
Paper Towards an Agent-Based

Augmented Cloud
Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

Department of Computer Science, AGH University of Science and Technology, Kraków, Poland

Abstract—In the paper an agent-based framework deployed

in hybrid cluster and volunteer computing environment is

presented. It utilizes two concepts proposed by the authors:

Augmented Cloud and Agent Platform as a Service (AgPaaS).

Both concepts are discussed in the context of Cloud Comput-

ing as defined by NIST. The key idea of the presented solution

is to span the cloud (i.e., computing infrastructure) beyond

the data center borders by utilizing web browsers as compu-

tational workers. The feasibility of the approach was demon-

strated by two prototypes: the first one was based on Java Ap-

plets and Adobe Flash, whereas the second one on Microsoft

Silverlight. The prototypes were next used to perform simple

experiments, mainly related to scalability issues. Selected re-

sults from the experiments are discussed in the final part of

the paper.

Keywords—Agent Platform as a Service, Augmented Cloud,

Cloud Computing, Multi-Agent Systems.

1. Introduction

Many large-scale1 computational problems can be effec-

tively solved in distributed environments which are based

on the agent paradigm. Some examples are: marketplace

simulations, modeling and control of autonomous robots

and many optimization problems (complex multi-criteria,

multi-modal and/or the ones in which the evaluation of

a single solution is simulation based). In many of these

cases scalability is the central issue. Both from the point

of view of software (algorithms, logical architecture) and

hardware (physical architecture).

Very often the hardware infrastructure scalability is the real

issue. In the case of possible non-deterministic changes

in the computation power demands2, caused, e.g., by cer-

tain parameters of the computation model (cf. experiments

with computational multi-agent systems presented in [1]),

dynamic adaptation of the computation load is required

(e.g., load balancing with diffusion-based scheduling as de-

scribed in [2]). These problems are usually addressed by

the choice of some cloud-oriented solutions [3]. Yet the

problem of limited resources and the costs of maintaining

often wasted computing power still remains open.

In the paper a new, cost effective, approach to building

a highly scalable execution environment, particularly dedi-

1The term “large-scale problem” is used here in a broad sense, referring

to all problems considered difficult for all known solution methods.
2When the demand for computation power is deterministic and can be

reasonably estimated, a straightforward solution would be to use a com-

puter cluster with well-defined, still limited resources.

cated for computational systems which may be realized in

agent-based paradigm, is presented. It utilizes two con-

cepts proposed by the authors in [4]: Augmented Cloud

and Agent Platform as a Service (AgPaaS). Both concepts

are discussed in the context of Cloud Computing as defined

by NIST [5]. The key idea of the presented solution is to

span the cloud (i.e., computing infrastructure) beyond the

data center borders by utilizing web browsers as computa-

tional workers.

In the first section AgE – as an example of an agent-based

computation platform (framework) is described. Next, its

web browser-based implementation is presented. In the

subsequent part, the concepts of Augmented Cloud and

Agent Platform as a Service are defined. Since the con-

tribution is a direct follow-up of [4], experimental results

extending the ones presented there, constitute the final part

of the paper.

2. AgE – Agent-Based Computation

Platform

AgE platform3 is designed to support building a wide range

of agent-based optimization and simulation systems utiliz-

ing various meta-heuristics such as evolutionary algorithms.

A computation task to be executed on the AgE platform is

defined by providing a computation description file, which

includes (among other things): the computation decompo-

sition details (i.e., types of agents, their structure, types

of operations that specify algorithms), problem-dependent

parameters and the problem stop condition. Based on the

description file, on the platform start-up, the computation

context is built from the necessary components. Next, all

the required agents and their environments are created, con-

figured and distributed among nodes. Finally, the computa-

tion can be started and is performed until it reaches the stop

condition. During the execution time some of the compu-

tational agents are attached to the platform monitors. The

monitors are responsible for collecting problem-dependent

data, used to visualize the current state and the final results

of the computation.

The computation task is decomposed and the sub-tasks are

assigned to the computational agents. The agents are struc-

tured into a tree (as shown in Fig. 1), according to the

algorithm decomposition (it is worth to notice that each

aggregate is also an agent). It is assumed, that all the sub-

3AgE is developed at AGH University of Science and Technology.

16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235207004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Towards an Agent-Based Augmented Cloud

tasks assigned to the agents at the same level are executed

in parallel. To increase performance, the top level agents

(called workplaces) along with all their children can be

distributed amongst many nodes.

Fig. 1. Agent tree structure.

Agents, however, are not atomic assembly units, but they

can be further decomposed into functional units according

to Strategy design pattern [6]. Strategies represent problem-

dependent algorithm operators and may be exchanged with-

out intruding the agents’ implementation. Their instances

may be shared between agents as they provide various ser-

vices to agents or others strategies.

Any part of a single agent’s task can be delegated according

to Strategy design pattern (see Fig. 1). Strategies can rep-

resent problem-dependent algorithm operators (mutation,

evaluation of fitness, etc.) and may be exchanged with-

out intruding agents’ implementation. The delegated op-

erations can be executed by external resources – this ap-

proach can be considered as a recommended way of the

AgE platform expansion, especially in case of operations

with a low communication-to-computation ratio. Fitness

evaluation of a single solution can be given as an exam-

ple of such delegated task (this approach was used in both

prototypes discussed in the final section). In this case the

computation can be based on the master-slave model [7],

and the slaves (as fitness evaluators) can be: nodes con-

nected in computation clusters dedicated to particular task,

volunteers [8] (also web browser based [9]), or sideband

computing applications [10].

3. Extending the AgE: A Web Browsers

Based Approach

The main goal of the presented solution was to provide

high scalability while remaining cost-effective. It has been

achieved by utilizing web browsers as computational work-

ers. The architecture of the platform is shown in Fig. 2. It

is comprised of three layers:

• The agent-based environment layer provides a hi-

erarchy of agents responsible for the realization of

Fig. 2. Architecture overview.

a given meta-heuristic. During their work, they gen-

erate tasks, which are delegated, using Proxy design

pattern, to a connector that than passes it further to

the application servers layer. Tasks are realized as

asynchronous operations, so that agents can continue

their work without waiting for results, unless they

are required for further processing. Communication

between the environment and the application servers

layer is realized by sending requests, which identify

tasks to be performed and input data.

• The application servers layer dispatches ordered

tasks amongst available computational workers and

passes back the results to the ordering agents. The

number of workers depends on the number of the

users whose web browsers cooperate with the plat-

form (i.e., users that visit the services associated with

the platform). It makes the workers’ environment

very dynamic, with the fault tolerance as the central

issue to be addressed4.

• The web browser layer utilizes applets5 as compu-

tational workers which are responsible for execut-

ing the ordered tasks and returning the results to

4Consider users disconnecting the system in random moments.
5Programs executed in the context of a web browser, not necessary Java

applets.

17



Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

the application server. The applets are downloaded

by browsers when a user visit any site connected to

the system.

The approach can be applied both to building new comput-

ing environments and to extending the existing ones. How-

ever, one has to remember that the solution is suitable only

for coarse grained problems (i.e., for which computation-

to-communication ratio is high). Otherwise, the gained

computing resources could be completely reduced by the

communication overhead.

One can generalize the approach described here – it leads

to the concept of Augmented Cloud [4], which is discussed

in the next section.

4. Agent Platform in Augmented

Cloud

An agent-based platform [11] dedicated for large-scale

computations has to be designed for high scalability and

deployed on a highly scalable execution environment like

supercomputer, cluster, grid or cloud. Of the four, the last

one is becoming more and more popular (also in High Per-

formance Computing, e.g., [12], [13]) mainly because it is

(at least can be) very cost effective [14], [15].

The approach discussed below is a hybrid of a classical

cluster solution (as a backbone; can be considered as a clas-

sic cloud which spans the computers in a single data cen-

ter), augmented with a web browsers based environment of

volunteers, acting together as an Augmented Cloud [4].

4.1. Cloud Computing

A dedicated runtime environment (e.g., supercomputer,

cluster) has many advantages. Yet, its scalability is re-

stricted by the available computing resources (i.e., number

of processors in a supercomputer or number of nodes in

the cluster). That is why nowadays we observe a migration

of services, software or even a whole computing infrastruc-

ture into “clouds” (like Windows Azure6, Amazon EC27,

or Google App Engine).

At this point it is worth to define Cloud Computing as the

term has many definitions (e.g., [3] , [5], [15]) and there

seems to be no consensus on what (precisely) a Cloud and

Cloud Computing are [3]. According to NIST [5] Cloud

Computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, ap-

plications, and services) that can be rapidly provisioned

and released with minimal management effort or service

provider interaction. The essential characteristics are: on-

demand self-service, broad network access, resource pool-

ing, rapid elasticity and measured service.

6http://www.microsoft.com/windowsazure/
7http://aws.amazon.com/ec2/

The service models defined by NIST [5] are as follows:

• Software as a Service (SaaS) – the capability pro-

vided to the consumer is to use the provider’s appli-

cations running on a cloud infrastructure. The ap-

plications are accessible from various client devices

through a thin client interface such as a web browser

(e.g., web-based e-mail). The consumer does not

manage or control the underlying cloud infrastruc-

ture including network, servers, operating systems,

storage, or even individual application capabilities,

with the possible exception of limited user-specific

application configuration settings.

• Platform as a Service (PaaS) – the capability pro-

vided to the consumer is to deploy onto the cloud

infrastructure consumer-created or acquired applica-

tions created using programming languages and tools

supported by the provider. The consumer does not

manage or control the underlying cloud infrastruc-

ture including network, servers, operating systems,

or storage, but has control over the deployed appli-

cations and possibly application hosting environment

configurations.

• Infrastructure as a Service (IaaS) – the capability

provided to the consumer is to provision processing,

storage, networks, and other fundamental computing

resources where the consumer is able to deploy and

run arbitrary software, which can include operating

systems and applications. The consumer does not

manage or control the underlying cloud infrastruc-

ture but has control over operating systems, storage,

deployed applications, and possibly limited control of

select networking components (e.g., host firewalls).

IBM in [16] introduces also the fourth service model –

BPaaS:

• Business Process as a Service (BPaaS) – any business

process (horizontal or vertical) delivered through the

cloud service model (Multi-tenant, self-service pro-

visioning, elastic scaling and usage metering or pric-

ing) via the Internet with access via web-centric in-

terfaces and exploiting web-oriented cloud architec-

ture. The BPaaS provider is responsible for the re-

lated business function(s).

4.2. Augmented Cloud – Agent Platform as a Service

Combining the concepts of the cloud (as a way of providing

the illusion of infinite computing resources available on de-

mand) and the web browser-based volunteer computing [9]

(as a way of collecting computational resources) leads to

a practically zero-cost and highly scalable solution, which

may be called an Augmented Cloud [4]. The scalability of

the classical cloud is limited by the number of nodes in the

data center on which the cloud is based/deployed; the pro-

posed solution augments the classical cloud by a significant

increase of its scalability.

18



Towards an Agent-Based Augmented Cloud

Fig. 3. Computation time [s] and speedup dependent on population sizes for different number of clients: (a), (b) – Java Applets;

(c), (d) – Adobe Flash.

From the cloud computing service models [5] point of view

the Augmented Cloud can be seen as a kind of Infrastructure

as a Service (IaaS) in which (at least some of) the com-

putational resources are web-browsers based. So it can be

just a base for the target platform mostly because this level

of abstraction is too low when taking into account both

the development and deployment of (multi)agent-based

systems.

What is needed is a set of services/libraries forming

a highly scalable(software) platform dedicated for the tar-

get domain – agent-based systems. It can be considered

as the second layer of the Cloud Computing Reference Ar-

chitecture [16] which corresponds to the NIST Platform as

a Service (PaaS) [5]. In this context it can be named Agent

Platform as a Service (AgPaaS) to emphasize the agent-

orientation of the platform [4].

5. Experimental results

In order to evaluate the concept of Augmented Cloud, com-

puting time and speedup has been tested for a classical

master-slave model of a parallel evolutionary algorithm,

in which the computation of fitness values was delegated

to browser-based slaves (as described in the previous sec-

tions). The experiments were based on two prototypes: in

the first one the web browser layer was based on Java Ap-

plets and Adobe Flash, and in the second one on Microsoft

Silverlight. The results are described in the next two sub-

sections.

5.1. Java Applet and Adobe Flash

In this case the computing environment had a two-tier/layer

architecture and consisted of a backbone server running

a master process and two types of clients (slaves): Java

Applet based (communicating with the server using Java

RMI) and the Adobe Flash based. The algorithm was solv-

ing a typical benchmark optimization problem (Rastrigin

function) for different population sizes and different num-

ber of clients.

According to expectations, increasing the number of slaves

decreases the overall computation time (see Fig. 3). This

effect is strongly dependent on the technology: the Java

Applet slaves (see Fig. 3(a)) are (much) less effective than

the Adobe Flash ones (see Fig. 3(c)). It is mainly because

of the Java RMI communication overhead.

Figures 3(b) and 3(d) show the same data but from the

computation speedup perspective. One can easily notice

that in case of Java Applets there is practically no speedup.

It is a good visualization of the importance of computation-

to-communication ratio.

19



Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

Fig. 4. In the left column: computation time as a function of the number of computational nodes, presented for different numbers of

intermediate nodes and for different genotype lengths, in the right column: computation time as a function of the number of computational

nodes, presented for different lengths of genotype and for different number of intermediate nodes.

5.2. Microsoft Silverlight

In this experiment the computing environment had a hier-

archical8, three-tier/layer structure.

• The backbone server (the master) – it was execut-

ing a simple genetic algorithm, delegating the cal-

8The environment can be visualized as a tree: level 1 – the back-

bone server (as the root), level 3 – the computational workers (as leaves),

level 2 – controllers of sub-trees.

culation of each individual’s fitness to web browser-

based computational workers (slaves) via the appli-

cation controllers layer.

• Application controllers (intermediate layer) – each

controller is responsible for the pool of computational

workers allocated to it; this layer can be utilized in

different ways, e.g., to improve the system availabil-

ity or/and reliability, to support load balancing, to

control the value of computation-to-communication

ratio (note: in the prototype none of the above was

implemented).

20



Towards an Agent-Based Augmented Cloud

• Microsoft Silverlight based computational workers.

Note: it can be noticed that the computing envi-

ronment is similar to the one presented in Fig. 2,

but with one exception: the AgE platform has been

reduced to a single master process, which executed

a simple genetic algorithm.

Figures 4(a), 4(c) and 4(e) show the computation time as

a function of the number of computational nodes, for dif-

ferent numbers of intermediate servers (application con-

trollers). One can notice that in the context of this compu-

tation, the introduction of intermediate nodes caused a sig-

nificant overhead (in the whole range of analyzed compu-

tational node numbers), and in consequence, worsened the

computation time. But as the number of the computational

nodes was increasing this overhead was becoming smaller

and smaller (close to zero for the last point of the curve).

So as in case of most distributed systems, the performance

of this one is strongly dependent on its configuration.

Figures 4(b), 4(d), and 4(f) present the same data from

a different perspective.

Fig. 5. Speedup as a function of the number of computa-

tional nodes: (a) in the configuration with 3 intermediate nodes,

presented for different genotype lengths; (b) with the genotype

length set to 5000, presented for different number of intermediate

nodes.

Figures 5(a) and 5(b) present the system performance from

the speedup point of view. An interesting effect is shown

in Fig. 5(a): the smaller the genotype length, the bigger

the speedup (and this effect is stronger as the number of

computational nodes is increasing). This is again caused

by the communication overhead: the bigger the genotype

length, the more time is needed by the intermediate node

to transfer its data. When a controller (intermediate node)

handles many computational nodes its processing is I/O

bound and, in consequence, it can become a bottle-neck of

the whole system.

6. Conclusion

In the course of the contribution, after describing the AgE

(as an example of an agent-based computation platform),

and a possible way of its extension, the concepts of Aug-

mented Cloud and the Agent Platform as a Service were

introduced as way to address the scalability issues, which

are present in many large-scale computations performed in

the agent-based distributed environments.

In the final part of the paper, selected results obtained for

a proof of concept kind of prototypes were shown. The

computing environment of the first prototype consisted of

a backbone server (master) and the two types of clients

(slaves): Java Applet and Adobe Flash ones. The second

prototype had a three-tier architecture with the compu-

tational workers (clients/slaves) based on Microsoft Sil-

verlight.

The obtained results encourage further research and broader

implementation of the Augmented Cloud concept, at the

same time bringing more awareness about affecting the po-

tential results by choosing appropriate technology for the

implementation both of the server and web-browser clients,

as well as for the communication.

In the near future the authors plan to conduct broader exper-

iments with volunteer nodes based on different web tech-

nologies (e.g., JavaScript/WebWorkers). A long-term goal

is to further evaluate the concept of Agent Platform as a Ser-

vice (AgPaaS).

Acknowledgements

The work presented in this paper was partially supported by

the Polish National Center of Research and Development

grant No. 0108/R/T00/2010/11.

References

[1] A. Byrski, M. Kisiel-Dorohinicki, and M. Carvalho, “A crisis man-

agement approach to mission survivability in computational multi-

agent systems”, Comp. Science, vol. 11, pp. 99–113, 2010.

[2] M. Grochowski, R. Schaefer, and P. Uhruski, “Diffusion based

scheduling in the agent-oriented computing system”, in Proc. Int.

Conf. PPAM 2003. Springer, 2004.

[3] S. Lu, I. Foster, and I. Raicu, “Cloud computing and grid comput-

ing 360-degree compared”, in Grid Comput. Environments Worsh.

GCE’08, Austin, Texas, USA, 2008.

[4] A. Byrski, R. Debski, and M. Kisiel-Dorohinicki, “Agent-based com-

puting in augmented cloud environment”, Int. J. Comp. Sys. Sci.

Eng., 2012 (accepted for printing).

[5] P. Mell and T. Grance, “The nist definition of cloud computing

(draft)”, Tech. rep., National Institute of Standards and Technology,

2011.

21



Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley,

1995.

[7] E. Cantú-Paz, “A summary of research on parallel genetic algo-

rithms”, IlliGAL Rep. No. 95007, University of Illinois, 1995.

[8] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task

distribution for volunteer computing”, in Proc. 1st Int. Conf. e-Sci.

Grid Comput., Melbourne, Australia, 2005.

[9] L. F. G. Sarmenta and S. Hirano, “Bayanihan: Building and studying

web-based volunteer computing systems using Java”, Future Gener.

Comp. Systems, vol. 15, pp. 675–686, 1999.

[10] Y. Xu, “Global sideband service distributed computing method”,

in Proc. Int. Conf. Commun. Netw. Distrib. Sys. Model. Simul.

CNDS’98, San Diego, CA, USA, 1998.

[11] B. Czerwinski, R. Debski, and K. Pietak, “Distributed agent-based

platform for large-scale evolutionary computations”, in Proc. 5th Int.

Conf. Complex Intel. Softw. Intensive Sys., IEEE Press, 2011.

[12] K. R. Jackson et al., “Performance analysis of high performance

computing applications on the amazon web services cloud”, in Proc.

2nd IEEE Int. Conf. Cloud Comput. Technol. Sci. CloudCom’10,

Indianapolis, USA, 2010.

[13] J. Napper and P. Bientinesi, “Can cloud computing reach the

top500”, in Proc. UCHPC-MAW ’09, ACM, 2009.

[14] J. J. Merelo et al., “Browser-based distributed evolutionary compu-

tation: performance and scaling behavior”, in Proc. 9th Ann. Conf.

Genetic Evol. Comput. GECCO ’07, New York, NY, USA, 2007,

pp. 2851–2858.

[15] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud

computing”, Tech. rep., UC Berkeley, 2009.

[16] M. Behrendt et al., “IBM cloud computing reference architec-

ture 2.0”, Tech. rep., The Open Group, 2011.

Roman Dębski holds the M.Sc.

in Computer Science (AGH

University of Science and

Technology) and in Mechanical

Engineering and the Ph.D. in

Computational Mechanics (both

obtained at Cracow University

of Technology). He is an in-

dependent consultant with over

14 years of experience in IT.

His current research focuses

on the cloud computing.

E-mail: Roman.J.Debski@googlemail.com

Deptartment of Computer

AGH University of Science and Technology

Mickiewicza Av. 30

30-059 Kraków, Poland

Aleksander Byrski obtained

his Ph.D. in 2007 at AGH Uni-

versity of Science and Technol-

ogy in Kraków. He works as

an assistant professor at the De-

partment of Computer Science

of AGH-UST. His research fo-

cuses on multi-agent systems,

biologically-inspired computing

and other soft computing meth-

ods.

E-mail: Olekb@agh.edu.pl

Deptartment of Computer Science

AGH University of Science and Technology

Mickiewicza Av. 30

30-059 Kraków, Poland

Marek Kisiel-Dorohinicki ob-

tained his Ph.D. in 2001 at AGH

University of Science and Tech-

nology in Kraków. He works

as an assistant professor at the

Department of Computer Sci-

ence of AGH-UST. His research

focuses on intelligent software

systems, particularly utilizing

agent technology and evolution-

ary algorithms, but also other

soft computing techniques.

E-mail: Doroh@agh.edu.pl

Deptartment of Computer Science

AGH University of Science and Technology

Mickiewicza Av. 30

30-059 Kraków, Poland

22


