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Abstract—In this paper a modification of the widely used

Kademlia peer-to-peer system to tactical networks is proposed.

We first take a look at the available systems today to cover

the range of possibilities peer-to-peer systems offer. We iden-

tify candidates for use in military networks. Then we com-

pare two candidate systems in an environment with highly

dynamic participants. The considered environment is focused

on the special conditions in tactical networks. Then we give

rationale for choosing Kademlia as a suitable system for tac-

tical environments. Since Kademlia is not adapted to military

networks, a modification to this system is proposed to adapt

it to the special conditions encountered in this environment.

We show that optimizations in the routing may lead to faster

lookups by measuring the modified algorithm in a simula-

tion of the target environment. We show also that the pro-

posed modification can be used to extend the battery lifetime

of mobile peer-to-peer nodes. Our results show that peer-

to-peer systems can be used in military networks to increase

their robustness. The modifications proposed to Kademlia

adapt the system to the special challenges of military tactical

networks.

Keywords—Kademlia, network enabled capabilities, peer-to-

peer, wireless tactical military networks.

1. Introduction

Today peer-to-peer applications and protocols have gone

far beyond the notorious file sharing. Applications like

remote assistance search, distributed data storage or VoIP

systems like Skype make use of peer-to-peer (P2P) systems.

Starting with only a handful of protocols, an overwhelm-

ing variety of systems for quite every imaginable purpose

has been developed. Peer-to-peer networks span the globe

and consist of hundreds of thousands concurrent partici-

pants. Despite the success in civilian applications, no broad

use in military applications is known yet. Especially the

resilience of peer-to-peer networks is able to increase the

availability of military communication infrastructure. Cen-

tralized networks have a single point of failure and facilitate

effective adversary actions against the network. Peer-to-

peer systems offer a distributed approach contrary to tra-

ditional server-centric architectures. We show that peer-to-

peer systems exist which are able to work under difficult

network conditions encountered in military network envi-

ronments. Until now peer-to-peer networks have focused

on wired infrastructure. In military environments, not only

wired networks but also a large variety of wireless networks

with mobile devices is used. An adaption of the broadly

used Kademlia peer-to-peer system is proposed to adapt it

to the military environment. The communication devices in

the considered environment have to cope with limited CPU

power, small bandwidths, high delay and many connec-

tion disruptions due to the nature of the wireless medium

and their mobility. According to the network enabled ca-

pabilities (NEC) principle it is necessary to interconnect

the closed legacy networks of today. An adapted peer-

to-peer network available today may significantly improve

the availability of the right information at the right place

at the right time.

2. P2P Systems and Solutions

An overview of the state of the art of peer-to-peer systems

is given in the following section. The scope of the overview

of existing peer-to-peer systems is limited to the usage pur-

pose of the system. It should offer a search functionality to

find information elements which were previously stored in

the network and a method to retrieve them. The network

should be scalable so that thousands or even millions of

participants can take part without a degradation of service.

This respects the fact that in the NEC concept, sensors and

systems may also be equipped with information technology

resulting in a potentially huge number of network partici-

pants. The peer-to-peer system – more specific – the overlay

network infrastructure employed by the system, should be

resilient against network failures and the unexpected fail-

ure of participating nodes. We identify structured overlay

systems to be the most promising as they have advantages

regarding resilience against attackers and networks failures.

2.1. Early P2P Systems

Peer-to-peer systems which rely on a dedicated server [1]

for search or login purposes have disadvantages. Such sys-

tems are a single point of failure. Load issues also render

this approach unsuitable in a mobile environment. The so

called unstructured overlay networks overcome the depen-

dency on servers but searching for content is more difficult

in such networks. In server based architectures searching

and indexing is trivial and may be enriched with range

queries or semantic search. A simple approach to find con-
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tent in an overlay network without a server is to flood it with

a search query [2]. This imposes heavy load on the net-

work. If the search is limited to a fixed number of hops to

increase scalability, the search may fail even if the content

exists. The search is then considered incomplete. Super-

peer networks are an alternative to flooding networks. All

following approaches are considered to be complete, mean-

ing the search succeeds if the content is available in the

network or fails if it has not been stored.

2.2. Super-Peer Networks

Super-peer networks use a two-tier architecture. Long-lived

or high-bandwidth nodes are declared as supernodes, while

other nodes are declared as ordinary nodes. Super-peer net-

works form clusters of peers around supernodes (Fig. 1).

The supernode answers search and storage requests on be-

half of its connected peers. Every ordinary peer has to be

connected to a supernode. The supernodes communicate

by a dedicated protocol.

Fig. 1. Different schemes of information exchange: (a) client-

server; (b) super-peer; (c) peer-to-peer.

Super-peer networks are used in Skype and FastTrack-based

networks. FastTrack is believed to use a controlled flooding

algorithm among the supernodes to handle overlay network

updates and search requests [3]. Flooding is done also by

the 0.6 protocol version of Gnutella [4]. Still, flooding the

supernodes is a comparatively inefficient method to search

for content in an overlay network. Existing implementations

show an increased robustness to churn compared to some

unstructured flooding-based overlay networks [5]. Churn

in context of peer-to-peer systems denotes the process of

members joining the network and leaving it. Churn may

either be caused by network failures or user behavior. The

startup of nodes, or bootstrapping, is more difficult than

in pure peer-to-peer systems, as nodes need to find a su-

pernode first. Bogus clients can obtain supernode status by

fraud and cause more damage to other clients than a nor-

mal peer in an decentralized network. Users may also try

to prevent to be elected a supernode to save bandwidth

and computational power, increasing the load on the re-

maining supernodes. Every decentralized system can be

transformed into a supernode network by defining the su-

pernode’s cluster as a single member of the decentralized

network [6].

2.3. Structured Overlay Networks

Today peer-to-peer networks can grow to impressive

size [7]. Structured overlay networks were designed to

support a very large number of participants. The largest

existing overlay is based on the Kademlia structured over-

lay and is named KAD [8].

Structured networks use a key space where peers are placed

in and searching for a node in the key space then follows

a (structured) routing algorithm. Each peer carries a unique

identifier, defining its position in the key space. Kademlia

is based on a structured peer-to-peer overlay network [9].

In Kademlia an XOR metric is introduced to define a dis-

tance between two nodes. The XOR distance is the bitwise

exclusive OR on the peers’ identifiers interpreted as an in-

teger. The other important metrics used by other protocols

are the prefix-based metric used by Tapestry [10], the ring

metric of Chord [11] and the combined prefix/proximity

metric of Pastry [12].

The routing scheme is similar for all structured peer-to-

peer systems. The overlay routing is responsible for find-

ing nodes according to their identifier (key) in the overlay.

This is called key based routing (KBR). The routing algo-

rithms differ but they share the principle of approaching

the destination key in every routing hop and terminating at

the closest node.

A simple store and retrieve functionality can be supplied

by a distributed hash table (DHT) on top of the KBR. The

DHT facilitates to store information into the overlay and

retrieve information from the network. The application

programming interface (API) is similar to a standard hash

table. The idea is to attach a key to every piece of informa-

tion which has to be stored in the overlay. The key is often

derived by hashing the representation of the information.

The information is then routed and stored at the r nodes

with the identifiers closest to the key of the information,

with r as a redundancy parameter. At these locations, the

information can also be found by other nodes. Any node

looking for the information calculates the key from it and

uses the key based routing for finding the node the data is

stored at (DHT GET). The DHT is described as an integral

part of Kademlia, but it is possible to deploy a DHT on top

of every overlay network with key based routing.
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As an example of a structured peer-to-peer routing scheme

we take a closer look on Kademlia. The routing table of

Kademlia is a binary tree (Fig. 2). Each leaf contains a list

Fig. 2. Kademlia routing table.

of nodes, the so called buckets. A bucket holds a fixed

number (k) of references to reach other nodes. As the

network may contain up to 2b nodes, the routing table size

has to be limited. In Kademlia the memory requirement for

the routing table is O(k · b), with b as the number of bits

of an identifier. A node carries a tag which defines which

identifiers are contained in its subtree. In the figure, b and

k are assumed to be 4, the standard key length of Kademlia

is 160. A tag of 1xxx means that the highest value bit is 1

for the whole subtree and the other bits are unknown. The

right subtree of the root carries this tag. The local node

identifier is assumed to be 0000 in the depicted tree.

The two subtrees below the root separate the identifier space

in two halves: one subtree contains references to nodes

closer to the local node than half of the maximum dis-

tance (the left side) and the other one contains references

to nodes further away (the right side). The rightmost bucket

holds k references to nodes which differ in their most sig-

nificant bit from the identifier of the local node. The left

subtree is constructed recursively with increasingly match-

ing prefix length. This enables the local node to store

more references to closer nodes than to nodes which are

far away. The leftmost bucket contains only the reference

to the local node, its sibling bucket may hold exactly one

node which differs only in the least significant bit. It is less

and less likely that the buckets to the left are filled the far-

ther left they are. That is due to the equal distribution of the

identifiers.

During a key lookup it is tried to cut the distance to the

destination key at least by half. For doing so the source

node XORs the own node identifier with the key to look up.

The bucket with the longest shared prefix tag is selected and

α nodes are picked from the bucket and the routing request

is forwarded to them. Kademlia is able to parallelize its

routing requests. The degree of parallelization is α and

can be chosen freely. The method of picking a node from

the bucket is not specified by the authors of Kademlia.

A common implementation is to take the closest node to

the destination key. This minimizes the hop count to the

final destination. If the routing tables are reasonably filled

and identifiers are equally distributed the routing algorithm

terminates in O(log(n)). The contacted node sends back

the ntell closest nodes of the requested key to the sender

and adds the sender if the routing table is not already full.

In a pathologic case with no lookup traffic for a long time,

a stabilization interval tstab is used to ping nodes from the

routing table.

The Chord system is another popular peer-to-peer overlay.

Chord and Kademlia share the way how node identifiers

are generated. The main difference is the structure of the

key space. In Chord, every node is positioned in a ring

according to its identifier. The identifier next to another

identifier in the ring has a numerically higher identifier,

featuring a wraparound at 0. The routing table – or finger

table – of a node contains a reference to the next node in

the ring. This node is called the successor of the node.

The finger table contains b references to the successor of

the identifiers (n + 2i)− 1, i = 0..b− 1. As in Kademlia

this leads to a good knowledge of the node about its near

nodes and less knowledge about far nodes. Routing can

be done in a matter of binary search in the ring and runs

in O(log(n)) overlay hops. The distance to the destination

node can be cut at least by half each routing hop if the

routing table is correct.

If nodes join or leave the system without notice the Chord

routing table gets outdated. A stabilization algorithm is

used to repair the finger table and the successor reference.

The stabilization uses a reference to the predecessor of

a node. In a periodic manner the local node requests the

predecessor from its successor. If the local node is not the

predecessor, the successor reference is adapted to the node

that is returned as a predecessor. The requested node may

also adjust its predecessor reference. To be more resilient

against node failures, a node may keep up to nsucc succes-

sor candidates in a list which are tried one after another if

the first entry fails.

To stabilize the finger table, periodic search requests for

the identifiers in the table are done and the found node

replaces the finger reference. The stabilization uses band-

width which may not be available for search purposes. The

setting how often successor stabilization (tsucc) and finger

table stabilization (t f inger) is done, is an important perfor-

mance parameter.

The difference of Kademlia to other structured overlay net-

works is the symmetry of the XOR metric. That follows

directly from the symmetry of the XOR operation. Peer A

has the same distance to B as B has to A. This allows peers
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to learn about close nodes from incoming routing requests.

It reduces the traffic necessary to maintain the overlay net-

work. This feature makes it more promising for use in

disadvantaged networks.

2.4. Performance Analysis Approaches

To analyze the performance of peer-to-peer systems, a peer-

to-peer system is often simulated to isolate the influences

of the underlying network and the user behavior. Experi-

ments in real networks also exist, but for some peer-to-peer

systems no widely used networks exist (e.g. Pastry). If

available, often the DHT function of the system is used as

a test application. The approaches to measuring a DHT’s

performance differ. Mostly the correctness of the algorithm

is shown. Measurements in Pastry [13] were conducted as

a simulation within a single Java VM, so node interaction

breaks down to Java object invocation. The network model

used was derived from [14]. The same network model is

used in CAN’s performance analysis in [15], but in con-

trast the node interaction has a fixed delay. Some publi-

cations [16], [17] deal with comparing different algorithms

in a similar environment with different link delays, making

the results somewhat comparable.

In [18] not only the algorithms, but also implementations

of Chord, Pastry, Kademlia and Bamboo are measured.

The analysis took place in an internet environment emu-

lated by Linux Traffic Control. In [19] the Kademlia net-

work is crawled and the behavior of network nodes is

described. The decisive influence of its implementation

on the content retrieval delays is shown in [20]. Perfor-

mance measurement in peer-to-peer systems is challenging

because a large number of nodes have to be set up and mea-

sured in a controlled manner. The conducted measurements

show different approaches to this issue. A balance between

simple setup with a precise measurement and realistic net-

work behavior with a sufficient number of nodes has to

be found.

We examine one study in further detail. In [17] the rout-

ing of Chord, Tapestry, Kademlia, Kelips and OneHop

are evaluated. As Kelips uses large routing tables in size

of O(
√

n) and Chord and OneHop are not well suited for

networks with high churn rate the comparison breaks down

to a comparison of Tapestry and Kademlia. The authors

also identified the most important parameters and gave rec-

ommendations for the parameter values. Kademlia is able

to invest bandwidth either in neighborhood consolidation

or lookup correctness. The original authors of Kademlia

propose a consolidation interval of one hour. The authors

of the performance analysis decided to measure the system

with a stabilization interval from 4 to 19 minutes. The

stabilization interval of 19 minutes resulted in best behav-

ior in terms of routing correctness and delay performance.

Although identified as only a minor effective parameter by

the authors, it would be interesting to investigate the effect

of a consolidation interval longer than 19 minutes.

As Tapestry and Kademlia show similar success in simula-

tions while Kademlia has the ability to learn new contacts

through incoming routing requests and is also able to par-

allelize its requests it is considered the more promising

overlay for even more difficult environments as considered

in the prior analysis. The Chord overlay was not included

in the comparison, so an analysis was done to compare

Chord and Kademlia.

3. Comparison of Chord and Kademlia

Chord and Kademlia are compared in a simulated tacti-

cal environment to find out, which system is more suitable

in a military network. Kademlia has been identified as

a possible candidate in the previous section. We take the

churn-optimized parameter settings from [17] as a starting

point. Then we analyze the behavior of the two overlays

in the presence of network errors and compare the results.

We use the Chord and Kademlia implementations of the

OverSim framework described in [21]. OverSim runs in-

side the OMNet++ network simulator [22]. The simulation

includes a network and delay model as well as a model of

the behavior of the nodes themselves.

The network model consists of wireless terminals equipped

with IEEE 802.11b wireless LAN infrastructure mode

and a fixed transmission capacity of 2 Mbit/s. There are

32 nodes per access point, forming an isolated collision

domain. Each access point is attached to an IP router with

a 100 Mbit/s Ethernet link. The router has a fixed de-

lay line to every other router. The tactical network model

(Fig. 3) has 4 access points and 4 routers. We used the

INET extension of OverSim to simulate the full network

stack from overlay down to physical layer. This model re-

spects the increased availability of commercial of the shelf

(COTS) hardware for military purposes and the tendency to

use broadband radio equipment. The availability of a back-

bone network is anticipated as well.

Fig. 3. The tactical network model.

Before a packet is sent, a packet error is applied according

to a Bernoulli experiment with variable error probability.

If the experiment yields 1, the message is tagged with an

error bit. The packet is sent and network resources are

consumed. The receiver silently discards the message if

the error bit was set.
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The delay between the routers is set to a fixed value of

178 ms. It is the mean value from the “King” data set [23],

a collection of delays between servers in the internet. The

delay on the wireless link is determined by the data link

access and media access layer of the WLAN.

The simulated network contains 128 nodes. A tactical net-

work may have connectivity to other tactical networks or

even networks of strategic scale. The node count may rise

up to thousands of peers. In the simulation the number of

peers was limited by the used simulation framework and the

peer and network model, not by the P2P systems. All over-

lay nodes are equal in capabilities and connectivity. Nodes

are evenly distributed around the access point and do not

move.

The nodes are dynamic in their behavior. This means that

new nodes arrive and nodes leave the network over time.

This behavior is called churn and reflects user fluctua-

tion, either due to network failures or user behavior. Churn

can be described by the arrival process of new nodes

and their lifetimes. Different churn models are described

in [24], [25] and [26]. Tactical users fluctuate more than

the typical P2P user, reflecting roaming and network fail-

ures within the tactical domain. In [27] a distribution is

proposed to model the lifetime process of a P2P system

user in the internet. The lifetime of user connections fol-

lows the Weibull distribution with a mean of 164 minutes

and a median of only 16 minutes. It shows a preference for

short-lived connections. This is an effect which is assumed

to be present in tactical networks as well. As no tactical

peer-to-peer systems are known to the authors, the behavior

of its users has to be estimated. Our model reflects this fact

by assuming a similar Weibull distribution with the same

shape but different mean lifetime. We introduce use two

churn models: normal churn with 163 minutes mean life-

time and intense churn with an even shorter mean lifetime

of 60 minutes.

The most important parameters of Chord and Kademlia in

a churn intense environment were isolated by Li et al.

We took the “best” parameter set of Chord from their pub-

lication [17] to optimize for a high success ratio. The churn

intense scenario in this publication is modeled as a Pois-

son arrival process with a mean of 1 hour. Due to the fact

that we use a different churn model as described above,

a different network underlay, message sizes and a reduced

node count of 128, the resulting traffic production was

10 byte s−1node−1. Experiments with different parame-

ter settings for nsucc, t f inger, tsucc showed that the initial

parameter set already resulted in good success ratios in the

tactical environment.

The newly derived parameters with the highest success ra-

tio are shown in Table 1. The parameters for Kademlia

were found by matching the traffic rate for our environment

with Chord’s traffic rate while maximizing the success ra-

tio. Especially the stabilization interval could be chosen

longer, as Kademlia needs stabilization only if not enough

routing traffic is present. The packet error rate was var-

ied to measure the influence on the performance of the two

overlays. In every simulation run the error rate for all nodes

was equal. We varied the packet error rate (PER) in steps

from 0.001 to 1.

Table 1

The overlay parameters used for comparison of Chord

and Kademlia in the tactical model

Parameters Chord Parameters Kademlia

nsucc 8 ntell 8

t f inger 120 s k 8

tsucc 20 s α 3

b 2 tstab 1000

We measure the delivery ratio of the overlay routing pro-

cess. This is the ratio of terminating routing request per

total number of routing requests. The higher the ratio the

more reliable the routing is. Another method to measure the

correctness of the routing is to measure the success ratio,

that is to take the ratio of successful routing by the amount

of total routing request. A successful routing terminates

at the node closest to a given search key. A terminating

request does not necessarily find the node closest to the

requested key. Successful routing requests are measured

by issuing a search request on a key which is identical to

a node identifier in the network. As this approach introduces

a priori knowledge about the existence of certain nodes,

a higher success ratio than expected is measured. A cor-

rect measurement of the success ratio would require com-

plex distance comparison, slowing down the simulation.

For these reasons we preferred to use random keys and the

delivery ratio to test the lookup correctness. It has to be

noticed that the success ratio of a DHT exceeds the deliv-

ery ratio of the routing by far. As the DHT may use the

r closest nodes storage locations, the success ratio of the

DHT mainly depends on this parameter.

Fig. 4. Delivery ratio of Chord.

The results of the comparison between Chord and Kadem-

lia are shown in Figs. 4 and 5. As a comparison three

different levels of churn: no churn, normal churn and in-

tense churn are depicted. The delivery ratio of both over-
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Fig. 5. Delivery ratio of Kademlia.

lay types declines with increased packet error rate. Chord

achieved higher delivery ratios if a low packet error rate

is present. As packet error rate increases, Kademlia shows

better performance.

Fig. 6. Delivery ratio of Kademlia with α = 1.

This provides rationale to prefer Kademlia in environments

with high churn and high packet error rates. Chord is not

able to use parallel lookups. To isolate the effect of paral-

lel routing requests the measurement is repeated with the

Kademlia parallelization parameter α = 1, effectively dis-

abling parallel lookups (Fig. 6). Still Kademlia is more

stable when high packet error ratios are encountered. The

reason for better performance in the presence of high packet

error ratios is to be found in the rigidity of Chord where

node failures have a more serious impact on the correctness

of the routing table than in Kademlia.

4. Modification of Kademlia

We propose a change to the Kademlia routing mechanism

to improve its performance in the presence of network er-

rors and high latency. The modified Kademlia is able to

incorporate signaling from lower layers or applications [28].

Our aim is to make the routing more adaptive to the under-

lying network structure. As the concept of proximity rout-

ing [29] requires additional messages, the proposed concept

does not. It incorporates information from the routing or

application layer, which can be delivered without cost in

terms of additional traffic. The guarantees of the Kadem-

lia routing, especially the completeness and the complexity

properties remain untouched. A node running a modified

version integrates seamlessly in running networks without

modification.

Our approach is not to modify any existing routing param-

eters but to use a different method of choosing contacts.

Although the method is also applicable to other peer-to-

peer systems, the scope of this paper is limited to Kadem-

lia. Cross-layer information is integrated into the routing

decisions. The additional information is called preference

value or simply the preference of a link or node.

The Kademlia routing described in Subsection 2.3 is

changed in the way the sender of a lookup request selects

nodes to contact. The original algorithm first selects the

appropriate bucket (Fig. 7) and puts the contained routing

entries into a list L of candidates. The first α candidates

are then contacted and the lookup request is forwarded to

them. In some situations if a bucket is very sparsely filled,

entries from adjacent buckets may be used. In the modified

version every contact is now augmented with a preference

value. We introduce a weight factor w, which determines

the influence of the preference. A factor of 1 means the next

hops are determined according to the preference value and

L is sorted according to the preference values. A weight

of 0 represents the unmodified algorithm. Intermediate val-

ues of the weight affect the order in a continuous manner.

The new sorting order is defined by:

md = weight
pre fs,d length(L)

max pre f
+(1−weight)posd,

where: s denotes the local source node making the routing

decision and d a remote destination node. The original

position of d the in L is posd . The list L is then reordered

in descending order according to md .

The effect is shown in Fig. 7, a different node of the same

bucket is preferred over a closer one. As the original ver-

sion minimizes the hop count by always choosing the clos-

est nodes the modification increases the hop count.

We test three methods to generate a preference value. The

first method is to take the channel delay between the local

node and the next hop i of L as preference value. After

a normalization step the delay is used as preference. We

call this modification modification 1. The second method

is to take the bit error rate between the local node and

the remote node BERs,d as a preference value, it is called

modification 2. Modification 3 only takes a value defined

by the remote node into consideration. The node may set

a low value to attract routing traffic or a high value to

avoid it.

We use a simplified model of a tactical environment to be

able to simulate more nodes. The simplified network model

contains 1024 nodes. For modification 1 and 2 all nodes
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Fig. 7. Next peer selection: (a) original version; (b) changed

lookup.

are equal, modification 3 introduces two different types of

nodes.

The simulation time is 5 hours including a warm up time of

1 hour. Every run was repeated 10 times with different ran-

dom number seeds. All nodes in the network feature a UDP

network stack. Before a packet is sent to another node an

error model and a delay model are applied. Before a packet

is sent, a bit error may be applied according to a variable

error probability. No churn is used in the simplified model.

The nodes are placed equally distributed. The link delay

between two nodes increases linearly with the Euclidean

distance of the nodes. The maximum delay is about 7 s,

this is below the message timeout value of 10 s. This sim-

ulates the effects of lower layer protocols such as multi hop

propagation in a simplified manner. Lost messages get de-

tected by the overlay 10 s after they have been send. In

Fig. 8 the results of modification 1 and 2 are shown. The

measurement with weight set to 0 is included as a refer-

ence to the unchanged Kademlia routing algorithm in the

simplified network model. The figure depicts the time it

takes to perform a DHT GET request with modification 1

and modification 2. The DHT GET latency is the duration

it takes to retrieve a previously stored value from the DHT.

The weight was modified to analyze the effect of the prefer-

ence values to the routing. The absolute numbers of sender

traffic and success ratio are of lesser importance as they are

mainly dependent on the parameter settings of the overlay.

It is possible to increase the success ratio for example by

an increase of parallel lookups. The absolute values for the

DHT latency are mainly dependent on the network model

and the link delays. We focus on the relative change of the

values when we modify the routing. In Fig. 8a the effects of

both modifications on the DHT GET latency is shown. The

preference for faster connections in modification 1 does not

seem to pay off in terms of latency. The reason for the low

impact of modification 1 is how Kademlia sends parallel

lookups during the routing process. Since Kademlia tries

to hold α lookup request in flight, the fastest response is

immediately processed and the routing continues with the

sending of another routing request. The parallelization ele-

vates the effects of preferring fast nodes as the probability

is high that 1 of α nodes reacts. Timeouts dominate the

influence on latency. Timeouts occur if a node has failed.

Sending slots are blocked for the duration of the timeout.

Fig. 8. Effects of modification 1 and 2: (a) DHT GET latency;

(b) overlay traffic sent; (c) DHT success ratio.
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If all slots are blocked the routing stalls until the first time-

out occurs. Because less timeouts occur, modification 2

(which prefers low BER links) performs better in terms of

reduced latency. This observation is in contrast to existing

implementations as the RTT is often used to approximate

the reliability of a link. In environments with high BER,

preferring low BER links is better than to use faster links.

Modification 2 facilitates a trade-off between delay and the

amount of transmission capacity needed to maintain the

peer-to-peer overlay.

Figure 8b shows the mean number of bytes sent per node

per second for a fixed weight. Modification 1 does not

change the amount of sender traffic as it has a too little

effect on the routing decisions. Modification 2 increases

the bytes sent. This is because the original Kademlia rout-

ing decision is optimized for low overlay hop count. Any

change to the routing decision will increase the hop count.

The higher hop count leads to an increase of the traffic of

modification 2. At a weight of 0.5 the modification offers

minimum latency, at this weight it causes an increase of

17% in overlay routing traffic. Our results show the possi-

bility to exchange reduced latency for an increase in sender

traffic.

The success ratio of the DHT lookups is shown in Fig. 8c.

A DHT lookup was counted as successful if the value could

be retrieved without timeout from 1 of the redundant stor-

age locations (r = 3). The success ratio stayed constant

or increased slightly with increased weight. The absolute

rate of success is less important as it is always possible to

trade bandwidth for increased success ratio by parameter

changes. The important observation is the success ratio

does not decrease as an effect of the modifications.

To test modification 3 we set every 10th node to the least

preferred value. This simulates a node with limited battery

capacity. As sending consumes scarce battery power, we

measured the accumulated number of bytes sent out by the

tagged nodes over the whole simulation duration. The re-

sults can be seen in Fig. 9. The original amount of data

sent out is shown as crosses, the simulation run with mod-

ification 3 is shown in an x-shape. The amount of bytes

Fig. 9. Traffic shaping by modification 3.

per node is not equal for all nodes even in the unmodified

scenario. Nodes join the network successively, so node 0

is the first and 255 the last. The effect is not visible if

churn is applied. In Kademlia long lived nodes are pre-

ferred over newly arrived nodes if a bucket is full. This

bucket eviction policy leads to the fact that node 0 features

the highest traffic and node 255 the least. The low battery

nodes can lower their amount of sending by up to 25%

with modification 3, while still taking part in the overlay

with no disadvantages. The accumulated traffic of all nodes

over the whole simulation time remains nearly unchanged

at 151.11 MB versus 153.38 MB with modification 3, also

the success ratio remains nearly unaffected.

5. Summary

We analyzed different peer-to-peer systems for their suit-

ability in an error-prone military network. Chord and

Kademlia were identified as candidates to be suitable in

such networks. The candidates were compared in a simu-

lated tactical environment. The environment features wire-

less and wired networks and a faithful media access simu-

lation. We showed that Kademlia offers a higher delivery

ratio than Chord in the presence of churn and high packet

error rates. Then we introduced a change to Kademlia’s

routing algorithm to include cross-layer information. We

gave three examples how to use the extension. Error rates

of links are reported through the new interface (modifi-

cation 2). It was shown that it is possible to reduce the

number of timeouts and thereby decrease the latency of

the peer-to-peer system. A cross-layer signaling of the link

latency did not improve the performance of Kademlia in

the considered environment because the parallelization of

routing requests in Kademlia elevates the effects. Nodes

which need to save battery power can use extension 3 to

reduce their contribution to the overlay network. Low bat-

tery nodes remain full members of the network and suffer

no disadvantages but they send significantly less traffic. The

overlay can cope with a considerable percentage of disad-

vantaged nodes with no limitations. Our modified client

may join a Kademlia network without interfering with ex-

isting clients and overlay networks. The presented results

show a possibility to increase the availability of informa-

tion in tactical networks. Future steps include the analysis

of the peer-to-peer system with a tailored publish/subscribe

capability.
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