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Abstract—This paper presents a Clustering Based Blind

Channel Estimator for a special case of sparse channels – the

zero pad channels. The proposed algorithm uses an unsuper-

vised clustering technique for the estimation of data clusters.

Clusters labelling is performed by a Hidden Markov Model

of the observation sequence appropriately modified to exploit

channel sparsity. The algorithm achieves a substantial com-

plexity reduction compared to the fully evaluated technique.

The proposed algorithm is used in conjunction with a Paral-

lel Trellis Viterbi Algorithm for data detection and simulation

results show that the overall scheme exhibits the reduced com-

plexity benefits without performance reduction.

Keywords—blind estimation and equalization, clustering tech-

niques, sparse zero pad channels.

1. Introduction

The last years an intense research effort has risen in com-

munications problems involving the estimation and equal-

ization of sparse channels, i.e., channels with a large delay

spread but with a small non zero support. Estimation and

equalization of sparse channels is a challenging problem

and sparsity aware estimators and equalizers should be used

in order to improve system performance and reduce com-

plexity. Sparse channels are encountered, among others,

in High Definition Television (HDTV) [1], in broadband

wireless communications [2] and in underwater acoustic

channels [3].

Various training based estimators have been developed for

the estimation of sparse channels [4]–[6]. Recently a blind

algorithm based on the Expectation-Maximization (EM)

algorithm for sparse channel estimation has been pro-

posed [7]. The main drawback of the algorithm is its com-

putational burden growing exponentially with the channel

length. In this paper the Cluster Based Blind Channel Es-

timation algorithm (CBBCE) [8] is evaluated for a special

class of sparse channels, the zero pad channels. The pro-

posed algorithm, in order to exploit the structured sparsity

of zero pad channels, uses a modification of the cluster

based blind channel estimation procedure leading to a much

lower complexity.

The CBBCE algorithm consists of two steps. Data clusters

are first estimated via an unsupervised learning technique

and next labelling of the estimated clusters is achieved by

unravelling the information hidden in the sequence of re-

ceived data. Labelling is performed using a Hidden Markov

Model (HMM) of the estimation process and by relating

data clusters to HMM states. The probability of each clus-

ter to correspond to a specific label is treated as the un-

known parameter of the HMM learning task implemented

by the EM algorithm [8], [9].

Assuming an M-ary alphabet for the data symbols and

a channel, with length L + 1, the HMM is typically eval-

uated with ML states [7]. However, in the sparse channel

case where only a small fraction of the channel taps is ac-

tive (i.e., s+1 ≪ L+1), the full evaluation of the HMM is

computationally inefficient [10]. In the zero pad channels

all the non zero taps are placed on a regular grid [11], [12].

In this case, the memory of the channel concerns only the

transmitted data that correspond to the non-zero taps. Thus,

by involving in the HMM states only the (s+ 1) data cor-

responding to the non zero taps, the number of states is

reduced to Ms. Then, the reduced states HMM results in

the appropriate labelling of the data clusters.

The outline of the paper is as follows. In Section 2 sys-

tem description is given. The proposed CBBCE algorithm

for sparse channels is presented in Section 3. In Section 4

the various channel cases where the algorithm can be ap-

plicable are referred (i.e., linear and non linear zero pad

sparse channels, and a special case of group sparse chan-

nels). The tremendous complexity reduction achieved by

the algorithm, compared to the full evaluated HMM, is

also discussed in the same Section. In Section 5 the use

of a Parallel Trellis Viterbi Algorithm (PTVA) [11] em-

ploying the channel estimates of the proposed algorithm is

evaluated. The performance of the entire scheme in terms

of the achieved Bit Error Rate (BER) is illustrated. Finally,

conclusions are drawn in Section 6.

2. System Description

Consider the discrete time system described by:

g(t) = c(t)+ w(t) , (1)

where

c(t) = F(I(t), I(t −1), . . . , I(t −L)) (2)

is the noiseless channel output sequence, F(.) is the func-

tion representing the channel action, I(t) is an equiprobable

sequence of independent and identically distributed (i.i.d.)

transmitted data taken from an M-ary alphabet, and w(t)
is Additive White Gaussian Noise (AWGN). The channel

length is assumed to be L + 1, however with only s + 1

taps being non zero. The received data form Q = ML+1
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clusters in the one dimensional space [8]. Each cluster is

represented by a suitably chosen representative which cor-

responds to the noiseless channel response, i.e.:

c(t) ∈ (ck, k = 1,2, . . . ,Q).

Here, due to channel sparsity, the actual number of clusters

formed is:

Q = Ms+1 ,

since the zero valued taps do not contribute to the formation

of clusters.

Zero pad channels are sparse channels of a specific form,

whose channel impulse response is described by [11]–[14]:

H = [h1 0 . . .0
︸ ︷︷ ︸

f zeros

h2 0 . . .0
︸ ︷︷ ︸

f zeros

. . .hs 0 . . .0
︸ ︷︷ ︸

f zeros

hs+1]
T , (3)

where f is the number of zeros between the non zero valued

taps and L = s( f + 1). In the case of zero pad channels,

the received data depend on alternated data symbols [11],

[13]. In this case, the noiseless channel output sequence

(2) takes the form:

c(t) = F(I(t), I(t − ( f + 1)), ..., I(t − s( f + 1))). (4)

3. Clustering Based Blind Channel

Estimator for Zero Pad Sparse

Channels

Channel estimation can be performed either using a known

training sequence of data or identifying the channel based

only on the received data (blind mode). Blind channel

estimation based on data clustering techniques has been

developed for general (non-sparse) channels [8], [9], [15].

The data clustering technique will be adopted in this paper

to evaluate a blind estimator for structured sparse channels.

Clustering based blind channel estimation is performed in

two steps as it is detailed in [16] where initially the clus-

ters representatives ck are estimated via an unsupervised

clustering technique following by clusters labelling, where

each cluster is mapped to a specific sequence of transmitted

data. When this technique is applied in the case of channels

exhibiting a zero pad sparsity profile, the first step remains

unaltered. In the second step, the structured sparsity of

channels under investigation is taken into account resulting

in a novel, reduced complexity labelling procedure. These

two tasks are detailed in the sequel.

3.1. Unsupervised Clustering

An unsupervised learning technique is adopted for the es-

timation of the clusters representatives such as the Isodata

algorithm, the Neural Gaz network, etc. [17], [18]. The

clusters formed is the contribution of the non-zero taps of

the channel only and the number of clusters estimated by

the unsupervised clustering technique equals Ms+1.

3.2. Clusters Labelling through a Structured Sparsity

Aware HMM

The transmitted data input vector:

I(t) = [I(t) I(t −1) . . . I(t −L)]T ,

can be described as a first order Markov chain having ML

states denoted by S(t). Since the received data g(t) are

a probabilistic function of the state vector I(t), the channel

estimation problem can be formulated as a HMM parameter

estimation problem. Thus, a standard HMM parameter es-

timation algorithm, referred to hereafter as fully evaluated

HMM algorithm (FE-HMM), considering ML states can be

applied, being however impractical from the computational

point of view, apart from the case when the channel mem-

ory L is sufficiently small, which is not the typical case

of sparse channels. Since the actual number of the clusters

formed is Q = Ms+1 only, and for reasons of complexity re-

duction, the proposed algorithm considers Ms states in the

HMM, resulting to a novel scheme referred to hereafter as

the reduced evaluated HMM algorithm (RE-HMM). This

task can be achieved considering instead the cluster model

(4), where the actual channel memory pattern is taken into

account. In this way, the labelling of the states of the HMM

considers transmitted data that are f + 1 time units apart.

Based on the above remarks, the discrete observations RE-

HMM for the sparse zero pad channel is characterized by

the following elements:

• The states of the model, which according to Eq. (4)

are formed as:

S(t) → (I(t − ( f + 1)), . . . , I(t − s( f + 1))). (5)

The number of states in this case equals to:

N = Ms,

as opposed to the number of states N′ = ML required

by the FE-HMM approach.

• The state transition probabilities ai j, which are de-

fined as

ai j = P[S(t +( f + 1)) = j | S(t) = i], (6)

1 ≤ i, j ≤ N.

Notice that for each allowable transition (ai j = 1/M)

a specific noiseless channel output occurs. In other

words, each state transition specifies uniquely a clus-

ter label and a cluster transition arises every f + 1

samples. The cluster labels are specified by:

X(t) → (I(t), I(t − ( f + 1)), . . . , I(t − s( f + 1))) (7)

and each cluster label, X(t) ε (nk, k = 1, 2, . . . , Q),

corresponds to a specific cluster ck.

• The distinct observation symbols per transition,

which in this case are the clusters, ck.
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• The probabilities for each symbol to occur and for

each state transition i to j, which denote the proba-

bility of a specific cluster to correspond to a specific

label, i.e.:

bnk
(ck) = P[ck | S(t) = i,S(t +( f + 1)) = j]

= P[ck | X(t) = nk], (8)

1 ≤ k ≤ Q, 1 ≤ i, j ≤ N.

• The initial state distribution:

πi = P[S(1) = i], (9)

1 ≤ i ≤ N.

In the cluster based blind channel estimation procedure

clusters’ labelling is treated as a HMM learning problem.

The EM algorithm is a commonly used numerical iterative

scheme to obtain Maximum Likelihood (ML) estimates of

a HMM. The resulting ML estimate is given by:

θ̂ = argmaxθP(G | θ ), (10)

where P(G | θ ) denotes the probability of the observation

sequence G of length T :

G = (g(1),g(2), . . .g(T ))T ,

given the model parameters (θ ) with:

θ = [bnk
(ck)], k = 1, ...,Q.

Thus, θ is the Q×Q probability matrix that maps labels to

clusters and it is expected to converge to a matrix whose el-

ements converge either to one, for the case when a specific

symbol corresponds to a specific label, or to zero, other-

wise. Convergence of the algorithm is achieved when:

P(G | θ ) > p, (11)

with p a predetermined threshold [19].

Clusters’ labelling using the RE-HMM approach described

by Eqs. (5)–(9) requires the knowledge of the structure of

the comb type channel response, which in turn requires the

estimation of the distance or the number of unit time delays

between all successive non zero elements of the model. In

the case of zero pad sparse channels treated in this paper,

and due to the specific form of the sparsity structure only

a single time delay parameter has to be determined. The

required time delay parameter d is estimated using an ex-

haustive search procedure, starting from d = 1, where for

each candidate value d, a RE-HMM estimate θ̂ is obtained

using Eqs. (5)–(9). When the algorithm converges (11),

then the correct value of d is reached (d = f + 1) and the

correct channel structure is obtained. Then, θ provides the

correct labelling.

The proposed CBBCE algorithm is summarized in Table 1.

This procedure is further illustrated by a simple example

using a channel with impulse response:

H = [h1 h2 h3]
T = [1 0 0.5]T ,

Table 1

The proposed Clustering Based Blind Channel Estimation

algorithm

CBBCE algorithm

1. Unsupervised clustering:

• Estimation of the clusters representatives by an

unsupervised learning technique.

• The number of the estimated clusters reveals the

number of non-zero taps (s+ 1).

2. Labelling through a RE-HMM

Initialization

Set: Number of states, N = Ms

Time delay parameter, d = 1

Main

Repeat until convergence (11)

HMM formulation ((5)–(9)) with states:

S(t) = (I(t −d)I(t −2d) . . . I(t − sd)).

d = d + 1

End

• The correct value of d is reached ( f + 1),

• The ML estimate, (θ ), reveals the labels – clusters

correspondence.

where the input data are assumed to be bipolar (i.e.,

I(t) =±1) and the Signal to Noise Ratio (SNR) is set equal

to 17 dB. In this particular case, the number of non-zero

taps is s + 1 = 2, while the channel length is L + 1 = 3.

Since the data alphabet consists of two symbols, the num-

ber of clusters assumed is Q = 4. Following the first step of

the proposed algorithm, the clusters representatives are esti-

mated using an unsupervised clustering technique. Specif-

ically, Isodata is used for clusters estimation, using T = 30

received data, obtaining the estimates:

ĉ1 = 1.512, ĉ2 = 0.49, ĉ3 = −0.507, ĉ4 = −1.49.

Following the second step of the proposed algorithm, the

RE-HMM is formed, with N = 2. Initially, d is set equal

to 1, thus, a cluster transition is assumed to arise every

single sample. Since the assumed channel model is not

the correct ((d = 1) 6= ( f +1 = 2)), the algorithm does not

converges according to Eq. (11). The probability matrix θ ,

after 15 iterations, is shown in Table 2. Obviously, the

identification procedure does not converge and no labels –

clusters correspondence can be derived. Then, the time
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Table 2

Probabilities matrix for channel H = [1 0 0.5]T

after 15 iterations and d = 1. Clusters labels

cannot be unravelled

Label Cluster representative

I(t) I(t–1) c1 c2 c3 c4

–1 –1 0.1235 0.2393 0.4301 0.2071

–1 1 0.2703 0.0632 0.2423 0.4242

1 –1 0.1841 0.5817 0.1136 0.1206

1 1 0.3477 0.1588 0.1175 0.3759

delay parameter, d, is set equal to 2 and a new RE-HMM is

formed. This time the algorithm converges. The probability

matrix θ , after 10 iterations, converges as it appears in

Table 3. In this case the labels – clusters mapping is easily

achieved.

Table 3

Probabilities matrix after convergence, for the channel

with impulse response H = [1 0 0.5]T and time delay

parameter d = 2

Label Cluster representative

I(t) I(t–1) c1 c2 c3 c4

–1 –1 0 0 0 1

–1 1 0 0 1 0

1 –1 0 1 0 0

1 1 1 0 0 0

Once the channel estimation process is accomplished, sig-

nal detection can be performed by employing a PTVA with

reduced complexity [10]. The PTVA is a computation-

ally improved reformulation of the Viterbi Algorithm (VA)

which operates into a set of independent trellises for the

zero pad sparse channels. The PTVA is optimum for zero

pad sparse channels and results in complexity reduction

compared to the ordinary VA which uses a single trel-

lis. The evaluation of a channel equalizer employing the

CBBCE algorithm followed by a PTVA is described in

Section 5.

4. Case Studies

We proceed further our developments on case studies,

where a variety of channels amenable to the application

of the proposed channel identification method is consid-

ered. Complexity issues are also discussed. Notice that,

for the sake of simplicity, the symbol values are assumed

to be drawn from a binary alphabet set (i.e., M = 2).

4.1. Linear Zero Pad Sparse Channels

Linear zero pad sparse channels are successfully identified

using the proposed method. Note that, the presence of

an arbitrary time delay (number of zeros) at the edges of

the non zero taps of the channel does not affect the algo-

rithm, and channels with impulse response of the form:

H = [0 . . .0
︸ ︷︷ ︸

x zeros

h1 0 . . .0
︸ ︷︷ ︸

f zeros

h2 0 . . .0
︸ ︷︷ ︸

f zeros

. . .hs+1 0 . . .0
︸ ︷︷ ︸

y zeros

]T , (12)

can be tackled by the method, including, for f = 0, a spe-

cial case of group sparse channels where the non zero taps

are located in a single cluster [6]. Consider for example

a channel with impulse response given by:

H = [0.2 0 0 0 0 0.5 0 0 0 0 0.9]T . (13)

In this case we get L+ 1 = 11, s+ 1 = 3 and f = 4. Here,

the clusters representatives ĉk, k = 1, ..,Q are estimated

using the Isodata algorithm [18] from a received data se-

quence of length T = 300 [20]. Once clusters identification

is completed, the task of clusters labelling is subsequently

addressed. A RE-HMM with N = 2
2 states is formulated.

Application of the proposed algorithm, as it is summa-

rized in Table 1, results in d = f + 1 = 5 and the states

of the RE-HMM are formed by the (non-successive) data

S(t) = (I(t − 5), I(t − 10)). The probabilities matrix θ re-

sulting from the proposed algorithm, after convergence, is

tabulated in Table 4.

Table 4

Probabilities matrix after convergence, for the channel

with impulse response H = [0.2 0 0 0 0 0.5 0 0 0 0 0.9]T,
d = 5

Label Cluster representative

I(t) I(t–5) I(t–10) c1 c2 c3 c4 c5 c6 c7 c8

–1 –1 –1 0 0 0 1 0 0 0 0

–1 –1 1 0 0 1 0 0 0 0 0

–1 1 –1 0 0 0 0 0 0 1 0

–1 1 1 0 1 0 0 0 0 0 0

1 –1 –1 0 0 0 0 1 0 0 0

1 –1 1 0 0 0 0 0 0 0 1

1 1 –1 0 0 0 0 0 1 0 0

1 1 1 1 0 0 0 0 0 0 0

The Average Squared Error (ASE) is adopted as a metric

of the accuracy of the estimated clusters representatives:

m =
1

Q

Q

∑
k=1

(ck − ĉk)
2 , (14)

where ĉk are the estimated clusters representatives and ck

are the noiseless clusters representatives that correspond

to Eq. (13).

The ASE versus SNR is illustrated in Fig. 1. Figure 2

shows the impact of the received data sequence length, T ,

to the accuracy of the estimated clusters values, for

SNR = 20 dB.

For the sake of comparison, a supervised Least - Absolute

Shrinkage and Selection Operator (LASSO) [21] estima-

tor is used as benchmark. Since LASSO is not capable
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Fig. 1. Average squared error for a channel with impulse response

H = [0.2 0 0 0 0 0.5 0 0 0 0 0.9]T , using a sequence of T = 300

data. (1) – proposed CBBCE algorithm, (2) – supervised LASSO

channel estimation.

Fig. 2. Average squared error versus T, (number of received

data used by the proposed CBBCE), for a channel with impulse

response H = [0.2 0 0 0 0 0.5 0 0 0 0 0.9]T , SNR = 20 dB.

of estimating the clusters representatives directly, the esti-

mates of channel taps are used to calculate the respective

clusters representatives. The ASE versus SNR in the case

where LASSO is used for channel identification, is also

shown in Fig. 1. From a first glance it is evidence that the

proposed estimator lacks behind its supervised counterpart,

a result which is somehow expected since LASSO is a su-

pervised learning algorithm, while the proposed scheme is

a blind identification algorithm. However, as it is shown

in the following Section the BER performance of an equal-

izer using the estimates of the proposed algorithm is very

close to that using the supervised LASSO as a channel

estimator.

4.2. Nonlinear Zero Pad Sparse Channels

Clustering based estimation algorithms do not adopt any

assumption for the impulse response of the channel un-

der consideration, thus, they can efficiently be employed

in the case of nonlinear channels [8]. For example

a sparse linear channel with impulse response given by

H = [0 0 1 0 0 0 0 0.5 0 0 0 ]T followed by the nonlinear

action described by g(t)+0.1g(t)2+0.3g(t)3 is considered.

In this case we get, L = 10, s = 1 and f = 4. The proposed

CBBCE algorithm uses T = 80 received data and performs

clusters estimation with only N = 2
1 states. The resulting

ASE versus SNR is shown in Fig. 3.

Fig. 3. Average squared error achieved by the proposed blind

estimator, for a channel with impulse response H = [0 0 1 0 0

0 0 0.5 0 0 0 ]T followed by the nonlinear action described by

g(t)+0.1g(t)2 +0.3g(t)3.

4.3. Complexity Assessment

The proposed algorithm reduces the complexity of the

HMM scheme from O(ML ×T ) required by the FE-HMM

to O(Ms × ( f + 1)× T ) operations, required by the pro-

posed RE-HMM, which is a tremendous reduction in the

sparse channels case where s ≪ L. For example, in the

experiment described in Section 4.1, the proposed RE-

HMM algorithm evaluates the HMM scheme using only

N = 2
2 states. In this particular case, the HMM proce-

dure is repeated f + 1 = 5 times resulting in a complex-

ity of O(22 ×5×T) operations which is a major improve-

ment over the FE-HMM algorithm [7], [8] which requires

N′ = 2
10 states leading to a complexity of O(210 ×T ) op-

erations. In the experiment described in Section 4.2 the

complexity of the RE-HMM reaches the O(2×5×T) oper-

ations while the FE-HMM involves O(210 ×T ) operations.

5. Blind Clustering Based Equalizer

for Zero Pad Channels

The proposed method can also be applied in the case when

instead of channel estimation, channel equalization is under

consideration. The proposed CBBCE algorithm combined

with a PTVA performs blind clustering based sequence

equalization, for the special case of zero pad channels, in

an efficient way. We refer to the entire proposed scheme

as Reduced Evaluated Blind Equalizer (REBE). Con-

sider for example a channel with impulse response given
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by H = [0.2 0 0 0 0 0.5 0 0 0 0 0.9]T (13). The pro-

posed CBBCE algorithm has already been described, for

this channel, in Section 4.1. Since channel estimation is

completed the PTVA algorithm is used for signal detec-

tion. The PTVA algorithm uses f + 1 = 5 parallel trellises

with Ms = 4 states each [11]. The decision delay for the

PTVA is 15. The resulting BER for the proposed REBE

appears in Fig. 4.

Fig. 4. BER versus SNR for a channel with impulse response H =

[0.2 0 0 0 0 0.5 0 0 0 0 0.9]T . (1) – proposed REBE (proposed

reduced blind estimation algorithm and PTVA algorithm), (2) –

FEBE (blind full evaluated clusters estimation algorithm and full

evaluated VA), (3) – supervised LASSO channel estimation and

full evaluated VA.

The performance of the conventional Full Evaluated

Blind clustering based Equalization scheme [8] (FEBE) is

also investigated. The FEBE performs clusters identifica-

tion by an unsupervised clustering technique and clusters

labelling using the FE-HMM and data detection through

a conventional VA using ML = 2
10 states. The decision

delay for the VA is 30.

As seen from the Fig. 4 the performance of the FEBE is

the same with the REBE.

Moreover, for the sake of comparison, an equalization

scheme formed by a supervised estimator and a full –

evaluated VA is realized and used as a benchmark. Chan-

nel estimation is achieved by the supervised LASSO al-

gorithm [21]. Then the channel estimator is followed

by a conventional VA, with 2
10 states. The number of

training data used for the estimator is 300. The decision

delay for the VA is 30. As seen from Fig. 4 the re-

sulting BERs of the three schemes are very close, how-

ever, the proposed REBE works at a substantially reduced

complexity.

6. Conclusions

In this paper a novel reduced complexity blind estimator

for zero pad channels is presented. The proposed scheme

uses a Clustering Based Blind Channel Estimation algo-

rithm extended to account for the structured sparsity of

zero pad channels and exhibits a tremendous complex-

ity reduction compared to the full evaluated counterpart.

The algorithm is suitable both for linear and nonlinear

channels. The proposed algorithm combined with a Par-

allel Trellis Viterbi Algorithm is used for signal detection

and the proposed sequence equalization scheme exhibits,

at a reduced complexity, a performance similar to that

compared to other competitive schemes such as a full

evaluated blind clustering based sequence equalizer and

a supervised LASSO estimator accompanied by a Viterbi

Algorithm. Modification of the algorithm for the expansion

of its use to tackle general sparse channels is under in-

vestigation.
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