving reference to
the literature and implementations.
The data to be processed can be represented as a rectangu-
lar matrix M whose rows correspond to some objects and
columns to some attributes. (For example, objects may be
patients and attributes are symptoms and diseases; or ob-
jects are bank transactions and attributes are various items
describing them as kind of loan etc. – note that this termi-
nology – transactions and items – is standard in the methods
of Agrawal et al.). The value in the ith row and jth column
is the value of jth attribute for the ith object. The value
may be binary (yes-no, coded by 1 and 0), integers or reals,
the “classical” case being the first. Missing values can be
handled.
Logic is used to code hypotheses. Give each attributes (ma-
trix column) a name (e.g. SEX; AGE; : : : ). For any sub-
set X of the domain of an attribute P; P : X is the property
saying “the value of P is in X, e.g.

TEMPERATURE: (� 38ÆC):

If P is binary (e.g. HAS�A�CAR) then P stands for
P = YES and :P (negation) for P = NO. The formula

P : X is called a literal (atomic formula). You may form
conjunctions of literals, e.g. P1 : X1 & P3 : X3 & P7 : X7 is
a conjunction of three literals. The ith object satisfies this
conjunction if its value (in the ith row of the data matrix)
of P1 is in X1; value of P3 is in X3 and value P7 is in X7:
Such conjunctions describe composed properties of our
objects.
Hypotheses in GUHA (more precisely in its particular ver-
sion called GUHA-assoc) have, roughly, the form “proper-
ties ϕ ;ψ are associated” (think, for example, of smoking
and cancer). We write ϕ �ψ and here � denotes some no-
tion of association (logically speaking, a generalized quan-
tifier). ϕ is called the antecedent and ψ the succedent of
the sentence (hypothesis) ϕ � ψ :
The pair ϕ ;ψ of properties and the given data matrix de-
termine four frequencies:

a= the number of objects satisfying both ϕ and ψ ;
b= the number of objects satisfying ϕ but not ψ ;
c= the number of objects satisfying ψ but not ϕ ;
d= the number of objects satisfying neither ϕ nor ψ :

This can be presented as a four-fold table

a b r
c d s
k l m

where r = a+b; s= c+d; k= a+c; l = b+d (marginal
sums) and m= a+b+c+d= r +s= k+ l is the number
of objects in our data.
A quantifier (notion of association) � is given by a function
Tr�(a;b;c;d) associated with each four-fold table a;b;c;d
either 1 (yes) or 0 (no); the formula ϕ � ψ is true in the
data if and only if for the four-fold table (a;b;c;d) of ϕ ;ψ
we get Trsim)(a;b;c;d) = 1:
We shall give four examples of quantifiers used in GUHA
(those are not all quantifiers GUHA uses).

(1) Implicational (A) B says “Many A’s are B’s)”
FIMPL (founded almost-implication): It has value 1
when

a� BASEand
a

a+b
� p

(BASE; p are parameters)

LIMPL (lower critical almost-implication): Parame-
ters BASE; p;α . It has value 1 when a� BASEand

r

∑
i=a

�
r
i

�
� pi � (1� p) r�i

� α:
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(2) Comparative associational (A� B says “B is rather
more frequent among A’s than among (:A)’s” (or,
if you want, “A makes B more plausible”.

SIMPLE (simple deviation): Parameters: BASE(in-
teger), K � 1. It has value 1 when a� BASE and
a�d>K �b�c: (Note that the second formula is equiv-
alent to

a
a+Kb

>
c

c+d
):

Fisher quantifier: Parameters BASE;α . It has value 1
when a� BASE, a �d > b �c and

min(b;c)

∑
i=0

(a+b)!(a+c)!(b+d)!(c+d)!
m!(a+ i)!(b� i)!(c� i)!(d+ i)!

� α :

In both groups, the first quantifier (FIMPL, SIMPLE) just
expresses an observation on frequencies in the data; the
second, more complicated, is a test of a statistical hypothe-
sis concerning probabilities in the unknown universe from
which our data are a sample. (High conditional probability
in the case of LIMPL, positive dependence in the case of
FISHER).
Note that the GUHA theory has a notion of associational
and implicational quantifiers; FIMPL and LIMPL are ex-
amples of implicational quantifiers whereas SIMPLE and
FISHER are examples of associational quantifiers that are
not implicational (conversely, each implicational quantifier
is associational). We do not go into any details; see [9]
for this theory.
Let us also mention that FIMPL is almost the same no-
tion of association as what Agrawal and his school calls
“association rule”, reinventing in fact our FIMPL (the
only difference is that our BASE gives a lower bound
for a whereas his “support” gives a lower bound to a=m,
where m is the number of objects). Also note that examples
of other quantifiers are found in [9] and in the papers by
Rauch [21–25].
Now we shortly describe a GUHA procedure ASSOC work-
ing with associational quantifiers. The application of the
procedure takes place in three steps:

� preprocessing – input of the data matrix and param-
eters determining syntactic form of antecedents and
succedents to be generated (e.g. maximal length of
conjunctions, attributes allowed to occur only in an-
tecedents, in the succedents; choice of the quantifier
used and its parameters etc.); preparing the internal
representation of the data matrix in a form suitable
for quick generation and evaluation of hypotheses;

� kernel – generating and evaluating hypotheses; a sys-
tem of “interesting” ones is produced;

� postprocessing – browsing in the hypotheses found
and their interpretation; sorting, reordering etc.

There have been several implementations in the history of
GUHA; but the reader will agree that implementations get
obsolete very quickly. There is a working implementation
for PC [15] and two present implementations under Win-
dows, freely available: GUHA+- and 4ft-Miner [28, 29].
The references below contain a selection of works devoted
to GUHA theory and selected applications. Don’t overlook
the fact that the basic monograph on GUHA theory, [9] is
now freely available on the web [10].
The antiquity of GUHA is not the most important thing;
more important is the fact that the theory developed for
GUHA is also presently useful and inspirative for data min-
ing. One can hope that it will become more broadly known
in the future.
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[12] P. Hájek, J. Rauch, T. Feglar, and D. Coufal, “The GUHA method,
data preprocessing and mining”, in Proc. Database Technologies for
Data Mining DTDM’02, Praha, Czech Rep., 2002, pp. 29–36.
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[14] P. Hájek, Guest Ed., Int. J. Man-Mach. Stud., vol. 15, no. 3, 1981
(second special issue on GUHA).

113



Petr Hájek
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[17] T. Havránek, “The statistical modification and interpretation of
GUHA method”, Kybernetika, no. 7, pp. 13–21, 1971.
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Paper Data mining
and complex telecommunications

problems modeling
Janusz Granat

Abstract — The telecommunications operators have to man-
age one of the most complex systems developed by human
beings. Moreover, the new technological developments, the
convergence of voice and data networks and the broad range
of services still increase this complexity. Such complex ob-
ject as telecommunication network requires advanced soft-
ware tools for their planning and management. Telecommu-
nications operators collect large volumes of the data in vari-
ous databases. They realize that the knowledge in these huge
databases might significantly improve various organizational
strategic and operational decisions. However, this knowledge
is not given explicitly, it is hidden in data. Advanced methods
and algorithms are being developed for knowledge extracting.
In this paper we will focus on using data mining for solv-
ing selected problems in telecommunication industry. We will
provide a systematic overview of various telecommunications
applications.

Keywords — decision support systems, telecommunications, dy-
namic information system, temporal data mining.

1. Introduction

The problems that are specified in the domain terms might
be classified into three main levels of analysis (Fig. 1):

� Business level (e.g. better understanding and predic-
tion of customer behavior, identification of customer
needs, customer-oriented supply of new services, im-
provement of business processes). On this level we
use a client oriented data.

� Product or service level (e.g. web mining). On this
level we use service oriented data.

� Network and information infrastructure analysis level
(e.g. fault detection, supporting network manage-
ment, resource planning). On this level we use a net-
work oriented data.

We can distinguish three main steps of describing data min-
ing problems:

1. Problem formulation in the domain terms. This is
usually textual description of the business require-
ments that have to be fulfilled by data mining.

2. The transformation of business requirements into
a class of data mining problems like classification,
prediction, associations etc. It is a bridge between
business description and detailed model specification.

3. The detailed model specification. This is a model
specification that is used by data mining modeler for
a specific software tools.

Fig. 1. Levels of problem analysis.

An overview of data mining problems in the context of
business problems in telecommunication is given in [1, 5].
It can be observed that one of the main areas of applications
of data mining on business level is a support for various task
of the marketing departments. The data mining becomes
a key part of analytical subsystem of customer relationship
management systems. On business level of analysis there
are many similarities to other industries. The applications
of data mining for marketing can be found in [11]. The fol-
lowing main problems for marketing and sales departments
of telecommunication operators can be distinguished:

– customer segmentation and profiling,

– churn prediction,

– cross selling and up-selling,

– live-time value,

– fraud detection,

– identifying the trends in customer behavior.

On product or service level there is a focus on analysis
of incomes, quality of the service, grade of the service
and others. There are formal agreements called service
level agreements (SLA) [4] between providers of the ser-
vice and the customers. Service level management (SLM)
are becoming the prevailing business model for delivering
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a products and services. Such approaches need advanced
computerized tools.

On the level of infrastructure and network analysis we can
distinguish the following problems:

– network planning,

– IT resources planning,

– fault detection, location and identification.

2. The formal description of a data
mining process

The typical data mining process consist of the following
steps:

– problem formulation,

– data preparation,

– model building,

– interpretation and evaluation of the results.

In the industry environment these steps as follows (in the
brackets there is information about responsible persons):

– problem formulation (business users),

– developing programs for preprocessing the data (data
mining analyst),

– building the model (data mining analyst, business
users),

– prepare the processes of the use of the data mining
models in the business (business users),

– repetitive running of the model (data mining analyst),

– running programs for loading and transformation of
the data,

– running the data mining models – scoring,

– export the scoring results to the operational systems.

There are a lot of publications related to data mining but
these publications are focusing on algorithms, description
of problems etc. but there is no common formal descrip-
tion of data mining process in the context of enterprise
application. In this section we will provide such a formal
description of a data mining process. We will start with
source data description by information system, then prepro-
cessing of data in order to prepare input for data mining
algorithms, and finally the results of the algorithms.

2.1. Source information systems

As the input for a data mining process there are various
tables of the databases, text files etc. These source data
might be described formally by the information systems.
We define, following [8, 9] or [3], an information system as
a 4-tuple:

S= (X;A;V;ρ); (1)

where:

X – is the finite and nonempty set of objects or observa-
tions,

A – is finite and nonempty set of attributes,

V =
S

a2AVa , Va is a set of values of attribute a2 A, called
the domain of a,

ρ – is an information function: ρ : A�X!V.

Information system S define a relation Rs�Va1
�Va2

�
� : : : � Vak

, so that Rs(vi1
;vi2

; : : : ;vik
) , (a1;vi1

);

(a2;vi2
); : : : ;(ak;vik

) is nonempty information in S. The
relational approach is often used in data processing, but
in data mining we need more information that we have in
information system. The links between information system
and relations might be useful in data preprocessing.

The information system (1) describes the static nature of
the system. In practical applications we have to deal with
dynamics of the system. Orłowska [7] introduced the term
dynamic information system:

D = (X;A;V;ρ ;T;R); (2)

where:

T – is a nonempty set whose elements are called moments
of time,

R – is a order on the set T (here we assume linear order),

X – is the finite and nonempty set of objects or observa-
tions,

A – is finite and nonempty set of attributes,

V =
S

a2AVa , Va is a set values of attribute a2 A, called
the domain of a,

ρ – is an information function: ρ : A�X�T !V.

Orłowska in [7] have considered dynamic information sys-
tem in context of a logic. In this paper, we wiil use this
system as a base for formulation of the temporal data min-
ing problems.

2.2. The preprocessing

The data sources of a data mining process might be de-
scribed by the set of dynamics information systems:

Σ = fD1
;D2

; : : : ;Dlg : (3)
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The data sources have to be transformed into the input dy-
namic information system IT that is needed for data mining
models:

IT = P(Σ) ;

where:
IT – is an input dynamic information system,
Σ – is a set of source information systems,
P – is a process of preprocessing.

The IT is defined as:

IT = (X;F;V;ρ ;T;R); (4)

where:
T – is a nonempty set whose elements are called moments
of time,
R – is a order on the set T (here we assume linear order),
X – is the finite and nonempty set of objects or observa-
tions,
F – is finite and nonempty set of features of the objects,
V =

S
f2F Vf , Vf is a set values of feature f 2 F , called

the domain of f ,
ρ – is an information function: ρ : F�X�T !V.
A process of preprocessing can be defined by the set of
preprocessing steps (Fig. 2). The preprocessing step can
be defined as:

Ni = (PNi
;SNi

; IDi
;ONi

;ODi) ;

where:
Ni – ith preprocessing step,
PNi – the set of steps that are the predecessors of the
step Ni ,
SNi – the set of successors of the step Ni ,
IDi – the set of input dynamic information systems for the
step Ni ,
ONi – the operator of the step,
ODi – the set of output dynamic information systems of
the step Ni .
The dynamic information system IT � ODi

j for selected
step Ni . ONi belong to set of operators:

O= (O1;O2; : : : ;Ok) :

IT
N1

N2

ID0
1

ID0
1

ID0
1

ID1
1 O1 OD1

1

ID2
1

ID2
1

ID2
1

O2

OD2
1

OD2
1

Fig. 2. A process of preprocessing – an example.

We might have the basic sets of operators on physical level
like: projection, selection, etc. However, the preprocess-
ing phase requires a broad knowledge about the data and
methods of data transformation. In data mining we need
advanced systems for preprocessing that will allow to store
and reuse the knowledge about this phase. MiningMart [6]
is an example of the system dedicated to preprocessing.

2.3. Modeling – the model building

After execution of the preprocessing step we have an dy-
namic information system IT that might be used for build-
ing a model. A model might have various forms. We can
write that model M is build on the base of the dynamic
information system IT :

IT )M :

In this paper we restrict our models to feature based models.
Feature base modeling assumes that objects are described
by a set of features and the models find dependencies be-
tween features or predict unknown values.
We have to define the training, test, evaluation and scor-
ing dynamic information systems. These information sys-
tems are equivalent to the sets defined in [2]. The train-
ing dynamic information system is used for preliminary
model building. The test dynamic information system is
used for refining the model. The performance of the model
is tested by using evaluation dynamic information system.
The model is applied to the score dynamic information sys-
tem (Fig. 3).
The training, test, evaluation and scoring information sys-
tems are defined as follows:

IT fidg = (Xfidg
;Ffidg

;Vfidg
;ρfidg

;Tfidg
;R); (5)

where:
id = Train – for a training dynamic information system,
id = Test – for a test dynamic information system,
id = Eval – for an evaluation set dynamic information sys-
tem,
id = Score – for a scoring set dynamic information system,
Tfidg – is a nonempty set whose elements are called mo-
ments of time,
R – is a order on the set T (here we assume linear order),
Xfidg � X – is the finite and nonemty set of objects or ob-
servations,
Ffidg = F – is finite and nonempty set of features of the
objects,
Vfidg =V =

S
f2F Vf , Vf is a set values of feature f 2 F ,

called the domain of f ,
ρfidg – is an information function:
ρfidg : F�Xfidg�T !V.

The sets of objects fulfill the following condition:

X = XTrain[XTest[XEval[XScore.
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results

Training

    DIS

    DIS

Evaluation

    DIS

Scoring

    DIS

Model

Model

Model

Evaluation
results

Algorithm

Test

Scoring

Fig. 3. The main components of a data mining process (DIS is
a dynamic information system).

2.4. The data mining models

2.4.1. The classification models

There is a set of predefined m classes of the objects:

C= fC1;C2; : : : ;Cmg :

These classes divide the set Xid into m subsets:

Xid 7! fXid
C1
;Xid

C2
; : : : ;Xid

Cm
g ;

Xid
Ci
� Xid

;Xid
Ci
\Xid

Cj
= /0 for i 6= j;

[

i

Xid
Ci
= Xid

:

The classification model assigns for each object its cate-
gory. Let us consider the selected fC feature of the object
(where C 2 FC, FC – is the index of a feature that iden-
tify the class), called class feature, and the subsets of input
features fI (I 2 FI , FI = F nFC, FI – is the index set of
input features, F – is the index set of all object features).

The model is defined as follows:

ρ( fC;xi ; t) = MC(ρ( fk1;xi ; t);ρ( fk2;xi ; t); : : : ;ρ( fkk;xi ; t)) ;

where:
xi – is an object identifier,
t 2 Tid – is a moment of time,
k1;k2; : : :kk2 FI .

2.4.2. The clustering based models

There is a set of objects Xid of a dynamic information
system IT id and the similarity measure between objects
xi ;xj 2 Xid , i 6= j:

ϕ(xi ;xj) :

The clustering algorithms divide the set of objects into m
subsets of similar objects (based on the similarity measure):

Xid 7!ϕ(xi ;xj )
fXid

S1
;Xid

S2
; : : :[Xid

Sm
g ;

Xid
Si
� Xid

;Xid
Si
\Xid

Sj
= /0 for i 6= j;

[

i

Xid
Si
= Xid

:

Each of the clusters has the corresponding identifier:

S= fS1;S2; : : : ;Smg :

For a huge data set we have to find the clusters of objects
for a training set and then we build a classification model
that can be applied for a scoring set. Let us consider the
selected fS feature of the object (where S2 FS, FS – is
the index of cluster feature), called cluster feature, and the
subsets of input features fI (I 2 FI , FI = F nFC, FI – is
the index set of input features, F – is the index set of all
object features).

The model is defined as follows:

ρ( fS;xi ; t) = MS(ρ( fk1;xi ; t);ρ( fk2;xi ; t); : : : ;ρ( fkk;xi ; t)) ;

where:
xi – is an object identifier,
t 2 Tid – is a moment of time,
k1;k2; : : :kk2 FI .

2.4.3. The estimation models

The estimation model is used for finding the unknown val-
ues of the target feature that depend on some input data.
Let us consider the set of objects Xid of a dynamic infor-
mation system IT id , the selected unknown feature of the
object fO (where O2 FO, FO – is the index of target (out-
put) feature), called target feature, and the subsets of input
features fI ( I 2 FI , FI = F nFO, FI – is the index set of
input features, F – is the index set of all object features).

The model is defined as follows:

ρ( fO;xi ; t) = ME(ρ( fk1;xi ; t);ρ( fk2;xi ; t); : : : ;ρ( fkk;xi ; t)) ;

where:
xi – is an object identifier,
t 2 Tid– is a moment of time,
k1;k2; : : :kk2 FI .

2.4.4. The predictive models

The prediction model is used for finding the unknown val-
ues of the target that depend on some input historical data.
The time is important in this model. Let us consider the set
of objects Xid of a dynamic information system IT id , the
selected unknown feature of the object fO (where O2 FO,
FO – is the index of target (output) feature), called tar-
get feature, and the subsets of input features fI (I 2 FI ,
FI = F nFO, FI – is the index set of input features, F – is
the index set of all object features).
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ρ( fO;client id; tchurn) = MP

�
ρ( f1;client id; t1);ρ( f1;client id; t2);ρ( f1;client id; : : : );ρ(client id; f1; tT);

ρ( f2;client id; t1);ρ( f2;client id; t2);ρ( f2;client id; : : : );ρ( f2;client id; tT);

: : : ;

ρ( f6;client id; t1);ρ( f6;client id; t2);ρ( f6;client id; : : : );ρ( f6;client id; tT);

: : :
�
:

The model is defined as follows:

ρ( fO;xi ; tp) = ME(ρ( fk1;xi ; t1);ρ( fk1;xi ; t2);ρ( fk1;xi ; : : : );

ρ( fk2;xi ; t1);ρ( fk2;xi ; t2);ρ( fk2;xi ; : : : );

: : : ;

ρ( fkk;xi ; t1);ρ( fkk;xi ; t2);ρ( fkk;xi ; : : : )) ;

where:
xi – is an object identifier,
Tid = ft1; t2; : : : ; tT ; tpg,
tp = tT +ζ , ζ > 0,
tp – is the prediction time,
k1;k2; : : :kk2 FI .

2.4.5. The association rules

Let us consider the set of objects X of a dynamic infor-
mation system IT , the set of the identifiers of the rules
N= f1;2; : : : ;mg, the selected subset of features of the ob-
ject FPi (where FPi � F , i 2 N, F – is the index set of
all object features), and the subsets of features of object
FQi = F nFPi .

The association rules are defined as follows:

Pi(ρ( fl1;xl1; tl1);ρ( fl2;xl2; tl2); : : : ;ρ( fll ;xll ; tll )))

Qi(ρ( fr1;xr1; tr1);ρ( fr2;xr2; tr2); : : : ;ρ( frr ;xrr ; trr )) ;

where:
i 2 N,
f
:::

– is a feature of the object,
x

:::
– is an object identifier,

t
:::
2 T– is a moment of time,

l1; l2; : : : ll 2 FPi 8i 2 N,
r1; r2; : : : rr 2 FQi 8i 2 N .

3. An example of the model formulation

One of the main problems that have to be solved by market-
ing departments of telecommunications operator is a long-
term relationship. They have found the way of convincing
current clients to continue using the services. The methods
that predicts the set of customers who are going to leave
the operator might be a significant tool that improves the
marketing campaigns [10, 12].
The telecommunication operator is storing a lot of infor-
mation about the clients in the databases. At the detail
level they have switch recordings in the form of call detail

records (CDR). This information is useful for billing but
can not be directly used for churn analysis. Therefore, this
detailed information should be aggregated and additional
data should be added. Table 1 shows a subset of the data
for churn analysis.

Table 1
The features that describes the clients

Client
id

f1
t1

f2
t1

f3
t1

f4
t1

f5
t1

f6
t1

: : :
churn

tc
1273 20 300 50 30 25 1 : : : Y
2234 100 400 100 20 30 10 : : : N
: : : : : : : : : : : : : : : : : : : : : : : : : : :

There are the following features of the clients in the
Table 1:

� f1 – remaining binding days,

� f2 – total amount billed,

� f3 – incoming calls,

� f4 – outgoing calls within the same operator,

� f5 – outgoing calls to other mobile operator,

� f6 – international calls,

� and others.

The training information system is defined as follows:

IT Train = (XTrain
;FTrain

;VTrain
;ρTrain

;TTrain
;R); (6)

where:
TTrain = t1; t2; : : : ; tT ; tchurn, tchurn= tc = tT +ζ , ζ > 0,
XTrain – is the finite and nonemty set of clients,
FTrain – is finite and nonempty set of features of the objects,
VTrain=

S
f2F Vf , Vf , is a set values of feature f 2F , called

the domain of f ,
ρTrain – is an information function:
ρ : FTrain�XTrain�Ttrain !Vtrain.

A predictive model has been selected for a churn modeling.
The “churn” feature has been selected as a target feature
( fO = churn), the indexes of the input features fI belongs
to the set FI = f1;2;3;4;5; : : :g.

The model is defined as follows – see the top of this page.
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4. Conclusions

In this paper there is an overview of complex telecommu-
nications problems modeling. We have applied the defini-
otion of the dynamic information system for a formal de-
scription of the preprocessing as well as model definition.
We have stressed the importance of the preprocessing step
in a data mining process. An example of churn model for-
mulation has been provided. The presented approach might
be stimulating for a development of various temporal data
mining models.
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Paper The use of quantitative
association rules in cellular

network planning
Michał Okoniewski

Abstract — This paper describes the problem of planning
cellular network base stations with optimization to traffic re-
quirements. This research problem was a main incentive to
add some development to the theory of association rules. The
new form of quantitative and multi-dimensional association
rules, unlike other approaches, does not require the discretiza-
tion of real value attributes as a preprocessing step. They are
discovered with data driven algorithm that gives precise and
complete results and has polynomial complexity for a given
dimensionality.

Keywords — data mining, quantitative association rules, knowl-
edge discovery process, cellular network planning.

1. Problem statement

One of the most important areas for a young cellular tele-
com provider is network expansion. This creates a need for
traffic prediction, i.e. we would like to estimate the number
of calls made during a certain time span, on an area where
we want to build a new base station. Such information is
crucial for station equipment design – there must be enough
transceivers to ensure that every subscriber in the GSM cell
created by this station is able to place or receive call. On
the other hand, there should not be too much available –
and unused – radio channels, because this would mean un-
necessary costs.
Traffic prediction is a complex task, as the number of
subscribers present on a certain area may vary. After all
GSM is an abbreviation of name Global System for Mo-
bile Telecommunications, and GSM subscribers travel be-
tween cells, for example moving into city centers at day,
and going to suburbs (where their homes are) in the
evening. Similar effect can be observed also for longer
time periods. So called vacation traffic analysis shows that
in the summer average traffic generally increases in popu-
lar resort areas – like mountains, seashore etc. Fortunately
our analysis showed that these variations are periodic, and
predictable, at least for regions with well developed GSM
coverage. We can therefore try to predict traffic for a cer-
tain characteristic time period – say, for vacation time,
using measurements of existing network elements, and
than interpolate obtained values.
In this particular experiment we were able to extract two
types of information from ERA GSM network monitoring
system. First was the traffic information. For each cell we
obtained average of weekly traffic measured at busy hour

(usually around midday). Other type of information has
been extracted from company’s geographical information
system (GIS). For each cell, the types of terrain occupied
have been established. The GIS database contained infor-
mation about nine terrain types (landuses) that may occur
in particular cell. These were:

1) fields,

2) forests,

3) water,

4) rocks, seashores, swamps,

5) roads, concrete, parks,

6) suburbs,

7) urban,

8) dense urban,

9) industrial.

For each cell the amount of ground pixels occupied by every
landuse have been defined. One ground pixel width and
length are approximately 5 seconds of arc. Our initial data
about existing network have been collected and recorded in
a table with following attributes:

– cell identification number,

– landuse type 1..9,

– number of pixels occupied by above landuse,

– cell number that allows to determine region in which
the cell is situated,

– traffic – the average weekly value in Erlangs for
a given cell.

The main goal of the project was to build a predictive
model of network traffic that would allow analysts to plan
the power of base station in newly created radio network
cells. Various methods such as neural networks, clustering,
regression or regressional clustering were used [1, 2].
However there were almost no results with classic associ-
ation rules. It was due to the fact that the quality of data,
already not perfect, was made even worse with discretiza-
tion. It turned out that it’s difficult to find a discretization
that does not loose informational value of discovered rules.
After the research project in thesis [7] there was introduced
a new theory of quantitative rules that could be able to cope
with the problem using new form of rules and data driven
approach instead of discretization.
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2. New form of quantitative rules

In [4] rules with single numeric attribute in both antecedent
and consequent are presented. In this paper we consider
their generalized forms. Thus, definitions included in this
section are multi-dimensional extensions of definitions for
“Quantitative to Quantitative” rule from [4].

Notations. Let D be a relational table with a set of quan-
titative attributes E = fI1; I2; : : : ; Ik;Jg.
Letters A; B; : : : mean single attributes from E, while
X;Y; : : : mean subsets of E. Table D may be viewed
as a set of tuples D = ft1; t2; : : : ; tng. Notation ti :A indi-
cates the value of attribute A for i tuple. A range (A;a;b)
is defined by a single attribute A 2 E and two numbers
fa;bg 2 domain(A)� R;a� b. A profile PrX over X � E
is defined as a common part of ranges

T
i2X(ai;bi) – one

range for each attribute in X. Notation (A;a;b) 2 PrX
means that range (A;a;b) is one of the ranges that de-
limit PrX.
Basically, a profile may be simply viewed as
a k-dimensional hyper-cuboid. jPrXj is a number of tuples
from D that have all corresponding attribute values within
profile PrX. A statistical measure M is defined over
distribution of attribute J values. M(PrX) is a value of
this measure for distribution of J for tuples that have all
corresponding attribute values within PrX . In addition,
M(D) is the measure value for distribution of J attribute
values for the whole D. As in [4], the measure M is
usually the mean of J values.
The antecedent of the rule is a profile that defines sub-
population of tuples that is significantly different from
the whole D with regard to the attribute J. It is assured
by second condition (a difference condition) that holds if
there is a minimal difference mindi f between the measure
for D and for the PrX. In [4] standard methods for sta-
tistical hypothesis testing were then applied (e.g. a Z-test
for the mean) to check the significance of the difference.
Another condition is a standard support requirement for
an association rule.
With the use of above notations we can build up a definition
of generalized “Quantitative to Quantitative” rule.

Definition 2.1. Multi-dimensional (mean based) quantita-
tive association rule is a rule of the form:

PrX )M(PrX) (M(D)) ;

where:

� X\Y = /0,

� jM(PrX)�MDj �mindi f,

� jPrXj �minsup.

Constants mindi f and minsupare user-defined parameters.
There is no confidence parameter of the rule. The rule has
the difference parameter di f =M(PrX)�M(D) instead, to
indicate its strength. Let us here specify minimal M for

a rule by µ = M(D)+mindi f. The dimensionality of the
rule is equal to the number of attributes in its profile.

Remark. Definition 2.1 describes a rule that has the mean
above average ((M(PrX)>M(D)) . The work in this paper
considers above-average rules that follow this definition.
All this may be also applied by the simple analogy for
below-average rules.
Examples of quantitative rules are:

cigarettesdaily2 (10;20)^overweight2 (10;20))
li f e expectancy= 58(li f e expectancy= 72)

latitude2 (49N;50N)^ longitude2 (19E;21E))
avg temp:April = 3C(avg temp April Poland= 7C)

Important notions are irreducible and maximal rules. These
are rules that are intuitively “interesting” to discover:

Definition 2.2 (irreducible rule). Rule PrX ) MJ(TPrX
)

is irreducible, if for every range (A;a;b) 2 PrX and every
number c, a < c< b the following is true: profiles PrX1
and PrX2 that are created by exchanging (A;a;b) in PrX
respectively with ranges (A;a;c) and (A;b;c) result in rules
PrX1)MJ(TPrX1) i PrX2)MJ(TPrX2) that fulfill at least
the difference condition from Definition 2.1.

Definition 2.3 (maximal rule). Rule PrX ) MJ(TPrX
) is

a maximal rule , if for every range (A;a;b) 2 PrX and ev-
ery c, c> b (c< a) the rule which is created by exchanging
range (A;a;b) in the input rule with range (A;a;c) ((A;c;b))
does not fulfill the difference condition from Definition 2.1
or is reducible.
Accordingly, irreducible rule profile may be divided by any
hyperplane A = c into two profiles, that maintain above-
average difference condition. As it is pointed out in Sec-
tion 5 in multiple dimensions irreducibility is not good
enough to the intuitive connotation of a rule with homoge-
neous distribution of tuples. However, the irreducibility is
a basic quality that makes the rule desired.
Maximal rule is one that cannot be extended into a sin-
gle dimension. Nonetheless, it may be extended into two
or more dimensions by enlarging more than one range
from PrX . That is why definition of maximization is useful
mainly for one-dimensional rules.
Let us present two theorems that describe properties of
quantitative rules and are essential for discovering them.

Theorem 2.1. If the quantitative association rule
(A;a;b))MJ(TPrX

) is irreducible, then

8
(A;a;b)2PrX

9t1;t22D t1:A= a^ t2:A= b^ t1:J� µ ^ t2:J� µ

Theorem 2.2. There are minimum 2, maximum 2k
µ-tuples to define a profile of the irreducible rule, where
k is the dimensionality of the profile.

For example, a profile in two dimensions is defined by 2,3
or 4 µ-tuples (Fig. 1).
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Fig. 1. The µ-tuples that define a profile.

3. Exploratory algorithm

The general outline of the mining algorithm that utilizes
Theorems 2.1 and 2.2 is as follows. First, select all the
µ-tuples. Then consider the µ-tuples in sets from mini-
mum 2 to maximum 2k elements. For each set find mini-
mal and maximal values for each attribute I1; : : : ; Ik . In this
way we obtain suspected profile boundaries. Then, check
the irreducibility of the profile by incrementally checking
divisions of the profile into two hyper-cuboids with all in-
cluded tuples. All the hyper-cuboids have to be above av-
erage in terms of the mean J value. If only one of the
checks fails, the profile does not form a rule and so may
be rejected. The algorithm may be sketched in a recursive
form that works on object variable MiTupleSet:

1 int CheckMiTuples(int level,int TupleNo)
2 f
3 if (level < 2*k)
4 f
5 for(int i=TupleNo+1;i<=MiTuplesQ,i++)
6 f
7 AddTuple(MiTupleSet,i);
8 if(level>1) CheckProfile(MiTupleSet);
9 CheckMiTuples(level+1,i);
10 g
11 g
12 g
13 FindQRules()
14 f
15 SelectAndSortMiTuples();
16 CheckMiTuples(1,0);
17 g

The computational complexity of above algorithm depends
on the percentage p of µ-tuples in the database , and may

be estimated [7] as O(k(pn)2k). This assumes that the cost
of selecting tuples inside a profile hyper-cuboid is small,
because of effective indexing method for k attributes.
The complexity is polynomial with the number of tuples,
but may be still considered high. It may be decreased with
clustering strategies for µ-tuples.
The efectiveness of the algorithm and comparisons with
classic mining algorithms for quantitative rules [8] was de-
scribed in detail in [7].

4. Application

As described in section with problem statement, the space
may be divided into regions, for example mobile telecom
cells. For each region we can establish a number of nu-
meric parameters (e.g. population or percentages of area
types in the cell: forests, urban, water, etc.). For each re-
gion we obtain a tuple of attributes I1; : : : ; Ik that stand for
parameters plus one analyzed attribute J. These tuples are
the input to rule discovery algorithm. As a result we obtain
a rule-based predictive model that may be used for classi-
fication of other regions in the space. Examples of such
rules are

urban2 (10%;28%)^

^roads2 (5%;11%)^ forest2 (0%;8%))

tra f f ic = 4:1erl(tra f f ic = 1:2erl)

water2 (6%;25%)^ f orest2 (30%;80%))

tra f f ic = 0:2erl(tra f f ic = 1:2erl)

water2 (15%;35%)^suburbs2 (20%;40%))

tra f f ic = 3:0erl(tra f f ic = 1:2erl)

5. Other areas of application
and future work

The new form of rules may be used also directly to raw
spatial data. Such data may be sampled, even at random,
and used as an input to rule mining algorithm. It is obvi-
ous that the frequency of sampling increases rule accuracy
and consequently the algorithm running time. Antecedent
attributes I1; : : : ; Ik are coordinates of points in 2D, 3D or
even higher dimensionality space. Decisive attribute J de-
scribes the analyzed value (i.e. elevation, temperature, cel-
lular traffic, etc.). As a result we obtain hyper-cuboid re-
gions (squares in 2D) where the value is high above (or
below) average for the hole space.
Sampled graphic files are almost the same case as raw spa-
tial data. In [7] there is described a series of experiments
that prove usefulness of new methodology to discover pat-
terns in graphic files.
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Future work planned in the area of data driven discovery
of quantitative rules is as follows:

– rule management systems to filter interesting and rep-
resentative rules,

– enhanced mining algorithms,

– better use of database systems – some experiments
with multidimensional indexing [3] were already
done,

– intelligent management of knowledge discovery pro-
cess,

– the use of new rules for various form of multimedia
data.
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Regular paper Near fields
of elliptic dielectric lenses
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Abstract — The focusing properties of an elliptic dielectric
cylinder taken as a 2D model of dielectric lens are studied
for the plane wave illumination. An algorithm based on the
concept of analytical regularization is applied for the numer-
ical solution of the corresponding wave scattering problem.
Numerical results for the near-field patterns are presented.

Keywords — elliptic dielectric lens, method of analytical regu-
larization, antennas.

1. Introduction

Planar slot or strip elements combined with dielectric lenses
have the potential to be used in mm and sub-mm wave re-
ceivers [1, 2]. The wide attention they have been attracting
recently is due to their capability of integration with elec-
tronic components such as detecting diodes, local oscilla-
tors and mixers. Furthermore, they provide good efficiency
with respect to other antennas printed on homogeneous sub-
strates. Besides, lenses are frequently employed in the laser
technologies for the compression of the light beams. The
elliptical shape of the lens provides focusing properties if
its eccentricity is properly related to the dielectric constant.
On the other hand the lens interface gives rise to reflec-
tion inside the lens that may significantly affect the input
impedance and the radiation sensitivity. This aspect has
not been properly investigated in the literature up to now,
however, it is a critical point in the overall design of lens
antennas. Although various analytical techniques have been
applied for the dielectric lens analysis, they were commonly
based on high-frequency approximations, neglected the lens
curvature and finite beam size, and failed to characterize
resonances. This appears a rough model description, as the
actual size of the lens is usually of the scale of few wave-
lengths only [1, 2]. On the other hand, direct numerical
simulations like FDTD may suffer from unclear and un-
controllable accuracy. As a consequence, there is a need to
develop a reliable simulation technique capable to model
wavelength-scale effects in addition to geometrical optics
ones.
Our main efforts will be concentrated around the analysis of
elliptic lenses in receiving mode. It is known [1, 2] that if
the eccentricity of the ellipse is related to the lens dielectric
constant as e= 1=

p
ε , all the rays outgoing from the focal

point that impinge on the lens interface above the middle
section form a parallel beam, i.e. plane wave. However, in
practice it is very important to take into account finiteness
of source size, and to select a proper source position and
the lens geometry (Fig. 1).

Fig. 1. Geometry and notations of the problem.

In the receiving mode, it is important to know the actual
size and location of the focal domain for different electric
sizes of lenses and different angles of arrival of the incident
wave. Although those effects escape conventional asymp-
totic analyses, they will be accurately quantified with our
full-wave mathematically correct integral-equation method
applied here. We emphasize that there is no limitation on
the dielectric constant contrast between the lens material
and background medium.

2. Outline of the solution

We use an efficient algorithm for the solution of 2D problem
of wave scattering by a smooth dielectric cylinder that can
be built on the concept of analytical regularization [3, 4].
The basic idea of the approach is as follows. The total field
has to satisfy the Helmholtz equation with the coefficient
k and ke = k

p
ε outside and inside the lens, respectively.

Field functions are presented as single-layer potentials with
the density functions to be determined:

Uoutside(rrr) =
Z

L
p(rrrs)G0(rrr; rrrs)d ls+U0 ; (1)

Uinside(rrr) =
Z

L
q(rrrs)Ge(rrr; rrrs)d ls: (2)

Here U0 is the incident field, and the kernels are the Green’s
functions of the free space and uniform media of relative
permittivity ε , respectively:
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G0(rrr; rrrs) =
i
4

H0(kjrrr�rrrsj) ; (3)

Ge(rrr; rrrs) =
i
4

H0(kejrrr�rrrsj) ; (4)

and H0 is the Hankel function of the 1st kind.
By applying the boundary conditions, a set of singular in-
tegral equations (IEs) of the first kind is obtained. Intro-
ducing a global parameterization x(t); y(t) of the contour
L, they can be cast into the following form:
8>>>>>>>>><
>>>>>>>>>:

2πR
0

q(ts)Gε(t; ts)L(ts)dts�
2πR
0

p(ts)G0(t; ts)L(ts)dts=

=U0(ts)

q(t)+α p(t)
2α + 1

α

2πR
0

q(ts) ∂
∂nGε(t; ts)L(ts)dts+

�
2πR
0

p(ts) ∂
∂nG0(t; ts)L(ts)dts = ∂

∂nU0(t) ;

(5)

where t; ts2 [0; 2π ], and L(t) =
p

(dx=dt)2+(dy=dt)2.
Equations (5) are uniquely solvable provided that the
wavenumber k does not belong to the set D of discrete
eigenvalues of the interior Dirichlet problem for L [5]. Di-
rect discretization of IEs (5) is not efficient due to the singu-
lar character of the kernel functions. In order to transform
them to the Fredholm second kind matrix equation with
favorable features, the analytical regularization has to be
done. Adding and subtracting the canonical-shape kernels

Ĝ0(t� ts) =
i
4

H0

�
2ka

����sin
t� ts

2

����
�

; (6)

Ĝe(t� ts) =
i
4

H0

�
2kea

����sin
t� ts

2

����
�

; (7)

and their normal derivatives perform extraction of the sin-
gular parts of the IEs. Analytical inversion of the latter
parts is carried out by using the IE discretization based on
Galerkin’s scheme with angular exponents as global basis
functions. Thus, unknown density functions are sought as

�
p(t);q(t)

	
L(t) =

2
iπ

∞

∑
m=�∞

�
pm;qm

	
eimt: (8)

Here, the angular exponents are the orthogonal eigenfunc-
tions of the integral operators, for example,

2πZ

0

eimtsH0

�
2kaSinj(t�ts)=2j�dts=2πeimtJm(ka)Hm(ka);

m= 0; �1; �2; : : : (9)

Resulting matrix equation is

Z+AZ= B; (10)

where Z =
�

z1
m; z2

m

	��∞
m=�∞,

z1
m = pmHm(ka)Jm(ka)�αqmHm(kea)Jm(kea) (11)

z2
m = kapmH 0

m(ka)Jm(ka)�keaqmHm(kea)J
0

m(kea) (12)

and the elements Ai j
nm and Bj

m(i; j = 1; 2) depend on the
Fourier-expansion coefficients of the smooth functions.
The latter are the differences between kernels (3) and (4)
on L and on the canonical-shape contour, i.e. a circle of
radius a. These matrix elements can be economically com-
puted by using the DFFT algorithm. The coefficient α in
Eqs. (11) and (12) is 1 or ε for E- or H- polarization,
respectively.

Such a regularization plays the role of analytic precondi-
tioning and guarantees point-wise convergence of the nu-
merical solution (provided that k =2 D), i.e., a possibility to
minimize the error to machine precision by solving pro-
gressively greater matrices.

Here, one has to note that the resulting computational error
is determined by several factors: accuracy of cylindrical
functions calculation, accuracy of FFT in the coefficients
calculation, accuracy of numerical integration, and finally,
the truncation error. In our algorithm, Bessel functions are
calculated with digital precision that is achieved by using
the recursion technique (backward for Bessel and forward
for Neumann function). The bottleneck of the algorithm is
accuracy of the matrix element calculation that is controlled
by the order of FFT.

Under these conditions the rate of convergence of the algo-
rithm can be estimated by plotting the normalized compu-
tational error, e(N), in the sense of the l22 norm, versus the
matrix truncation number N:

e(N) =



ZN�ZN+1




 �
�


ZN





�
�1

; (13)

where ZN =
�

z1N
n ; z2N

n

	
are the expansion coefficients com-

puted from the matrix equation with each block truncated
after N equations. Details of the algorithm properties can
be found in [4].

As it has been noted, there is a discrete set of wavenum-
bers, D, which are defective for the developed algorithm.
When intermediate operations are done with finite preci-
sion, the condition number of the matrix (10) blows up
in the vicinity of k 2 D that is comparable in size with
the precision. This entails a spurious resonance in the field
characteristics of the scatterer that is also called “numerical
resonance” in the contrast to natural physical resonances.
This feature is a demerit of the algorithm. It is caused by
the implementation of the single-layer potentials (3) and (4)
and can be overcome when using, instead, linear combina-
tion of single and double-layer potentials [5]. Nevertheless
our approach is free from the inaccuracies near to natu-
ral resonances that are intrinsic for conventional numerical
approximations [6].

As the far-field characteristics are of interest, the large-r ap-
proximation is used. This enables one to replace the Hankel
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functions with its asymptotic and to reduce the integral in
formula (1) to

Urad(t) =
h�

1=iπkr
�1=2 �eikr

i
�Φ(t) ; (14)

where Φ(t) is the far-field radiation pattern determined as:

Φ(t) =
1

2π

∞

∑
n=�∞

pn

2πZ

0

e�ik
�

cos(t)x(ts)+sin(t)y(ts)
�
+intsdts: (15)

The frequency dependence of the total scattered power can
be characterized by the cumulative scattering characteristic
such as a total-scattering cross-section σtot determined as:

σtot =
2

πk

2πZ

0

��Φ(t)
��2dt : (16)

3. Numerical results

The dielectric materials selected for the computations are
high-density polyethylene (HDP), quartz, alumina, and sil-
icon with ε of 2.31, 4.0, 9.8, 11.7, respectively. The
dimensions of the considered lenses are about several
wavelengths. The axial ratio of the considered lenses
is l =

p
ε=(ε �1) to provide the eccentricity condition

e= 1=
p

ε .

Fig. 2. Relative computational error versus truncation number
for different dielectric materials and ka= 10.

Figure 2 shows the dependence of the relative computa-
tional error versus the truncation number N. Rapid fall of
the error with the growth of N is due to the point-wise
convergence of the solution that comes from the Fredholm
nature of the considered matrix equation. All the follow-
ing numerical results have been obtained with the error
below 10�3.
In Fig. 3 the total scattering cross-section versus the nor-
malized wavelength parameter ka for various dielectric ma-
terials is shown. Sequences of extrema, which are well
seen in the graph, are explained by the natural resonances.

Extraordinarily high-Q maxima correspond to spurious nu-
merical resonances that are involved in the true solution
due to chosen representation of the fields.

Fig. 3. Normalized total scattering cross-section of the ellip-
tic cylinder versus normalized frequency parameter for different
dielectric materials (E-polarized plane wave illumination in the
frontal mode).

Fig. 4. Near-field portraits for a silicon lens symmetrically
illuminated by the E-polarized plane wave. Intersections of the
plane of symmetry with the vertical dashed lines indicate the fo-
cal points of the lens. Corresponding ka values are marked with
arrows in Fig. 3.
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There are two pairs of near-field portraits (Fig. 4) calcu-
lated for silicon lens with ka= 3:27; 3:75 and 6.81, 7.65,
respectively. These values of the normalized wavelength
parameter ka are marked with arrows in Fig. 3 and corre-
spond to the local maxima and minima in the total scat-
tering cross-section. It can be seen that the focal domain
has finite size: the greater ka the smaller the area of the
greatest field concentration. The shift of the focal domain
from the geometrical focus of the ellipse is interrelated to
the total scattering cross-section: maximum shift is for the
maxima of σtot.

Fig. 5. The same as in Fig. 4 for the incident wave arrival angle
γ = 20Æ.

Figure 5 demonstrates the transformation of the focal do-
main in the case of the plane wave illuminating the lens at
the angle of 20Æ. It is shown that the focal domain shifts
from the ellipse geometrical focus and becomes wider.

4. Conclusions

An efficient and accurate numerical method, based on the
concept of analytical regularization, has been applied for
the solution of the 2D problem of the plane wave scat-
tering by an elliptic dielectric cylinder taken as a model
of typical lens used in the mm and sub-mm wave antenna
applications. Obtained numerical results demonstrate the
effects such as focal domain shift and transformation for
a dielectric lens of the size comparable to the wavelength
that cannot be analyzed in geometrical or physical optics
approximations. As it is shown, the resonant nature of the
effects is still a challenge for more careful analysis. The
question of nonuniqueness of the solution of IEs used in
the mathematical model also requires a further study. Nev-
ertheless the possibilities of the approach as to the accurate
analysis of the smooth arbitrary shaped dielectric lenses
have been demonstrated.
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Regular paper A solution for increasing
data rate of Doppler-RAKE system

Minh Nguyen Nguyen and Józef Modelski

Abstract — Doppler-RAKE detection in the CDMA system
has been further developed and offers better performances
in comparison to conventional RAKE detection, especially in
fast-fading environments. Also, the multi-user Doppler-RAKE
system works more effectively with channel coding applica-
tions. However, by means of exploring the Doppler effect, the
system’s data rate is decreased. We propose a simple solu-
tion to increase the data rate for the system while keeping the
Doppler gain.

Keywords — diversity, Doppler-RAKE, CDMA, multi-path,
fast-fading, spread-time signaling, multi-user detection, chan-
nel coding.

1. Introduction

As it was discussed in [1], channel coding with convo-
lutional code and interleaving for the multi-user Doppler-
RAKE detection offered improved performance. However,
due to the length of the code, the data rate of the transmis-
sion is decreased. A method for increasing the data rate,
while keeping the Doppler gain for the system, is to make
the channel more time selective as discussed in [2, 3]. In
this paper, we propose the signal dividing process, which
helps to increase the data rate. The advantage is that this
process has a realization similar to multi-user detection,
which is already applied in the system. Therefore, our so-
lution is more general and easier for system application and
calculation.

2. System representation

A mobile wireless channel can be generally described as
a time-varying linear system. The base-band signal r(t) at
the receiver is given by

r(t) = s(t)+n(t) =

∞Z

0

h(t;τ)x(t� τ)dτ +n(t) ; (1)

where x(t) is the transmitted base-band signal, h(t;τ) is
the time-varying channel impulse response and n(t) is the
zero-mean, complex, circular additive white Gaussian noise
(AWGN) with power spectral density No.

An equivalent representation of the channel, in terms of the
spreading function is defined as:

H(θ ;τ)
de f
=

Z
h(t;τ)e� j2πθtdt (2)

and

s(t) =

TmZ

0

BdZ

�Bd

H(θ ;τ)x(t� τ)ej2πθτdδdτ ; (3)

where Tm is the multi-path spread and Bd is the Doppler
spread (one-sided) of the channel.
The time-varying impulse response h(t;τ) is best modeled
by a wide-sense stationary uncorrelated scatterer (WSSUS)
channel. The received signal consists of a linear combina-
tion of time-shifted and frequency-shifted (Doppler) copies
of the transmitted signal. Its finite-dimensional representa-
tion is:

s(t)�
Tc

Ts

N

∑
n=0

K

∑
k=�K

H

�
k
Ts
; nTc

�
xk;n(t) ; (4)

where N = [Tm=Tc] � [TmB], K = [BdTs], Tc is the chip
interval of spread codes, B is the signal bandwidth, Ts is
the symbol duration.
By virtue of orthogonality of the basis waveforms xk;n(t)

0s,
and the statistical independence of the channel coeffi-
cients H(θ ;τ), the representation (4) effectively decom-
poses the channel into (N + 1)� (2K + 1) independent,
flat-fading (diversity) channels by appropriately sampling
the multi-path Doppler plane.
Note that the number of diversity channels is proportional
to the product – TmBd(Ts=Tc). Thus, for fixed channel
parameters – Tm and Bd – the level of diversity is propor-
tional to the time-bandwidth product (TBP), TsB� (Ts=Tc),
of the signal waveform. This also illustrates the remarkable
ability of CDMA systems with spread-spectrum signals to
exploit channel diversity.
Based on the concept described above, the detector struc-
ture (time-frequency (TF) RAKE receiver) for joint multi-
path Doppler diversity is developed in [4, 5], which consists
of a bank of conventional RAKE receivers shifted in time
and frequency to take samples. These samples are com-
bined (by the maximum ratio combining (MRC) method) to
estimate the transmitted signal. Analytical results demon-
strate that even the small Doppler spreads encountered in
practice can be leveraged into significant diversity gains in
the proposed Doppler-RAKE detection system.
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Fig. 1. Divide the symbols to increase data rate.

Also, because the system’s performance strongly relies on
channel estimation accuracy, the application of channel
coding (i.e. convolutional coding and interleaving) has
proven to have useful results. Channel coding mitigates
the estimation errors and increases Doppler diversity gain.

3. System signaling

The symbol duration for the system without channel cod-
ing is T . After channel coding the symbols are spread, and

their duration now is Ts(> T). According to formula (4),
for maximal exploitation of channel diversity, Ts should be
increased as much as possible. Our intention is to make
the desired inter-symbol duration T 0, which determines the
data rate, smaller than Ts. So, the basic idea is to divide
the symbol block after channel coding into several parts
and send them in parallel. We could use regulated time
shifts τs between parts to gain Doppler effects and chan-
nel coding to prevent interference. Figure 1 illustrates the
process. During the channel coding, the symbols from the
source are first coded by convolutional code of length I ,
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Fig. 2. Multi-user Doppler-RAKE detection structure.

then every block of C coded symbols is interleaved. In the
dividing process, each of these blocks then is divided into
S parts of J bits and sent in parallel. The inter-symbol
duration T 0 in this method is (assuming that τs� Ts):

T 0 �=
Ts

S
=

I T
S

: (5)

So, if S� I we have the data rate, after dividing, comparable
with the data rate from the source (i.e. the data rate before
channel coding with symbol duration T):

R0 =
1
T 0
� R=

1
T
: (6)

Even in the case that R0 > R we cannot make the transmis-
sion faster than the case without channel coding, because
the maximal data rate is R, due to the relevant signal trans-
mission speed from the source. So we are only interested
in the case where Ts< T 0 �T (i.e. 1<S� I ). The symbol
duration after dividing is: T 0

s = TsI=J and T 0

s > T. This
retains the Doppler effect. Also, the choice of S; J and τs

(as well as C1 if needed) depends on the interference be-
tween signals, interleaving and Doppler effects. This pro-
vides many variances in the dividing process that need to
be analyzed and compared to find the optimal solution. The
time-selective signaling method mentioned above, with pa-
rameters: τs=T; J= I , and S= I , is one of the cases which
has no interleaving processes.

After Doppler-RAKE detection, the signals are rejoined by
the splicing process, and then de-interleaved and decoded
by the Viterbi algorithm [6].

1Normally, C is dependent on the effect of data interleaving and should
be as small as possible because it decreases data rate.

Detection technique. For easier representation, consider
a CDMA system with L users and employing binary phase-
shift key (BPSK) signaling. The signal at the receiver is:

r(t) = s(t)+n(t) =
L

∑
l=1

S

∑
s=1

a0l ;ssl ;s(t� τ)+n(t) ; (7)

where a0l ;s2 f�1;1g is the bit sign and sl ;s(t) is the received
baseband for the sth part of the l th user; n(t) is an AWGN.

sl ;s(t) can be expressed as:

sl ;s�
TcI
TsJ

N

∑
n=0

K

∑
k=�K

Hl ;s

�
k
K
;nTc

�
xk;n

l ;s (t� τs) : (8)

Here xk;n
l ;s

(t) is the spread waveform of the

l th user, Hl ;s(k=K;nTc) is the channel coefficient,
N = [Tm=Tc]� [TmB] and K = [BdTsI=J] = [BdT0

s], where
Ts and T 0

s are symbol durations, respectively, before and
after dividing, (if I = J then T 0

s = Ts).

Multi-user Doppler-RAKE detection was described in [5],
though we now have LxS users instead of L users. Fig-
ure 2 shows the proposed detection scheme. The Doppler-
RAKE detector’s structure (dotted rectangle) is similar to
that mentioned above in Section 2. For multi-user cases,
a detection process was added to combat multi-access inter-
ference (MAI). This process has many solutions that were
discussed in [5]. Because of increased complexities within
the system, due to the data-dividing process, we applied
our PIC (parallel interference cancellation) method to this
case. The PIC solution has offered positive results while
its calculation was much simpler than the others.
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4. Performance analysis

As discussed above, the system’s performance is similar
to the case described in [5] but with a higher number of
users (LxS instead of L). While the Doppler effect remains
nearly the same, the data rate is increased. This is achieved
at a relatively minor cost of encountering more multi-user
interference and more complex calculations, each increas-
ing proportionally to the rise in the number of users.

For numerical simulation, the time-varying channel is sim-
ulated using the Jakes model [7] corresponding to a data
rate (R= R0) of 2 kHz (i.e. 2000 symbols/s) and a carrier
frequency of 1.8 GHz. Here a low data rate is chosen to
show the fast-fading effect. Also, in practice, a longer code
length will cause a lower data rate. The code length is 64.
A system of two multi-paths (N = 1) and three Doppler
paths (K = 1) with four users (L = 4) is applied. Tests
are over 10 000 symbols for each variance. The TBd’s
are 0.1 and 0.2 corresponding to Doppler spread Bd 200 Hz
and 400 Hz, mobile speed 120 km/h and 240 km/h. Fast-
fading channels encountered in practice exhibit Doppler
spreads on the order of 100-200 Hz (TBd= 0:1) due to the
relative movement of the users (60-120 km/h). The param-
eters used for the convolutional code are: constraint length
m= 3, code rate Rc= 1=2 (n = 2), free distance df = 5.
The interleaving parameters are: I1= 2, C1= 2 (intended
choice) and I2= 7; C2= 3 (accidental choice). The divid-
ing parameters are chosen to keep the data rate the same
as that after convolutional coding. Also, a pilot-based esti-
mation process is used for channel estimation [8].

Fig. 3. BER as a function of SNR user1 (of 4 user-Doppler-
RAKE system).

The performance results of the two choices of interleav-
ing are nearly the same. We surmise that this is because
of limiting the parameter values for simulation simplifica-
tion. But the main results, which verify our intentions, are
shown.

As we can see, the simulation shows that the performance
of the system is nearly as efficient as that of the system with-

Fig. 4. BER as a function of SNR user1 (of 4 user conventional
RAKE and Doppler (D)-RAKE systems).

out the dividing process (see Fig. 3), and we have a gain
in data rate (in this case – 2 times higher). Also, it can be
seen that with more Doppler effect, the system out-performs
the conventional RAKE system. In Fig. 4, when TBd is
increased from 0.1 to 0.2, the efficiency is more obvious:
at BER= 10�4, Doppler -RAKE system gains about 3 dB
of SNR.

5. Conclusions

Interleaving is beneficial in cases where several consecutive
bits are damaged. Our solution is more general in dealing
with these situations than the time-selective case provided
in [2].
Channel coding (including convolutional coding and inter-
leaving) is an indispensable process of the Doppler-RAKE
system. By taking into account advantage of the code and
block code length of these processes, we can increase both
Doppler effect and data rate. With good multi-user detec-
tion methods, as were provided, the downside effects of in-
creased signal interference and more complex calculations
will have an insignificant impact on performance results.
Our analysis is simplified because of the complexity of the
calculations. In the next step, more practical propagation
model will be needed for more thorough investigation. We
offer that our resolution can make the Doppler-RAKE sys-
tem work better.
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