
Paper ID Layer for Internet of Things

Based on Name-Oriented Networking
Jordi Mongay Batalla, Piotr Krawiec, Mariusz Gajewski, and Konrad Sienkiewicz

National Institute of Telecommunications, Warsaw, Poland

Abstract—Object and service identification is considered as

one of the main challenges in the field of Internet of Things

(IoT), which can be solved by the introduction of the so

called ID (IDentifier) layer. The objective of this layer is to

expose IoT objects and services offered by them, to users.

Common approach for ID layer is to create it in overlay man-

ner, on the top of existing network. This paper presents a novel

architecture of the ID layer, which is characterized by embed-

ding ID layer functionality into the network plane. Moreover,

this approach takes advantage of the Name-Oriented Network-

ing (NON) paradigm. To gain easy access to the IoT objects

and services, as well as native support for multicast service,

human readable ID-based unified addressing with hierarchical

structure was exploited. Additionally, in-network caching of

forwarded IoT data, inherited from the NON, helps to reduce

total network load and supports applications during collab-

oration with energy-constrained sensors. Such sensors may

enter sleep mode to save energy and then the network nodes

can serve requests for sensing data, arrived from applica-

tions, by using data stored in nodes’ cache. The paper shows

the concept of NON-based ID layer and describes functional

architecture of network node paying attention on modules

and mechanisms related with ID layer functionality. Primary

ID layer processes, i.e., object/service registration, resolution

and data forwarding are explained in detail. Moreover, the

ID-aware network node was implemented on Linux-based

platform and tested to check its forwarding characteristics.

The tests showed the performance of the of ID network node

in data plane operations, which are the more sensitive for

scalability issues.

Keywords—Future Internet, ID-based routing, ID layer, Internet

of Things, Name-Oriented Networking.

1. Introduction

Internet of Things (IoT) is considered as one of the main

trends for further evolution in the area of information

and communication technologies. IoT refers to a global

network infrastructure linking a huge amount of every-

day things, i.e., physical and virtual objects from the

surrounding environment, which can communicate be-

tween them without human interaction. In IoT, objects are

active participants of network ecosystem – they can rec-

ognize changes in their surroundings, share information

about those changes or detected events with other net-

work members, and perform appropriate actions in an

autonomous way.

The open question in IoT research is identification and ac-

cessing of the objects and services offered by them, as well

as how to bind objects/services to machine addressable

and identifiable names [1]–[3]. These issues can be solved

by creation of so-called ID (IDentifier) layer, common for

all IoT devices. ID layer aims to expose objects and their

services in unified way, and should be separated from the

IP layer in order to avoid the limitations of IP addressing

structure (i.e., no context or location awareness).

The problem of naming and addressing is recently widely

investigated in the context of efficient content delivery

through the Internet. Solutions which refer to Name-

Oriented Networking (NON) model, as Content Centric

Networking [4], change the “host-centric” paradigm of the

current Internet, in example host-to-host communication,

into a “content-centric” paradigm, which treats delivery of

content as a primary communication primitive. NON-based

architecture seamlessly supports identification, resolution

and delivery of content.

In this paper a novel architecture of ID layer, which exploits

features of NON for IoT purposes is proposed. Such a so-

lution deals with the registration of object and services as

well as the search and delivery of the information related to

them. The idea is to include the ID layer into the network

level and offering NON network facilities as, among others,

in-network caching of IoT data, ID/location separation and

support for multicast.

Basically, the proposal is a hierarchical addressing of ob-

jects following their physical location. This addressing also

contains services offered by objects or groups of objects.

The requests of data by the applications as well as the

information from objects and/or services are sent through

appropriate hierarchical tree. The nodes in the tree are able

to cache the data for further requests during the validity pe-

riod of the data. Over this time, new requests will be served

from the nearest node that cached the data. This way, the

request and data frames do not need to transfer the whole

network (what avoids overload) and data are provided in

a short time. Moreover, sensors may go on sleep mode for

saving energy consumption, whereas sensing data are still

available for applications.

In an intelligent house each room has many objects and

the objects offer services to be used by applications in the

house, the energy control application decides when to run

the radiators located in each room. The objects are attached

to the network node and the object and the services are

addressed in the network. Then, the network can cache

information given by, i.e., humidity meters in ambient with

flowers or light sensors in order to avoid constant operation

of sensors/actuators.

40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235207103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ID Layer for Internet of Things Based on Name-Oriented Networking

The paper is organized as follows. Section 2 presents

a brief review of approaches for IoT ID layer. Section 3

explains applying the NON concept for creation of ID

layer. Section 4 describes proposed ID layer architecture

and details of ID-based routing. Performance tests results

of prototype implementation are shown in Section 5. The

paper is summarized and concluded in Section 6.

2. Related Works

The need for introduction of ID layer to communication

stack is outlined by several current research projects which

focus on the definition of the IoT architecture (for example

FP7 IoT-A [5]). Such layer should perform identification

tasks of IoT objects and services, regardless of their net-

work localization.

Approaches for ID layer proposed so far can be divided into

two groups, according to the way the separation between

network locators and identifiers is assured. The first group

assumed implementation of IoT objects identification inside

of the application layer and realization of registration and

resolution processes for IDs by using distributed databases.

An example is the Ubiquitous Code (ucode) proposed by

Koshizuka and Sakamura [6].

The ucodes are IDs of the objects that are created as unique

numbers with a fixed length of 128 bits. Ucode ties vir-

tual object with the thing, however without any correla-

tion between characteristics and meaning of the object and

value of the number assigned to it. Such relationship be-

tween ucode value and information about object which is

linked with it, is recorded in distributed database created

by resolution servers with hierarchical structure. The ucode

approach implies, that terminals with installed the ucode

client library have access to resolution servers’ infrastruc-

ture. When the terminal reads the ucode, it has to query

the resolution servers to obtain context represented by this

ucode.

The second approach assumes introduction to network

a new layer, what improves efficiency of messages trans-

fer cause decisions during forwarding process can be made

taking into account the ID. Such approach is represented

in Veil-VIRO [7] and MobilityFirst [8], [9].

The Veil-VIRO solution [7] introduces a uniform conver-

gence layer on the top of the link layer to ensure con-

nectivity for large number of heterogeneous physical de-

vices. This convergence layer provides support for under-

lying networks with dynamic structure and various layer 2

technologies, including both Ethernet-based as well as non-

Ethernet solutions. The Veil-VIRO concept relies on struc-

tured virtual ids (vid) used by the convergence layer [10].

The vid address space contains representation either phys-

ical (i.e., layer 2) identifiers like Ethernet MAC addresses

etc. and identifiers related with higher layers (for exam-

ple IPv4/IPv6 addresses or flat-id names used at applica-

tion level). The end hosts’ vids have special structure and

are created as follows. The first part of the vid, so called

host-node part, is L-bit long and indicates VIRO switch

(host-node), which given end host is directly attached to.

The remaining l-bit long part is used to identify the end

host in a set of end hosts connected to the same host-node,

in example with the same L-bit prefix.

In VIRO a structured virtual id space is used not only

for object address resolution, but also for routing and for-

warding purposes. VIRO routing is based on Kademlia-

like DHTs (Distributed Hash Tables) [11]. However, in

contrary to traditional DHT approach, which assumes end-

to-end connectivity and uses IP layer routing and look-up

mechanisms, the VIRO must build end-to-end connectivity

by itself, using to this aim layer 2 connections established

between VIRO nodes.

MobilityFirst [8], [9] assumes that each object is distin-

guished by a Global Unique Identifier (GUID). The GUID

is a string which comprises two parts: object owner’s Pub-

lic Key and value of hash key calculated for the object.

The GUID is assigned to the object without any relation-

ship with object’s network address and/or location. Mo-

bilityFirst proposes to utilize a logically centralized Global

Name Resolution Service (GNRS) in order to store informa-

tion about mapping between object’s GUID and its network

address. GUID layer is on the top of the network layer and

features flat structure. MobilityFirst assumes that network

nodes forward data according to hybrid GUID/network ad-

dress routing: routers can deliver packets considering pack-

ets’ GUID only or using GNRS to discover network address

associated with given GUID. Moreover, in order to allow

applications to search objects, MobilityFirst requires im-

plementation of external name assignment service, which

is responsible for assigning and publishing object’s GUID

jointly with its semantic description.

In conclusion, presented solutions do not affect network

technology and relay on overlay systems, particularly for

discovering and accessing objects and services in IoT.

3. Using Name-Oriented Networking

Concept for ID Layer

Name-Oriented Networking, exploited in Content-Centric

Networking (CCN) [4], and its successor Named Data Net-

working (NDN) [12], constitutes a new paradigm for solv-

ing naming and addressing aspects in the Internet. It as-

sumes, that network is aware, what data (content) are re-

quested by users and transferred through nodes. When the

user wants to download given content, it sends to the net-

work an Interest packet that identifies the required data by

its name. Next provider’s application, which registered for

a given name prefix, sends a Data packet as a response to

this Interest. When the Data packet traverses through the

network, network nodes cache it for serving forthcoming

Interest messages.

In this paper an exploit the NON concept for creation of

IoT ID layer is proposed. The main idea based on human

readable IDs for objects and services. Also network nodes

are labeled with such ID, and the structure of IDs is or-

41



Jordi Mongay Batalla, Piotr Krawiec, Mariusz Gajewski, and Konrad Sienkiewicz

Fig. 1. ID naming example.

ganized in hierarchical manner, which allows a tree-based

ID routing, i.e., the data frames are transferred, according

to ID carried in their headers, by established trees in both

upload and download directions.

The IDs are created and managed taking into account the

location of each IoT object. Name (ID) of every object,

service or network node is formed by 8-byte ASCII-based

word compatible with ISO 8859-1 standard [13]. The ad-

dress (locator) of object/service is created as a chain of all

the names, concatenated by a dot, from the root (which is

marked as “∗”) to given object/service. Figure 1 presents

an example of address of the light controller (ID: lightctr) in

the first room on the first floor (.floor001.room0001.lightctr)

with exemplary services related with light 1: “switch

on” (.floor001.room0001.lightctr.l1-sw on), “switch off”

(.floor001.room0001.lightctr.l1-sw of) and “check status”

(.floor001.room0001.lightctr.l1-state). Using human read-

able addresses for objects and services provides flexible

and convenient way for creation multicast services. It is as-

sumed that two symbols are reserved in naming: a dot “·”

in order to build hierarchy essential in ID-based routing,

and a star “∗” for multicast calls. Proposed hierarchical

naming scheme and ID routing simplifies multicast con-

nections. To address message to group of objects on given

region, i.e., “switch on” all lights on the first floor, ID of

the form: .floor001.∗.lightctr.∗-sw on could be used. It is

assumed that the object indicated by the full address can

recognize requested service and takes the adequate action,

otherwise it will return error message.

The forwarding nodes compare the ID from frame header

with the address of the node and based on comparison

result decide on which port forward the frame. Similar

to CCN/NDN, network nodes can store forwarded data

in cache, and then future requests from applications are

served using node caches. This feature can bring bene-

fits in IoT scenario if common behavior of small, battery-

powered sensors is considered. These devices may work at

active mode and serve requests received from applications,

or may enter into sleep mode turning off both the receiver

and transmitter to save power. In-network caching allows

network nodes, which forward IoT data, to keep the results

of sensing. In this way, the applications have access to

them all the time, also within the period when the sensor

is in a sleep mode. This characteristic is particularly prof-

itable in scenarios, which assume existing of many different

sensors in the network, where each sensor may enter into

energy saving phase in different periods [14].

Embedding the ID layer into the network level offers aware-

ness about IoT data to the network nodes. In this way, the

network nodes are responsible for crucial operations for

IoT: registration of objects and services available in the

network, and retrieval information about the registered el-

ements to the applications that ask for it. On the other

hand this approach does not exclude attaching of IoT de-

vices which are not aware of ID layer as, in example de-

vices based on 802.15 standard family. In that case, the

connected objects or applications would require perform-

ing appropriate encapsulation operations in the so-called

object controller (see Fig. 2). This approach is in con-

formance with ETSI M2M functional architecture [20],

where M2M devices are divided into two groups: first are

those which have enough resources to implement encapsu-

lation mechanisms and they interact directly with network

nodes, and second are devices with constrained resources

which connect with network nodes via object controllers

(i.e., ZigBee sensors). This architectural approach is shown

in Fig. 2.

Fig. 2. Interworking between IoT devices connected to ID layer

capable network nodes.

Proposed architecture for the ID layer implies the following

three phases of data distribution:

Registration and publication – objects register itself, to-

gether with all the services that they offer, in the closest

network node. It is the ID layer aware network node, which

42



ID Layer for Internet of Things Based on Name-Oriented Networking

the registering object is directly connected to. After reg-

istration, object and services are available for applications

connected to the system.

Resolution – the applications can ask for objects and ser-

vices in the whole network (by sending resolution request

to the root node) or in particular segment of the network

(by sending resolution request to selected network node).

Data delivery – IoT-specific caching in network nodes im-

proves the data gathering as well as delivery process. Since

the data is placed closer to application servers, response

time for application requests can be reduced, and also limit

amount of traffic in the core network. When a sensor sends

any information to an application, the information is cached

in the network nodes, which responds fast to future requests

of these data (during the validity time of the data) allowing

that the sensors go on sleep mode. It is worth noting, that

in contrary to the content data, significance of IoT data is

restricted, therefore for IoT purposes an additional param-

eter has to be introduced: the validity time of the data.

Its value is configurable and strongly depends on the place

and the context of object usage. In the context of tempera-

ture control, some scenarios require validity time to be set

to value of several minutes [19] whilst others may require

higher dynamicity and, therefore, validity time should have

lower value.

Summarizing, the most outstanding features of the pro-

posed approach for ID layer are as follows. First, thanks

to human-readable hierarchical naming scheme, our so-

lution integrates addressing of IoT objects and services.

By creating network address as a concatenation of IDs,

it ensures separation of ID and locator while using one

unique addressing structure. Involvement of mechanisms

inherited from Name-Oriented Networking approach im-

proves forwarding of ID layer frames as well as enables

implementation by IoT objects different energy efficient

operating modes. Proposed hierarchical ID-based routing

considerably simplifies multicast communication at various

scopes. Furthermore, characteristics of IoT objects/services

are location-specific, which facilitates fundamental IoT pro-

cesses as object/service registration and publication, and

allows distribute them among many network nodes.

Other proposition for exploitation of NON concept for IoT

purposes is presented in [15]. The authors propose a CCN-

oriented service platform to implement IoT services in the

network. Similar to this solution, they exploit hierarchical

names for services and name tree to determine how Interest

and Data messages should be treated. However, the plat-

form proposed in [15] is designed as over-the-top solution

above the network layer, and based on UDP/IP service.

4. ID Layer Architecture

In Fig. 3 the functional model of an IoT-aware node which

complies with proposed ID layer architecture is shown. It

contains three main planes:

– resolution and reachability – exposes registered ob-

jects and services to users and manages the reacha-

bility of the objects and services,

– naming and registration – aims at assigning unique,

hierarchical IDs to the objects connected to the net-

work,

– data forwarding – provides forwarding and routing

rules for ID-labeled frames.

Taking into account that each network node contains in-

terfaces for each plane and the network has hierarchical

structure, all IoT-related operations, i.e., registration, publi-

cation, resolution, data request and data delivery, are man-

aged only locally in the nearest network node. This results

in a high flexibility and manageability and improves the

response of the system when the number of handled things

scales.

Detailed operations performed by the network node related

with ID layer functionality and describe the exact function-

alities of the blocks are presented in Fig. 3. Even when

Fig. 3 shows security/privacy blocks, their functionalities

are not described in the text since they are out of the scope

of this paper.

When a new object is connected to the system or a new

service is created, this object/service registers by sending

a Register message to the edge node it is attached to. The

Register message contains the name of new object/service

jointly with its description, which will be used during res-

olution operations. When the node receives this message,

it checks validity of the name and, if the name is correct,

it performs a publication action by storing the name and

information about newly connected object/service in the

Object/Service register.

In the case when the ID is already registered or contains any

reserved character, the Register failed message is returned

to the object. Otherwise, the Register accepted message

with the complete chain of concatenated IDs, which con-

stitutes an address of the new object/service, is sent back

to the node’s port by which the Register message arrived.

Since the registration and publication process is performed

only in the edge network node, the Register message is

not transferred to further network nodes. A newly attached

object registers not only its own ID but also the offered ser-

vices. These services are associated with actions taken by

the object. Note that given action could have several differ-

ent IDs for distinguishing the context in which the action is

taken. It is important in case of controlling the same set of

objects by different applications (i.e., door/window locking

controlled by both user commands and fire monitoring).

Also, given service ID may trigger aggregated actions in

the object, for example switching on all the bulbs in one

lamp.

The full address of new object or service is created as

concatenation of the full address of the network node the

new object/service is attached to, and the ID of this ob-

ject/service. Address assignment is responsibility of the

ID naming module. That structure of hierarchical routing

43



Jordi Mongay Batalla, Piotr Krawiec, Mariusz Gajewski, and Konrad Sienkiewicz

Fig. 3. Functional blocks of ID layer network node.

tree is delimited up to 64 levels, therefore the network per-

mits addresses which contain at most 64 concatenated iden-

tifiers, where each ID being 8 bytes long. Taking into ac-

count that the maximum size of the payload field of an

Ethernet frame is 1500 bytes, in case of the longest al-

lowed object/service address, there are still almost 1000

bytes available for data. Such size of the available pay-

load is sufficient for most IoT applications, which mostly

send and receive short messages with control instructions,

remotely sensed information or actuator commands. By

limiting number of hierarchy levels, the problem of un-

bounded, variable-length naming, which is considered as

one of the scalability issues related with NDN approach, is

avoided [12].

When applications want to discover objects and services

available in given node (i.e., in the second floor), they

send a Resolution message to it. The node, in response,

returns sequence of Resolution response messages, where

each message corresponds to one of the objects and ser-

vices stored in node’s Object/Service register. The Reso-

lution response message contains fields that hold the full

address of the object/service as well as a description of

this object/service. Note that such a description should be

sufficiently extensive in order to make feasible easy man-

age of the services. At the same time, the description of

the objects can be uploaded by the objects when any char-

acteristic of the object/service changes. Additionally, the

applications receive Resolution response messages with ad-

dresses of the network node’s child nodes. These addresses

can be used by application for discovering all the objects

and services existed in the sub-tree of the network node,

i.e. in all rooms in the second floor.

The second way to obtain information about objects and

services available in given domain is to send to the net-

work a multicast Resolution message for discovering all

registered objects/services i.e., in one room or at one floor.

Using Resolution message addressed to the root node, the

application can get information about objects and services

existed in the whole network.

Note, that from application point of view, the resolution

process is performed locally because the applications can

know where desired object or service are located (i.e., in

floor1.room1). This characteristic, which is inherited from

IoT features, was exploited in this system. Moreover, it is

assumed that it should be investigated to cope with mobility

issues.

There is a multicast flag in each ID layer message header,

which indicates whether the message is multicast-enable or

not. If the multicast flag in the Register message header

is not set, it points out that it is not allowed to access

given object or service in a multicast manner (i.e., with us-

ing “∗”). Information about exclusion of the object/service

from multicast service is stored in the Unicast only mod-

ule, which precludes that future multicast requests will be

transferred to this object/service.

The Routing rules in the network are directed to maintain

stable hierarchical addressing for routing packets. When

one node is added or deleted to the network, then Routing

rules modules should change for maintaining appropriate

forwarding tables in data forwarding plane. The same oc-

curs whenever one network node changes the position in

the hierarchical tree.

The Data Forwarding plane, responsible for transferring

ID-layer frames according to ID-layer header and rules de-

fined by upper planes, is located on the bottom (Fig. 3).

The network node begins frame forwarding process by

checking, in the frame header, the address length and next

reading appropriate number of concatenated identifiers

44



ID Layer for Internet of Things Based on Name-Oriented Networking

(as the address itself). If the frame’s destination address

equals the node’s address, then the frame is directed, ac-

cording to the message type, to the Registration or Reso-

lution module inside this node. Otherwise, the forwarding

decisions are taken using the IoT forwarding table. This ta-

ble stores IDs of objects and services registered in the node

together with the multicast flag and the node port they are

attached to.

The forwarding rules applied in IoT forwarding table are as

follows. The prefix (i.e., upper part of hierarchical address)

of the frame destination address do not match with the

network node address. It means that the frame is addressed

to object or service located in the other sub-tree in the

hierarchy and therefore it is transferred to the parent node.

The prefix of the frame destination address fits in with the

network node address, taking into account the multicast

symbol also. The frame is addressed to object or service

located in the sub-tree rooted at this network node. Then,

the next ID in the message destination address (according

to the node hierarchy level) is analyzed, and:

– the frame is forwarded to the child node, whose ID

fits in with the destination address next ID,

– if the next ID of destination address contains the mul-

ticast symbol, then the frame is forwarded to all child

nodes except those for which a multicast exclusion

entry is stored in the Unicast only module,

– if name of any child nodes does not match with the

next ID in the frame destination address, the frame

is discarded.

In parallel to forwarding tasks, the network node executes

additional caching actions, which are invoked for two types

of messages: Data and Request. Each network node con-

tains two caching tables. The Data Caching Table handles

the Data messages and stores: the source address of the ob-

ject or service, the data related with this object/service and

its validity time. Whenever the Data message with given

source address and longer validity period arrives to the

network node, an appropriate record in the Data Caching

Table is updated. Additionally, sanity operation could be

performed in order to erase expired entries and avoid prob-

lems with oversized table.

Once the Request message is received by network node,

the node at first finds out if the requested information is

available in the Data Caching Table. It checks the follow-

ing conditions: whether the message destination address

converges with an entry in the Data Caching Table, and

whether the validity time of data found in the Data Caching

Table is longer than the requested validity time carried in

the Request message header. If the above conditions are

met, the request is handled using relevant Data message

from the table. Note that the synchronization between net-

work nodes, objects and applications, which is required for

data validity time verification, does not need to be higher

than hundreds of milliseconds. Therefore, simply using of

Network Time Protocol should be enough.

Another caching table in the network node is the Request

Caching Table. It is used to store Request messages which

are not served from the Data Caching Table. Such mes-

sages are transferred through the output port according to

message destination address, and corresponding entry is

created in the Request Caching Table. This entry con-

tains the address of requested object/service and the port

from which the Request message arrived. When the Data

message comes to the node, as the answer to the Request,

a record with the source address of this message is searched

in the Request Caching Table. Next the message is for-

warded to the port indicated in the record and the entry in

the table is deleted. In the case when the message source

address is not found in the table, network node discards

received Data frame.

Records in the Request Caching Table are erased also when

the validity time of given record expires. Moreover, in order

to maintain acceptable size of the Request Caching Table,

the network node may execute sanity operations to avoid

persistence of entries in the table during a long time, even if

corresponding requests have not been served yet. Thereby,

even if the network nodes have limited resources, they are

still able to handle large-scale number of flows [12]. On

the other hand, some Request messages are not cached in

the Request Caching Table, because their validity time is set

to 0 as applications do not expect a response for them. Such

situation may occur, for example, when Request message

carries an action command addressed to actuator.

5. Prototype of ID Layer Node

To validate and test the proposed approach, the ID-layer

functionalities of the network node were implemented on

the top of Ethernet technology from scratch. Specific Ether-

type value for IoT frames were to defined to distinguish

ID-layer frames from legacy Ethernet frames. All frames

with such an Ethertype are handled by the network node

according to the ID-based forwarding rules.

All the necessary modules and procedures required to reg-

istration and resolution of IoT objects and services, as well

as IoT data forwarding using an ID-based routing, have

been developed in a Linux-based server (version 2.6.17 of

kernel) with processor Intel Core 2 Duo Desktop Processor

E8500 3.16 GHz. The modules responsible for registra-

tion and resolution processes were implemented in the user

space, due to its flexibility and ease of use, whereas data

forwarding modules were implemented in the kernel space

to achieve high forwarding efficiency.

The testbed assumes a ring topology, as recommended by

the benchmarking methodology for measuring network in-

terconnect devices [16], and consists of one server, with

installed ID layer modules, connected to the tester by two

1 Gbps Ethernet links. To generate and receive the IoT

traffic with ID layer header the Spirent TestCenter tool,

equipped with CM-1G-D4 card was used.

Next the performance tests for understanding the forward-

ing characteristics of the implemented network node were

45



Jordi Mongay Batalla, Piotr Krawiec, Mariusz Gajewski, and Konrad Sienkiewicz

run. The tests conducted were two-fold: first the influence

of the size of the Request Caching Table in Data frames

forwarding performance was analyzed and secondly, for-

warding throughput of Request frames was checked. In the

first case, a Request Caching Table with growing number

of entries, i.e., from 1,000 to 100,000 requested services

was prepared, so that in the network the number of streams

is in this range (up to 100,000) could be considered. Note

that current versions of OpenFlow tables can handle up to

100,000 parallel flows [17]. Afterwards, a stream of Data

messages and calculated the throughput for different Re-

quest Caching Table sizes was generated. Throughput was

defined as the maximum rate of frames forwarded by the

network node without any losses.

When the network node received a Data message, it

searched the source address of the message in the Request

Caching Table, and next forwarded the message to the out-

put port, which was pointed out in the table entry. Through

this output port the message was re-sent to Spirent Test-

Center. The validity time of Data messages was set to 0,

to exclude influence of caching them in the Data Caching

Table. Size of Data frames was equal to 64 bytes.

The following test measured the forwarding throughput of

Request messages. For this, a stream of Request messages

in the Spirent TestCenter was generated. The requested

service was the same one in all the messages and was not

cached in the Data Caching Table. In this case, when

the network node received the Request message, it did not

find requested service in the Data Caching Table, therefore

destination address of the message is compared with node

address and the message is transferred to the output port, to

which Spirent tool was attached in a ring topology. Since

the validity time of the Request message was equal to 0,

the message was not cached in the Request Caching Table.

Also in this case, the Request frames were 64 bytes long.

Fig. 4. Throughput of Data and Request frames for increasing

size of Request Caching Table.

Figure 4 presents the throughput of Data messages for dif-

ferent size of Request Caching Table. When the number

of entries in the table increase, the Data frame through-

put slightly decreases. This does not occur for Request

messages since Request forwarding operations did not in-

volve the table during this test (validity time=0), which may

be observed in the Request forwarding results presented in

the same figure. The throughput of Data frames is visi-

bly lower than the throughput of Request frames, even for

small size of Request Caching Table. This is because, in

the presented test conditions, the Data messages required

more processing operations in the network node than Re-

quest messages. Note the ID layer node was implemented

without any optimization in Request Caching Table search-

ing operations (the table is created using simple ASCII hash

function).

The main conclusion of Fig. 4 is that also for bigger Re-

quest Caching Tables, the forwarding throughput of devel-

oped ID-aware network node is in the range of software

IP routers – in [18] the authors show, that, in the case of

minimum-size Ethernet frames, software router based on

high-end PC can forward up to 6 · 10
5 packets/s. Note,

that there are no errors in the network node performance

for the forwarded Data and Request frames for flow rates

fewer than the throughput value. Therefore, it could be

affirmed that the network node for up to 100,000 entries

stored in Request Caching Tables works properly.

6. Conclusions

Internet of Things is a network of “smart” objects, which

autonomously can find and cooperate with other members

of the network. For this purpose, a device-independent

abstraction layer, called ID layer, is introduced into the

protocol stack.

In this paper, the solution for ID layer, which bases on

Name-Oriented Networking paradigm, was proposed. Con-

trary to many proposals for the ID layer presented in litera-

ture, which do not introduce any changes into network plane

and build the ID layer on top of it, IoT awareness into the

network was introduced. Such approach enables to avoid

overlay solutions and helps to achieve high efficiency and

simplification for IoT related operations as object/service

registration, object/service searching and delivering of IoT

data.

This proposition of ID layer involves a Name-Oriented Net-

working addressing scheme for objects and services offered

by them, together with hierarchical ID-based routing. The

ID-based routing introduces new capabilities in IoT net-

works, because it is characterized by separation between

identification and location: particular names (words) of an

ID indicate entity, virtual or physical, whereas the ID as

a whole (i.e., the chain of words) indicates its current lo-

calization in hierarchical tree. This provides flexible and

convenient access to IoT resources.

Moreover, awareness of IoT data at the network level allows

for introducing data caching functionality in network nodes.

It improves effectiveness of network utilization and makes

feasible cooperation between IoT applications and sensors

with applied energy consumption saving mechanisms.

A prototype of the ID-aware network node using server

with Linux operating system was developed. The imple-

46



ID Layer for Internet of Things Based on Name-Oriented Networking

mentation is based on standard IEEE Ethernet technology,

resulting that it can coexist in network with nodes which

have implemented only legacy protocol stack. Such nodes

are unaware of ID layer messages and the coexistence is

possible through tunneling the IoT traffic between two con-

tiguous ID-aware network nodes by applying standard tun-

neling technique, for example IP-tunneling.

The results of experiments on performance of implemented

ID-aware network node for forwarding ID layer frames,

shows that proposed solution achieves acceptable through-

put, similar to software IP router, even when the Request

Caching Table has significant size. Nonetheless, it was

clear that forwarding performance of ID-aware network

node comes down when the number of IoT data flows

increase. However, this performance reduction does not

seem to be a problem for the correct running of the proto-

type, so it can be concluded that the solution is acceptable

for intra-domain routing, where scalability issues are not

crucial.

References

[1] SENSEI Project, “Reference Architecture”, Deliverable 3.2, 2008.

[2] SWIFT Project, “D207 – Final SWIFT architecture”, 2010.

[3] IoTWork Project, “WP 2 – communication networks D2.1 – IoT

Addressing schemes applied to manufacturing”, 2010.

[4] V. Jacobson et al., “Networking Named Content”, in Proc. ACM

CoNEXT 2009, Rome, Italy, 2009, pp. 1–12.

[5] Internet of Things Architecture “Project Deliverable D1.2 – Initial

Architectural Reference Model for IoT”, 2011 [Online]. Available:

http://www.iot-a.eu

[6] N. Koshizuka and K. Sakamura, “Ubiquitous ID: Standards for Ubiq-

uitous Computing and the Internet of Things”, IEEE Pervasive Com-

puting, vol. 9, no. 4, pp. 98–101, 2010.

[7] J. Sourabh, C. Yingying, and Z. Zhi-Li, “VEIL: A ”Plug-&-Play”

Virtual (Ethernet) Id Layer for Below IP Networking”, in Proc. 1st

IEEE Worksh. Below IP Networking 2009, Hawaii, USA, 2009.

[8] Jun Li et al., “Supporting Efficient Machine-to-Machine Communi-

cations in the Future Mobile Internet” in Proc. IEEE Wirel. Com-

mun. Netw. Conf. Worksh. WCNCW 2012, Paris, France, 2012,

pp. 181–185.

[9] Jun Li et al., “Enabling Internet-of-Things Services in the Mobility-

First Future Internet Architecture”, in Proc. IEEE Int. Symp. World

Wirel., Mob. Multim. Netw. WoWMoM 2012, San Francisco, USA,

2012, pp. 1–6.

[10] L. Guor-Huor, J. Sourabh, C. Shanzhen, and Z. Zhi-Li, “Virtual Id

Routing: A scalable routing framework with support for mobility

and routing efficiency”, in 3rd Int. Worksh. Mobil. Evolv. Internet

Arch. MobiArch’08 co-located with SIGCOMM 2008, Seattle, USA,

2008, pp. 79–84.

[11] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-

mation system based on the xor metric”, in Proc. 1st Int. Worksh.

Peer-to-Peer Sys. IPTPS’02, Cambridge, USA, 2002, pp. 53–65.

[12] H. Yuan, T. Song, and P. Crowley, “Scalable NDN Forwarding:

Concepts, Issues and Principles”, in Proc. 21th Int. Conf. Comp.

Commun. and Netw. ICCCN, Munich, Germany, 2012, p. 1–7.

[13] “Information technology – 8-bit single-byte coded graphic character

sets – Part 1: Latin alphabet No. 1”, ISO/IEC 8859-1:1998, 1998.

[14] A. K. M. Azad and J. Kamruzzaman, “A Framework for Collab-

orative Multi Class Heterogeneous Wireless Sensor Networks”, in

Proc. IEEE Int. Conf. Commun. ICC’08, 2008, Beijing, China,

pp. 4396–4401.

[15] I. Cianci et al., “Content Centric Services in Smart Cities”, in Proc.

Next Generation Mobile Applications, Services and Technologies

Conf. NGMAST 2012, Bari, Italy, 2012, pp. 187–192.

[16] S. Bradner and J. McQuaid, “Benchmarking Methodology for Net-

work Interconnect Devices”, RFC 2544, 1999.

[17] N. McKeown et al., “OpenFlow: Enabling Innovation in Cam-

pus Networks”, ACM SIGCOMM Comp. Commun. Rev., vol. 38,

pp. 69–74, 2008.

[18] A. Bianco et al. “OpenSource PC-Based Software Routers: a Viable

Approach to HighPerformance Packet”, Qual. of Serv. in Multiserv.

IP Netw., vol. 3375, pp. 353–366, 2005.

[19] “ISTA Temperature Report” [Online]. Available:

http://www.ista.org/pages/resources/TempRH.php

[20] ETSI TS 102 690 V1.1.1 (2011-10): “Machine-to-Machine commu-

nications (M2M); Functional architecture”. ETSI Technical Specifi-

cation.

Jordi Mongay Batalla was

born in Barcelona, Spain, in

1975. He received the M.Sc.

degree in Telecommunications

from Valencia University of

Technology in 2000 and Ph.D.

from Warsaw University of

Technology in 2010. His work

experience includes jobs in

Centro Nazionale di Astrofisica

in Bologna, Italy, as well as Tel-

cordia Poland. Currently, he is with National Institute of

Telecommunications as Associate Professor. His research

interest focus mainly on quality of service in diffserv net-

works and next generation network architecture. Moreover,

he is an active researcher in the challenges related with

Future Internet.

E-mail: jordim@itl.waw.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

Piotr Krawiec received M.Sc.

and Ph.D. (with honours) de-

grees in Telecommunications

from Warsaw University of

Technology (WUT), in 2005

and 2011, respectively. Since

2012 he is an Assistant Pro-

fessor at the Department of

Internet Architectures and Ap-

plications, National Institute of

Telecommunications, Poland.

Since 2005 he is a member of the Telecommunication Net-

work Technologies research group at Warsaw University of

Technology. His research areas include IP networks (fixed

and wireless), content-aware networks, Future Internet

architectures, prototyping and testbeds.

E-mail: P.Krawiec@itl.waw.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

47



Jordi Mongay Batalla, Piotr Krawiec, Mariusz Gajewski, and Konrad Sienkiewicz

Mariusz Gajewski has been

employed at the National In-

stitute of Telecommunications

since 1998. He received his

M.Sc. degree in Telecommuni-

cations from the Warsaw Uni-

versity of Technology. He spe-

cializes in technical aspects of

network architecture, IPv6 pro-

tocol testing as well as Future

Internet architectures.

E-mail: M.Gajewski@itl.waw.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

Konrad Sienkiewicz has been

employed at the National In-

stitute of Telecommunications

since 1997. He holds a grad-

uate degree in Telecommunica-

tions from Warsaw University

of Technology (1997). He spe-

cializes in technical aspects of

network architecture, NGN and

IP networks, as well as Future

Internet.

E-mail: K.Sienkiewicz@itl.waw.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

48


