
Paper Application of High-Performance

Techniques for Solving Linear Systems

of Algebraic Equations
Daniel Grzonka

Institute of Computer Science, Faculty of Physics, Mathematics and Computer Science,

Tadeusz Kościuszko Cracow University of Technology, Cracow, Poland

Abstract—Solving many problems in mechanics, engineering,

medicine and other (e.g., diffusion tensor magnetic resonance

imaging or finite element modeling) requires the efficient

solving of algebraic equations. In many cases, such systems

are very complex with a large number of linear equations,

which are symmetric positive-defined (SPD). This paper is fo-

cused on improving the computational efficiency of the solvers

dedicated for the linear systems based on incomplete and

noisy SPD matrices by using preconditioning technique – In-

complete Cholesky Factorization, and modern set of proces-

sor instructions – Advanced Vector Extension. Application

of these techniques allows to fairly reduce the computational

time, number of iterations of conventional algorithms and im-

prove the speed of calculation.

Keywords—Advanced Vector Extension, conjugate gradient

method, incomplete Cholesky factorization, preconditioning,

vector registers.

1. Introduction

Solving linear systems of algebraic equations is a prob-

lem of linear algebra, which is common in many fields of

science. The basic techniques and methodologies investi-

gates for solving such a problem can be classified into two

main categories, namely direct and iterative linear system

solvers. Direct methods need computationally efficient re-

sources (e.g., large RAM memory and fast CPU), which

results in an inability to achieve a proper solution in a rea-

sonable time [1]. For most types of the engineering prob-

lems modeled by the linear systems such methodologies

are able to generate the exact ideal solutions.

Iterative methods are based on approximation of the ex-

act solutions. In each iteration, the best achieved par-

tial results may be improved by the implemented local

optimizers. Final solution vector is generated as a re-

sults of the execution of the specified maximal number

of iterations of the basic algorithm or in the case of

achievement of the declared accuracy. Based on the formal

definitions and analysis presented in [1], the efficiency of

the iterative methods comes from their main features:

– the ability to solve larger problems, especially in

three-dimensions,

– the development of highly effective preconditioners

can enormously improve the speed and robustness of

the iterative procedures,

– the ability to solve relatively large-scale problems in

mini- and microcomputers,

– the possibility to vector and parallel programming.

The main factor affecting the performance of iterative meth-

ods is the number of the equation system expressed in the

matrix, which may change frequently during the calcula-

tion. The problems presented in this paper are connected

with solving ill-conditioned systems. The experimental

part implements one of the best known and most efficient

method for solving systems of linear algebraic equations –

Incomplete Cholesky Conjugate Gradient (ICCG) method.

Application of preconditions leads to reduction of the num-

ber of iterations. As a result the expected accuracy and

simultaneously in reasonable time is obtained.

The proposed novel technology is based on operations on

vector registers, to reduce the calculation time. To achieve

this, a vector processing of multiple data sets procedure,

namely Single Instruction, Multiple Data (SIMD) and Ad-

vanced Vector Extension (AVX) instructions implementa-

tion of the algorithms are applied.

This paper is organized as follows. In Sections 2 and 3

the conjugate gradient method and the preconditioning of

the matrix are defined. Cholesky factorization is defined

in Section 4. The methods of the utilization of processor

registers and cache memory are presented in Section 5.

AVX and optimization methods are characterized in Sec-

tions 6 and 7, and all the proposed techniques are evaluated

experimentally in Section 8. The paper ends with short

conclusions.

2. Conjugate Gradient Method

One of the most popular and effective method of solv-

ing the systems of equations is the Conjugate Gradient

(CG) method, introduced by Hestenes and Stiefel in

year 1952 [2]. The original model was then modified as

iterative method for solving large systems of linear alge-

braic equations [1]. CG is a type of the Krylov subspace

methods and usually it is applied to a system of equations

defined by using the following matrix equation:

Ax = b , (1)

where A is an n × n symmetric matrix of positive real

numbers. The iterations number of CG should not ex-

85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235207079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Daniel Grzonka

ceed n without the round-off error. In practice, the number

of iterations decreases depending on the specified accuracy

level [2].

Following the formal definitions presented in [2] the gen-

eral optimization problem for GC can be specified in the

following theorem:

Theorem 1. If A is symmetric and positive definite, then

the problem of solving Ax = b is equivalent to minimizing

of the quadratic form

q(x) :=
1

2
xT Ax− xT b . (2)

The idea of CG method is to generate a new vector xi+1

based on the best partial solution so far, which is defined

as the vector xi. This vector is characterized by two param-

eters, namely direction pi and distance αi, that is

xi+1 = xi + αi pi . (3)

The coordinates of the search directions vector p =
[p1, . . . , pi, pi+1] are conjugate with respect to A. It can be

defined as pi+1 = ri+1 + βipi, where ri+1 = b−Axi+1 [1].

The values of the parameter α are estimated by using the

Eqs. (2) and (3)

q(αi) =
1

2
(xi + αi pi)

T A(xi + αi pi)− (xi + αi pi)
T b . (4)

Next, the partial derivative of α is computed:

αi =
pT

i ri

pT
i Api

. (5)

Now an approximation xi+1 from Eq. (3) and computation

residual vector ri+1 = ri −αiApi is possible.

The next step is the calculation of a conjugation of direc-

tions:

pi+1 = ri+1 + βipi , (6)

where βi =
rT
r+1

rr+1

rT
i ri

.

Based on the above analysis, the CG algorithm can be de-

fined by using Algorithm 1 [3].

Algorithm 1 Conjugate gradient method

Choose the initial approximation x0 (e.g. 0)

r0 = p0 = b−Ax0

For i = 0, 1, . . . , n−2

αi =
pT

i ri

pT
i Api

xi+1 = xi + αi pi

ri+1 = ri −αiApi

If the stop case is true – break

βi =
rT

i+1
ri+1

rT
i ri

pi+1 = ri+1 + βipi

End for

3. Preconditioning

The iterative methods are less demanded on computer re-

sources than the direct methods, but unfortunately their ac-

curacy is usually much worse. They cannot be success-

fully applied for some classes of the global optimization

problems with many local solutions, where the iterative

methods can be trapped in local optimum. One of the pos-

sible approach is the use of preconditioner, which is not

always sufficient to achieve a convergence to the global so-

lution in a reasonable time [4].

It allows to convert the matrix A from Eq. (1) to improve

the distribution of its eigenvalues and reduce the condition

number. It has a direct impact on the iterative methods con-

vergence. Therefore, the matrix A preconditioning may be

the key to an effective iterative method for solving systems

of equations [5].

If a small change in the input causes a large change in the

output, the problem is ill-conditioned, otherwise it is well-

conditioned. In case of solving systems of linear algebraic

equations problems, the lower condition number, the better

conditioning task. In this context, the condition number of

the matrix A is defined as [2]:

κ(A) =
∥

∥A
∥

∥

2
·
∥

∥A−1
∥

∥

2
. (7)

To define the preconditioning algorithm first step is to re-

duce the condition number, and in the same time to reduce

the number of iterations of the CG algorithm. To achieve

this, the transformation of the linear system in Eq. (1) into

the following one is provided:

M−1Ax = M−1b , (8)

where M is a symmetric matrix of rational positive

numbers.

Algorithm 2 Preconditioned conjugate gradient method

Choose the initial approximation x0 (e.g. 0)

r0 = b−Ax0

Mz0 = r0 → z0

p0 = z0

For i = 0, 1, . . . , n−2

αi =
zT

i ri

pT
i Api

xi+1 = xi + αiApi

ri+1 = ri −αiApi

If the stop case is true – break

Mzi+1 = ri+1 → zi+1

βi =
zT

i+1
ri+1

zT
i ri

pi+1 = zi+1 + βipi

End for

86

Application of High-Performance Techniques for Solving Linear Systems of Algebraic Equations

It is also assumed that M is well-conditioned, which means

that κ(M−1A) ≪ κ(A), where κ is a condition number

of a matrix. The system Mx = b is much simpler to

solve compare with Eq. (1) [6]. However, the crucial issue

here is to generate appropriate M – preconditioned matrix.

The closer the M matrix to the original matrix A, the con-

vergence of the method is better.

The modified CG method is called a Preconditioned Con-

jugate Gradient (PCG) method and it is defined in Algo-

rithm 2 [3].

4. Incomplete Cholesky Factorization

In many mathematical tasks matrix is as a product of

a number of other matrices. Solving linear systems of al-

gebraic equations is the most important problem of these

areas. In such cases the Lower Upper (LU) decomposition

is useful.

LU is the decomposition of the matrix A as a product of

the lower triangular matrix L and the upper triangular U :

A = LU . The solution of Ax = b systems reduced to two

steps: solving of the Lz = b with a respect to z, and solving

of the Ux = z with respect to x.

A special case of LU decomposition is when U = LT .

It is Cholesky factorization (decomposition), which can

be formally defined as the distribution matrix for factors

such LLT .

Theorem 2. If A is real, symmetric and positive defi-

nite matrix, then it has a unique factorization, A = LLT , in

which L is lower triangular with a positive diagonal [2].

Cholesky factorization procedure is defined in Algo-

rithm 3 [7].

Generation of the preconditioned matrix does not entan-

gle complete factorization. The Cholesky factorization in-

volves the solution of Ax = b system, so in this case the

incomplete Cholesky is used. This method returns the ma-

trix close to A, a similar structured and characterized by

lower expenditure of computing for solving the system of

equations [8].

Algorithm 3 Cholesky factorization

For k = 1, . . . , n

lkk =
√

akk

For i = k + 1, . . . , n

lik =
aik

lkk

End for i

For j = k + 1, . . . , n

For i = j, . . . , n

ai j = ai j − likl jk

End for i

End for j

End for k

Incomplete Cholesky Factorization (ICF) is one of the

most important preconditioning strategy. This paper pre-

sents a variant of the ICF by position, as shown in Algo-

rithm 4 [7].

Algorithm 4 Incomplete Cholesky factorization

For k = 1, . . . , n

lkk =
√

akk

For i = k + 1, . . . , n

If aik 6= 0

lik =
aik

lkk

End if

End for i

For j = k + 1, . . . , n

For i = j, . . . , n

If ai j 6= 0

ai j = ai j − lik − l jk

End if

End for i

End for j

End for k

It should be noted that the Algorithm 4 is not always sta-

ble. As long as the M matrix is positive definite, it can be

decomposed in to LLT , it means that M = LLT . In some

cases, during the decomposition process, the matrix can

be no longer positive definite. However, there is a solution

which preserves the positive definiteness matrix during fac-

torization process.

Algorithm 5 Stabilization of the incomplete Cholesky fac-

torization

Start factorization with γ = 0

If during factorization process akk < 0

Return to initial state A

If γ ≤ 0

γ = 10
−20

Else: γ = γ ·10

End if

Correction matrix A = D+ S · 1

1 + γ
,

where: D – diagonal matrix, S – other elements

Restarting the factorization process

End if

Algorithm 5 solves the stability problem of Algorithm 4

by introducing a correction factor γ , which initially is

equal 10
−20. In the case when the diagonal element (the

second line) will be negative, calculation is interrupted,

matrix returned to the initial state and all elements (except

87

Daniel Grzonka

the diagonal) are multiplied by the value of 1

1+γ . This pro-

cedure is repeated until the matrix is positive definite [9].

The application of Algorithm 5 allows to increasing the di-

agonal dominance of matrix A and is one of the possibilities

to stabilize the factorization process.

PCG method (Algorithm 2) requires the solution of the

Mzi+1 = ri+1 equation. In this case, lower triangular ma-

trix L for forward/backward substitution method could

be used.

5. Processor Registers and Cache

Memory

Typical computer processor CPU (Central Processing Unit)

is composed of the Execution Unit (EU), and the Control

Unit (CU) main modules.

The processor does not perform operations directly on the

main memory, which is time-consuming. It has a number

of small, high-speed memories, called registers. They are

located in the EU and are used to temporarily storage of the

results and control data. Number of available registers de-

pends on the processor architecture. The internal memory

of processor benefits from fast reading and writing.

Generally, memory stores data and programs. There are

various types differ in cost and performance. The most im-

portant parameter is the access time (shorter access time

increases cost). Therefore a hierarchy of memory was built.

The highest levels of the memory are the fastest ones, but

also the most expensive and smallest. The lower ones are

slower, but larger and cheaper. Figure 1 presents computer

memory hierarchy.

Fig. 1. Computer memory hierarchy.

Processor registers are located in the at the highest memory

level. This is a static memory, and it is cleaned up in the

idle mode of the computer. It has a very small capacity,

e.g., 16, 32, 64, 128-bits, or 256 bits if CPU supports AVX

instructions; access time is a fraction of a nanosecond. This

is the fastest memory in the computer system [10].

Second in hierarchy is cache memory, which usually is

a two or three-level (L1, L2 and L3) static memory with

short access time. It is used to store a small amount of

data, which are mostly used by the processor. Depend-

ing on the logical processor architecture, each level con-

sists of the blocks (lines) in size 32, 64 or 128 bytes.

The data between main memory and cache memory are

transferred by same size blocks. Memory of the first

level directly supports communication processor with main

memory, while the lower-level memory (L2, L3) support

the work of L1 cache. L2 and L3 – analogous to L1 mem-

ory – stores frequently used data in memory, and they are

correspondingly larger. If the processor will not find the

required data in L1, refers in the first instance to the L2

memory, and then – if it exists – to L3 memory. When

the processor finds the requested data in the cache it is

called the read hit, the opposite situation is read miss. Miss

will reload the cache-line data. The new data is loaded,

with completion of the cache line (up to the maximum) –

because the tasks frequently cooperate with neighboring

data [10], [11].

6. Advanced Vector Extension

In the Section 5, much attention has been paid to memories,

including the fastest ones – CPU registers. The one type

of registers is vector register that store the data processed

by the SIMD architecture.

SIMD architecture is defined as systems which are pro-

cessed multiple data streams based on a single instruction.

Currently SIMD architecture is also used in personal com-

puters. Processors use the extended set of SIMD instruc-

tions, such as MMX (MultiMedia eXtension), SSE (Stream-

ing SIMD Extensions) or Advanced Vector Extension [13].

AVX is an extension of SSE instruction set that allows float-

ing point operations on vectors of numbers using a special

256-bits processor registers (two times larger than previ-

ously used in processors that support SSE instructions).

The introduction of new technology has forced changes in

the architecture. Added 16 new registers are identified as

YMM0, . . . , YMM15. YMM registers are completely in-

dependent. It should be noted that the AVX instructions

require support from the operating system. Older operat-

ing systems such as Windows XP or Windows Vista, even if

the processor supports AVX instructions make impossible

to use them [12], [13], [15].

AVX and previous technologies define two types of op-

erations: packed and scalar. Scalar operations are present

only on the least significant element of the vector

(bits 0–63), while parallel operations on all elements of the

vector in a single clock cycle [12]. The idea of operations

on vectors is presented in Figure 2.

AVX has provided several new instructions, and now in-

cludes [13]:

– 19 instructions executable only on YMM registers,

– 12 multiply-accumulate instructions (MAC),

– 6 instructions support AES encryption,

– 88 instructions from the SSE instruction set, which

may perform operations on vectors of floating point

numbers stored in XMM/YMM registers,

– 166 instructions for 3- and 4-arguments operations.

88

Application of High-Performance Techniques for Solving Linear Systems of Algebraic Equations

Fig. 2. Example of: (a) scalar and (b) packed multiplication.

A computer running in 32-bit mode has access to the first

eight registers, in 64-bit mode to 16 registers. Due to the

doubling of the size of registers, new data types are avail-

able:

– vector of eight single-precision floating-point num-

bers,

– vector of four double-precision floating-point num-

bers.

Most AVX instructions have their counterparts in special

functions and data types used in C, C++, and Fortran pro-

gramming languages. Using the appropriate functions and

data types in C/C++ there is need to include library im-

mintrin.h and compiler instruction: /arch: AVX [13], [15].

7. Optimization Techniques

Loop unrolling is the first of the optimization techniques

used in the implementation of ICF, CG and PCG methods.

It allows reducing the number of hops by replicating code

from loop body. Unrolled loop structure is closer to a more

linear code and allows better use of the processor execution

unit [14]. In implemented examples functions loops have

been unrolled 8-times. This number was chosen because

of the L1 cache-line size. Cache-line size of the computer

where the experiment was performed is 64 bytes, while the

size of one of a double is 8 bytes – thus in a cache-line fit

in 8 double words.

The cache-line size is closely related to the second of the

methods of optimization – data prefetching. It is realized

by void mm prefetch(char * p , int i) function that loads

a data block of size equal to the cache-line size [15]. The

following example uses the prefetch function in combined

with loop unrolling:

mm prefetch ((const char *) (&vector1[i+8]),

MM HINT T0).

The data are loaded from the shift of eight indexes of the

double array to all levels of the cache. For single-precision

data, shift will equal 16 indexes.

The application of data prefetching allows to hide the mem-

ory latency between sending and receiving a request for

access to the memory. Processor must wait for data only

in the first iteration of the loop [11].

The last of the optimization techniques are operations

on registers (using AVX instructions). The introduc-

tion of operations on XMM/YMM registers forced to

develop new types of data. In this paper two types

of vector: m256 and m256d storing 8 float numbers

and 4 numbers of double type respectively were used.

Instructions for loading data into the vector registers

(mm256 load ps/ mm256 load pd), and unloading into

RAM (mm256 store ps/ mm256 store pd) require align-

ment of data within 32 bytes. Memory for all arrays is

dynamically allocated and aligned by the function void *

aligned malloc (size t size, size t alignment), where the

first argument specifies the size of the allocated memory,

and the second – the alignment (for instructions AVX –

32 bytes). The memory is release after performing of void

aligned free (void *memblock) function. Static arrays have

also been declared with the relevant directive: declspec

(align(#)) [11], [15].

8. Experimental Analysis

The next part of this work was the application of precon-

ditioning in implementation of conjugate gradient method

(Algorithm 2). The preconditioning method is stable

variant of Incomplete Cholesky Factorization by posi-

tion (Algorithms 4 and 5) and for comparison Conjugate

Gradient method without preconditioning (Algorithm 1).

The application is written in native C++ language.

The program consists of 16 functions, including: ICF and

CG method in two versions: with and without precondi-

tioning.

Solver has been tested on a server equipped with 16-cores,

64-bits AMD Opteron 6276 2.3 GHz processor based on

Bulldozer microarchitecture. Opteron 6276 has three lev-

els of cache, and the L1 memory is divided into data-cache

(16 Kbytes) and instruction-cache (64 Kbytes). In the first-

level cache is space for up 256 cache-lines 64 bytes each.

Opteron 6200 series processors support MMX, SSE, SSE2,

SSE3, SSSE3, SSE4, SSE4.1 + SSE4.2, SSE4a, AES,

ABM, AVX, FMA4, XOP instructions. The server has 64

GB DDR3 ECC memory.

For the efficiency analysis of the proposed solution system

of 512 linear algebraic equations expressed in the matrix

which condition number is 2186 was used. Items are mostly

floating-point numbers. The desired accuracy (set a priori)

of the solution for each test case was set at value 10
−6.

First the impact of application of the ICF to obtain a so-

lution of the system using the CG method was examined.

For both, the Conjugate Gradient method with and without

89

Daniel Grzonka

preconditioning allow to obtain the correct result with the

expected accuracy.

The CG method gives the result with the expected accu-

racy in 79 iterations. The PCG, which use a ICF as pre-

conditioner, reaches a result over five times faster – within

14 iterations (Table 1). For both methods the initial vector

of solutions is the zero vector.

Table 1

Number of required iterations for obtaining the correct

solution with the expected accuracy

Method Number of required

(512×512 system) iterations

Conjugate Gradient 79 iterations

Preconditioned CG 14 iterations

Figure 3 illustrates the process of reducing the error

value with successive iterations. One can observe the PCG

method is faster convergent than the CG.

Fig. 3. Comparison of convergence of CG and PCG methods.

The second task of the experiment was to measure the com-

putation time for the CG method with and without precon-

ditioning in two options: standard and with using opera-

tions on YMM registers (AVX).

AVX instructions are used in: vector-matrix multiplication,

scalar multiplication of vectors, calculating the Euclidean

norm and the operation of the scheme: z = z + (x · y),
z = z− (x · y) and y = z+(x · y).
For the PCG method additionally vector operations for

the forward/backward substitution method was used, which

solving systems of linear algebraic equations with triangu-

lar matrices.

Due to the small complexity of the task, calculations were

repeated 500 times – in order to be able to observe changes

in the time of obtaining solutions. All calculations were

performed on the double precision numbers.

The results are shown in Table 2 and Figure 4. The system

of equations was solved by CG over 8393 ms. Thanks to

the vectorization computation task was solved three times

faster compared to the solution without AVX instructions,

which took 25569 ms.

Table 2

Times of obtaining solutions for all variants

Method Solution time

(512×512 system) with AVX without AVX

CG 8393 ms 25569 ms

PCG 4852 ms 14913 ms

Fig. 4. Comparison of solving time for all variants.

For PCG method the expected results were received

within 4852 ms for the AVX instructions and 14913 ms

without.

Figure 4 illustrates the computational time differences be-

tween all solving methods.

The use of vector calculation and preconditioning technique

resulted in the expected effect. Thanks to application of

the AVX instructions and preconditioner, calculations were

performed faster (81% less time). Even a small percent-

age increase in speed is important in solving large-scale

complex mathematical problems.

9. Conclusions

The main aim of this research was to increase the speed

of solving ill-conditioned systems of linear algebraic equa-

tions. These problems are characterized by slow conver-

gence, and therefore, require many iterations to achieve the

result with the expected accuracy. The author tried to solve

this problem by using the CG, PCG and ICF methods dedi-

cated for solving linear systems. The system matrix should

be symmetric and positive-definite. The work focused on

90

Application of High-Performance Techniques for Solving Linear Systems of Algebraic Equations

two factors that have a significant impact on the speed of

the implemented algorithms:

– the number of required iterations,

– the time-consuming operations like matrix-vector and

vector-vector multiplication and forward/backward

substitution method.

The obtained reduction of the number of iterations enables

to increase speed of convergence. The main factor affecting

the number of iterations is the condition number. In order

to minimize this parameter, the ICF procedure was imple-

mented. This variant keeps the stability of the algorithm

during the decomposition process at the fair level.

In simple experimental analysis, a system of 512 equations

was defined. By using Incomplete Cholesky Decomposi-

tion the number of iterations decreased more than five times

without having a negative impact on the result accuracy. It

is worth to note that the ICF method with its variants is

widely used in various fields to solve technical issues. In

practice there are no specified the universal methodology

to choose the best method of preconditioning. In the other

words it is impossible to determine which form of precon-

ditioning would be best for each problem [16].

Another issue is a performance of matrix-vector operations

and forward/backward substitution. They are the most time-

consuming steps of obtaining solutions of equation systems.

In order to accelerate this operation three closely related

methods are used: loops unrolling, data prefetching, vector

operations.

The loops have been unrolled hence during one iteration

data required for the next one can be loaded. While infor-

mation is loading, operations are parallel performed. By

using these two techniques the waiting time between a re-

questing and receiving access for data was eliminated.

The last method use innovative technology of modern pro-

cessors – 256-bits vector registers YMM. During one clock

cycle are performed parallel operations on all elements of

the vector.

Application of operations on the most expensive and also on

the fastest computer memory, allows to obtain significant

acceleration of the calculation. Reduction of the solving

time of conjugate gradient method by about 67% was ob-

served. This is due to application high-performance tech-

niques in the application.

Application of the preconditioning technique and AVX in-

struction allows to solve the problem more than five times

faster and effectively reduce the number of iterations.

Despite the results, it should be mentioned that not all pos-

sibilities of increasing the efficiency have been used in this

study. There are many other techniques, both related to the

preconditioning methods and the use of modern IT solu-

tions, e.g., implement specific algorithms for sparse matri-

ces, which are increasing the efficiency. It is also possi-

ble to use ready-made high-performance libraries such as

BLAS, LAPACK, MKL. It is worth to consider application

of adaptation solutions for multi-threaded and distributed

computing, or expand the use of AVX instructions.

References

[1] M. Papadrakakis, “Solving large-scale linear problems in solid and

structural mechanics”, in Solving Large-Scale Problems in Mechan-

ics, M. Papadrakakis, Ed. Oxford, UK: Wiley, 1993.

[2] D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scien-

tific Computing. St. Paul, USA: Books Cole Publ., 1991.

[3] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations.

Philadephia: SIAM, 1995.

[4] M. Benzi, “Preconditioning techniques for large linear systems:

a survey”, J. Comput. Physi., vol. 182, pp. 418–477, 2002.

[5] H. Song, “Preconditioning techniques analysis for CG method”, ECS

231 Large-Scale Scientific Computation Course, College of Engi-

neering, University of California, Davis, 2013.

[6] J. W. Demmel, Applied Numerical Linear Algebra. Philadephia:

SIAM, 1997.

[7] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore:

JHU Press, 1996.

[8] A. Trykozko, “Metoda elementu skończonego – programowanie”

(“Finite element method – programming”) – lectures, University of

Warsaw, 2007 (in Polish) [Online]. Available:

http://www.icm.edu.pl/∼aniat/fem/

[9] M. Suarjana and K. H. Law, “A robust incomplete factorization based

on value and space constraints”, Int. J. for Numer. Methods in Engin.,

vol. 38, pp. 1703–1719, 1995.

[10] A. Piątkowska, R. Liszewski, G. Orzech, and M. Białecki, “Systemy

komputerowe” (“Computer systems”) (in Polish) [Online]. Available:

http://cygnus.tele.pw.edu.pl/olek/doc/syko/www/

[11] S. Fialko, “Modelowanie zagadnień technicznych” (”Modeling of

technical issues”), Politechnika Krakowska, 2011 (in Polish) [On-

line]. Available: http://torus.uck.pk.edu.pl/∼fialko/text/

MZT1/MZT.pdf

[12] S. H. Ahn, “Streaming SIMD Extentions” [Online]. Available:

http://www.songho.ca/misc/sse/sse.html

[13] “Intel Developer Zone” [Online]. Available:

http://software.intel.com/

[14] “Opracowanie programów nauczania na odległość na kierunku

studiów wyższych – informatyka” (“Study programme for a degree

in computer science” (in Polish) [Online]. Available:

http://wazniak.mimuw.edu.pl/

[15] “Microsoft Developer Network” [Online]. Available:

http://msdn.microsoft.com/

[16] S. Fialko, “Iterative methods for solving large-scale problems of

structural mechanics using multi-core computers” , Archives of Civil

and Mechanical Engineering (ACME) (to be published) [Online].

Available: http://www.sciencedirect.com/science/article/pii/

S1644966513000666/

Daniel Grzonka received his

B.Sc. and M.Sc. degrees in

Computer Science at Cracow

University of Technology,

Poland, in 2012 and 2013,

respectively. Actually, he is

Ph.D. student at Jagiellonian

University and a member of

Polish Information Processing

Society.

E-mail: grzonka.daniel@gmail.com

Institute of Computer Science

Faculty of Physics, Mathematics and Computer Science

Cracow University of Technology

Warszawska st 24

31-155 Cracow, Poland

91

