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Abstract—The presented paper is concerned with feature
space derivation through feature selection. The selection is
performed on results of kernel Principal Component Analysis
(kPCA) of input data samples. Several criteria that drive fea-
ture selection process are introduced and their performance is
assessed and compared against the reference approach, which
is a combination of kPCA and most expressive feature reorder-
ing based on the Fisher linear discriminant criterion. It has
been shown that some of the proposed modifications result in
generating feature spaces with noticeably better (at the level
of approximately 4%) class discrimination properties.

Keywords—feature selection, kernel methods, pattern classifica-
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1. Introduction

Kernel methods [1], [2] enable derivation of highly discrim-
inative feature spaces by linearizing class separation prob-
lems in implicitly-exploited, very high-dimensional spaces.
Adoption of the optimal feature space is a key issue in pat-
tern recognition, as majority of real-world pattern recog-
nition problems are typically highly nonlinear, and many
diverse nonlinear approaches for handling this issue have
been proposed so far such as locally linear embeding [3],
Laplacian Eigenmaps [4] or Isomaps [5].
Several important concepts in the field of kernel-based fea-
ture space derivation have been formulated so far. A basic
scheme for derivation of a nonlinear feature space with
kernel methods is an extension to the classical Principal
Component Analysis (PCA) method. This scheme, named
kernel-PCA and proposed by Scholkopf et al. in [6], pro-
duces a feature space from a subset of most-expressive fea-
tures (MEF) determined for projections of original samples
onto a nonlinear, high-dimensional Hilbert space. A ratio-
nale behind that scheme is the same as in case of a reg-
ular PCA: large data scatter is likely to be produced by
separable clusters, possibly belonging to different classes.
As MEF-based feature space derivation has obvious limita-
tions, feature selection as well as feature extraction schemes
have been developed to improve classification performance
of kernel methods. In case of the latter direction, the
two most notable methods proposed so far are: kernel
Fisher Discriminant Analysis (kFDA), formulated in [7],
and Supervised Principal Component Analysis (SKPCA),

proposed by Barsham et al. in [8]. The kFDA general-
izes classical linear discriminant analysis for kernel-induced
spaces where it determines a direction of maximum linear
class separability. On the other hand, SKPCA produces
an ordered set of the most discriminative directions, de-
fined as the ones that maximize Hilbert-Schmidt norm of
cross co-variance matrix, which describes relations between
projected samples and their class labels. Both approaches
proved extremely successful, however, there exist aspects
that could potentially challenge their high performance.
The main potential issue that exists in case of kFDA is
the resultant one-dimensional output space. This problem
can become more serious than in case of Support Vector
Machine (SVM) classification [9], as no maximum margin
criterion is involved in search for the most discriminative
direction, generated by kFDA. SKPCA bypasses the afore-
mentioned issue, however, there exist no clear guidance
on selection of quantitative class labels and their kernels,
which are important components of the method.
The main reasons for considering feature selection per-
formed on kPCA results as a promising feature space
derivation strategy are the following. The first advanta-
geous property of such an approach, which does not hold
for SVM classification or kernel Fisher Discriminant Anal-
ysis, is a presence of a broad pool of mutually orthogonal
candidates that could build a multidimensional discrimina-
tive space, which would host projections of class samples.
Moreover, as classification problems tend to get linear in
kernel-induced feature spaces, even linear feature selection
criteria applied in these spaces could provide good assess-
ment of class separation. Finally, one needs to keep in
mind that feature selection is performed on results of kPCA
analysis, which means that each feature of a target space
is some nonlinear combination of all original features, so
complete information on the problem embedded in input
data is used, as opposed to the case of conventional feature
selection, performed directly in input space, where infor-
mation from dropped features is inevitably lost.
The presented research is aimed at exploring methods for
discriminative feature space derivation, which depart from
results of kernel-PCA of input datasets. A strategy adopted
for the task realization is feature selection, where features
are eigenvectors of projected sample distributions (through
kernels) that exist in high-dimensional spaces, henceforth
referred to as H space. Feature selection in H space,
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i.e. selection based on kernel-PCA results, have already
been addressed in several publications. For example, un-
supervised approach to feature selection in H space has
been proposed in [10]. Supervised selection of features in
kPCA-produced space have been considered in [11], [12].

The main contribution of the paper is exploration of a set
of feature selection criteria and verification of performance
of corresponding, derived feature spaces. The proposed
criteria are in general nonlinear, and they are applied to
nonlinear projections of original samples onto k-PCA de-
rived directions.
The problem of multiple-category classification has been
addressed in the presented research. Several different ways
of class separation scoring were considered to evaluate can-
didate H space directions. The first criterion for recruit-
ing target space features seeks for directions that maximize
balanced class separation, assessed over all classes. The
second one favours directions that provide the maximum
pairwise class separation. Both criteria are also subject to
modifications that emphasize class distribution divergence
from symmetry and Gaussianity. The presented methods
are confronted with kernel-PCA based classification and
k-NN (k-nearest neighbor) classification, performed in the
original feature space.
The paper is organized in the following way. A background
for the presented research, including a brief review of ker-
nel PCA is outlined in Section 2. The proposed feature
selection strategies and criteria are described in Section 3.
Section 4 presents assessment methodology used for the
proposed concepts and provides results of methods experi-
mental evaluation.

2. Related Work

The proposed methods are based on the theory of kernel
PCA and on classical theory of Fisher linear discrimina-
tion. As Fisher’s linear discrimination theory is one of the
fundamental and well-known concepts in pattern recogni-
tion (see e.g. [13]–[16]), only kernel principal analysis has
been outlined in the remaining part of this Section.

2.1. Kernel Principal Component Analysis

Kernel Principal Component Analysis attempts to find di-
rections of the maximum scatter of data projected onto
some high-dimensional (possibly, infinitely-dimensional)
feature space. Denoting a set of data samples, defined in
an original low-dimensional space L by {x} and intro-
ducing a function Φ(.) that transforms these samples onto
another space, of higher dimension (H ), the projections
Xi of original samples xi are given by:

L → H : Xi = Φ(xi) . (1)

The PCA problem for the samples Xi arranged in the matrix
X can be stated as:

(X−M)(X−M)T V = nΛV , (2)

where Λ and V are eigenvalue and eigenvector matrices
respectively, n is the number of samples and M denotes
a matrix of projection mean vectors µ , i.e.:

M = [µ ,µ . . .] . (3)

By premultiplying both sides of the Eq. (2) by the term
(X−M)T and observing that each eigenvector Vk exists
in a space spanned by original data projections (is a linear
combination of samples Xi), i.e.:

Vk =
n−1

∑
i=0

α i
k(Xi − µ) → Vk = (X− µ)αk , (4)

where α i
k are weights normalized so that the vector αk =

[α0

k ,α1

k , . . .] is of the unit length, the Eq. (2) can be restated
in the form:

GA = nΛA , (5)

where G is the Gram matrix computed for projected sam-
ples:

G = (X−M)T (X−M) , (6)

and A is a matrix hosting vectors αk, i.e. A = [α0,α1, . . .],
which can be seen as a matrix of parametric representations
of eigenvectors of the system given by Eq. (2).
As dot products of vectors in high-dimensional space H

are involved in derivation of Eq. (5), one can apply a kernel
function k(.) (providing that it exists) and perform all the
computations using data from the original space:

< Φ(xi)− µ ,Φ(x j)− µ >= k(xi,x j) . (7)

Centering of high-dimensional samples around the mean,
which is crucial for searching for most expressive features
in H space, can be done by an appropriate modification
of the G, yielding Gc. This leads to the final formulation
of the kPCA:

GcA = nΛA . (8)

Projections of unknown samples xp onto eigenvectors de-
rived for the H space, can be also computed using kernels,
as they involve sums of dot products:

yk
p =< Φ(xp),Vk >=

n−1

∑
i=0

α i
kΦ(xp)

T Φ(xi) =
n−1

∑
i=0

α i
kk(xp,xi) .

(9)
The most frequently used kernel functions, which are also
considered in the presented research, are Gaussians, poly-
nomials and extended polynomials. Gaussian kernel trans-
forms samples into infinitely-dimensional space H . It in-
volves one parameter σ , which needs to be appropriately
chosen [17], and it is defined as:

kG(xi,x j) = e
−

(xi−x j )
T (xi−x j )

σ2 . (10)

Polynomial kernels are defined as:

kp(xi,x j) =< xi,x j >
m

, (11)

and
kx(xi,x j) = (< xi,x j > +1)m

, (12)

where m is the polynomial order and the symbol < ., . >

stands for a dot product.

4



Supervised Kernel Principal Component Analysis by Most Expressive Feature Reordering

3. Feature Selection Criteria

Kernel PCA finds a set of orthogonal vectors that maximize
scatter of original sample projections in H space. Since
unlabeled samples are used in data analysis, most expres-
sive directions might not correlate with class-separability
(as it is the case for the conventional PCA). Sample results
of application of kPCA to artificially generated, two-class
data set have been presented in Fig. 1. Projections of orig-
inal samples onto the first two most expressive features,
shown in Fig. 2, clearly show that kPCA cannot provide
good data representation for class discrimination. There-
fore, selection of features produced by kPCA, aimed at
derivation of discriminative spaces for data classification,
has been considered, and various feature selection criteria
have been proposed and examined in what follows.

(a) (b)

(c) (d)
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Fig. 1. Sample two-dimensional distributions of two classes,
denoted by “2” and “3” (a), superimposed with isoclines that
correspond to kernelized dot products of domain points with the
first eigenvector (b), with the second one (c) and with the third
one (d). The arrows indicate increasing values of a dot product.

Fig. 2. Projections of data samples onto the first (top) and the
second (bottom) most expressive feature. To increase clarity, sam-
ples are vertically dispersed inside a band of non-zero height.

The adopted feature selection methodology is built on the
simplest setup. The various criteria for individual KPCA-
produced features are formulated and the best perform-
ing ones are chosen to the resulting subspace. The ap-
plied criteria are based on the principle underlying Fisher
Linear Discriminant Analysis [14], which is maximization
of between-class to within-class scatters. The authors in-

vestigate a set of different particular definitions of these
quantities. As they consider a multiple-category classifica-
tion, the basic formulation for a feature selection criterion
has the form:

F
ξ
1

=

det

(n−1

∑
i=0

(Mξ
i −Mξ )(Mξ

i −Mξ )T
)

n−1

∑
i=0

det(Cξ
i )

, (13)

where n is the number of classes, det(Cξ
i ) denotes a deter-

minant of co-variance matrix for projections of i-th class

samples onto some ξ -th subspace of the H space, Mξ
i

denotes a mean vector for projections of i-th class sam-

ples and Mξ is the mean of class means Mξ
i . For one-

dimensional case (when a single feature is to be evalu-
ated) the criterion (13) can be expressed in a form that em-
ploys simplified measures of within-class and between-class
scatters:

Fk
1 =

n−1

∑
i=0

|µk
i − µk|

n−1

∑
i=0

σ k
i

, (14)

where σ k
i is a standard deviation of projections of i-th class

samples onto k-th feature, µ
ξ
i is a mean of i-th class sample

projections onto k-th feature and µk is the mean of means.

Given the feature scores produced by Eq. (14), the first
criterion for feature space derivation, resulting in D-
dimensional most-discriminative feature set F1, can be ex-
pressed as:

F1 = {F
α0

1
. . .F

αD−1

1
} : αd = arg max

k 6=α0...αd−1

(Fk
1 ) . (15)

Results of most expressive feature reordering, based on cri-
teria (13) and (14), are summarized in Figs. 3 and 4, where
three-class distributions were processed according to two
different scenarios. In the first case, original samples were
subject to kPCA analysis, where Gaussian kernel (10) was
applied (a value of σ = 2 was used), and three most expres-
sive features were selected as a subspace for projected data
classification. As it can be seen from Fig. 4, distributions
of projections of considered class samples remain nonlin-
early bounded (with concave bounding surfaces). A very
different situation is presented if feature selection is used.
This time features with indices 0, 9 and 5 were selected
(increasing feature index corresponds to a decreasing data
scatter in the corresponding direction). As it can be seen
from isoclines drawn in Fig. 3 the eigenvectors segment
the original two-dimensional domain in much more com-
plex way, which is beneficial from the point of view of
data separation. This can be seen in Fig. 4, where three
dimensional feature space provides a very simple structure
to class distributions – they become linearly separable.
The criteria (13) and (14) seek for a simultaneous as-
sessment of distribution separability for all classes, using
an ambiguous score for between-class scatter (numerator).
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Fig. 3. Iscoclines defined by a set of constant values of kernelized
dot-products between KPCA eigenvectors and data 2D domain
points. Results of space labeling using the three most expressive
vectors (top row), derived using KPCA analysis of input data and
space labeling with most discriminative features, according to the
criterion (14), with indices: 0.9 and 5, respectively (bottom row).
Points of the three classes are shown in black (1), blue (2) and
red (3).
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Fig. 4. Representation of original samples in three-dimensional
feature spaces, defined by three most discriminant (in a sense of
the criterion (14) eigenvectors from a set of KPCA results (left)
and the space defined by the three most expressive feature vectors
(right).

The score favors evenly spaced Gaussian class distributions,
which is rarely the case in practice. Therefore, the authors
propose to introduce scoring of pairwise class separation
only, and to build a target feature space from a collection
of directions that provide best separations for all pairs of
classes. This approach might potentially lead to a large fea-
ture space cardinality if large number of classes are consid-
ered, however, it has been found that individual directions
typically provide the best separation for several class pairs.
The proposed feature selection criterion produces the most-
discriminative feature set F2:

F2 = {F
α0

2
. . .F

αk
2

. . .F
αD−1

2
} , (16)

where its elements F
αk

2
provide maximization of a sepa-

ration score between classes p and q, assessed using the
score:

F
αk

2
=

|µ
αk
p − µ

αk
q |

σ
αk
p + σ

αk
q

. (17)

The second modification that has been introduced is con-
cerned with tuning feature scoring criteria, so that kPCA-
produced features where projected samples have distribu-
tions that are actually close to Gaussian, become the pre-
ferred ones. The assumption of distribution Gaussianity is

at the core of all of the presented feature selection crite-
ria, however it is not justified in any way. As a result, class
samples typically remain mixed even though their Gaussian
models, expressed using means and standard deviations,
suggest decent class separability. To assess actual proper-
ties of projected sample distributions two different scores
for within-class scatter assessment are introduced. To pe-
nalize heavily asymmetric distributions (with long tails that
can mix with samples from apparently distant classes) the
distribution skewness s is included, i.e., the third central
moment, into denominators of class separation scores, so
that the corresponding criteria (14) and (17) assume the
following forms:

Fk
1S =

n−1

∑
i=0

|µ
ξ
i − µξ |

n−1

∑
i=0

σ k
i

(

1 + |sk
i |
)

, (18)

and

F
αk
2S =

|µk
p − µk

q |

σ k
p(1 + |sk

p|)+ σ k
q (1 + |sk

q|)
, (19)

where sk
i denotes skewness of i-th class samples projec-

tion onto some k-th eigenvector. Observe that the pro-
posed modification is penalizing asymmetric distributions,
by reducing the corresponding scores. Similarly, to prefer
Gaussianity of distributions, kurtosis κ is included in an
analogic manner into these criteria, yielding:

Fk
1K =

n−1

∑
i=0

|µ
ξ
i − µξ |

n−1

∑
i=0

σ k
i (1 + |κk

i |)

(20)

and

F
αk
2S =

|µk
p − µk

q |

σ k
p(1 + |sk

p|)+ σ k
q (1 + |sk

q|)
. (21)

As a final remark, the authors would like to emphasize
that all sample separation criteria introduced in Section 3
also hold in original feature spaces, without a necessity to
perform nonlinear, kernel-based transformations.

4. Experimental Evaluation of the
Considered Strategies

Experimental setup used for verification of the proposed
concepts was the following. Four-category classification
problem was considered with artificially generated sam-
ples, defined in 25-dimensional space, of which only
3-dimensions provided structured class distributions (see
Fig. 5). In this 3D subspace, distribution of three of the
considered classes (shown in black, red and blue and
marked as 1, 2, 3, respectively) were bimodal. The fourth
class distribution (shown in green, marked by 4) fills in
a concave region in space, which encloses one of the modes
of the red as well as of the blue class. Also the other
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modes of red and blue classes occupy concave regions.
For the remaining twenty two dimensions, sample coor-
dinates were generated randomly (with either uniform or
binomial distributions), thus making these directions use-
less from the point of view of class discrimination. One
thousand-element set of samples was generated, including
even number of samples (i.e. 250) per class.

(a) (b)

3

4

4

4

1

1

2 2

Fig. 5. Two projections of a generated, 25-dimensional distribu-
tion of input samples, onto three-dimensional subspaces: (a) the
only subspace with structured data distribution, (b) a 3D subspace
selected randomly from the remaining twenty-two dimensions.

An objective of the experiments was to evaluate discrim-
inative properties offered by different feature spaces. An
outcome of k-NN classification, performed in the 10-fold
cross-validation scheme (in each run, training and test sam-
ples were mutually exclusive) was considered for feature
space scoring. A particular choice of the k-NN strategy
was made because the considered feature space derivation
methodology is weakly correlated with k-NN classification
principles. To provide the reference results for comparison
against performance of the considered kernel-based strate-
gies, performance of k-NN classification applied to raw
input data was also evaluated.
The following experimental setup was adopted. Each of the
feature selection criteria, followed by k-NN classification
was performed on the same set of artificially generated data.
For each procedure, a set of alternative parameters was
used, including:

• a type of the kernel (the kernels given by Eqs. (10),
(11) and (12) were considered) and its parameter val-
ues (orders, for polynomial kernels and σ for the
Gaussian kernel),

• target feature space cardinality (denoted henceforth
by D),

• classification method parameter k.

Sample output data distributions in target 3D feature spaces,
derived using three different methods: basic kPCA and two
spaces obtained by application of feature selection pro-
cedure, involving the criteria F1 (14) and F2 (17), have
been shown in Fig. 6. Although samples do not form
clear clusters and no substantial differences can be observed
among the plots, classification performance in these spaces

is quite different, starting from 61.5% for the first space,
through 68% for the second one, to 74.5% for the third one.

(a) (b) (c)

Fig. 6. Distribution of samples projected onto axes of a target
feature space, derived using: (a) KPCA method, (b) feature se-
lection driven by the score F1, (c) feature selection driven by F2.

Performance of the reference method – data classifica-
tion in input 25-dimensional space using k-NN method –
equals 64.5%. In all cases, a value of k = 7 was used. The
presented results appear to be characteristic for the consid-
ered methods.
An extensive summary of experiments aimed at evaluat-
ing class discrimination performance of different feature
spaces, is provided in the following tables and figures,
where the following notation has been adopted for the con-
sidered feature spaces:

• kPCA – denotes a space composed of a set of most
expressive features, i.e. the leading eigenvectors de-
rived using kernel-PCA),

• F1 – denotes a space composed of the most discrimi-
native vectors derived using the feature selection cri-
terion (14),

• F2, F2S, F2K – denote spaces composed of most dis-
criminative vectors derived using the feature selection
criterion (17) and its modifications involving skew-
ness (19) and kurtosis (21), respectively,

• RAW – denotes the original feature space.

The first group of experiments was concerned with com-
parison of performance of data classification in spaces
derived using methods F1 and F2, in confrontation with
a space derived using kPCA and data classification by
means of k-NN in the original space (RAW). A target space
dimensionality of D = 3 was assumed and Gaussian kernel
with σ = 2 was chosen (the choices were not optimized in
any way). Results, presented in Table 1, confirm the expec-
tation that feature space built from most expressive features
performs poorly in class separation. One can observe that it
is also outperformed by k-NN data classification performed
on raw data (classification performance increases with car-
dinality k of a winner set). Feature selection, as expected,
performs the best, however to justify computational over-
head necessary for feature space derivation, tuning of kernel
parameters was necessary.
The three kernels presented earlier: Gaussian (10), polyno-
mial (11) and extended polynomial (12) were tested during
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Table 1
Classification performance in various target feature spaces

for fixed target feature space dimension D = 3

and without optimization of procedure parameters

k RAW kPCA F1 F2

1 66.2 56.5 72.2 72.5

3 66.2 59 74.2 72.2

5 64.2 62.2 72.7 73.2

7 71.2 64.5 73.5 74

11 72.1 62.2 72 72.7

the following experiments. For the Gaussian kernel, pa-
rameter tuning was reduced to choice of the parameter σ ,
which determines a range of training set points influence.
In case of polynomial kernels, the tuning concerned poly-
nomial order (parameter m of equations (11) and (12)).
Three different values for m were tested throughout exper-
iments: m = 2, 3 and 6. One needs to note, that due to
high dimension of the original data vectors (d = 25), even
for the considered low polynomial orders, a resulting fea-
ture space, where classification gets performed, has very
high dimensionality. As it was shown in [9], cardinality of
the H space, in case the polynomial (11) is considered,
is related to a polynomial order m and to an original input
vector dimension d via the formula:

D =

(

d + m−1

m

)

=
(d + m−1) · . . . ·d

m!
, (22)

which, for the considered parameters, gives H space di-
mensions: D = 325 for m = 2, D = 2925 for m = 3 and
D = 593775 for m = 6.
Results of the experiments are shown in Fig. 7. One can
see that Gaussian kernels outperform the polynomial ones
for appropriately chosen values of the parameter σ . In case
of polynomial kernels, one can notice that increase in com-
plexity of class-separation boundaries, caused by increasing
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Fig. 7. Classification performance for different kernels as a func-
tion of varying k-NN classification parameter k (target space of
dimension D = 3 is used, RBF denotes the Gaussian kernel).

the polynomial order, impairs classification performance.
This is clearly a result of poorer generalization proper-
ties of higher-order curves that tend to overfit training data
samples.
To compare performance of different scoring methods (in-
volving basic class separation measures: (17) and (14),
involving additionally skewness (18) and (19) and kurtosis
(20) and (21)), further experiments were performed only for
Gaussian kernels with a value of σ set to five. Two different
cardinalities of target feature spaces: D = 3 and D = 4, were
considered. The former choice was motivated by actual di-
mensionality of the original problem (structured, separable
data exist in three-dimensional space), and the adopted fea-
ture space derivation methodology was expected to infer
this dimension. The latter dimension was used for refer-
ence to see, whether classification performance in overly-
dimensional space is indeed lower.
Results of the experiments performed for feature selection
based on pairwise separation assessment (F2 strategy) are
shown in Fig. 8 (results for the strategy F1 were similar). As
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Fig. 8. Performance comparison for different variants of fea-
ture selection by pairwise separation maximization with the three
considered scoring criteria: basic (17), involving skewness (19)
and involving kurtosis (21), for two different dimensions of tar-
get feature spaces (D = 3 and D = 4) as a function of the k-NN
classification method parameter k.

it can be seen, classification performance of the considered
feature scoring methods varies, and no clear conclusion can
be drawn from the resulting plots. One needs to bear in
mind, that original class distributions generated in a sub-
space shown on the left of Fig. 5, i.e. for a 3D subspace,
where distributions are structured, are uniform. The results
from Fig. 8 indicate that statistical properties seem to be
typically propagated to high-dimensional spaces, as a basic
feature scoring criterion (17) usually performs better than
the criterion that involves skewness. On the other hand, su-
periority of the reconstructed three-dimensional space over
its four-dimensional counterpart is evident, which proves
the expectations.
The final group of experiments was aimed at comparative
evaluation of the two considered feature selection strate-
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gies: selection by multiple-class separation assessment
(F1 strategy) and selection by pairwise-class separation as-
sessment (F2). Three-dimensional target feature space was
assumed and projections onto H space was done by Gaus-
sian kernel with σ = 5. As skewness and kurtosis did not
prove to have an advantage as modifiers in feature scoring,
only basic forms of selection criteria (14) and (17) were
used. Experiment results are presented in Table 2.

Table 2
Comparison of classification performance in feature

spaces derived using F1 and F2 selection criteria
for Gaussian kernel and fixed dimension D = 3

.
k F1 F2

3 83.3 87.8

5 84.6 87.2

7 83.5 88

As it can be seen, feature selection driven by pairwise class
separation assessment performs better than feature selection
driven by multiple-class separation criterion. A difference
is relatively small, yet consistent. Both methods outper-
form k-NN classification of original samples, which tops at
72.1% for 11-NN classification (see Table 1). Also, both
methods outperform classification in a feature space de-
rived by class separation assessment in two-, three- and
four-dimensional subspaces, defined by the criterion (15)
(performance of this soring method was even below the one
of the kPCA method). Better performance of F2 over F1

scheme may result from collective cooperation of features
that provide good class-wise separation in a multidimen-
sional space, resulting in correct tackling of the multi-class
problems.

5. Conclusions

Different methods for feature space derivation by selection
of eigenvectors produced by kernel-PCA have been exam-
ined in the presented paper. It has been shown that one
can improve classification performance by introducing ap-
propriate modifications to the feature selection procedure.
The modifications that contribute to higher classification
rates include reformulation of a feature selection criterion,
which focuses on evaluation of pairwise class separation.
Some of the proposed modifications, such as inclusion of
sample distribution skewness and kurtosis int intra-class
scatter scoring criteria, proved to be inconclusive.
One needs to keep in mind that experiments were per-
formed on an artificially-generated datasets with some par-
ticular properties. Although the proposed class distribu-
tions reflect main properties of hard, real data sets, such as
multi-modality, nonlinear class boundaries (including con-
cave ones) and a significant degree of randomness, much
more experiments have to be made to confirm the observed
properties of the considered methods. Also, the proposed

methods need to be evaluated on real datasets. Despite this,
the authors believe that the results obtained provide an in-
teresting alternative to the commonly used feature selection
approaches in kernel-induced feature spaces.
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