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Abstract—In this paper Quaternion Feistel Cipher (QFC)

with an infinite key space based on quaternion Julia sets is

proposed. The basic structure of the algorithm is based on

the scheme proposed in 2012 by Sastry and Kumar. The pro-

posed algorithm uses special properties of quaternions to per-

form rotations of data sequences in 3D space for each of

the cipher rounds. It also uses Julia sets to form an infi-

nite key space. The plaintext is divided into two square ma-

trices of equal size and written using Lipschitz quaternions.

A modular arithmetic was implemented for operations with

quaternions. A computer-based analysis has been carried out

and obtained results are shown at the end of this paper.

Keywords—cryptography, lossless scheme, multimedia encryp-

tion, security.

1. Introduction

Quaternion encryption as presented in [1]–[3] uses the

unique properties of quaternions in order to rotate vectors

of data in a three-dimensional space. The concept, however,

lacks general interest and is not popular, thus it is difficult

to find a paper that would introduce any significant con-

tribution to the field. However, an authors’ papers [4]–[8]

show different, possible implementations of quaternion en-

cryption and they discuss the security aspect of each pro-

posed algorithm.

The cipher proposed by the authors in [9] is a modification

of the Feistel Cipher with the implementation of modu-

lar arithmetic. In this paper an another modification of the

Feistel Cipher is proposed. In this modification, modular

quaternion rotations are used to encrypt subsequent rounds

without the need to use matrix multiplication as introduced

in [9]. The proposed quaternion model features very fast

computation advantages over its matrix-based counterpart

in [9], thus this makes it a perfect match for encrypt-

ing multimedia. The specific properties of computations

in the field of quaternions are covered more extensively

in [10], [11]. Additionally, when encrypting a color image

in RGB representation, it is possible to increase encryption

efficiency even further because in that case a single quater-

nion can successfully store information about all three

RGB channels.

It is important to note that the algorithm proposed here

is part of an ongoing project, thus further studies on the

method are necessary and are highlighted in the paper. The

algorithm proposed here was originally designed to encrypt

multimedia data, thus the security aspect is not the focus

of this paper.

The paper is organized as follows. In Section 2 a brief in-

troduction to quaternion calculus and quaternion Julia sets

is provided. Section 3 describes the quaternion rotation

concept as well as the application of quaternion Julia sets.

Section 4 concerns the proposed encryption scheme with an

illustration of the Quaternion Feistel Cipher. In Section 5

the simulation results are shown, the avalanche effects are

discussed and the computation speed of the proposed al-

gorithm with the AES algorithm is compared. Finally, in

Section 6, the conclusions are drown.

2. Quaternion Calculus

Quaternions are hyper-complex numbers of rank 4 and

have two parts – a scalar part and a vector part, which is an

ordinary vector in a three-dimensional space R3. A quater-

nion q is defined by formula [10], [12]:

q = w+ xi+ y j + zk , (1)

where w, x, y, z are real coefficients of quaternion q,

and i, j, k are imaginary units with the following prop-

erties [10], [12]: i2 = j2 = k2 = i jk = −1, i j = − ji = k,

jk = −k j = i, ki = −ik = j. A quaternion could also be

considered as a vector represented by a column matrix (all

vectors in this paper are represented by column matrices)

or as a composition of scalar part w and vector part ~v

q = [w x y z]T or q = (w, ~v) =
(

w, [x y z]T
)

. (2)

The sum of two quaternions q1, q2 is defined by adding the

corresponding coefficients of those quaternions, i.e., in the

same manner as for complex numbers [10], [13]:

q1 +q2 = (w1 +w2)+(x1 + x2)i+(y1 + y2) j +(z1 + z2)k .

(3)

The product of two quaternions is more complex due to the

anti-commutativity of the imaginary units of quaternions.

The product of the two quaternions q1, q2 consists of scalar
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and vector products (“◦” denotes the scalar product and “×”

denotes the vector product) [10], [13]:

q1 ·q2 = (w1w2 −~v1 ◦~v2, w1~v2 +w2~v1 +~v1 ×~v2) . (4)

In this paper “·” denotes the quaternion multiplication. Fur-

thermore, it is important to define the other properties of

quaternions: a conjugate q∗, a norm ‖q‖ and an inverse

q−1 of a quaternion q:

q∗ = w− xi− y j− zk, ‖q‖=
√

w2 + x2 + y2 + z2 , (5)

q−1 =
q∗

‖q‖2 =
w− xi− y j− zk
w2 + x2 + y2 + z2 . (6)

It is important to notice that in the case of a unit quaternion,

for which the norm is equal to 1, there is the following

relation: q−1 = q∗.

2.1. Quaternion Julia Sets

Julia sets are produced by a procedure of repeated itera-

tions [14], [15]. The polynomial used in the process of

iteration is quadratic, cubic, quartic or any higher order de-

gree [15]. A Julia set consists of all points p ∈C for which

a recursive sequence:

z0 = p , (7)

zn+1 = z2
n + c , (8)

does not approach infinity. The parameter c in Eq. (8) is

a complex number, i.e., a parameter determining the shape

of the produced set. For a quaternion Julia set, the starting

point p is determined in a three-dimensional space (1, i, j)
for a constant dimension k. Parameter c is then considered

a quaternion. An exemplary quaternion Julia set is shown

in Fig. 1.

Fig. 1. Exemplary quaternion Julia set, number of iterations = 12,

c = 0.0882 + 0.1251i−0.7555 j + 0.1552k, control number = 16,

without an intersection plane.

In order to generate a quaternion Julia set, first must be

set: all of the necessary initialization parameters, such as

the number of iterations, to perform rule given by Eq. (8),

the coefficients of quaternion c, a control number determin-

ing convergence of the starting points and the intersection

plane.

3. Quaternion Rotation

The quaternion rotation can be performed by possessing

a quaternion around which we will be rotating another

quaternion. If the rotated quaternion as a data vector in

three-dimensional space is considered, then the idea of

quaternion encryption could be implemented.

Let us consider two quaternions q = [w x y z]T and P =
[0 a b c]T , where a vector [a b c]T , which represents a vec-

tor part of the quaternion P with a zero scalar part, will

store information about a piece of data to be rotated around

quaternion q. The obtained quaternion Prot will be a spatial

mapping of the rotated data vector [a b c]T . The quaternion

rotation is written as

Prot = q ·P ·q−1 . (9)

If we possess a tool, which can handle quaternion calcula-

tions, it is possible to implement encryption according to

the Eq. (9).

3.1. Encryption Concept

The encryption method that was implemented in presented

algorithm is entirely based on the quaternion rotation (9).

It is possible to optimize the rotation process by extending

the vector part of quaternion P in order to obtain a new

quaternion B, as is shown in Formula (10):

P =



0,





a
b
c







 → B =



0,





[a1 a2 a3]
[b1 b2 b3]
[c1 c2 c3]







 . (10)

The encryption and decryption process for the quaternion

method with the new extended quaternion B (meant to

store data information) is shown in Eqs. (11) and (12),

respectively.

Brot = q ·B ·q−1 , (11)

B = q−1 ·Brot ·q , (12)

where Brot is the rotated (encrypted) quaternion B and q is

the quaternion-key (encryption key).

3.2. Infinite Key Space

In order to generate an infinite key space it is necessary

to first calculate a rotation matrix [1]–[3]. By using the

Formula (9) and applying the Formulas (4)–(6) it is possi-

ble to introduce a rotation matrix [3], [12], [13], [16] and

write:

Prot = ΓΓΓ(q)P , (13)

P =





a
b
c



 , ΓΓΓ(q) =







w2 + x2−y2−z2 2xy−2wz 2xz+2wy

2wz+2xy w2−x2 + y2−z2 2yz−2wx

2xz−2wy 2yz+2wx w2−x2−y2 +z2






,
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Initial rotation matrix ( )G q
0

w11 = ( of remaining elements) /6S

R G B

Mean value

mR m
G

mB

f i j k
1 R B

= m + m + m
G

Fractal image of the quaternion Julia set

Before calculating 2nd order quaternion-
keys, one must rotate all 1st order
quaternion-keys around quaternions f.

q = w + x i + y f z k12 12 12 12 12

q = f .q .f12rot 2 12 2
-1

q = f .q .f13rot 3 13 3
-1

q = w + x i + y f z k13 13 13 13 13

f1 f2 f3 f4 f5

1st order quaternion-key calculation.q
11

Remaining 1st order quaternion-keys and are calculated in the same manner.q q12 13

Fig. 2. Process of calculating 1st order quaternion-keys from an initial rotation matrix.

where ΓΓΓ(q) is the rotation matrix calculated from the vector

part of quaternion Prot , which is defined by Formula (9).

The rotation matrix is directly linked to quaternion q from

which it was calculated.

The authors propose a key-generation algorithm based

on concept [1], but additionally a quaternion Julia sets

is introduced. The idea of the process is to treat ele-

ments of each column of the rotation matrix as coefficients

(x, y, z) of subsequent quaternions from which other rota-

tion matrices can be generated. In order to obtain coeffi-

cient w of subsequent quaternions, the mean value from

six elements of the rotation matrix must be calculated,

which were not used to determine coefficients (x, y, z), see

Fig. 2.

Let us assume that the first quaternion q from which a ro-

tation matrix was generated (13) is called an initial quater-

nion q0. After grouping the elements of initial rotation ma-

trix ΓΓΓ(q0) three quaternion-keys of 1st order (q11, q12, q13)

can be obrained. From these quaternions three rotation

matrices can be generated, from which there is possibility

to generate nine quaternion-keys of 2nd order. If we as-

sume n as a rotation order, then the number of obtained

quaternion-keys for the appropriate order n is equal to 3n.

The process is iterative, which means that in order to ob-

tain higher order quaternion-keys we first need to define the

rotation matrices of the lower orders.

However, before generating rotation matrices from quater-

nion-keys, we must first rotate every quaternion-key around

quaternion fi. Quaternions fi are calculated from a random

quaternion Julia set (Fig. 2).

The authors used the Quat generator [17] for visualization

of quaternion Julia sets in 3D space as color images. The

fractal image is divided into smaller fragments. The num-

ber of fragments is based on the size of the key space,

e.g., for order = 2 nine quaternion-keys of 2nd order would

be produced, thus we will need to divide the fractal im-

age into 12 fragments (9 for quaternion-keys of 2nd or-

der and 3 for quaternion-keys of 1st order). From each

fragment a different quaternion f is calculated. Its coeffi-

cient w is always equal 0 and coefficients (x, y, z) represent

a mean value calculated from the pixels values in the R, G

and B channels of the fragments (Fig. 2).

The process of calculating 1st order quaternion-keys is

shown in Fig. 2. The key generation process can be sum-

marized by the following steps:

1) define q0,

2) calculate ΓΓΓ(q0),

3) calculate q11 q12 q13,

4) calculate f1 ·q11 · f−1
1 f2 ·q12 · f−1

2 f3 ·q13 · f−1
3 ,

5) calculate ΓΓΓ(q11rot) ΓΓΓ(q12rot) ΓΓΓ(q13rot),

6) calculate q21 q22 q23 q24 q25 q26 q27 q28 q29,

7) . . .
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(a) (b)
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R0 Rn

for i = 1 to n for i = to 1n

Li-1

L R Li i i-1 = ( - ) mod N

L q.R qi i= ( . ) mod N-1
-1

R q .L .qi i-1 = ( ) mod N
-1
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Li-1
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Ri-1
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Ri-1
,,

B L Renc n n= || B L R= ||0 0

Fig. 3. Process of encryption (a) and decryption (b) for the proposed Quaternion Feistel Cipher.

4. Proposed Scheme

The proposed algorithm is designed to encrypt images (both

color and gray-tone) but it can also be used to encrypt tex-

tual data. For the purpose of this paper an implementation

for RGB color images is presented.

Let us now consider a plaintext B, which will be treated

as RGB color image data. The plaintext can be written as

three matrices B: BR, BG, BB. Each matrix B is of equal

size with the image. Each element of all three matrices B
is a value in the range of 0–255. For the purpose of the

algorithm, all three matrices B should be rewritten as ma-

trices with m rows and 2m columns, where m is calculated

according to the rule:

m =

⌈
√

widthB ·heightB

2

⌉

. (14)

If the number of elements in such matrices exceeds the

original amount of the images’ pixels, then the additional

elements are filled with random numbers in the range

of 0–255. The three obtained matrices B (m × 2m) are

split into three square matrices: L0R, L0G, L0B and three

square matrices: R0R, R0G, R0B, each of size m×m. All

six square matrices are then written as components of two

quaternions, L0 and R0 using the following rule:

L0 = w0 + x0i+ y0 j + z0k, where (15)

w0 = 0, x0 = [L0R], y0 = [L0G], z0 = [L0B] .

R0 = w0 + x0i+ y0 j + z0k, where (16)

w0 = 0, x0 = [R0R], y0 = [R0G], z0 = [R0B] .

The basic equations governing the encryption (17) and de-

cryption (18) in proposed scheme are very similar in con-

cept to the one presented in [9]. In this work, matrix mul-

tiplication is substituted by quaternion multiplication:

Li = (q ·Ri−1 ·q−1) mod N , (17)

Ri = (Li−1 +Li) mod N for i = 1 to n ,

Ri−1 = (q−1 ·Li ·q) mod N , (18)

Li−1 = (Ri −Li) mod N for i = n to 1 .

The flowcharts depicting both the encryption and de-

cryption processes of the proposed cipher are presented

in Fig. 3.

According to Fig. 3, it should be noted that the symbol ‖ is

used for placing the vector part of a quaternion L adja-

cent to the vector part of quaternion R. The value n in-

dicates the number of rounds in the cipher. Each round is

encrypted with a different quaternion-key qi, i = 1, 2, . . . , n.

The unique round keys are provided by the key generation

algorithm (see Section 3.2).

4.1. Modular Arithmetic

Modular arithmetic operations were implemented in order

to remain in the same field of values for data and cipher

text. For that reason it was necessary to use Lipschitz

integers (quaternions with integer components).

In order to calculate a modular inversion of any integer

from the range of 0–255, and also a modular inversion

of a Lipschitz integer, which is needed according to rota-

tion rule (9), it was necessary to choose a special modulus

value (a prime number) that together with all the integers

in 0–255 would yield their Greatest Common Divisor

(GCD) equal to 1. That is why for the RGB color im-

ages we cannot go for the most obvious choice and select

a modulus of value 256, as such a number is not prime

(256 = 28) and will not make it possible to calculate a mod-

ular inversion for most cases. Instead, a modulus equal to
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prime integer N = 257 is used. Therefore values of the range

0–256 for all quaternions Li and Ri can be obtained. It

is important to note that despite the fact that in the en-

crypted image we obtained modified values from the range

(0–256), the algorithm is so constructed that we will still

be able to obtain the exact same image without any errors

after the decryption process. The values obtained in the

decryption process will be set into the appropriate range

of 0–255.

The modular arithmetic with modulus 257 was imple-

mented not only for the encryption/decryption process but

also for the key generation algorithm (Section 3.2).

5. Simulation Results

The proposed scheme was scrutinized by computer-based

simulation. The results of the encryption and decryption

processes are shown in Fig. 4b and 4c, respectively.

(a) (b)

(c) (d)

Fig. 4. Encryption and decryption of a color Lena image

(https://en.wikipedia.org/wiki/Lenna) performed by the proposed

quaternion cipher: (a) original image, (b) encrypted image, (c) de-

crypted image, (d) decrypted image using one key that is different

in its binary form (1 bit) from the original one.

In Fig. 5, two histograms, i.e. of the original and the en-

crypted color Lena image, are shown. One can notice that

the pixel values of the encrypted image are governed by

a uniform distribution.

5.1. Randomness Tests

Chi-squared tests of randomness based on the diehard pack-

age [18] as well as on the freeware software Cryptool [19]

were implemented in order to estimate the security level
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Fig. 5. Histograms for a color Lena image: (a) original image,

(b) encrypted image.

of the proposed encryption model. The primary factor,

which informs us about the effectiveness of the obtained

randomness in encrypted data is a parameter called the

p-value. Its values differ from 0 to 1, and the authors al-

ways aim for values as close to 0.5 as possible. If the

p-value equals 0 or 1, that means that the encrypted data

fails a particular randomness test. The obtained results for

selected diehard randomness tests are shown in Table 1.

Table 1

p-values for different randomness tests

from the diehard package

Birthday Binary Parking
spacings rank lot

p-values 0.613 0.585 0.209

The Up-down
Craps3Dsphere runs

p-values 0.293 0.147 0.692

DNA Count-the-1’s OQSO

p-values 0.726 0.241 0.363

OPERM5
Minimum Overlapping
distance sums

p-values 0.588 0.811 0.534

The authors also analyzed the randomness of proposed al-

gorithm by using the Cryptool [19]. It offers 6 statistical

tests: the Frequency Test, Poker Test, Runs Test, Serial

Test and two additional tests embedded in Cryptool’s bat-

tery test: Long-Run Test and Mono-Bit Test. Presented

algorithm successfully passes all of them.

5.2. Avalanche Effect

In order to study the avalanche effect, let us consider a color

Lena image as a plaintext. If 1 bit in one of the calculated
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round keys (quaternion-keys of higher order) is changed,

a new cipher text (encrypted image) will be obtained. Such

a cipher text will yield a nearly 50% difference in its binary

form in reference to the original cipher text.

The same situation is achieved when changing 1 bit in the

initial encryption key (initialization quaternion). The dif-

ference in binary form of the modified cipher text and the

original cipher text is also very close to 50%.

Let us now consider an example shown in Fig. 4. The aim

is to encrypt a color Lena image. In the encryption process

9 rounds of the proposed algorithm are used. Each round

has its own unique key (quaternion-key of higher order).

Assume that the attacker knows 8 unique keys and pos-

sesses substantial knowledge about the last key (let us as-

sume that the only difference is 1 bit in the binary form

in the value y of the last quaternion-key). Decryption of

the image performed by the attacker in such a scenario is

shown in Fig. 4d. The presented result proves to be a strong

avalanche effect.

5.3. Computation Speed

The authors analyzed the computation speed of proposed

algorithm in comparison to the Advanced Encryption Stan-

dard (AES). For the purpose of this test the fastest AES

version is implemented, i.e. AES-ECB, and its capabili-

ties on the same machine as for our quaternion algorithm

are measured. The machine used for the test was: Intel

Core i5-3570 CPU @ 3.40 GHz, 16 GB RAM, and simu-

lation environment was Matlab. The results of the compar-

ison for a color Lena image are presented in Table 2. The

expected values with confidence intervals calculated from

20 simulations are shown. The expected values presented in

Table 2 are an estimation of the expected value µ , deter-

mined according to equation [20]:

P
(

X − tα
S√

N −1
< µ < X + tα

S√
N −1

)

= 1−α , (19)

where X is the expected value of the sample, S is the stan-

dard deviation of the sample, N is the size of the sample

(20 simulations), tα is a value obtained from the t-Student

table for N −1 degrees of freedom and 1−α is the confi-

dence coefficient equal to 95%.

The initialization time refers to the time needed to cal-

culate all of the necessary initialization parameters/val-

ues/matrices in order to perform the encryption/decryption.

For AES, the initialization parameters refer to: the substitu-

tion box and its inverse, an arbitrary 16-byte cipher key, key

expansion, a polynomial transformation matrix and its in-

verse. For the proposed algorithm, the initialization param-

eters refer to: the components of the initialization quater-

nion, initialization values for the quaternion Julia fractal,

and the rotation order for which an appropriate key space

is calculated (Fig. 2).

According to the results as presented in Table 2, one can

see one of the main advantages of proposed algorithm,

Table 2

Comparison of the computation speed of AES

and the proposed algorithm for a color Lena image

of size 243×243 pixels

AES-ECB X
tα S√
N −1

Initialization time [s] 0.6226 4.851E-03

Encryption time [s] 68.05 0.1416

Decryption time [s] 98.55 0.2095

Total time [s] 167.2 –

Proposed algorithm X
tα S√
N −1

Initialization time [s] 0.05428 9.101E-03

Encryption time [s] 0.2643 2.018E-03

Decryption time [s] 0.2642 1.270E-03

Total time [s] 0.5829 –

i.e. its fast computation speed. Moreover, in a practical

scenario, encryption with AES could take even more time,

especially considering the fact that a more secure imple-

mentation will be required, e.g., AES-CBC, AES-CTR,

AES-OFB, or AES-OCB.

6. Conclusions

According to the presented simulation results, it is rela-

tively easy to show that a very good randomness of bit

sequences in an encrypted image can be obtained using the

proposed encryption scheme. Moreover, one of the main

advantages of QFC is its fast computation speed. Because

of the structure of the algorithm, the specific properties

of quaternions and enormous key space, the algorithm’s

resistance to cryptanalytic attacks should significantly ex-

ceed multimedia encryption requirements. Of course, many

possibilities exist according to which the proposed model

could further be improved, e.g., main research focus now is

to introduce additional operations to the cipher which will

further increase its robustness capabilities.

It is important to note that when using the proposed key

generation scheme, the number of possible encryption keys

for each round is particularly large because of the possi-

bility of setting the rotation order, the values of the 4 pa-

rameters of the initialization quaternion and the values for

all quaternions f calculated based on a random quaternion

Julia fractal image [1]–[3], [12].
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