
Paper Detecting Security Violations

Based on Multilayered Event

Log Processing
Przemysław Malec, Anna Piwowar, Adam Kozakiewicz, and Krzysztof Lasota

Research and Academic Computer Network (NASK), Warsaw, Poland

Abstract—The article proposes a log analysis approach to de-

tection of security violations, based on a four layer design.

First layer, named the event source layer, describes sources of

information that can be used for misuse investigation. Trans-

port layer represents the method of collecting event data, pre-

serving it in the form of logs and passing it to another layer,

called the analysis layer. This third layer is responsible for

analyzing the logs’ content, picking relevant information and

generating security alerts. Last layer, called normalization

layer, is custom software which normalizes and correlates pro-

duced alerts to raise notice on more complex attacks. Logs

from remote hosts are collected by using rsyslog software and

OSSEC HIDS with custom decoders and rules is used on a cen-

tral log server for log analysis. A novel method of handling

OSSEC HIDS alerts by their normalization and correlation is

proposed. The output can be optionally suppressed to pro-

tect the system against alarm flood and reduce the count of

messages transmitted in the network.

Keywords—HIDS, log analysis, NIDS, syslog.

1. Introduction

Events occurring in the operating system, like software in-

stallation, managing system services, as well as successful

and failed login attempts, are preserved real-time in the

form of logs. Every log stores data regarding its origin,

priority and time of appearance, which allows use of event

logs as a reliable source of information when building sys-

tems for alerting about security violations. Raising alarm

after detecting every single malfunction would lead to fre-

quent false positives. That is why receiving and correlating

data from multiple event log sources would increase accu-

racy of detection and allow to reveal violations with more

complex indicators.

Normalization

Analysis

Transport

Event source

Custom software

OSSEC HIDS

rsyslog

Log producers

Fig. 1. Multilayered event log processing.

The design of the log-based system for detecting security

violations consists of four layers, presented in Fig. 1.

The bottom layer, named event source, specifies the log

sources in Linux and network environment relevant in the

process of detecting events. The essential information may

originate from typical system services and network devices,

as well as from security dedicated services like audit and

integrity check tools.

Transport layer is responsible for collecting log messages

from various sources and passing them to the log-col-

lecting server, where the analysis is done. The transport

must guarantee confidentiality and transmitted data in-

tegrity, achieved by using rsyslog software [1]. This layer

secures a copy of all incoming logs (crucial in security log

management according to the guidelines [2]), which en-

ables discovery of data tampering attempts. Preserving logs

in remote localization enables incident reconstruction even

after unrecoverable machine failure [3]. Moreover, pre-

serving three timestamps for every log (generation, server

reception, database insert) can indicate server downtime or

communication disruption, which can be relevant for fur-

ther investigation.

The role of the analysis layer is to generate alerts based

on incoming log entries by decoding key information and

filtering events that are relevant, while detecting malicious

behavior in the network. The first analysis is executed by

OSSEC HIDS [4] engine with a set of custom-written de-

coders and rules.

The need to decrease the number of repetitive alerts was

widely discussed in [5], [6] and some of the existing strate-

gies of alarm suppression were presented in [7]. The nor-

malization layer, implemented by dedicated software,

examines the output of the analysis layer and suppresses

excess alerts. The need to combine many sources of infor-

mation expressed in [8] is satisfied by performing nonlinear

correlation to detect more complex attacks. As a result, this

layer creates alarms that are normalized to a protocol, and

can be used by security system consumer.

2. Event Source Layer

2.1. Log Sources

Log messages containing knowledge about events taking

place in the operating system or the network can be ob-

30



Detecting Security Violations Based on Multilayered Event Log Processing

tained from various process sources. There are several

services and modules that gather information about se-

curity events and store it in the form of logs, shown in

Fig. 2. This article focuses on events generated by follow-

ing sources:

• auditd,

• Advanced Intrusion Detection Environment (AIDE),

• sshd,

• OSSEC rootcheck,

• racoon,

• iptables,

• network devices,

• event logs coming from dedicated processes related

with the system’s security.

Services
Logs

/dev/log

UDP

Router

Switch

Firewall

syslog

Fig. 2. Event sources.

auditd [9] is based on pre-configured rules and generates

log entries recording a large variety of information about

the events occurring in the system. According to [10],

auditd can discover policy violations by monitoring file ac-

tivities and collecting system calls.

AIDE [11] is a file and directory integrity checker. It

creates a database from the state of the system, register

hashes, modification times, etc. This database is later used

to verify the integrity of files by comparing it against the

real status of the system. All of the usual file attributes

can also be checked for inconsistencies. AIDE generates

syscall ANOM RBAC INTEGRITY FAIL, when change in

the monitored file structure is detected and received by au-

ditd from kernel.

sshd [12] is an OpenSSH Daemon, which provides secure

encrypted communications between two untrusted hosts

over an insecure network. It can refer to Pluggable Au-

thentication Modules (PAMs) [13], which provide a com-

mon authentication framework for applications and services

in a Linux system. The errors in communication can be

a valuable source for log analysis.

OSSEC’s rootcheck is an OSSEC HIDS module for rootkit

detection, which runs at regular intervals querying the sys-

tem for information and comparing the results with a list

of known rootkits and trojans. When the rootcheck module

finds discrepancies in information about a file, a process,

port or network interface, it will raise an alert about a sus-

pected rootkit.

racoon [14] is an Internet Key Exchange (IKE) daemon for

automatically keying IPsec connections to establish safe as-

sociations between hosts. Reported errors in communica-

tion can be used to detect suspicious behavior of nodes.

iptables [15] is used as a firewall to set up, maintain, and

inspect the tables of IP packet filter rules in the Linux

kernel.

Network devices (i.e., routers, switches, firewalls) send in-

formation about their activity in UDP messages.

2.2. Log Formats

Log records are an essential source of information and

can be written by a process to a dedicated text file, al-

though the majority of logs are a product of sending data

to local /dev/log socket, from where the messages are re-

ceived by a log collecting service called syslog. All infor-

mation collected by syslog should by written in a simple

syslog format described in RFC 5424 [16] with a such

structure:

<PRI> TIMESTAMP HOSTNAME APP-NAME: MSG

The value of the PRI part is assigned based on two proper-

ties, which are severity and facility. Severity is a numerical

value of event priority and varies from 0 (emergency) to 7

(debug). Facility value depends on the log supplier, where

different kinds of system services have taken their own

codes, e.g., kernel messages (kern) have 0 facility value,

authentication events (auth) have facility value equal to 4,

etc. In addition, every log contains the timestamp of the

logged event, hostname of the machine which produced the

message, program source of the event (optionally with PID

in brackets) and message content of registered log.

An example of a syslog protocol log is shown below:

Jul 7 14:37:10 pl.bipse.wil.si.kbk1

sshd[15308]: Accepted password for root from

192.168.56.1 port 56440 ssh2

Audit has an independent log processing system, which

writes events to /var/log/audit/audit.log file and also pro-

vides a rotation mechanism for its journals. However, with

the usage of audisp daemon the audit output can be redi-

rected to the standard /dev/log socket for further process-

ing. The audit log contains information about the type of

registered event (system call, login information, etc.), its

timestamp and a list of audit event fields suitable for given

occurrence.

31



Przemysław Malec, Anna Piwowar, Adam Kozakiewicz, and Krzysztof Lasota

The example of audit log is as follows:

type=SYSCALL msg=audit(1441374914.091:1975):

arch=c000003e syscall=82 success=yes

exit=0 a0=1668900 a1=4a4fa8 a2=1647c00

a3=6d617473656d6974 items=5 ppid=1 pid=1840

auid=4294967295 uid=0 gid=0 euid=0 suid=0

fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none)

ses=4294967295 comm=“NetworkManager”

exe=“/usr/sbin/NetworkManager” key=“LINKING”

3. Transport Layer

3.1. Open Source Systems for Log Processing

A mechanism for centralized logging can be set up by con-

figuring existing open source solutions for log processing.

The leading software utilities are syslog-ng Open Source

Edition, developed by BalaBit IT Security Ltd.[17] and

rsyslog from Rainer Gerhards and Adiscon.

The syslog implementation used in a security system should

meet the requirements described in [18], such as high avail-

ability of service and confidentiality and integrity of trans-

mitted data. Both of the chosen solutions fulfill these as-

sumptions and offer the ability to send and collect remote

log messages by encrypted transmission using the Trans-

port Layer Security (TLS) mechanism. Another key feature

that both rsyslog and syslog-ng provide is database sup-

port. In addition, syslog-ng represents a highly customiz-

able solution that can gather information from many dif-

ferent sources beside the standard operating system events,

e.g. additional text files and the content of binary files such

as /var/log/btmp, which contains records of failed user login

attempts). The syslog-ng’s database support is flexible and

allows storing logs in daily tables without additional admin-

istrational procedures. The main disadvantage of syslog-ng

is its fix-sized queue mechanism, which does not guaran-

tee avoiding log loss during server unavailability in case of

client’s queue overflow.

On the other hand, rsyslog is capable of collecting standard

system messages and events written to external text files

and transferring them via Reliable Event Logging Protocol

(RELP) to the central log server, ensuring zero message

loss among the network nodes. rsyslog also supports disk

buffers for not forwarded log messages, which protects log

journals from loss and inconsistency.

For the purposes of the designed system rsyslog was cho-

sen to create the centralized log processing system due to

the reliability of its built-in mechanisms for log transfer

between the hosts.

3.2. Proposed Architecture of the Transport Layer

The transport layer is based on client-server architecture.

On every client machine data is collected from typical

sources, such as the /dev/log socket (including the out-

put of audispd redirecting audit events), system services

like AIDE or sshd. Moreover, clients can gather informa-

tion from network devices by receiving UDP messages

and passing the relevant data further. Collected informa-

tion is sent to the log server via the RELP communication,

which guarantees no message loss. RELP mechanism uses

a Transmission Control Protocol (TCP) connection, which

is an advantage over plain syslog communication, which

uses User Datagram Protocol (UDP) as a default.

The server machine receives messages from remote clients

and processes them next to the logs from the local sources

described above. Remote logs are written to separate files

in catalogues named after client’s hostnames, reflecting the

file structure on origin machine. The copy of all messages

is sent to the database, from where logs can easily be ac-

cessed with SQL queries. The database output stores all in-

formation included in the log, server receive timestamp and

database insert time as well. The rsyslog, based on proper-

ties from syslog header, filters messages and forwards them

to the named pipe /dev/ossec, from where they are received

by OSSEC HIDS analyzer. The flow of information in the

system is displayed in Fig. 3.

Client Server

Syslog Syslog

logs logs

UDP

/dev/log

/dev/ossec

/dev/log /var/log/*/var/log/*

log DB

Fig. 3. Event log flow.

4. Analysis Layer

OSSEC HIDS is a platform to monitor the status of net-

work elements. It offers the functionality of Host Intrusion

Detection System (HIDS), Security Information and Event

Management (SIEM), log monitoring, rootkit detection and

checking the integrity of system files. It is frequently used

as a part of more complex security systems, due to its flex-

ibility and facility in adapting to own needs [19], [20]. In

the proposed architecture OSSEC HIDS with custom rules

and decoders is used to build a real-time log analyst moni-

tor. This approach enables correlation of events from every

node in the network. The stages of the analyst process are

shown in Fig. 4.

Process steps are as follows:

• Pre-decoding – as mentioned, rsyslog is used as

a transport channel for logs, which adds a syslog

header. This step decodes the syslog format and pulls

information about hostname and time from log;

• Decoding – custom decoders extract information

based on program name, relevant for event type. It

detects data like login name, address and ports for

source and destination;

32



Detecting Security Violations Based on Multilayered Event Log Processing

Pre-decoding

Decoding

Alert

/dev/ossec

Signatures

Fig. 4. OSSEC HIDS flow.

• Signatures and alerting – a set of custom rules is

matched to the log event. Composite rules correlate

hostnames, IPs, users etc. Every rule has an assigned

priority level. When a single event matches more

than one rule, the generated alarm has the priority

of the rule with the highest level or with the level

of the first matched rule when levels have the same

value. If the incident violates adopted policies, an

alarm is raised. Generated alarms precisely define

the detected security events.

4.1. Pre-decoding

OSSEC HIDS recognizes different log formats. In the pro-

posed system, the most common syslog format is used.

Based on the syslog format, specified fields are decoded,

such as:

• hostname – DNS/IP address of component which

originated the event,

• time – time of the event from the element,

• message – message which is used in analysis,

• program – information which process generated the

event.

Table 1 shows the result of the pre-decoding of a sample

log.

Table 1

The result of the pre-decoding of a sample log

Time Jul 17 08:34:40

Hostname pl.bipse.nask.element2

Program sshd[19721]:

Message
Accepted keyboard-interactive/pam for

root from 192.168.56.1 port 51499 ssh2

4.2. Decoding

Based on the results of pre-decoding, the field named pro-

gram determines the process from which the log comes.

This approach minimizes the number of decoding attempts

from the various decoders to only those that meet the cri-

teria. The matching decoder will later be used to decode

relevant information, for example the source IP address of

the user. The decoding process consists of three stages:

• decoder selection,

• log content matching using regular expressions,

• decoding declared fields.

Example of decoding an sshd log is shown in Fig. 5. Based

on process name sshd, the sshd decoder is used in the first

stage. This decoder has a set of sub-decoders, that are

used in regular expressions matching to determine which

of them can decode specific field. It is possible to use sev-

eral decoders simultaneously. Figure shows that the sshd-

success decoder has been selected. The last stage presents

that fields root and IP address were chosen and decoded

as USER and SRCIP (names of fields used in the inner

OSSEC HIDS logic).

1

2

3

Jul 17 08:34:40 pl.bipse.nask.element2 sshd[19721]

sshd PAM

Accepted keyboard-interactive/pam for root from 192.168.56.1
port 51499 ssh2

sshd-success ssh-denied

Accepted keyboard-interactive/pam for root from 192.168.56.1

port 51499 ssh2

USER SRCIP

Fig. 5. OSSEC HIDS decoding process.

4.3. Event Correlation and Signatures

OSSEC HIDS distinguishes two categories of rules that

generate alarms:

• atomic – based on a single event which occurred in

the system,

• composite – correlated over time, based on patterns

of other logs.

Figure 6 shows the logic of matching a rule to a decoded

event. Log entries are analyzed in a sub-rule only after

matching its parent rule. This approach accelerates the

process of analysis and minimizes the tested rules amount.

33



Przemysław Malec, Anna Piwowar, Adam Kozakiewicz, and Krzysztof Lasota

Log arrives

111 501 XXX

122

133

123

144

Fig. 6. OSSEC HIDS rules match.

Pessimistic number of rules to process is the sum of all

parent type rules.

In the proposed solution the grouping of rules is a base for

event correlation. For example, events coming from two

different sources are decoded by two separate decoders and

getting in two independent branches of rules. However,

those rules have the same group id. While appearing in-

dividually none of the detected events generate alarms, but

their correlation leads to signs of an incident being detected

and raises an alarm. The grouping logic based on decoders

sshd and login is shown in Fig. 7.

Alert

No alert

sshd log login log

sshd login

110001 101002

authentication_failed

110016

Decoding

Signatures

Group

Correlation signatures

Fig. 7. OSSEC HIDS correlation and grouping logic.

4.4. Proposed Abuse Detection

Custom rules and decoders allow detection of events, which

can be categorized into groups of security violation alarms

like:

• file modification – files that are watched by auditd or

AIDE, mostly configuration files of system or secu-

rity processes,

• authentication abuse – local or remote, based on login

and sshd proccess,

• rejected connection attempts – system firewall reports

about rejected connection attempts, this information

can be grouped and detected as a host scan,

• successful system user login – for example user

apache or mysql,

• malfunctions services – for example, possible error

of racoon negotiation between elements or invalidity

of certificates,

• file system and hardware errors – can cause unno-

ticed relevant events in system, like overflow of hard

drives,

• sudo abuse – system user and group modification,

• occurrence of unknown errors – events which should

draw attention of the operators, those can be symp-

toms of attacks or reconnaissance,

• network equipment errors and events – errors and

changes in the network topology are crucial informa-

tion about inappropriate network activity for further

investigation.

5. Normalization Layer

Previous layers process relevant event logs that can pos-

sibly generate alarms. This layer adds extra functionality,

which makes events more useful and foolproof. This is per-

formed by custom-written software. Main objectives of this

layer are:

• alarm suppression,

• normalization for other security systems,

• guaranteed delivery,

• nonlinear correlation,

• rejection of irrelevant alarms.

5.1. Alarm Suppression

In the proposed solution OSSEC HIDS can aggregate and

correlate events. Such aggregation can easily generate too

many alerts if events incoming in a short time are a huge

number of identical logs. As OSSEC HIDS suppresses

identical logs, this layer suppresses OSSEC HIDS iden-

tical alarms. Each subsequent alarm which is propagated,

contains the number of events summed in the suppression,

so that the number of individual events is not lost. Sup-

pression affects only the repeating alarms. The suppression

time is configurable, depending on the type of event to

which it refers to. This process is shown in Fig. 8. The pro-

posed approach minimizes the amount of identical alarms

sent and processed by central alarm analyzer, which re-

sults in improvement of performance without losing any

information.

34



Detecting Security Violations Based on Multilayered Event Log Processing

A
la

rm
A

la
rm

A
la

rm

A
la

rm

A
la

rm

A
la

rm
A

la
rm

A
la

rm
A

la
rm

A
la

rm

A
la

rm

A
la

rm

A
la

rm

A
la

rm

A
la

rm

Time

T1 T2 T3

Fig. 8. OSSEC HIDS alarm suppression.

5.2. Normalization for Security System Protocol

Security systems often use their own protocols to com-

municate between components. Additionally, redundant

information generates unnecessary network traffic, which

can lead to internal Denial of Service (DoS) of security

systems. Triggered alarms must be standardized to meet

the needs accepted as a norm for reporting security inci-

dents. Adopted policy may require additional data. At this

point, the normalization layer enriches the message with

additional data based on the configuration or correlating

this event with information from knowledge bases. This is

shown in Fig. 9.

OSSEC alert

OSSEC alert

OSSEC alert JSON

JSON

JSON

File Knowledge
base

Processing

Normalized data

Extra data

Protocol header

Normalized alarm

Fig. 9. Normalization for other security systems.

5.3. Guaranteed Delivery

Ability to communicate with another component that is

a consumer of alerts requires normalization of forwarded

information. The second step is to ensure that the detected

event has been received by the central processing system.

Each of the outgoing events has an identifier of an inci-

dent and its time validity. The mechanism checks whether

the consumer has sent a reception acknowledgment or the

validity of the message has expired. Based on this feed-

back information, it is possible to send a message again

and guarantee delivery.

5.4. Nonlinear Correlation

The normalization layer adds a second correlation that can

combine facts from various areas of events. This layer, by

focusing on brokering, is able to expand the analysis based

on the rules of event occurrence. This can provide his-

torical events analysis and detection of patterns in alarms

based on concept of states. Combining the facts of unde-

sirable incidents occurring in various parts of the network

and applying security modeling, could result in producing

security rules that may protect other nodes, which are not

endangered yet.

5.5. Rejection of Irrelevant Alarms

The normalization layer adds the ability for the complex se-

curity system to work in various modes, which may require

additional alarm suppression. To reject alarms that are ir-

relevant, when system’s state is taken into consideration,

following modes can be distinguished:

• learning mode – detected incidents are a base for

rule creation, which will preserve similar events from

propagating in normal mode,

• reconfiguration mode – alarms are temporarily sup-

pressed when the system is under configuration and

modifications could result in false-positives,

• normal mode – every event classified as an alarm is

propagated further, unless there was a corresponding

rule created in the learning mode.

6. Summary

The article presented a multilayered approach to managing

and handling security incidents based on event logs. Each

layer presented key aspects of its functioning with examples

of implementation. Use of ready-made solutions allows

to focus attention on upper layers associated with event

processing logic. The division of responsibilities into layers

allows easier modification and implementation as part of

security systems.

Acknowledgements

This work was supported by the National Centre for Re-

search and Development (NCBiR) as a part of the research

project “The system of secure IP communication provision

for the power system management” (no. ROB 0074 03 001).

References

[1] Rsyslog – The rocket fast system for log proseccing [Online]. Avail-

able: http://www.rsyslog.com

[2] K. Kent and M. Souppaya, “Guide to Computer Security Log Man-

agement”, National Institute of Standards and Technology (NIST)

Special Publication 800-92, 2006.

[3] K. Julisch and M. Dacier, “Mining intrusion detection alarms for

actionable knowledge”, in Proc. 8th ACM SIGKDD Int. Conf.

Knowl. Discov. Data Mining, Edmonton, Alberta, Canada, 2002,

pp. 366–375.

[4] OSSEC documentation [Online]. Available:

http://ossec-docs.readthedocs.org

[5] H. W. Njogu and L. J. Wei, “Using alert cluster to reduce IDS

alerts”, in Proc. 3rd IEEE Int. Conf. Comp. Sci. Inform. Technol.

ICCSIT 2011, Chengdu, China, 2011, pp. 467–471.

35



Przemysław Malec, Anna Piwowar, Adam Kozakiewicz, and Krzysztof Lasota

[6] H. T. Elshoush and I. M. Osman, “Alert correlation in collabora-

tive intelligent intrusion detection systems – A survey”, Appl. Soft

Comput., vol. 11, pp. 4349–4365, 2011.

[7] T. H. Nguyen, J. Luo, and H. W. Njogu, “Improving the management

of IDS alerts”, Int. J. Secur. Its Appl., vol. 8, no. 3, pp. 393–406,

2014.

[8] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges

in log analysis”, Commun. of the ACM (CACM), vol. 55, no. 2,

pp. 55–61, 2012.

[9] auditd – security guide [Online]. Available:

https://access.redhat.com/documentation/en-

US/Red Hat Enterprise Linux/6/html/Security Guide/

chap-system auditing.html

[10] “Guide to the Secure Configuration of Red Hat Enterprise Linux 5”,

National Security Agency, Revision 4.2, pp. 87–94, 2011.

[11] AIDE – Advanced Intrusion Detection Environment [Online]. Avail-

able: http://aide.sourceforge.net/

[12] sshd deployment guide [Online]. Available:

https://access.redhat.com/documentation/en-US/Red Hat

Enterprise Linux/6/html/Deployment Guide/ch-OpenSSH.html

[13] Using Pluggable Authentication Modules (PAM) [Online]. Available:

https://access.redhat.com/documentation/en-US/

Red Hat Enterprise Linux/6/html/Managing Smart Cards/

Pluggable Authentication Modules.html

[14] racoon – Linux daemon [Online]. Available:

http://linux.die.net/man/8/racoon

[15] iptables [Online]. Available: https://wiki.centos.org/HowTos/

Network/IPTables

[16] R. Gerhards, The Syslog Protocol, RFC 5424 [Online]. Available:

https://tools.ietf.org/html/rfc5424

[17] Syslog-ng – open source log management [Online]. Available:

https://syslog-ng.org/

[18] K. E. Nawyn, “A Security Analysis of System Event Logging with

Syslog”, SANS Institute, no. As part of the Information Security

Reading Room, 2003.

[19] L. Ying, Z. Yan, and O. Yang-jia, “The design and implementation

of host-based intrusion detection system”, in Proc. 3rd Int. Symp.

Intell. Inform. Technol. Secur. Informat., Jinggangshan, China, 2010,

pp. 595–598.

[20] J. Timofte, “Intrusion Detection using Open Source Tools”, Revista

Informatica Economicã, no. 2, vol. 46, pp. 75-79, 2008.

Przemysław Malec got his

M.Sc. in Computer Science in

2015 at Polish-Japanese Acad-

emy of Information Technol-

ogy. At present he is a research

assistant at NASK. His main

scientific interests concern net-

work programming and infor-

mation security.

E-mail: przemyslaw.malec@nask.pl

Research and Academic Computer Network (NASK)

Wawozowa st 18

02-796 Warsaw, Poland

Anna Piwowar got her M.Sc.

in 2013 in Electrical and

Computer Engineering from

Warsaw University of Technol-

ogy, Poland. At present she is

a research assistant at NASK.

Her main scientific interests

include information security,

especially intrusion detection

and prevention systems.

E-mail: anna.piwowar@nask.pl

Research and Academic Computer Network (NASK)

Wawozowa st. 18

02-796 Warsaw, Poland

Adam Kozakiewicz, Krzysztof Lasota – for biographies,

see this issue, p. 14.

36


