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Abstract—In the paper approximate formulas for the mean

waiting times and the buffer dimensioning in the system with

vacations fed by the stream of Poissonian type with constant

service times is shown. Furthermore, in the considered sys-

tem the time intervals of the availability/not-availability of the

service are constant and are run alternately according to the

assumed cycle. More precisely, presented approach begin with

derivation of the mean waiting times and, on the basis of this,

the required buffer size for guaranteeing the losses less than

predefined value is estimated. The accuracy of the presented

analytical formulas is on a satisfactory level. The formulas

were used for the System IIP dimensioning.

Keywords—approximation analysis, buffer dimensioning, mean

waiting times, system with vacations.

1. Introduction

The paper studies the system with vacations fed by the

stream of Poissonian type with constant service times. Fur-

thermore, in the considered system the time intervals of the

availability/not-availability of the service are constant and

are run alternately according to the assumed cycle. The

analysis of this system focuses on derivation of the ana-

lytical formulas to estimate the mean waiting times and

next, on the basis thereof, to estimate required buffer size

to satisfy assumed predefined level of losses.

The considered system well models a part of the IIP Sys-

tem [1] based on virtualized network infrastructure that

corresponds to the organization of virtual links established

for particular Parallel Internets (PIs). These Parallel In-

ternets should work in isolation. For establishing separate

Fig. 1. Cycle-based scheduler for creating virtual links for

4 Parallel Internets working in isolation.

virtual links delegated to particular PIs, access to a physi-

cal link by a cycle-based scheduler, as shown in Fig. 1 is

managed.

According to the best knowledge of the authors, such sys-

tem was not analyzed in the literature. Most of papers, as

i.e. [2], [3], [4], deal with TDMA systems, in which data

are transmitted only in the chosen time-slots.

2. The System

2.1. The System with Vacations

The considered queuing system is depicted in Fig. 2. The

system belongs to the family of systems with vacations. It

means that periodically the system is in active and vacation

periods. During the active periods (TA) the packets are

served while during the vacation periods (TV ) the service

is not available. Moreover, we assume an infinite buffer

size in the system. The queuing discipline is assumed to

be FIFO.

Fig. 2. Comparison of the systems: λ – arrival rate (Poissonian

stream), L – packet size, B and BV – buffers sizes, TA – active

period, TV – vacation period, C and CV – the output links rates.

Additional assumptions of the system are the following:

– the packets arrive to the system according to the Pois-

son process with the rate λ ,

– the active (TA) and vacation (TV ) periods are constant

and they alternate,

3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235207106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Maciej Sosnowski and Wojciech Burakowski

– the link capacity is equal to CV b/s,

– packet size (L) and, as a consequence, service times

(hv) of the packets are constant (hv = L/CV ),

– the length of the active period TA is multiples of hv

(TA = nhv, n = 1,2, . . . ).

In this system, the available capacity for the considered

stream, denoted by C, is:

C =
CV TA

TA + TV

. (1)

2.2. Fully Available System

This analysis refers to the fully available system with Pois-

sonian input and deterministic service time, the system

M/D/1. Especially, the formula for mean waiting times

in such system will be exploited when the arrival rate λ ,

packets size L, and output link C (see Eq. (1), equivalent

to the available link rate in system with vacations) are the

same for both considered system. It should be noted that

the average load (in the system with vacation, during the

active period) ρ in both systems is also the same. The dif-

ference between the system with and without vacations is

the service time. In the fully available system the service

time is h = L/C.

For the M/D/1, the mean waiting time E[WF ] for well-

known Pollachek-Khinchin formula is:

E[WF ] =
ρhres

1−ρ
, (2)

where ρ = λ h and hres is the residual service time (in the

case of h = constant, hres = h/2).

3. Analysis

3.1. Mean Waiting Time in the System with Vacations

A brief description of the approach to calculate mean wait-

ing times for the considered system with vacations can be

found in [5].

The analysis starts from the moment of the test packet ar-

rives to the system. Thanks to the PASTA (Poisson Ar-

rivals See Time Averages) principle, this test packet sees

the system at a random moment. This packet can arrive

when the system is on the active period or on the vacation

period. When the packet arrives during the vacation pe-

riod it cannot be served immediately even if there are no

other packets in the system, but it should wait for a trans-

mission at least, if no other packets are in the system, by

the remaining time of the period TV . On the other hand,

when the packet arrives during the active period it can

be served immediately (when there are no other tasks in

the system) when the remaining part of this period is not

less than hv. This period is called a pure active period.

Let’s define:

PV =
TV

TV + TA

, P
A
′ =

TA −h

TV + TA

, Phv
=

hv

TV + TA

, (3)

where PV , P
A
′ , Phv

denotes the probability that a packet ar-

rives during the vacation period, the active period (without

the last part equal hv), and the last part (equal hv) of the

active period, respectively.

The approximate formula for the mean waiting time has the

following form:

E[WV ] = P
A
′E[WF ]+ PV (TVres + E[WF ])+

+Phv
(hvres + TV + E[WF ]), (4)

where E[WF ] is calculated by Eq. (2), TV res is the resid-

ual time of the vacation time (TVres = TV
2

) and hvres is the

residual time of the service packet time (hvres = hv
2
).

Equation (4) can be simplified to:

E[WV ] = E[WF ]+
(TV + hv)

2

2(TA + TV )
. (5)

For the limit case, when TV = 0, the mean waiting time

is the same as in the fully available system. On the other

hand, when TV tends to infinity, the value of the mean

waiting time also tends to infinity.

Unfortunately, the Eq. (5) is not proved in a clear mathe-

matical way, but it is only deduced. It was assumed that

if the task arrives during the pure active period, it expects

a similar delay as in the fully available reference system.

It happens with probability P
A
′ . Furthermore, when the

task arrives at the periods when it cannot be transmitted

immediately (even when no other tasks are in the system),

it should wait for its transmission when the active period

starts. So, in this case, we deduce that the packet will wait

by the time to the moment when the active period starts

plus the service times of the packets being in the system

already.

Equation (4) and (5) does not take into account the

situation, e.g., when a task should wait a number of ac-

tive periods until it starts transmission. Therefore, wait-

ing times calculated from Eq. (5) will be lower than exact

value.

Nevertheless, the Eq. (5) is relatively simple and it takes

into account in a direct way the impact of the length of

active and vacation periods on the packet delay.

In Tables 1 and 2, the values of the mean waiting times for

the systems with vacations differing in lengths of active and

vacation periods under different traffic load ρ and various

TA/TV relations is presented.

It can be observed that for cases presented in Table 1,

analytical results are very close to simulation results and

the difference is only by few percent. For cases presented

in Table 2, a bit less accuracy of the analytical results

compared to the simulation can be observed, but the dif-
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Table 1

Comparison of mean waiting times (short cycles)

TA/TV = 2hv/4hv TA/TV = 10hv/20hv

ρ Anal. Sim. Diff. Anal. Sim. Diff.

0.2 2.5 2.4 3% 7.7 7.9 –2%

0.4 3.1 3.0 4% 8.4 8.6 –3%

0.6 4.3 4.2 3% 9.6 9.8 –2%

0.8 8.1 7.9 3% 13.4 13.3 0%

0.9 15.6 15.4 1% 20.9 20.6 1%

0.94 25.6 25.2 2% 30.9 30.6 1%

0.96 38.1 37.3 2% 43.4 43.5 0%

Table 2

Comparison of mean waiting times (long cycles)

TA/TV = 50hv/100hv TA/TV = 100hv/200hv

ρ Anal. Sim. Diff. Anal. Sim. Diff.

0.2 34.4 36.5 –6% 67.7 72.2 –6%

0.4 35.0 39.4 –11% 68.3 77.8 –12%

0.6 36.3 42.7 –15% 69.6 84.4 –18%

0.8 40.0 47.5 –16% 73.3 92.3 –21%

0.9 47.5 54.6 –13% 80.8 100.1 –19%

0.94 57.5 63.9 –10% 90.8 110.0 –17%

0.96 70.0 76.1 –8% 103.3 122.2 –15%

ference is still on the satisfactory level. The difference is

about 15% for most of the studied cases. The accuracy of

Eq. (5) was also verified for other values of cycle dura-

tions and the results were similar to the ones presented

above.

We can conclude that the Eq. (5) gives very accurate results

for the system with vacations if at least one of these two

conditions is met: cycle is short (∼15 h max.) or TA/TV

ratio is small (∼1/4 max.). The results are also accurate

if both conditions are close to these borders (i.e., TA/TV =
10hv/20hv).

3.2. Buffer Dimensioning

At present, an approximation for buffer dimensioning in

the system with vacations is shown. The target is to di-

mension the buffer size as small as possible to assure that

packet losses are less than a predefined value Ploss, e.g.,

Ploss ≤ 10
−3. In order to do it in an exact way, the queue

size distribution should be known. The presented approach

assumes that only knowledge of the mean waiting times

in the system, as calculated from Eq. (5) is available. Of

course, the well-known Marcov’s inequality can be used,

see Eq. (6)), but it was checked that it gives an essential

over-dimensioning of the buffer size and, as a consequence,

the results are not reported in the paper.

Marcov’s inequality:

P(X ≥ n) ≤
E[X ]

n
, (6)

where E[X ] is the mean value of the random variable X .

Therefore, the approach investigated in the paper assumes

an approximation of the queue size distribution, which is

described by only one parameter. In this case, queue size

distribution in the system with vacation can be approxi-

mated by a M/M/1 queue size distribution.

3.2.1. Queue State Distribution for the System with

Vacations – Simulation Results

In this subsection the queue state distribution for selected

system with vacations differing in the lengths of active and

vacations periods is shown.

Fig. 3. Queue state distribution obtained from simulation (n =
0 . . .20), ρ = 0.9.

Fig. 4. Queue state distribution obtained from simulation (n =
20 . . .40), ρ = 0.9.

In Figs. 3 and 4 one can observe queue state distribution

in the system with vacations for different values of TA/TV .
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In the presented curves the confidence intervals at the 95%

level are negligibly small and they are not depicted. The

simulation results show that the approximation of the pre-

sented characteristics by the geometric distributions is

justified although one can observe the differences in the

first phase of the curves.

3.2.2. Approximation by the M/M/1 Queue Size Distri-

bution

As it is known, the system state distribution follows the

geometric distribution in the M/M/1 system. Queue is

empty if 0 or 1 task in system, therefore the queue state

distribution has the following form:

{

PQ(0) = P(0)+ P(1)

PQ(n) = P(n + 1), n > 0

(7)

where: P(n) = ρn
g (1−ρg) – probability, that system is in

the n state, ρg – server load.

Therefore,

{

PQ(0) = 1−ρ2
g

PQ(n) = ρn+1
g (1−ρg), n > 0

(8)

So, the mean queue state in the M/M/1 system is:

E[n] =
∞

∑
n=0

nPQ(n) =
ρ2

g

1−ρg

. (9)

Then ρg (the parameter of the M/M/1 queue state distribu-

tion) can be calculated from:

ρg =

√

(E[n])2 + 4E[n]−E[n]

2
, (10)

where E[n] = E[nV ] = λ E[WV ] and E[WV ] is done by

Eq. (5).

In Figs. 5–8 the comparisons between queue state charac-

teristics obtained by the simulation and by approximation

of the M/M/1 queue state distribution is shown. These

results correspond with the exemplary system with vaca-

tions when TA/TV = 10hv/30hv with the load of ρ = 0.6
and ρ = 0.9.

One can observe that the approximation by M/M/1 queue

state distribution gives larger values for the tail of the dis-

tribution. It is important since we want to dimension buffer

size for rather low values of losses, e.g., 10
−3 or less.

After some algebra, the final formula for buffer size dimen-

sioning, is

B =

⌈

ln(Ploss)

ln(ρg)
−1

⌉

, (11)

where ⌈x⌉ denotes the minimum integral value greater or

equal x.

Fig. 5. Queue state distribution obtained from simulation com-

pared with M/M/1 queue state distribution (n = 0 . . .10), ρ = 0.6.

Fig. 6. Queue state distribution obtained from simulation com-

pared with M/M/1 queue state distribution (n = 0 . . .20), ρ = 0.6.

Fig. 7. Queue state distribution obtained from simulation com-

pared with M/M/1 queue state distribution (n = 0 . . .25), ρ = 0.9.

For comparison, the formula to dimension buffer size in

the case of REM (Rate Envelope Multiplexing) multi-

plexing [6] is

ρ =
2B

2B− ln(Ploss)
, (12)
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Fig. 8. Queue state distribution obtained from simulation com-

pared with M/M/1 queue state distribution (n = 26 . . .45), ρ = 0.9.

and it can be transformed to

B =

⌈

ln(Ploss)

2− 2

ρ

⌉

. (13)

3.3. Results

In this section results for buffer dimensioning in the sys-

tem with vacations REM multiplexing are presented. In

Table 3 we show the results (B) of required buffer size

for the system without vacations and REM multiplexing.

The buffer size Bopt. is obtained by simulation and Bover. –

indicates the relative error.

Table 3

Comparison of buffer size for the M/D/1 system

and Ploss = 10
−3

ρ Bopt. B Bover. [%]

0.6 6 6 0

0.8 12 14 17

0.9 22 32 45

0.95 39 65 67

Bopt. – the buffer size that provides the loss probability

on the 10
−3 level, result from the simulation

B – the buffer size calculated from Eq. (11)

Bover. – percentage oversize of the buffer B

Table 4 presents the results of the required buffer size

for the selected systems with vacations assuming Ploss =
10

−3. The reported results say that presented approach

gives always the over estimation of the required buffer

size. This overestimation is about 100%. Thus, the results

are rather positive taking into account that the method

is based on the approximation of the mean waiting time

value only.

Table 4

Measured loss probability in the system

with vacations

TA/TV = 4hv/4hv

ρ
E[n]

sim.

E[n]

anal.
ρg Bopt. B

Bover.

[%]
Ploss

0.6 0.92 0.92 0.6 8 13 63 4.30E-06

0.8 2.24 2.22 0.75 14 24 71 7.90E-06

0.9 4.76 4.75 0.85 24 42 75 1.87E-05

0.95 9.78 9.78 0.91 40 73 83 3.03E-05

TA/TV = 2hv/6hv

ρ
E[n]

sim.

E[n]

anal.
ρg Bopt. B

Bover.

[%]
Ploss

0.6 0.86 0.91 0.59 7 13 86 3.20E-06

0.8 2.12 2.21 0.74 13 22 69 1.63E-05

0.9 4.64 4.74 0.85 23 42 83 1.40E-05

0.95 9.27 9.75 0.91 39 73 87 2.24E-05

TA/TV = 20hv/20hv

ρ
E[n]

sim.

E[n]

anal.
ρg Bopt. B

Bover.

[%]
Ploss

0.6 2.49 2.1 0.74 13 22 69 0.00E+00

0.8 4.38 3.8 0.82 19 34 79 6.00E-07

0.9 7.18 6.53 0.88 29 54 86 5.10E-06

0.95 12.35 11.64 0.93 45 95 111 5.20E-06

TA/TV = 10hv/30hv

ρ
E[n]

sim.

E[n]

anal.
ρg Bopt. B

Bover.

[%]
Ploss

0.6 2.22 2.25 0.75 12 24 100 0.00E+00

0.8 3.87 4 0.83 17 37 118 0.00E+00

0.9 6.34 6.75 0.88 27 54 100 4.00E-06

0.95 12.06 11.88 0.93 43 95 121 3.40E-06

ρg – parameter of M/M/1 queue state distribution calcula-

ted from Eq. (10)

Ploss – measured loss probability for the buffer B (95% confi-

dence intervals are on 10
−7 level)

4. Summary

In the paper the analysis of the system with vacations

fed by Poissonian stream was presented, constant service

times and constant length of active and vacation peri-

ods. For this system the analytical approximate formulas

for the mean waiting times and the buffer dimensioning

was shown. The analytical results were compared with the

simulation. The accuracy of the approximation is satis-

factory.

The described methods were used to dimension virtual links

in the IIP System build by the virtualization of the network

infrastructure.
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