
Paper Intrusion Detection

in Software Defined Networks

with Self-organized Maps
Damian Jankowski and Marek Amanowicz

Institute of Telecommunication, Faculty of Electronics, Military University of Technology, Warsaw, Poland

Abstract—The Software Defined Network (SDN) architecture

provides new opportunities to implement security mechanisms

in terms of unauthorized activities detection. At the same

time, there are certain risks associated with this technol-

ogy. The presented approach covers a conception of the mea-

surement method, virtual testbed and classification mecha-

nism for SDNs. The paper presents a measurement method

which allows collecting network traffic flow parameters, gener-

ated by a virtual SDN environment. The collected dataset can

be used in machine learning methods to detect unauthorized

activities.

Keywords—IDS dataset, machine learning, metasploit, network

security, network simulation, open flow, virtualization.

1. Introduction

The Software Defined Networks (SDNs) allow to imple-

ment and control network functionality through software.

Such an approach allows to deploy new services and ap-

plications in a virtual environment and to share resources

with the performance and isolation from the rest of pro-

cesses [1]. However, with the flexibility and scalability

provided by SDNs, it is important to maintain an ade-

quate security level. The intrusion detection technologies,

integrated with the SDNs environment, can provide an addi-

tional security element, besides the classical Intrusion De-

tection System (IDS) and Intruder Prevention System (IPS).

SDN architecture creates new opportunities to increase the

security level, especially in the context of the unauthorized

activities detection. Nevertheless, there are certain risks

associated with this technology.

2. The Software Defined Network

Technology

The basic idea of the SDNs is the separation of data plane

from the control plane. In contrary to the classical network

solutions, the network devices are here supervised by SDN

controllers in a centralized manner. Such a solution enables

configuration and programming from a host to match the

service requirements in a distributed network. Moreover,

the centralized logic and management allows for compre-

hensive monitoring network [1].

SDNs are associated with Network Function Virtualization

(NFV). The current rapid development of hardware server

platforms gives sufficient performance of services operat-

ing on virtual machines. Servers became more efficient and

have better functionality than previously, and are suitable

for use in a virtual environment. NFV is a network archi-

tecture that implements virtualization of network nodes. It

enables for the functionality implementation based on the

available servers, switches, storage devices, without using

dedicated hardware devices. To sum up, the functionality

of network hardware devices can be implemented in soft-

ware technologies [2].

Application Application Application

Northbound interface

Northbound interface

SDN controller

Programming flow
from A to B

Host A Host B
OpenFlow

switch

Flow table

A B

Fig. 1. Packets forwarding scheme in SDNs.

The SDN controller communicates with network devices

using the OpenFlow protocol and controls network traffic

according to the programmed rules. The forwarding pack-

ets methods are defined in a flow table, which is stored in

SDN controllers and in switches memory supporting the

OpenFlow protocol. The operation order, which describes

how SDN controllers set the traffic flow, is presented in

Fig. 1. In the case, that packet is forwarded to the switch

3

Damian Jankowski and Marek Amanowicz

Switch
port

Source
MAC

Source
IP

Source
port

Dest.
port

Dest.
MAC

Eth
type

VLAN
ID

Destination
IP

Action Statistics

Byte count Packet
count

Time
Time in

miliseconds

Fig. 2. Flow entry structure in SDNs.

and there is no entry in the flow table, the packet is trans-

mitted to the SDN controller. Applications and modules,

which run on controller, determine manner of packet pro-

cessing. After that, the controller transmits the new entry

in the flow table to the switch. That network traffic flow

is then defined and established using algorithms developed

on application modules in SDN controller. The structure

of the traffic flow is shown in Fig. 2.

The main flow element specifies the parameters that are

taken into consideration in the process of matching packets

to the flow. An action field defines a way of forwarding

that can be performed on packets from the particular flow.

In addition, flows are linked with specific network traffic

statistics, which latter can be used for traffic features ex-

traction [2].

Thanks to the open architecture, the network logic is estab-

lished with application modules running on the SDN con-

troller. Hence, it is possible to develop algorithms fulfilling

specific user functionality. Programmers can use classical

programming languages, frameworks, frameworks, APIs

and libraries for the process of developing application in

the SDN environment.

3. Vectors of Attacks in SDNs

The SDN architecture has an important impact on the class

of attack that can be performed, as presented in Fig. 3. The

most dangerous situation takes place when the SDN con-

troller is compromised. This can be done by the exploita-

tion of vulnerabilities of processes and services running

on the controller. Consequently the entire SDN domain is

compromised, and the attacker has the ability to take con-

trol of all network devices. The degree of vulnerability of

such attacks mainly depends on the hardware implemen-

tation of the SDN controller, programming languages and

libraries used. The threats prevention can utilize IDS and

IPS techniques, as well as methods of replication and re-

covery status of SDN servers from time before attack. Due

to the nature of SDN technologies, classical IDS may be

insufficient [3].

Potential security vulnerability may also exist on the admin-

istrative station, which is used to manage network operat-

ing system (SDN controller). Such terminals are used for

developing applications for the control logic of network de-

vices and ensure the monitoring of activities in the network

ApplicationApplicationApplicationDoS

DoS

Vulnerabilities

Vulnerabilities

SDN controller

Attacks
to control plane

Management
station

Fig. 3. Potential vector of attacks in SDNs.

environment. Attackers could potentially exploit vulnera-

bility at the supervisor station or its connection with the

controller. Reducing the risk can be achieved by making

use of mutual SDN server authentication and the terminal

or IDS and/or IPS techniques [4].

Other threats are attacks on the communication stream be-

tween data and control plane. For instance, the security

protocol between controllers and network devices can be

TLS. A potential vector of attack would exploit vulnerabil-

ities in its implementation.

The classical network threats are still present in the SDN

technologies. It is possible to generate malicious activi-

ties in IT systems, for instance deny of services or exploit

vulnerabilities on servers, host or network devices [5].

4. Attacks Detection in SDNs

Despite the security vulnerabilities, SDN creates new op-

portunities for the implementation of more effective intru-

sion detection methods. Moreover, it allows for the inte-

gration of threat detection methods with the SDN environ-

ment. Due to the openness of platforms supporting SDN

technologies, it is possible to use existing mechanisms and

protocols. An important factor associated with intrusion de-

tection is the possibility of aggregating statistics logs from

network devices memory and forwarding them to the con-

troller. Collected parameters can be used as source data

4

Intrusion Detection in Software Defined Networks with Self-organized Maps

Table 1

Selected intrusion detection methods for SDNs

Approach
Principle of

Extraction of Machine learning
Detected attacks Accuracy

False

operation
attack symptoms method or logical

for dataset
Network traffic

[%]
positive

or features reasoning [%]

Method 1

Assessment of
Maximum entropy Benign – real SDN

the first packet
detector, TRW-CB, None DoS, probe network, attacks – 80–90 0–70

transmitted to the
Rate-limiting, NETAD artificial traffic

SDN controller

Method 2
Evaluation of the TRW-CB,

Fuzzy logic DoS
Artificial

95 1.2
threats level Rate-limiting traffic

Creating profiles
TRW-CB, DDoS, worm pro-

Benign – real SDN
Method 3 using sFlow

Entropy level
None

pagation probe
network, attack – 100 23–39.3

and OpenFlow artificial traffic

Flow statistics
Flow based Self-organized

DDoS Artificial
Method 4

collection
statistics maps of Artificial

from botnet traffic
98.57–99.11 0.46–0.62

and features Neural Network

for intrusion detection algorithms. In recent studies, there

are a few proposals to use SDN’s capabilities for intrusion

detection mechanism. The four sample solutions are shown

in Table 1:

• Method 1 – revisiting traffic anomaly detection using

software defined networking [6];

• Method 2 – a fuzzy logic-based information security

management for SDNs [7];

• Method 3 – combining OpenFlow and sFlow for an

effective and scalable anomaly detection and mitiga-

tion mechanism on SDN environments [8];

• Method 4 – lightweight DDoS flooding attack detec-

tion using NOX/OpenFlow [9].

The methods listed above detect common types of mali-

cious activities, i.e., denial of service, port scan, and at-

tempts to propagate malicious software. However, there

is no papers describing SDN solutions, which would en-

able the detection of more sophisticated groups of attacks.

These attacks can rely on the use of vulnerabilities in so-

phisticated services, and one of the phases of attack is to

inject a malicious code. The presented methods have a very

good detection accuracy rate, but the false positive rate is

poor in approaches given by method 3. In method 1 the

false positive rate may vary from 0 to 70 due to the detec-

tion technique used. Hence, it is problematic to compare

the effectiveness of selected solutions because their per-

formance tests were carried out in different environments,

according to various methodologies and using different

data sets.

5. The Architecture of the Proposed

Approach of Intrusion Detection

The presented idea is based on the assumption that it is

possible to classify whether network traffic flows represent

normal operation or attack (Fig. 4). The flows classifica-

tion is based on features obtained through the functionality

Virtual testbed

Traffic
generator

Measurement
module

Dataset
collection

Classification
mechanism

Evaluation

Sampling

Fig. 4. Architecture of presented mechanism.

available in the SDN technology. The virtual testbed is

used for generating certain classes of traffic, benign and

malicious. Generated network traffic is sampled by the

measurement module implemented as OSGi bundle and re-

sides on the Opendaylight SDN controller memory. The

module also programs flows. At the same time, the REST

client communicates with the SDN controller and collect

statistics related with flows. The present mechanism oper-

ates in the control plane. The collected data can be stored

in a database or an external file. At this stage, the fea-

tures for further classification can be calculated and ex-

tracted. The collected data are then converted to a dataset

for testing machine-learning methods. At the current stage

of research, the classification process is performed by self-

organized maps of Artificial Neural Network (SOM ANN),

but in future, studies would be extended to other classifi-

cation methods.

5

Damian Jankowski and Marek Amanowicz

6. Principle of Measurements

The measurement software module works on the SDN

Opendaylight controller as an OSGi bundle [10] and im-

plements the switch functionality (Fig. 5). The traffic flows

are matched by the following criteria:

• destination IP address,

• source IP address,

• destination port of transport layer,

• source port of TCP/UDP layer,

• protocols – ARP, IP, TCP, UDP or unknown.

For each flow, an idle timeout parameter is set that defines

the period after the entries are deleted from the flow ta-

ble, and an identification number. Such matching network

traffic distinguishes traffic in the context of different port

numbers. As a result, it is possible to measure the pa-

rameters and define relationships between connections at

the transport layer, which are refreshed within a specified

period.

Another component used in the measurements is a REST

client. This module communicates with the Opendaylight

server. The following parameters permit to change the res-

olution of measurements:

• time between queries (in the REST client),

• time between refresh of array status and statistical pa-

rameters defined configuration flow controller SDN.

For each collected flow, a set of parameters is determined.

These data values constitutes the input vector for the ma-

chine learning method:

• the measurement results contain value of n vectors

features Xi(x1, x2, . . . , xn) at i time of sampling. The

vector features xi are parameters and statistics re-

trieved from network flows;

• the input vector X(max x1, max x2, . . . , max xn) in-

cludes maximum values of features from all Xi vec-

tors;

• labels defining classes are assigned to vectors X , due

to IP host address.

In a review of the existing solutions in threat detection

technology, SDN indicates that the described method shall

detect the attack time from flow table. The presented ap-

proach is based on the flows classification by the trans-

port layer level discrimination. It allows identifying a spe-

cific connection representing the unauthorized action. The

Opendaylight software environment enables the measure-

ment of selected parameters, which can be potentially used

as features for threat detection methods.

The primary parameters obtained from the OpenFlow pro-

tocol are IP addresses, port numbers, duration, number of

packets and bytes in the flow. More, the collected statistics

REST
client

Flow statistics

Features calculated
from statistics

OPEN

DAYLIGHT

OSGi module

Programming flows:
- source and destination MAC
- source and destination IP
- IP and TCP/UDP layer protocols
- source and destination ports
- idle timeout > 0Flow sampling

http
JSON

Control plane

Data plane

Flow table entry

1st packet
from flow

Fig. 5. Measurement method based on SDNs.

can be used to extract other information. Such values are

calculated in the context of the entire array, for the sam-

ple time stamp. It reflects the dependence of connections

between hosts. Example additional features are:

• single flow coefficient,

• flow rate to the host,

• multiple flows with the same host coefficient,

• flow rate of the same service to a host from multiple

hosts.

The primary and additional parameters represent the x fea-

tures of the input vector X . Features can be determined

based on the first packet transmitted to the controller. How-

ever, at this stage of research, this mechanism is not imple-

mented. The approach of analyzing the header and the first

package contents may have a positive influence on the de-

tection performance of attacks on specific groups. However,

it is necessary to improve the performance without packets

inspection, because packets can be obfuscated. Therefore,

with the development of the presented method, it will be

evaluated which feature is more important.

7. Virtual SDN Testbed

The most of the machine learning methods for intrusion

detection is based on the KDD99Cup dataset. It is used in

the process of learning and testing, allowing comparing the

performance of different methods. Unfortunately, there are

no such datasets that could be used to evaluate the detection

methods. The proposed concept is based on the mechanism

of SDN flow classification. Therefore, an important com-

ponent of the presented approach is the test environment

for the generation of SDN network traffic, allowing veri-

fying the effectiveness of the presented method. In this

6

Intrusion Detection in Software Defined Networks with Self-organized Maps

Measurement
module

Mininet

SDN controller

Ubuntu 14.04.2
LTS

Control plane

Data plane

Virtual switch
1

1

4
Generation

attack traffic
Generation

benign traffic

n

n = 10

Web
SMB

Tomcat
Ruby
PostgreSQL
Java RMI

Metasploitable 2
servers

FTP
SSH
Telnet

Fig. 6. Virtual SDN testbed architecture.

Table 2

Traffic classes which are performed in virtual testbed

Activities
Examples Tools for traffic

of activities generation

DoS Denial of service
metasploit, hping3,

nping

Probe
Port probe, vulnerability

metasploit, nmap
scan, version scan

User2Root
Exploit vulnerabilities,

metasploit
shell control, backdoor

Remote2Local Password crack metasploit, hydra

Normal
Communication between

FTP, SSH, SMB,

clients and servers

Apache, Web,

Tomcat, RMI Ruby,

Java RMI, Postgres,

Telnet

research a SDN network emulator mininet, developed in

Python and C is used. In the connection with the Open-

daylight controller functionality, it is possible to model

the SDN environment with different network topologies. At

this stage of the implementation, the SDN has a star topol-

ogy with a single switch. The architecture of the testbed is

shown in the Fig. 6. The testbed covers normal traffic gen-

eration and selected groups of attacks using tools presented

in Table 2.

The following classes of activities are generated in this

virtual environment:

• normal – benign traffic generated between hosts and

servers;

• DoS – denial of service attacks, performed against

the transfer, network or computation resources of IT

system;

• Probe – port, version or vulnerability scanning. Such

activities give information to intruders about the po-

tential targets of the attacks;

• U2R – attacks work by exploitation of vulnerability;

• R2L – this class covers credentials guessing and

unauthorized access to IT resources.

The server side is emulated by metasploitable virtual ma-

chines with the Ubuntu Linux operating system. Vulner-

abilities of services and the OS are intentionally left on

the server environment. Simultaneously, the clients gener-

ate requests to the server. At the same time, the malicious

host performs unauthorized activities directed to servers by

using attack tools. The client activities are automated by

Python scripts [11]. Generated traffic is probing by the

measurement module. The servers reside on separate vir-

tual machines and clients are virtualized on the mininet OS

level.

8. Self-organizing Maps as Machine

Learning Attack Detector

Machine learning methods are commonly researched con-

cerning intrusion detection mechanisms [12]. The pre-

sented approach would use self-organized maps (SOM) to

perform the unauthorized activities detection. It is a method

of unsupervised machine learning, based on artificial neural

7

Damian Jankowski and Marek Amanowicz

networks, useful for a graphical representation of datasets.

However, when input vectors are labeled, this method can

be used as a classification mechanism. The Kohonen al-

gorithm is used as SOM learning method. As a result of

the applied input signals, network indicates the activation

of neurons in varying degrees, as a result of adaptation

to changes in the synaptic weights, during the process of

learning. Some neurons, or groups of neurons, are acti-

vated in response to stimulation, adapting to the form of

specific patterns. Because of this, the test vectors activate

neurons of a trained network, which are the most simi-

lar. After the initialization process, networks are reliant

based on the parameters, each of the neurons is assigned

to a specific position of the multidimensional space. Dis-

tribution of neurons can be created in a random way. They

are associated with neighbors in a hexagonal manner. In

a further stage, the network is learned by a training set.

The most stimulated neuron and neighboring neurons up-

date the weights, in response to learning vectors using the

scheme (see Fig. 7):

Wi(k +1) = Wi(k) = ηiG(r)
[

X −Wi(k)
]

, (1)

where: X – input vector of features, Wi – i weight vector

of the neuron at k time, ηi – learning rate, G(r) – neigh-

borhood function given by Eqs. (3) and (4).

The distances of input vector X(x1, x2, . . . , x j) to winner

neurons W (w1, w2, . . . , w j) are calculated on base of the

Euclidean distance:

d(X ,Wi) =
∥

∥X −Wi
∥

∥ =

√

√

√

√

N

∑
j=1

(x j −wi j)2
, (2)

where: X – input vector of features, x j – j feature in X input

vector, Wi – i weight vector of the neuron, wi j – j value of

weight in i weight vector of the neuron.

The weight adaptation degree G(i) of winner and neighbors

neurons is calculated by Gaussian formulas:

r = d(i,W) =
∥

∥i−W
∥

∥ =

√

√

√

√

N

∑
j=1

(i j −w j)2
, (3)

G(r) = e
−r2

2λ2
, (4)

where: r – Euclidean distance of i neuron from winner

neuron, W – winner neuron, λ – neighborhood radius.

The SOM network allows creating a type of structure,

which can be represent input vectors in the best way [13],

[14], [15]. It can be said, that the single neuron represents

many vectors from the dataset. The class is assigned to

the neuron with the consideration of which class is the

most numerous, from stimulating vectors. The classi-

fication step is preformed after learning. This involves

determining which labeled neuron is activated under the

input vector. The dataset is normalized in the range 0 . . .1.

The SOM input vector records are collected data in the

measuring module with assigned labels specifying the

2D output
K neurons lattice

Neuron i

‚ [, ,...]w w w w
i i i im1 2

x
n n n nm

‚ [, ,...]x x x1 2

x1

x2

In
p

u
t

la
y

er

Fig. 7. Self-organizing map structure.

type of traffic. For instance, the 11 dimensional input

vector X(x1, x2, . . . , x11) elements can be represented by

following features:

x1 − destination IP address,

x2 − source IP address,

x3 − destination TCP/UDP port,

x4 − source TCP/UDP port,

x5 − duration,

x6 − number of packets in flow,

x7 − number of bytes in the flow,

x8 − single flow rate,

x9 − flow rate to the host,

x10 − multiple flows rate with the same source host,

x11 − rate of connections on the same port to a host from

other computers.

In addition, the feature vector is linked to a label that de-

fines the class of activities. Due to research scenario, the

composition of features in input vector can vary. To evalu-

ate performance, the cross validation method with 10 folds

will be used. After the process of learning, neural net-

work can be presented in low dimension space by using

Sammon mapping. The results of the classification will be

evaluated by the confusion matrix, ROC curves and typical

coefficients used in machine learning methods evaluation

process.

9. Summary

The presented research describes the intrusion detection

method integrated with the SDN controller. This concep-

tion classifies unauthorized activities performed in SDN

environment. Further studies cover the implementation of

all modules and performance tests of the detection mech-

anism. Realized implementation and evaluation of the ef-

fectiveness will be described in further publications. In

the case that the proposed mechanism will not be effec-

tive, it is necessary to research and implement additional

features, especially based on the parameters and data of

8

Intrusion Detection in Software Defined Networks with Self-organized Maps

the first packet in the flows. Another important stage is

the research on the most significant feature selection and

features extraction.

The aim of the work is also the investigation of the ability

to detect a wider range of network attacks, especially those

that are not identified in other technologies. It is important

to study new classes of attack specified for the SDN envi-

ronment. This aspect especially includes attacks on SDN

controllers and the control plane. The proposed method

may have potential performance disadvantages because of

the high-grained traffic matching in a flow table. The use

of the measuring module developed for all controllers in

the network can be problematic in terms of performance.

Therefore, an exemplary architecture can assume that only

selected SDN controllers in the network will implement

functions of intrusion detection. Another point is the com-

parison of other machine learning methods.

References

[1] J. Kleban and M. Puciński, “Sieci sterowane programowo SDN

w centrach danych SDDC” (SDN network software controlled data

centers SDDC), in XVII Poznań Commun. Worksh. PWT 2013,

Poznań, Poland, 2013 (in Polish).

[2] D. Kreutz et al., “Software Defined Networking: A Comprehensive

Survey”, Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] S. Shin and G. Gu, “Attacking software-defined networks: A first

feasibility study”, in Proc. 2nd ACM SIGCOMM Worksh. Hot Top-

ics in Softw. Def. Netw. HotSDN’13, Hong Kong, China, 2013,

pp. 165–166.

[4] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure

and dependable software-defined networks”, in Proc. 2nd ACM SIG-

COMM Worksh. Hot Topics in Softw. Def. Netw. HotSDN’13, Hong

Kong, China, 2013, pp. 55–60.

[5] V. Tiwari, R. Parekh, and V. Patel, “A survey on vulnerabilities

of openflow network and its impact on SDN/Openflow controller”,

World Academic J. Eng. Sci., vol. 1, no. 01:1005, 2014.

[6] S. Akbar Mehdi, J. Khalid, S. A. Khayam, “Revisiting traffic

anomaly detection using software defined networking”, in Recent

Advances in Intrusion Detection, R. Sommer, D. Balzarotti, and

G. Maier, Eds. LNCS, vol. 6961, pp. 161–180. Berlin Heidelberg:

Springer, 2011.

[7] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based

information security management for software-defined networks”,

in Proc. 16th Int. Cof. Adv. Commun. Technol. ICACT 2014,

Pyeongchang, South Korea, 2014, pp. 167–171.

[8] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and

V. Maglaris, “Combining OpenFlow and sFlow for an effective and

scalable anomaly detection and mitigation mechanism on SDN en-

vironments”, J. Comp. Netw., vol. 62, pp. 122–136, 2014.

[9] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding

attack detection using NOX/OpenFlow”, in Proc. 35th Ann. IEEE

Conf. Local Comp. Netw. LCN 2010, Denver, Colorado, USA, 2010,

pp. 408–415.

[10] OpenDaylight Platform [Online]. Available:

https://www.opendaylight.org/

[11] Mininet – An Instant Virtual Network on your Laptop (or other PC)

[Online]. Available: http://minimet.org

[12] A. S. Subaira and P. Anitha, “Efficient classification mechanism for

network intrusion detection system based on data mining techniques:

a survey”, in 8th IEEE Int. Conf. Intell. Syhst. & Control ISCO 2014,

Coimbatore, India, 2014, pp. 274–280.

[13] K. Choksi, B. Shah, and O. Kale, “Intrusion detection system using

self organizing map: a surevey”, Int. J. Engin. Res. Appl., vol. 4,

no. 12, pp. 11–16, 2014.

[14] S. Osowski, Sieci neuronowe do przetwarzania informacji (Neural

Networks for Information Processing). Warsaw: Publishing House

of Warsaw University of Technology, 2013 (in Polish).

[15] “SOMz: Self Organizing Maps and random atlas” [Online]. Avai-

lable: http://lcdm.astro.illinois.edu/static/code/mlz/MLZ-1.2/doc/

html/somz.html

Damian Jankowski received

B.Sc. and M.Sc. degrees from

the Military University of Tech-

nology, Warsaw, Poland in 2010

and 2011, in Telecommunica-

tion Engineering. His research

interests include programming,

system virtualization, system

administration, IT security, ma-

chine learning, and data mining.

E-mail: damian.jankowski@wat.edu.pl

Military University of Technology

S. Kaliskiego st 2

00-908 Warsaw, Poland

Marek Amanowicz received

M.Sc., Ph.D. and D.Sc. degrees

from the Military University of

Technology, Warsaw, Poland in

1970, 1978 and 1990, respec-

tively, all in Telecommunication

Engineering. In 2001, he was

promoted to the professor’s ti-

tle. He was engaged in many re-

search projects, especially in the

fields of communications and

information systems engineering, mobile communications,

satellite communications, antennas & propagation, commu-

nications & information systems modeling and simulation,

communications and information systems interoperability,

network management and electronics warfare.

E-mail: marek.amanowicz@wat.edu.pl

Military University of Technology

S. Kaliskiego st 2

00-908 Warsaw, Poland

9

