
Paper Self-Adaptive Differential

Evolution with Hybrid Rules of Perturbation

for Dynamic Optimization

Krzysztof Trojanowskia, Mikołaj Raciborskib, and Piotr Kaczyńskib

a Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
b Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland

Abstract—In this paper an adaptive differential evolution ap-

proach for dynamic optimization problems is studied. A new

benchmark suite Syringa is also presented. The suite allows

to generate test-cases from a multiple number of dynamic op-

timization classes. Two dynamic benchmarks: Generalized

Dynamic Benchmark Generator (GDBG) and Moving Peaks

Benchmark (MPB) have been simulated in Syringa and in

the presented research they were subject of the experimental

research. Two versions of adaptive differential evolution ap-

proach, namely the jDE algorithm have been heavily tested:

the pure version of jDE and jDE equipped with solutions mu-

tated with a new operator. The operator uses a symmetric

α-stable distribution variate for modification of the solution

coordinates.

Keywords—adaptive differential evolution, dynamic optimiza-

tion, symmetric ααα-stable distribution.

1. Introduction

Uncertainty in the optimized problem demands from the

optimization algorithms specific features appropriate to the

form of the uncertainty. Particularly, in the presented re-

search our algorithm has to cope with changes in the eval-

uation function formula or the function parameters appear-

ing during the process of optimum search. Problems with

this type of uncertainty are called dynamic problems and

searching for solutions of such problems is called dynamic

optimization. It is worth noting, that this is just one of the

forms of uncertainty appearing in the optimization process.

The remaining three according to the classification given

in [1] are represented by:

– a noise in the optimized function,

– when for some reason (for example, high computa-

tional costs), instead of using the optimized function,

we use its approximation evaluation,

– when the main aim is to find a solution not only

of the highest quality, but – more importantly – the

one whose neighbors are also good, that is, when the

most important issue is the robustness of the returned

solution.

Among a number of existing metaheuristics we selected

a differential evolution (DE) for the research. This ap-

proach is recently a subject of growing interests and has

already been studied from many points of view (for de-

tailed discussion see, for example, monographs [2] or [3]).

Our attention has been paid to the self-adaptive version of

the DE algorithm [4] which differs form the basic approach

in that a self-adaptive control mechanism is used to change

the control parameters F and CR during the run. Eventu-

ally, for our research we reimplemented the version of jDE

presented in [5]. Our experiments were conducted with

this version as well as a version extended by a new muta-

tion operator inspired by a mechanism originating from the

particle swarm optimization approach. We also modified

the set of benchmark instances and extended the number of

the algorithm quality measures which are evaluated during

the experiments. This gave a wider view to the nature of

the dynamic optimization process performed by jDE and

allowed for its better understanding. The main aim of our

research was a transfer of the idea of the new mutation

operator to the differential evolution approach and exper-

imental verification if such a transfer is justified, that is,

allows to improve the algorithm effectiveness.

The paper is organized as follows. In Section 2 a brief de-

scription of the optimization algorithm is presented. Sec-

tion 3 presents properties of new type of mutation intro-

duced to jDE. The new benchmark suite called Syringa

is presented in Section 4. Section 5 includes some details

of the selected test-cases and their configurations as well

as the applied performance measures. Section 6 shows the

results of experiments. Section 7 concludes the presented

research.

2. The Algorithm

The DE algorithm is a kind of evolutionary method with

a very specific mutation operator controlled by the scale

factor F . Three different, randomly chosen solutions are

selected from the current population to mutate a target so-

lution xi: a base solution x0 and two difference solutions

x1 and x2. First, the three solutions are used to create

a mutant solution. Then, the mutant undergoes discrete re-

combination with the target solution xi. The recombination

is controlled by the crossover probability factor CR ∈ [0,1].
Finally, in the selection stage trial solutions compete with

their target solutions for the place in the population. This

20

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235206986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Self-Adaptive Differential Evolution with Hybrid Rules of Perturbation for Dynamic Optimization

Algorithm 1 jDE algorithm

1: Create and initialize the reference set of (k ·m) solutions

2: repeat

3: for l = 1 to k do {for each subpopulation}
4: for i = 1 to m do {for each solution in a subpopulation}
5: Select randomly three solutions: xl,0, xl,1, and xl,2

such that: xl,i 6= xl,0 and xl,1 6= xl,2

6: for j = 1 to n do {for each dimension in a solution}
7: if (rand(0,1) > CRl,i) then

8: u
l,i
j = x

l,0
j + F l,i · (xl,1

j − x
l,2
j)

9: else

10: u
l,i
j = x

l,i
j

11: end if

12: end for

13: end for

14: end for

15: for i = 1 to (k ·m) do {for each solution}
16: if (f (ui) < f (xi) then {Let’s assume this is a minimization problem}
17: xi = ui

18: end if

19: Recalculate F i and CRi

20: Apply aging for xi

21: end for

22: Do overlapping search

23: until the stop condition is satisfied

strategy of population management is called DE/rand/1/bin

which means that the base solution is randomly chosen,

1 difference vector is added to it and the crossover is based

on a set of independent decisions for each of coordinates,

that is, a number of parameters donated by the mutant

closely follows a binomial distribution.

Self-Adaptive Differential Evolution approach, namely the

jDE algorithm extends functionality of the basic approach

in many ways. First, each object representing a solution

in the population is extended by a couple of its personal

parameters CR and F . They are modified every genera-

tion [4]:

Fi(t + 1) =

{

Fmin + rand[0,1) ·Fmax if rand[0,1) < 0.1
Fi(t) otherwise

Ci(t + 1) =

{

rand[0,1) if rand[0,1) < 0.1
Ci(t) otherwise

where: Fmin = 0.36 and Fmax = 0.9 represent the lower and

upper boundary for F , and Fi(0) = 0.5. For the CR factor:

CRi ∈ [0,1) and CRi(0) = 0.9.

The next modifications have been introduced just for bet-

ter coping in the dynamic optimization environment. The

population of solutions has been divided into five subpop-

ulations of size ten (this is the configuration of the algo-

rithm presented in [5]). Each of them has to perform its

own search process, that is, no information is shared be-

tween the subpopulations. Every solution is a subject to

the aging mechanism protecting against stagnation in local

minima and just the global-best solution is excluded from

this. To avoid overlapping between subpopulations a dis-

tance between subpopulation leaders is calculated and if

too close localization is observed then one of the subpop-

ulations is reinitialized. However, as in the previous case

the subpopulation with the global-best is never the one to

reinitialize. The last extension is application of a memory

structure called archive. The archive is increased after every

change in the fitness landscape by the current global-best

solution. Recalling from the archive can be executed every

reinitialization of a subpopulation, however, decision about

the execution depends on a few conditions. For details

of the above-mentioned extension procedures the reader is

referred to [5].

3. Proposed Extension of jDE

The novelty proposed in this paper is an introduction of

new type of solutions into the population of size M. The

difference between the regular members of the population

in the DE algorithm and the new ones lies in the way they

are mutated. The regular individuals undergo classic mu-

tation, that is, the mutation typical for DE with rules of

perturbation based on the base solution and two difference

ones as described above. The new solutions are modified

with use of the mutation operator (similar to the one pre-

sented in [6]) which is based on the rules of movement

governing quantum particles in mQSO [7].

In our approach a small number of new solutions (just one,

two, or three pieces) replace the classic ones so the popula-

tion size remains unchanged. In the subpopulation the new

21

Krzysztof Trojanowski, Mikołaj Raciborski, and Piotr Kaczyński

solutions coexist with the classic ones and undergo just the

same procedures of selection and suppression.

In the first phase of the new mutation, we generate a new so-

lution uniformly distributed within a unit hypersphere sur-

rounding the solution to be mutated. In the second phase,

the generated solution is shifted along the direction de-

termined by the hypersphere center and the solution. The

distance d′ from the hypersphere center to the final location

of the solution is a random variable defined as:

d′ = d SαS(0,σ) exp(− f ′(xi)), (1)

where: d is a distance from the location obtained in the first

phase, SαS(·, ·) denotes a symmetric α-stable distribution

variate, σ and f ′(xi) are defined as in Eq. (2) and Eq. (3)

respectively:

σ = rSαS (Dw/2) , (2)

f ′(xi) =
f (xi)− fmin

(fmax − fmin)
, (3)

where:

fmax = max
j=1,...,M

f (x j) and fmin = min
j=1,...,M

f (x j) ,

where: Dw is the width of the feasible part of the search

space, i.e., the distance between its lower and upper bound-

aries and f (x j) is the value of the j-th solution.

The α-stable distribution (called also a Levý distribution) is

controlled by four parameters: stability index α (α ∈ (0,2]),
skewness parameter β , scale parameter σ and location pa-

rameter µ . In our case we assume µ = 0 and apply the

symmetric version of this distribution (denoted by SαS for

“symmetric α-stable distribution”), where β is set to 0.

The resulting behavior of the proposed operator is char-

acterized by two parameters: the parameter rSαS which

controls the mutation strength, and the parameter α which

determines the shape of the α-stable distribution. Solu-

tions mutated in this way are labeled as sLevý in the further

text.

4. The Syringa Benchmark Suite

For the experimental research we developed a new testing

environment Syringawhich is able to simulate behavior of

a number of existing benchmarks and to create completely

new instances as well. The structure of the Syringa code

originates from a fitness landscape model where the land-

scape consists of a number of simple components. A sam-

ple dynamic landscape consists of a number of components

of any types and individually controlled by a number of pa-

rameters. Each of the components covers a subspace of the

search space. The final landscape is the result of a union of

a collection of components such that each of the solutions

from the search space is covered by at least one component.

In the case of a solution belonging to the intersection of

a number of components the solution value equals

– the minimum (for minimization problems),

– the maximum (otherwise) value among the values

obtained for the intersected components,

– the sum of the fitness vales obtained from these com-

ponents.

Eventually, the Syringa structure is a logical consequence

of the following assumptions:

1. The fitness landscape consists of a number of any

different component landscapes.

2. The dynamics of each of the components can be dif-

ferent and individually controlled.

3. A component can be defined for a part or the whole

of the search space, thus, in the case of a solution

covered by more than one component the value of this

solution can be the minimum, the maximum or the

sum of values returned by the covering components.

4.1. The Components

Current version of Syringa consists of six types of compo-

nent functions (Table 1) defined for the real-valued search

space. All formulas include the number of the search

apace dimensions n which makes them able to define search

spaces of any given complexity.

There can be defined a number of parameters which in-

dividually define the component properties and allow to

introduce dynamics as well. For each of the components

we can define two groups of parameters which influence

the formula of the component fitness function: the param-

eters from the former one are embedded in the component

function formula whereas the parameters from the latter

one control rather the output of the formula application.

For example, when we want to stretch the landscape over

the search space each of the solution coordinates is multi-

plied by a scaling factor. For a non–uniform stretching we

need to use a vector of factors containing individual values

for each of the coordinates. We call this type of modifica-

tion a horizontal scaling and this represents the first type

of component changes. The example of the second type

is a vertical scaling where just the fitness value of a so-

lution is multiplied by a scaling factor. The first group

of parameters controls changes like horizontal translation,

horizontal scaling, and rotation. For simplicity they are

called horizontal changes in the further text. The second

group of changes (called respectively vertical changes) is

represented by vertical scaling and vertical translation. All

of the changes can be obtained by dynamic modification of

respective parameters during the process of search.

22

Self-Adaptive Differential Evolution with Hybrid Rules of Perturbation for Dynamic Optimization

Table 1

Syringa components

Name Formula Domain

Peak (F1) f (x) = 1

1+∑n
j=1 x2

j

[–100,100]

Cone (F2) f (x) = 1−
√

∑n
j=1 x2

j [–100,100]

Sphere (F3) f (x) = ∑n
i=1 x2

i [–100,100]

Rastrigin (F4) f (x) = ∑n
i=1

(

x2
i −10cos(2πxi)+ 10

)

[–5,5]

Griewank (F5) f (x) = 1
4000 ∑n

i=1(xi)
2 −∏n

i=1cos
(

xi√
i

)

+ 1 [–100,100]

Ackley (F6) f (x) = −20 exp
(

−0.2

√

1
n

n

∑
i=1

x2
i

)

− exp
(

1
n

n

∑
i=1

cos(2πxi)
)

+ 20 + e [–32,32]

4.2. Horizontal Change Parameters

In this case the coordinates of the solution x (a vector, that

is, a matrix of size n by 1) are modified before the com-

ponent function equation is applied. The new coordinates

are obtained with the following formula:

x′ = M
(

W(x+X)
)

(4)

where: X is a translation vector, W is a diagonal matrix

of scaling coefficients for the coordinates, and M is an

orthogonal rotation matrix.

4.3. Vertical Change Parameters

Changes of the fitness function value are executed accord-

ing to the following formula:

f ′(x) = f (x) · v + h (5)

where: v is a vertical scaling coefficient and h is a vertical

translation coefficient.

4.4. Parameters control

In the case of dynamic optimization the fitness landscape

components has to change the values of their parameters

during the process of search. There were defined four differ-

ent characteristics of variability which were applied to the

component parameters: small step change (T1 – Eq. (7)),

large step change (T2 – Eq. (8)), and two versions of ran-

dom changes (T3 – Eq. (9) and T4 – Eq. (10)). The change

∆ of a parameter value is calculated as follows:

∆ = α r (max−min), (6)

where α = 0.04, r = U(0,1), (7)

∆ = (α · sign(r1)+ (αmax −α)r2) · (max−min),

where α = 0.04, r1,2 = U(0,1), αmax = 0.1 (8)

∆ = N(0,1), (9)

∆ = U(rmin,rmax) (10)

In the above-mentioned equations max and min represent

upper and lower boundary of the search space, N(0,1) is

a random value obtained with standardized normal distri-

bution, U(a,b) is a random value obtained with uniform

distribution form the range [a,b], and [rmin;rmax] define the

feasible range of ∆ values.

The model of Syringa assumes that the component pa-

rameter control is separated from the component, that is,

a dynamic component has to consist of two objects: the first

one represents an evaluator of solutions (that is, a compo-

nent of any type mentioned in Table 1) and the second one

is an agent which controls the behavior of the evaluator.

The agent defines initial set of values for the evaluator pa-

rameters and during the process of search the values are up-

dated by the agent according to the assumed characteristic

of variability. Properties of all the types of components are

unified so as to make possible assignment of any agent to

any component. This architecture allows to create multiple

classes of dynamic landscapes. In the presented research

we started with simulation of two existing benchmarks:

Generalized Dynamic Benchmark Generator (GDBG) [8]

and the Moving Peaks Benchmark generator [9]. In both

cases optimization is carried out in a real-valued multidi-

mensional search space, and the fitness landscape is built

of multiple component functions controlled individually by

their parameters. For appropriate simulation of any of the

two benchmarks there are just two things to do: select

a set of the components and build agents which will control

the components in the same manner like in the simulated

benchmark.

4.5. Reimplementation of Moving Peaks Benchmark

(MPB)

In the case of MPB, three scenarios of the benchmark pa-

rameters control are defined [9]. We performed experi-

ments for two versions of just the second scenario. In this

scenario the fitness landscape has been defined for the five-

dimensional search space with the same boundaries for each

dimension, namely [−50; 50].
The selected fitness landscape consists of a set of cones (F2)

which undergo two types of horizontal changes: the trans-

23

Krzysztof Trojanowski, Mikołaj Raciborski, and Piotr Kaczyński

lation and the scaling and just one vertical change, that

is, the translation. The horizontal scaling operator has the

same scale coefficient for each of the dimensions, so in

this specific case this coefficient is represented as a one-

dimensional variable w instead of the vector W. Parame-

ters X, w and h are embedded into the cone function for-

mula f (x) in the following way:

f (x) = h−w ·
√

n

∑
j=1

(x j −X j)2 . (11)

All the modifications of the component parameters belong

to the fourth characteristic of variability T4 where for every

change rmin and rmax are redefined in the way to keep the

value of each modified parameter in the predefined feasible

interval [fmin; fmax]. Simply, for every modified parame-

ter of translation or scaling, which can be represented as

a symbol p, rmin equals pmin−p and rmax equals pmax−p.

For the horizontal scaling the interval is set to [1;12] and for

the vertical scaling – to [30;70]. For the horizontal trans-

lation there is a constraint for the Euclidean norm of the

translation vector: |X| ≤ 3. In the first version of the sce-

nario 2 there are ten moving cones whereas in the second

version 50 moving cones are in use. Besides, we extended

the number of the search space dimensions and performed

our tests also for n = 10,20,30 for both versions of the

selected benchmark instance.

4.6. Reimplementation of Generalized Dynamic

Benchmark Generator (GDBG)

GDBG consists of two different benchmarks: Dynamic Ro-

tation Peak Benchmark Generator (DRPBG) and Dynamic

Composition Benchmark Generator (DCBG). There are five

types of component functions: peak (F1), sphere (F3), Ras-

trigin (F4), Griewank (F5), and Ackley (F6). F1 is the base

component for DRPBG whereas all the remaining types are

employed in DCBG.

4.6.1. Dynamic Rotation Peak Benchmark Generator

(DRPBG)

There are four types of the component parameter modifica-

tion applied in DRPBG: horizontal translation, scaling and

rotation, and vertical scaling. As in the case of MPB the

horizontal scaling operator has the same scale coefficient

for each of the dimensions, so in this specific case this co-

efficient is also represented as a one-dimensional variable

w instead of the vector W. The parameters X, w and v

are embedded into the peak function formula f (x) in the

following way:

f (x) =
v

1 + w ∑n
j=1

(x j−X j)2

n

. (12)

Values of the translation vector X in subsequent changes

are evaluated with use of the rotation matrix M. Clearly,

we apply the rotation matrix to the current coordinates of

the component function optimum o, that is: o(t + 1) =
o(t) ·M(t) (where t is the number of the current change

in the component) and then the final value of X(t + 1) is

calculated: X(t + 1) = o(t + 1)−o(0).
Subsequent values of the horizontal scaling parameter w

and the vertical scaling parameter v are evaluated accord-

ing to the first, the second or the third characteristic of

variability, that is, T1, T2 or T3.

For every change a new rotation matrix M is generated

which is common for all the components. The rotation ma-

trix M is obtained as a result of multiplication of a number

of rotation matrices R where each of R represents rota-

tion in just one plane of the multidimensional search space.

A matrix Ri j(θ) represents rotation by the θ angle along

the plane i– j and such a matrix can be easily generated as

described by [10]. In DRPBG we start with a selection of

the rotation planes, that is, we need to generate a vector r

of size l where l is an even number and l ≤ n/2. The vector

contains search space dimension indices selected randomly

without repetition. Then for every plane defined in r by

subsequent pairs of indices: [1,2], [3,4], [5,6], . . . [l −1, l]
a rotation angle is randomly generated and finally respec-

tive matrices Rr[1],r[2], . . .Rr[l−1],r[l] are calculated. Eventu-

ally, the rotation matrix M is calculated as follows:

M(t) = Rr[1],r[2](θ (t))Rr[3],r[4](θ (t)) · · ·Rr[l−1],r[l](θ (t)).

In Syringa the method of the rotation matrix generation

slightly differs from the one described above. Instead of the

vector r there is a vector Θ which represents a sequence

of rotation angles for all the possible planes in the search

space. The position in the vector Θ defines the rotation

plane. Simply, Θ(1) represents the plane [1,2], Θ(2) rep-

resents the plane [2,3] and so on until the plane [n-1,n].

The next values in Θ represent planes created from every

second dimensions, that is, [1,3], [2,4] and so on until the

plane [n-2,n]. Then values in Θ represent planes created

from every third dimensions, then those created from every

fourth, and so on until there appears the value for the last

plane created from the first and the last dimension. If Θ(i)
equals zero, then there is no rotation for the i-th plane, oth-

erwise the respective rotation matrix R is generated. The

final stage of generation of the matrix M is the same as

in the description above, that is, the rotation matrix M is

the result of multiplication of all the matrices R generated

from the vector Θ.

The matrix M is used twice for the evaluation of the com-

ponent modification parameters: the first time when the

translation vector X is calculated and the second time when

the rotation is applied, that is, just before the application

of the Eq. (12).

4.6.2. Dynamic Composition Benchmark Generator

(DCBG)

DCBG performs five types of the component parameter

modification: horizontal translation, scaling and rotation

and vertical translation and scaling. The respective para-

24

Self-Adaptive Differential Evolution with Hybrid Rules of Perturbation for Dynamic Optimization

meters are embedded into the function formula f ′′(x) in the

following way [11], [12]:

f ′′(x) = (v · (f ′(M · (W · (x+X)))+ h)) (13)

where: v is the weight coefficient depending of the cur-

rently evaluated x, W is called a stretch factor which equals

1 when the search range of f (x) is the same as the entire

search space and grows when the search range of f (x) de-

creases, f ′(x) represent the value of f (x) normalized in

the following way: f ′(x) = C · f (x)/| fmax| where the con-

stant C = 2000 and fmax is the estimated maximum value of

function f which is one of the four: sphere (F3), Rastrigin

(F4), Griewank (F5), or Ackley (F6).

In Syringa the properties of some of the parameters has

had to be changed. The first difference is in the evaluation

of the weight coefficient v which due to the structure of the

assumed model cannot depend of the currently evaluated x.

Therefore, we assumed that v = 1. There is also no scaling,

that is, W is an identity matrix because we assumed that

the component functions are always defined for the entire

search space. The last issue is about the rotation matrix M

which is calculated in the same way as for the Syringa

version of DRPBG. Eventually, the Syringa version of

f ′′(x) looks as follows:

f ′′(x) = ((f ′(M · ((x+X)))+ h)) (14)

Thus, the Syringa version of DCBG differs from the orig-

inal one because it does not contain the horizontal scaling,

the rotation matrix M is evaluated in the different way and

the stretch factor always equals one. However, a kind of

the vertical scaling is still present and can be found in the

step of the f (x) normalization.

5. Plan of Experiments

There were performed two groups of experiments. In the

first one we applied the pure version of jDE, whereas in the

second one the version of jDE extended by sLevý solutions

was in use. The main aim of the first group was to study

the effectiveness of the algorithm for testing environments

with different complexity of the search space. The second

group of experiments showed the influence of sLevý solu-

tions on the search process and the quality of the obtained

results.

Experiments form the first group were performed with

a subset of GDBG benchmark instances as well as with

two versions of MPB scenario 2, for different numbers

of the search space dimensions. The tests based on MPB

were repeated twice. First, the tests were performed with

the number of fitness function calls between subsequent

changes defined as it was proposed for the CEC’09 compe-

tition, that is, for 104 ·n fitness function calls (n is a number

of search space dimensions). Then the tests were repeated –

for a fixed number of 5000 calls as it is recommended for

experiments with MPB [9]. The tests based on GDBG

were performed once just for 104 · n fitness function calls

between subsequent changes.

The second group includes experiments with a subset of

GDBG benchmark functions as well as with four versions

of MPB and for different numbers of sLevý solutions present

in the population. All the experiments in this group were

performed for 104 ·n fitness function calls between subse-

quent changes. However, it must be stressed that in this

group the number of search space dimensions was constant

and equal five for every test-case.

To decrease the number of algorithm configurations which

would be experimentally verified in the second group of ex-

periments we decided to fix the value of the parameter rSαS

and the only varied parameter was α . In the preliminary

phase of experimental research we tested efficiency of the

algorithm for different values of rSαS and analyzed obtained

values of error. Eventually, for GDBG rSαS = 0.6 whereas

for MPB it is ten times smaller, that is, rSαS = 0.06. Thus,

for each of the benchmark instances there were performed

just 32 experiments: for α between 0.25 and 2 varying

with step 0.25 and for 0, 1, 2 and 3 solutions of new type

present in the population.

For each of the parameter configurations the experiments

were repeated 20 times and each of them consisted of

60 changes in the fitness landscape.

5.1. The Measures

We used measures of the obtained results proposed for both

of the benchmarks by their authors. This gave opportunity

for fair comparison of the algorithm efficiency. For GDBG

there were defined four measures:

Avgbest =
Nexp

∑
i=1

min
j=1,...,Nch

E
i, j
last/Nexp,

Avgmean =
Nexp

∑
i=1

Nch

∑
j=1

E
i, j
last/(Nexp ·Nch),

Avgworst =
Nexp

∑
i=1

max
j=1,...,Nch

E
i, j
last/Nexp,

STD =

(

1

Nexp ·Nch −1

Nexp

∑
i=1

Nch

∑
j=1

(E i, j
last −Avgmean)2

)−1

,

where: Nexp is a number of repeated experiments for the

same control parameter settings of the algorithm, Nch is

a number of changes in the fitness landscape appearing

during a single experiment run, and E
j
last is an absolute

function error value:

E
j
last = | f (x j

best)− f (x∗ j)|,

where: x
j
best – current best solution which has been found

since the last j-th change in the fitness landscape, x∗ j –

real optimum solution for the fitness landscape after the

j-th change.

In the case of MPB most of the publications contain the

values of offline error measure (oe) obtained for performed

25

Krzysztof Trojanowski, Mikołaj Raciborski, and Piotr Kaczyński

experimental research. The offline error represents the av-

erage deviation from the optimum of the best solution value

since the last change in the fitness landscape. Formally:

oe =
1

Nch

Nch

∑
j=1

(

1

Ne(j)

Ne(j)

∑
i=1

(f (x∗ j)− f (x
ji
best))

)

,

where: Ne(j) is a total number of solution evaluations per-

formed for the j-th static state of the landscape. The mea-

sure oe should be minimized, that is, the better result the

smaller the value of oe.

6. The Results

6.1. The First Group of Experiments – with the Pure

Version of jDE

Majority of the results from the first group of experiments

have already been reported in [13]. One of the more im-

portant observations was about a sensitivity of the Avgmean

measure to the complexity of the search space. Graphs

in Fig. 1 depicts values of Avgmean obtained for the tests

which were performed for 104 ·n fitness function calls be-

tween subsequent changes, that is, for the number of fitness

function calls depending on the number of the search space

dimensions. Three types of Avgmean error value trends can

be observed in Fig. 1. They show that the proposed linear

dependency of the evaluation number on n:

– does not compensate growth of the errors (e.g.,

DRPBG problems with F4 components (Rastrigin

functions)),

– does compensate growth of the errors for some lim-

ited range (e.g., DRPBG problems with F6 com-

ponents (Ackley functions) or with F3 components

(sphere functions)),

– does compensate growth of the errors exces-

sively (e.g, DRPBG problems with F5 components

(Griewank functions)).

The above-mentioned difference in the sensitivity of

Avgmean and the offline error inspired the second group of

experiments. We wanted to compare the results obtained

with these four measures for the jDE version extended by

sLevý solutions optimizing in five-dimensional search space.

6.2. The Second Group of Experiments – with jDE

Extended by sLevýLevýLevý Solutions

In this group of experiments we observed values of the

above-mentioned measures for the experiments with dif-

ferent number of sLevý solutions present in the algorithm.

We did full range of experiments for different values of α
and different numbers of sLevý solutions in subpopulations.

Then we selected the best results obtained with the offline

error measure oe and with Avgmean. The results are gath-

ered in two tables: Table 2 with the results for the cases

where the best values of Avgmean and oe were obtained

for the same configurations of jDE parameters and Table 3

where the best values of Avgmean and oe were obtained for

different configurations. In the latter case the best values

are printed in bold characters.

Tables 2 and 3 present list of all the benchmark instances

and configurations of jDE where the best values of Avgmean

and oe were obtained for the instances as well as the val-

ues of all the performance measures. In most cases the

best values of Avgmean were obtained for jDE without ex-

tension (except for DCBG with F5 and with all three types

of characteristics of the parameters variability and three

another cases: DRPBG 10×F1, T1, DRPBG 50×F1, T3

and MPB sc.2 with 50 cones) whereas there were many

test-cases where the best values of oe were obtained for

jDE extended with sLevý solutions (DCBG with F3 or F6

and with all three types of characteristics of the parameters

variability, majority of DRPBG configurations and again

MPB sc.2 with 50 cones). In the latter group of jDE con-

figurations the best values of oe can be observed for jDE

with just one sLevý solution existing in every subpopula-

tion, however, there is an exception which is DCBG with

F5 where the best values were obtained for the highest num-

bers of sLevý solutions.

7. Conclusions

In this paper we studied properties of jDE applied to the

number of dynamic optimization tasks. A new benchmark

suite called Syringa was implemented which is able to

simulate existing benchmarks and allows to create plenty

of new classes of dynamic optimization problems as well.

Two existing benchmarks were selected for experiments:

MPB and DCBG. Selected subsets of test-case instances

originated from the two benchmarks were reimplemented

within the suite. Then, a number of tests was executed

for these optimization tasks. As an optimization tool the

self-adaptive differential evolution approach was selected.

7.1. Conclusions from the First Group of Experiments

In the first group we used a number of test-case instances

of different complexity, that is, test-cases with the number

of search space dimensions growing from five to 30. To

compensate growth of errors accompanying growing com-

plexity of the optimized problems the tests were performed

with the number of fitness function calls defined as it was

proposed for the CEC’09 competition. Obtained different

error value trends for the applied measures revealed the

search process features varying for the problems of growing

complexity. In spite of the fact that in every case the value

of oe increased as the number of search space dimensions

grew [13] obtained mean values of the best found solutions

have different characteristics. For some test-cases the com-

pensation formula was sufficient to keep the values of the

best found solution on the same level whereas for the others

26

Self-Adaptive Differential Evolution with Hybrid Rules of Perturbation for Dynamic Optimization

Fig. 1. Avgmean values (on the left) obtained for DCBG test-cases (respective fitness landscapes in 2D are on the right) with: (a) F4 com-

ponents (Rastrigin functions), (b) F6 components (Ackley functions), (c) F3 components (sphere functions), and (d) F5 components

(Griewank functions).

27

Krzysztof Trojanowski, Mikołaj Raciborski, and Piotr Kaczyński

Table 2

The results for the cases where the best values of Avgmean and oe were obtained for the same configurations

of jDE parameters

Testing environment α sLevý num. Avgbest Avgmean Avgworst STD oe Std. err

MPB sc.2, 10 cones — 0 0 2.929 14.241 4.387 4.111 2.213

MPB sc.2, 50 cones 0.5 1 8.39·10−6 2.730 11.129 2.941 3.749 1.013

DCBG with F4, T1 — 0 2.999 368.31 829.59 187.81 570.72 48.496

DCBG with F4, T2 — 0 5.725 414.39 824.64 191.88 610.56 57.612

DCBG with F4, T3 — 0 0.746 402.62 805.08 187.34 661.39 54.57

Table 3

The results for the cases where best values of Avgmean and oe were obtained for different configurations

of jDE parameters

Testing environment α sLevý num. Avgbest Avgmean Avgworst STD oe Std. err

DRPBG 10×F1, T1 2 1 0 0.004 0.222 0.130 2.041 0.354

DRPBG 10×F1, T1 0.25 1 0 0.0208 0.878 0.312 1.988 0.688

DRPBG 10×F1, T2 — 0 0 0.0023 0.074 0.056 2.675 0.310

DRPBG 10×F1, T2 1 1 0 0.0361 1.189 0.353 2.518 0.689

DRPBG 10×F1, T3 — 0 0 0.004 0.264 0.141 3.985 0.678

DRPBG 10×F1, T3 0.5 1 0 0.058 1.644 0.728 3.761 1.012

DRPBG 50×F1, T1 — 0 0 0.352 4.899 1.190 3.601 0.641

DRPBG 50×F1, T1 1 1 0 0.653 6.976 1.471 3.501 0.523

DRPBG 50×F1, T2 — 0 0 0.385 5.816 1.188 4.318 0.529

DRPBG 50×F1, T2 1.75 1 0 0.703 6.532 1.633 4.219 0.659

DRPBG 50×F1, T3 0.75 1 0 0.619 7.006 2.134 5.875 1.860

DRPBG 50×F1, T3 1.5 1 0 0.836 6.912 1.853 5.657 1.214

DCBG with F3, T1 — 0 0 0.138 3.715 0.822 2.087 0.536

DCBG with F3, T1 1.5 2 2.15·10−6 1.249 9.288 3.032 1.226 0.487

DCBG with F3, T2 — 0 0 0.295 7.664 1.673 3.290 0.860

DCBG with F3, T2 0.75 1 0 0.452 7.679 1.978 1.816 0.506

DCBG with F3, T3 — 0 0 0.240 4.692 0.932 8.482 1.827

DCBG with F3, T3 1.75 3 0.0007 1.989 10.103 2.819 5.325 1.923

DCBG with F5, T1 2 2 0.133 2.113 6.118 1.483 0.180 0.033

DCBG with F5, T1 1.25 3 0.464 2.253 6.163 1.362 0.168 0.028

DCBG with F5, T2 2 2 0.128 1.847 5.734 1.359 0.143 0.015

DCBG with F5, T2 1.75 3 0.323 2.148 5.905 1.319 0.133 0.019

DCBG with F5, T3 1.75 3 0.411 2.364 6.276 1.381 0.358 0.070

DCBG with F5, T3 2 3 0.288 2.491 5.891 1.340 0.356 0.044

DCBG with F6, T1 — 0 0 0.545 13.169 2.698 8.539 1.847

DCBG with F6, T1 2 1 0.0004 1.031 11.291 2.790 8.419 2.811

DCBG with F6, T2 — 0 0 0.547 11.992 2.238 11.381 2.077

DCBG with F6, T2 1.5 1 0.0003 1.309 15.526 3.651 9.773 2.594

DCBG with F6, T3 — 0 0 0.590 6.859 1.643 15.914 1.086

DCBG with F6, T3 1.5 1 0.0005 1.420 8.799 2.922 14.245 2.167

28

Self-Adaptive Differential Evolution with Hybrid Rules of Perturbation for Dynamic Optimization

it was not (Fig. 1). This allowed to identify some of the

test cases as more difficult that the others.

The observations confirm that a new formula for the num-

ber of fitness evaluations applied to compensate growth of

the errors is needed (probably different ones for different

landscapes). However, different trends obtained for the two

measures show also that the measures evaluate different

features of the search process and thus probably it will be

hard of even impossible to find the rule which would be

able to compensate growth of both of the errors at the same

time.

7.2. Conclusions from the Second Group of Experiments

In the second group of tests we studied influence of the new

type of mutation operator on the search process effective-

ness. A new type of solutions which undergo the new mu-

tation procedure was introduced into the population. The

presence of new solutions changed the population behavior

in the way which allowed to explore faster new promising

areas of the search space. However, from the other side

the enhancement of exploring properties was the reason for

less precise approaching of the population to the optimum.

The effect of this can be observed in the results presented

in Tables 2 and 3.

7.3. Summary

Obtained results show that application of both oe and

Avgmean in the experimental research analysis returns more

information about the search process and shows more pro

and cons about the tested algorithm than the application of

just one of them. Our experiments and especially obtained

values of oe showed that application of sLevý solutions al-

lows to explore and approach faster the promising areas of

the search space in many benchmark instances. However,

worse values of Avgmean accompanying the best values of

oe are the argument against this if we are interested in the

highest values of the best found solutions. So, in unpre-

dictable circumstances and especially when the available

number of time, that is, the available number of fitness

function evaluations is hardly predictable and it is probable

that the estimated number can be unexpectedly shortened

the better option is the maximization of oe. In the opposite

case, that is, when the granted number of fitness func-

tion evaluations is sufficient and guaranteed, the strategy

of Avgmean maximization is much more reasonable.

Acknowledgments

This research has been partially supported by the Eu-

ropean Regional Development Fund with the grant

no. POIG.01.01.02-14-013/09: Adaptive system supporting

problem solution based on analysis of textual contents of

available electronic resources.

References

[1] Y. Jin and J. Branke, “Evolutionary algorithms in uncertain envi-

ronments – a survey”, IEEE Trans. Evol. Comput., vol. 9, no. 3,

pp. 303–317, 2005.

[2] V. Feokistov, “Differential evolution”, in Search of Solutions, vol. 5

of Optimization and Its Applications. Springer, 2006.

[3] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution,

A Practical Approach to Global Optimization. Natural Computing

Series. Springer, 2005.

[4] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-

adapting control parameters in differential evolution: a comparative

study on numerical benchmark problems”, IEEE Trans. Evol. Com-

put., vol. 10, no. 6, pp. 646–657, 2006.

[5] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,

“Dynamic optimization using self-adaptive differential evolution”,

in IEEE Congr. Evol. Comput., pp. 415–422. IEEE, 2009.

[6] A. Obuchowicz and P. Pretki, “Isotropic symmetric α-stable muta-

tions for evolutionary algorithms”, in Proc. Congr. Evol. Comput.,

vol. 1, pp. 404–410. IEEE Press, 2005.

[7] K. Trojanowski, “Properties of quantum particles in multi-swarms

for dynamic optimization”, Fundamenta Informaticae, vol. 95,

no. 2–3, pp. 349–380, 2009.

[8] C. Li and S. Yang, “A generalized approach to construct benchmark

problems for dynamic optimization”, in Simulated Evolution and

Learning, 7th Int. Conf. SEAL 2008, Melbourne, Australia, 2008,

vol. 5361 of LNCS, pp. 391–400. Springer, 2008.

[9] J. Branke, “Memory enhanced evolutionary algorithm for changing

optimization problems”, in Proc. Congr. on Evol. Comput., vol. 3,

pages 1875–1882. IEEE Press, Piscataway, NJ, 1999.

[10] R. Salomon, “Reevaluating genetic algorithm performance under

coordinate rotation of benchmark functions”, BioSystems, vol. 39,

no. 3, pp. 263–278, 1996.

[11] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test

functions for numerical global optimization”, in Proc. IEEE Swarm

Intelligence Symp., Pasadena, CA, USA, 2005, pp. 68–75.

[12] P. N. Suganthan et al., “Problem definitions and evaluation criteria

for the cec 2005 special session on real-parameter optimization”,

Tech. Rep., Nanyang Technological University, Singapore, 2005.

[13] M. Raciborski, K. Trojanowski, and P. Kaczyński, “Differential evo-

lution for high scale dynamic optimization”, in Security and Intel-

ligent Information Systems, LNCS. Springer, 2011 (will appear in

vol. 7053).

Krzysztof Trojanowski re-

ceived the M.Sc. degree in

Computer Science from the

Warsaw University of Tech-

nology, Poland, in 1994, the

Ph.D. degree from the Institute

of Computer Science of the

Polish Academy of Sciences

(ICS PAS), Warsaw, Poland,

in 2000, and the habilitation

degree – also from ICS PAS

in 2010. Since 1994 he has been with the Institute of

Computer Science PAS. From 1995 to 2002 we was a

consultant at IT companies in Poland. From 2002 to 2008

he was with University of Podlasie, Siedlce. Currently, he

is with the Cardinal Stefan Wyszyński University, Warsaw,

where he is an Associate Professor. From 2003 until 2008

he was a chairman of the Organizing Committee of the

annual international conference Intelligent Information

29

Krzysztof Trojanowski, Mikołaj Raciborski, and Piotr Kaczyński

Systems organized by ICS PAS. From 2006 until 2008 he

was also a chairman of the International Conference on

Artificial Intelligence, the oldest AI conference in Poland.

His research interests include heuristic optimization tech-

niques, such as evolutionary algorithms, immune systems,

and particle swarm optimization.

E-mail: trojanow@ipipan.waw.pl

Institute of Computer Science

Polish Academy of Sciences

Ordona 21 01-237 Warsaw, Poland

Piotr Kaczyński received the

M.Sc. degree in Computer Sci-

ence from the Warsaw Univer-

sity of Technology, Poland and

the M.Sc. degree in Theoretical

Mathematics from Cardinal

Stefan Wyszyński University in

Warsaw, Poland, both in 2006.

Since then he has been with

the Cardinal Stefan Wyszyński

University as a teaching assis-

tant and also with various IT companies in Poland working

with mathematical modeling and simulation. His research

interests include both artificial intelligence applications

(such as neural networks, evolutionary algorithms) and

stochastic control.

E-mail: p.kaczynski@uksw.edu.pl

Faculty of Mathematics and Natural Sciences

College of Sciences

Cardinal Stefan Wyszyński University

Wóycickiego st 1/3

01-938 Warsaw, Poland

Mikołaj Raciborski received

the B.Sc. degree in Natural Sci-

ences, with a specialization of

Computer Science in Applica-

tions in 2009 and the M.Sc.

degree in Computer Science

in 2011 both at Cardinal Ste-

fan Wyszyński University, Fac-

ulty of Mathematics and Nat-

ural Sciences, College of Sci-

ences. His research interests in-

clude computer science, mathematics, physics, chemistry,

and electronic services.

E-mail: mikolaj.raciborski@gmail.com

Faculty of Mathematics and Natural Sciences

College of Sciences

Cardinal Stefan Wyszyński University

Wóycickiego st 1/3

01-938 Warsaw, Poland

30

